Comparison of Different Approaches to Evaluate and Explain Interviewer Effects

Geert Loosveldt
KU Leuven, geert.loosveldt@kuleuven.be

Celine Wuyts
KU Leuven, Celine.Wuyts@kuleuven.be

Follow this and additional works at: http://digitalcommons.unl.edu/sociw
Part of the Quantitative, Qualitative, Comparative, and Historical Methodologies Commons

Loosveldt, Geert and Wuyts, Celine, "Comparison of Different Approaches to Evaluate and Explain Interviewer Effects" (2019). 2019 Workshop: Interviewers and Their Effects from a Total Survey Error Perspective. 16.
http://digitalcommons.unl.edu/sociw/16

This Article is brought to you for free and open access by the Sociology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in 2019 Workshop: Interviewers and Their Effects from a Total Survey Error Perspective by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
A comparison of different approaches to evaluate and explain interviewer effects

Geert Loosveldt
Celine Wuyts
Caroline Vandenplas

Centre for Sociological Research
Outline

• Introduction
 o Conceptual issues
• Basic model
• Data
 o European Social Survey round 8
• Three procedures to evaluate interviewer effects
 o Two step procedure
 o Conditional random interviewer effect model
 o The mixed effect location scale model
 o Focus: impact of respondent characteristics
Introduction

- **Interviewer effects:**
 - differences between interviewers in their systematic effects on the respondent's answers
 - Additional variance

- **Evaluation of interviewer effects:**
 - Essential part of data quality assessment
 - Variance analysis
 - Intra class correlation: proportion of explained variance
 - Only one type of interviewer effect
The basic model

• Two level hierarchical data structure:
 o Respondents are nested within interviewers
 o Two level random intercept (null) model

\[Y_{ij} = \beta_{0,j} + \varepsilon_{ij} \]
\[\beta_{0,j} = \gamma_{00} + \mu_{0,j} \]
\[Y_{ij} = \gamma_{00} + \mu_{0,j} + \varepsilon_{ij} \]

 • \(\beta_{0,j} \) intercept for interviewer j
 • \(\varepsilon_{ij} \) residual error term for respondent i; variance
 • \(\mu_{0,j} \) an interviewer-specific part of the intercept ;variance

o Interviewer effects= intra class correlation coefficient:

\[\rho_{\text{int}} = \frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma_{\varepsilon}^2} \]
The basic model (Cn’t)

- Extension at the respondent level: respondent characteristics e.g. X_1
 \[Y_{ij} = \gamma_{00} + \mu_{0j} + \beta_{1j}X_{1ij} + \epsilon_{ij} \]
 - Explanation of the variability in the substantive dependent variable
 - Evaluation of interviewer effects:
 - Partial control for the differences between interviewers in the composition of the respondent group
 - No direct assessment of the impact of respondent characteristics on interviewer effects
The basic model (Cn’t)

- Extension at the interviewer level: interviewer characteristics I_1 (e.g. experience, workload, …)
 \[\beta_{0j} = \gamma_{00} + \gamma_{01}I_{1j} + \mu_{0j} \]
 - Explanation of the differences between interviewers (interviewer effects) concerning the random intercept
 - Assessment of interviewer characteristics on interviewer effects

- Integration:
 \[Y_{ij} = \gamma_{00} + \mu_{0j} + \beta_{1j}X_{1ij} + \gamma_{01}I_{1j} + \varepsilon_{ij} \]
 - explanation of variance of a substantive variable
 - No direct assessment of the impact of respondent characteristics on interviewer effects
Data

- European Social Survey (Round 8)
 - 21 countries
 - 9 questions from two climate change and energy module and 6 questions from welfare attitude module (11-point scale)
 - Control variables: gender, age, language of interview is the respondent’s home language (0= no; 1=yes), self reported degree of urbanization (1= Big City, , 5 = countryside)
 - Highest level of education (EISCED variable):
 - level 1: Lower secondary school;
 - level 2: Upper secondary education or advanced vocational education,
 - level 3: Tertiary education.
Data

