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Modern medical experiments accrue and treat patients—hence obtain treatment

response data—throughout a trial. Designs which prospectively plan to modify pa-

tient allocation by leveraging accumulating data are response-adaptive randomization

(RAR) designs. Many such designs attempt to balance the desire to bias assignment

proportions towards a treatment which is performing better against the need to main-

tain randomization in the face of continued equipoise.

This dissertation consists of simulated investigations into frequentist and ethical

properties of an new RAR biased coin design. Chapter 2 proposes a new adaptive

design for phase III clinical trials, a modification of the 2001 Bandyopadhyay and

Biswas biased coin design. Simulations show how the new design continues to ethi-

cally expose patients to the better treatment while simultaneously mitigating power

loss inherent in the original design. Chapters 2 and 3 expand the applicability of the

new design to scenarios where treatment variances or covariate-treatment impacts

are unequal. In Chapter 4, simulations demonstrate that the new response-adaptive

biased coin design can be more ethical than equal allocation, even when patient out-

comes are not immediately available. Each chapter illustrates the utility and benefits

of the new design through a real-world application of an HIV treatment adherence

intervention. Asymptotic results are applied to a special case of the BBS design and

small sample implications are compared with simulated outcomes in Chapter 5.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Curing Scurvy

In 1747, James Lind performed one of the earliest recorded clinical trials [69]. Aboard

the Salisbury, Lind selected 12 sailors beset with a homogeneous display of the symp-

toms of scurvy and assigned them haphazardly to six proposed treatment regimens—

with otherwise identical living conditions and diet. Dr. Lind believed that the meth-

ods were the only distinguishing factor among his patients, so differences in their

recoveries would be due solely to their medications. As with modern medical trials,

his goal was to determine the best of the treatments and henceforth promote it as

the standard therapy for afflicted mariners.

Considering the state of medicine at that epoch, Lind’s Treatise on the scurvy

provides outstanding descriptive documentation of the accumulated evidence in fa-

vor of a treatment. Employing a liberal definition of randomization, James Lind’s

investigation falls under the umbrella of equal-allocation, randomized clinical trials.
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According to modern medical standards, however, this experiment deserves further

scrutiny. On the one hand, since Dr. Lind already suspects citrus fruits will yield

better results, he is arguably not in a state of equipoise and thus is ethically bound

to offer his patients the best available medication [3, 106]. From this perspective,

the Salisbury trial violated the basic human rights of its crew. On the other hand,

since Dr. Lind’s suspicions are based solely on anecdotal evidence and previously

unjustified beliefs, it is also reasonable to think that Dr. Lind and the medical com-

munity at large are in a state of equipoise [1, 2, 37, 84]. With this approach, Lind is

right to offer multiple treatment options and does not breach his patients’ rights in

randomizing their care.

These conflicting viewpoints trouble clinicians and researchers even today. Is it

acceptable for medical personnel to randomize patients equally across all treatments

if there is a suspicion that one treatment is superior? Does the answer hold if that

suspicion is completely unconfirmed by data? What happens when enough informa-

tion exists to suggest the superiority of one treatment but not to confirm it? Is equal

randomization still ethical? Is any randomization still acceptable? Adaptive clinical

trial designs and particularly response-adaptive randomization schema explore ethical

patient allocations. In particular, such techniques attempt to balance the desire to

bias assignment proportions towards a treatment which is performing better while

maintaining the necessary randomization in the face of continued equipoise.

1.1.2 Equipoise and Accumulating Evidence

Randomized clinical trials (RCTs) still enjoy “gold standard” status in clinical re-

search [14, 54, 64, 84], despite design origins in agricultural settings. This is likely

due in large part to the desire to achieve a sound scientific answer based on statistical
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properties of power and balance—and perhaps due in small part to historical prece-

dence and blind faith [48, 74, 81]. The ethics of such contemporary clinical trials are

hotly debated, covering the entire spectrum of beliefs prioritizing individual patient

care at one extreme and collective benefit at the other. Topics of dissension include

minor facets such as the benefits of covariates or interim analyses, as well as substan-

tial issues like equipoise and randomization. One well-packaged debate on equipoise,

the personal care principle, and RCTs may be viewed in the article by Royall [84],

ensuing comments—particularly those of Byar [37] and Simes [87]—and Royall’s re-

joinder [85] in 1991. For over 80 ethical essays in 10 parts, consult the compilation

edited by Emanuel, Crouch, Arras, and Moreno [47] in 2004. A full array of Ethics

of Medical Research on Humans is presented by Foster [54] including three distinct

approaches to moral beliefs, three different levels of equipoise, and discussion about

the personal care principle for doctors versus for researchers, including which role

should trump the other. While many older and classical sources of ethical exposition

exist in the literature, the latter two resources [47, 54] broach novel ethical topics

which have only been considered recently, due to technological advances, including

statistical concerns.