- Preliminary analysis of intra interviewer correlations
 - 15 variables in 21 countries
 - Model: basic random intercept model
 \[y_{ij} = b_0 + a_2(Education = 2) + a_3(Education = 3) + b_1 Age + b_2 Male \]

 \[+ b_3 Same language + b_4 Domicile type + u_j + \epsilon_{ij} \]

 \[u_j \sim N(0, \sigma_u^2) \quad \epsilon_{ij} \sim N(0, \sigma_\epsilon^2) \]

- Intra Interviewer correlations (IICs) for each variable in each country
Data

- Figure: Boxplots of the Intra Interviewer correlations for 15 questions per country.
Three procedures to evaluate interviewer effects and the impact of a respondent characteristic

- Respondent’s educational level
- Expectation: more complex interactions \rightarrow higher interviewer effects

Procedure 1: A two-step procedure

- **First step:** Calculation of IIC’s for 15 questions within 3 categories of educational level in each country
 - Basic model with control variables
 - Interviewers with at least three respondents in a given respondent group
 - Not the same interviewers in each respondent group
 - Number of IIC’s: 15 questions \times 3 levels \times 21 countries $= 945$
 - Dataset with IICs as units:
 - With information about the question, educational level and country
Figure: Boxplots of the IICs per education group and country

- 12 countries: mean IIC in the lower group is 1.5 times the mean in the higher group
Step 2: modelling of the IICs

- Dependent variable: IICs
- Independent variable: respondent characteristic(s) (R)
- IICs are nested within questions and countries
- Cross classified model (Question x Country)
 - Random intercept for country and question
- Model:

\[
IIC(\text{question}, \text{country}, \text{edu}) = b_0 + b_1 \text{edu1} + b_2 \text{edu2} + u_{0,\text{country}} + v_{0,\text{question}} + \varepsilon_{ij}
\]
• Table: Fixed and random effects of the cross classified model with education for ICCS of the first procedure

<table>
<thead>
<tr>
<th>Fixed effects</th>
<th>Estimate</th>
<th>Std. Error</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>13.7808</td>
<td>2.5582</td>
<td>***</td>
</tr>
<tr>
<td>factor(eudB)1</td>
<td>-1.8281</td>
<td>0.4479</td>
<td>***</td>
</tr>
<tr>
<td>factor(eudB)2</td>
<td>-3.5304</td>
<td>0.4479</td>
<td>***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

<table>
<thead>
<tr>
<th>Random effects</th>
<th>Variance</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>Name</td>
<td>Variance</td>
</tr>
<tr>
<td>CNTRY (Intercept)</td>
<td>132.615</td>
<td>11.516</td>
</tr>
<tr>
<td>TARGET (Intercept)</td>
<td>1.934</td>
<td>1.391</td>
</tr>
<tr>
<td>Residual</td>
<td>31.592</td>
<td>5.621</td>
</tr>
</tbody>
</table>

Number of obs: 945, groups: CNTRY, 21; TARGET, 15

• High mean IIC in the lower educated group (14%)
• Significant decrease when education level increases
• The variability of the intercept at the country level is larger than the variability between questions
• Procedure 2: Conditional random interviewer effect model
 o Conditionality is part of the initial model
 o For each variable
 • Random intercepts with variances within the categories of the respondent characteristic
 • The assumption of homogenous residual variance is relaxed
 • Residual variances within groups
 • Conditional IICs within each category
 o Test of differences between conditional IICs
 • Assessment of the relationship between respondent characteristic and the IICs
• Procedure 2: Model

\[y_{ij} = b_0 + a_2(Education = 2) + a_3(Education = 3) + b_1Age + b_2Male \]

\[+ b_3Same\ language + b_4Domicile\ type + u_{1j}(Education = 1) \]

\[+ u_{2j}(Education = 2) + u_{3j}(Education = 3) + \varepsilon_{ij} \]

with \[\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon_1}^2) \text{ if } Education = 1 \]

\[\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon_2}^2) \text{ if } Education = 2 \]

\[\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon_3}^2) \text{ if } Education = 3 \]

\[u_{1j} \sim N(0, \sigma_{u_1}^2), u_{2j} \sim N(0, \sigma_{u_2}^2), u_{3j} \sim N(0, \sigma_{u_3}^2) \]

\[IIC(\text{edu1}) = \frac{\sigma_{u_1}^2}{\sigma_{u_1}^2 + \sigma_1^2} \]

\[IIC(\text{edu2}) = \frac{\sigma_{u_2}^2}{\sigma_{u_2}^2 + \sigma_2^2} \]

\[IIC(\text{edu3}) = \frac{\sigma_{u_3}^2}{\sigma_{u_3}^2 + \sigma_3^2} \]

• Conditional IICs: conditional variances of the intercepts and conditional residual variances
o Same information as in the two step procedure
 • Similar results for the descriptive analysis
 • Similar results for the modelling of the conditional IICs

o Homogeneity test of the covariance matrix
 • Each variable in each country (315 tests)
 • Null hypothesis: variance of the random intercept and the residual variance are equal across the three educational groups
 • Rejection of the null hypothesis in 47% of the test.
 • Variance components used to calculate the IICs are significantly (0.05) different for the three education levels
Procedure 3: the mixed effect location scale model

Mean function (location part):

- Random intercept: differences between interviewers concerning the mean

\[y_{ij} = b_0 + a_2(\text{Education} = 2) + a_3(\text{Education} = 3) + b_1\text{Age} + b_2\text{Male} \]

\[+ b_3\text{Same language} + b_4\text{Domicile type} + u_j + \varepsilon_{ij} \]

with \(\varepsilon_{ij} \sim N(0, \sigma^2_\varepsilon) \)

\(u_j \sim N(0, \sigma^2_u) \)

Variance function (scale part):

- Random residual variance: differences between interviewers concerning the residual variance

\[\ln(\sigma^2_\varepsilon) = \delta_{00} + \vartheta_{0j} \]

with \(\vartheta_{0j} \sim N(0, \sigma^2_\vartheta) \) and \(Cov(u_j, \vartheta_{0j}) = 0 \)
Interviewer specific IICs:

\[IIC_j = \frac{\sigma^2_{\mu}}{\sigma^2_{\mu} + \exp(\theta_{00} + \varphi_{0j})} \]

SAS Proc NLMIXED

- Starting values

Illustration: 1 item

- ‘personal responsibility to reduce climate change?’
- Location: significant differences between interviewers for the intercept in 16 countries
- Scale: significant differences between interviewers for the residual variance in 14 countries
- Interviewers tend to vary in their mean response scores and in the variability of the responses
Boxplots for the interviewer specific IICs for the item ‘personal responsibility to reduce climate change’
Link with respondent’s educational level

- Simple linear regression model at the interviewer level
 \[ICC_j = \beta_0 + \beta_1 \text{Proportion lower educated}_j + \epsilon_j \]

 with \(\epsilon_{ij} \sim N(0, \sigma^2) \)

- Dependent variable: interviewer specific IIC for the item
- Independent variable: proportion of lower educated respondents
- In two countries: a significant negative slope
 - Higher proportion of lower educated respondents results in a smaller interviewer specific IIC.
Conclusion & discussion

- High interviewer effects in some countries
- Two step procedure and the conditional random intercept model
 - Conditional IICs within a limited number of respondent categories
 - Same results
 - Interviewer effects are higher for lower educated respondents
- The mixed effect location scale model
 - Computational demanding
 - Identification of interviewers with high ICCs
 - Response patterns?
 - Integration of respondents characteristics
 - Suggestions?
Thank You