Dovetailing on the issues of equipoise is the problem of accumulating evidence.

Flehinger and Louis summarize the quandary in [50]:

Once the decision to initiate the trials is made, there is an obligation to

assign effectively equal numbers of patients to the two competing methods

of treatment until a criterion determined in advance by significance and

power considerations is met. On the other hand, if there is a real dif-

ference between the two treatments, it often becomes apparent from the

accumulating data long before the criterion end-point is reached. When
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this happens the physician must choose between treating very sick pa-

tients with a method which appears to be inferior and terminating the

trials before a statistically valid conclusion has been reached.

With the aim of striking a balance between the conflicting goals of offering the best

individual patient care and confidently discerning the best treatment option for the

collective patient horizon, researchers began considering adaptive allocation designs

[42, 50, 106]. Pioneers of adaptive randomization schemes include Thompson in 1933

with his article “On the likelihood that one unknown probability exceeds another in

view of the evidence of the two samples” [96] and in 1952 Robbins’ “Some aspects of

the sequential design of experiments” [78]. Broader study of sequential designs ensues

[2, 100] with prominent statisticians both encouraging [84, 88, 105] and discouraging

[76] the use of such designs in the early stages of study. Throughout the late 1900’s,

the statistical literature continues to accumulate [1, 2, 3, 42, 50, 101, 103, 102, 104],

but medical applications lag behind [48, 79, 82]. An early view of the benefits of the

compromise gained through adaptive randomization is that of Cornfield, Halperin,

and Greenhouse in 1969 [43]:

The usual ethical justification for not administering an agent of possible

efficacy to all patients is the absence of definite information about its ef-

fectiveness. However satisfactory this justification may be before the trial

starts it rapidly loses cogency as evidence for or against the agent accu-

mulates during the course of the trial. ... the allocation of proportionately

more and more of the future patients to the apparently better treatment

at least reduces this ethical problem.

Despite statistical enthusiasm, even the most intuitive designs are received with mis-

apprehension by the medical community. Clinicians not only reject the use of such
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designs, but also refuse to absorb the results of trials which employed them.

1.1.3 Response-Adaptive Randomization as a Problematic

Solution

A large and discouraging black mark for early response-adaptive randomization de-

signs is the poor reception of adaptive allocation designs involving extracorporeal

membrane oxygenation (ECMO) in infants with respiratory failure. The ECMO tri-

als (sequentially [23, 72, 98]) remain the most widely debated and most frequently

cited application of adaptive allocation even in recent literature [22, 74, 82, 84, 93].

Because the doctors who performed the first trial believed that ECMO was more ef-

fective than the conventional therapy at the time, they opted to employ a randomized

play-the-winner design derived from [104] and [106].

Bartlett et al. employ an urn model allocation scheme which assigns the first

patient a 50% probability of being exposed to each treatment. In the model, one

ball labeled “ECMO” and one ball labeled “standard care” are placed into the urn.

A ball is chosen at random from the urn and the first patient is allocated to the

treatment type of the selected ball—in this case, ECMO. The urn is updated by

adding a ball labeled “ECMO” when a patient randomized to ECMO survived or

when one receiving conventional therapy died and vice-versa for adding a ball labeled

“standard care”. The total sample size of the trial is undefined and dependent on

the undetermined allocations as well as the patient results. Hence, the researchers

implement a stopping rule, “which detected a high probability of selection of the

better treatment.” Namely, the trial terminates after ten balls of one type are added.

During the study, one patient dies while receiving standard care and eleven survive

on ECMO [23].
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Retrospectively, the clinicians suggest that a similar initial allocation might have

been better provided by multiple pairs of balls of each type in the urn, rather than a

single starting pair [23]. Such a change could have placed more than one patient on

conventional therapy for a more typical trial randomization; however, exposing more

patients to the standard care may also have increased the number of unnecessary

deaths [82]. Indeed, while the ECMO results encourage many doctors and medical

centers [22], others express incredulity at an RCT with only a single patient on con-

ventional treatment [82]. Ultimately, a second, adaptive experiment is performed at

Harvard [72] followed by a third, nonadaptive investigation implemented throughout

the UK [98]. Harvard’s evaluation reaches the same conclusions as its predecessor.

The UK assessment is forced to stop early due to the unethical nature of continuing

an equal-allocation RCT in view of the overwhelmingly positive results of ECMO in

the first part of the experiment.

The authors of the first study muse that the later studies are, “criticized for

being unnecessary and unethical, just as ours was criticized as being unbelievable and

unethical,” [22]. The phenomenon of disapproval from both sides is to be expected,

suggest Hu and Rosenberger [59]:

We believe that because [response-adaptive randomization] represents a

middle ground between the community benefit and the individual patient

benefit, it is subject to attack from either side.

Despite their rocky introduction to the medical community, response-adaptive

randomization (RAR) designs do provide a compromise between the collective ethics

of equal-allocation RCTs and the personal care principle demanded by individual

ethics. In the past decade, researchers and regulatory agencies alike have requested

further review of adaptive designs and urged their implementation with few objections
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[8]. Refer to Berry’s arguments for Bayesian adaptive designs [24, 25, 26] (or that of

Thall [95]); Hu and Rosenberger’s prolific writings including [79, 80, 93] which focus

on RAR; as well as a couple contributions from Baldi Antognini and Giovagnoli,

also on RAR [12, 14]. Additional supplications surface in discussion of the necessity

of data-dependent designs by Palmer [74] and in direction provided by the Food and

Drug Administration (FDA) and the U.S. Department of Health and Human Services

(DHHS) [52, 53, 99]. Moreover, at least five adaptive design books have appeared in

the past decade [27, 39, 57, 59, 77], all advocating application of adaptive designs in

current clinical trials.

While recent literature leads us to conclude that particular RAR designs and their

properties are becoming well-understood [93], there remains vast room for improve-

ment in adaptive allocation rules. For example, the majority of clinical trials today

are not interested in a single, immediately observable binary response from a large

number of strictly homogeneous patients assigned to either the treatment or control

arm. Instead, RCTs may have multiple treatments each with multiple endpoints,

continuous and delayed responses, and a patient population replete with covariates

which change over time.

1.1.4 Layout

This dissertation consists of simulated investigations into frequentist and ethical prop-

erties of an new response-adaptive randomization biased coin design under three im-

portant clinical trial scenarios. The first section of Chapter 1 illustrates the conflict

medical researchers face with clinical trials and motivates the necessity of response-

adaptive randomization. The remainder of Chapter 1 provides a thorough literature

review covering other approaches to patient allocation, a statistical framework for
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response-adaptive randomization, and some history surrounding the Bandyopadhyay

and Biswas biased coin design of 2001.

Chapter 2 proposes a new adaptive design for phase III clinical trials, a modifi-

cation of the Bandyopadhyay and Biswas design with the constant tuning parameter

replaced by an adaptive estimate. Simulations show how the new design continues to

ethically expose patients to the better treatment when a treatment difference exists

while simultaneously mitigating power loss inherent in the original design. The new

design also expands the applicability of the new response-adaptive randomization to

more real-world clinical trial scenarios, particularly ones where the treatment vari-

ances are unequal and/or known before the study. The utility and benefits of the

modified design are illustrated through a real-world application of an HIV treatment

adherence intervention.

Chapter 3 further broadens the scope of the new design’s applicability. Simula-

tions in this chapter confirm the design’s ethicality even when covariate-treatment

interactions are present. The utility and benefits of the modified design are applied

to the HIV trial from Chapter 2 with the additional complexity of having covariate

impacts to patient outcomes which vary by treatment.

In Chapter 4, simulations demonstrate that the new response-adaptive biased coin

design can be more ethical than equal allocation, even when patient outcomes are not

immediately available. Moreover, the design’s power improves as patient responses

are delayed and the design tends towards complete randomization. Delay in patient

responses are incorporated into the HIV trial from Chapter 2, once again transforming

a balanced assignment trial into an ethical, response-adaptive study.

Chapter 5 discusses the results and implications of the findings of this dissertation.

Asymptotic results are applied to a special case of the BBS design and small sample

implications are compared with simulated outcomes from earlier Chapters. Further
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areas of study are suggested to continue the important progress in this area of ethical

research.

1.2 Background

1.2.1 Balance

As noted previously, balanced randomized clinical trials are the favored design for

today’s medical experiments [14, 74, 81, 84]. Equal allocation is frequently performed

in the style of a completely randomized design (CRD) or a permuted block design.

Other approaches include biased coin designs and urn models which force balance

even in small trials.

1.2.1.1 Complete Randomization

The CRD is adopted from the methods in the 1935 book of R. A. Fisher regarding

the design of (mostly agricultural) experiments [49]. A CRD allocates patients to

treatments such that each patient has an equal opportunity of being randomized to

each treatment in the trial. While this randomization scheme is asymptotically bal-

anced, randomizing each patient unconditionally may cause a significant imbalance

in treatments for smaller trials. For this reason, restricted randomization schemes

have been proposed which allocate subjects to treatments randomly, conditioned on

previous patient assignments. Patient outcomes do not factor into restricted random-

ization. The two main types of restricted randomization are permuted block designs

and biased coin designs [68].

Biased coin designs (BCDs) target balanced patient allocation by assigning sub-

jects to treatments with equal probability if the past assignments are balanced, or
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with unequal probability if past assignments are not balanced—biasing allocations

towards equal treatment exposure. As implied by the two-sided nature of a coin,

BCDs tend to be restricted to two treatments; however, expansions exist, particu-

larly in the form of urn models [9, 10, 11, 92, 113]. While permuted block designs

are often implemented in practice, BCDs have not received such a warm welcome.

Because block designs are simple and well-understood, we briefly describe them first

in Section 1.2.1.2. Since BCDs are, to many, the foundation of response-adaptive

randomization rules, we next introduce them briefly from the vantage of Efron and

Wei—both early proponents but with distinct perspectives—in Sections 1.2.1.3 and

1.2.1.4, respectively.

1.2.1.2 Permuted Block Designs

The most commonly applied alternative to a CRD is a permuted block design. These

designs assign patients to treatments in predetermined permuted block schemes. For

example, a block of size 4 aimed at assigning patients to one of two treatments could

contain any of the following combinations of letters: AABB, ABAB, ABBA, BBAA,

BABA, BAAB.

Suppose a block comes up ABBA. Such a block would assign the next 4 patients

to enroll in the trial to the treatments A, B, B, and A, sequentially. One particularly

nice advantage of permuted block designs is that balance is achieved at the end

of each randomization block. If an experiment employs blocks of size six, balance

is attained—at a minimum—after each sixth subject enrollment. Hence, smaller

block sizes are desirable for higher or more frequent balance, especially if the patient

population may drift over time. Note that blocks of size two are too small; such a

design corresponds to a sequentially paired and highly deterministic design. Even

so, paired designs effectively minimize treatment imbalance as well as drift in patient
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characteristics over time [2], both desirable traits.

Like deterministic pairing, all blocking eliminates the random nature of the patient

assignment for patients assigned at the end of a block. Any unblinding of patient

assignments due to the increased predictability towards the ends of the blocks allows

increased opportunity for selection bias in the study. From this perspective, larger

blocks are desirable and smaller block sizes should be avoided to minimize this risk.

A trial may thus try to benefit from harnessing blocks of different sizes throughout

its randomization, gaining the benefits of both small and large blocks within a single

study. Unfortunately, even this solution also has a drawback, namely that balance

occurs at unknown times, making interim monitoring inconvenient. Moreover, the

reduction in opportunity for selection bias is minimal [81]. Choosing a permuted

blocking design and employing randomization by blocks can be complex. An intro-

duction to permuted block designs in the context of restricted randomization is given

by Rosenberger and Lachin [81] and a more in depth review presented by Zelen [107].

1.2.1.3 Biased Coin Designs

A complete randomization scheme for an equal-allocation RCT with two treatments is

equivalent to assigning a patient to one of two treatments by flipping a fair coin. This

allocation is asymptotically equal, but may not be balanced for any given trial. The

likelihood of imbalance worsens for smaller sample sizes. Bradley Efron addressed this

issue of complete randomization designs in 1971 by offering a biased coin design (BCD)

which has the property of, “Forcing a sequential experiment to be balanced,” [46].

Instead of sequentially assigning treatments with probability each 1
2
, Efron proposes

a biased coin which sequentially assigns patients to treatments with probability 1
2

each if the past treatment assignment is balanced, and otherwise skews the treatment
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allocation in favor of the less-assigned option. In particular, let Sn =
n∑
i=1

Ti where

Ti =

 1 if the ith patient is assigned to Treatment A

−1 if the ith patient is assigned to Treatment B
.

Efron’s BCD with bias γ, denoted BCD(γ), randomizes the nth patient to Treatment

A with probability

φn =


γ if Sn−1 < 0

1
2

if Sn−1 = 0

1− γ if Sn−1 > 0

for a fixed biasing probability, γ ∈
[
1
2
, 1
)
. A bias of γ = 2

3
is suggested for its

asymptotic probability of balance (50% chance for even samples and 75% chance

for being unbalanced by only one patient for odd samples). Efron [46] argues that

BCD
(
2
3

)
can be as effective at forcing balance as a permuted block design with

blocks of size 10, but is easier to implement. Moreover investigators have a lower

probability of being able to predict future treatment assignments. In fact, BCD
(
2
3

)
is as predictable as a design with blocks of size 16-18. Exact properties of BCD(γ)

for all values of γ are only recently ascertained by Markaryan and Rosenberger [70].

In 2010, the authors determine that for some values of γ, a BCD may display some

undesirable traits. Nevertheless, BCDs are generally better at meeting sequential

enrollment RCT objectives than permuted block designs. In addition to low risk

of selection bias, Efron’s BCD has the smallest asymptotic variability of all two-

treatment, equal-allocation procedures [62].

Other biased coin designs with fixed skewing allocations include Chen’s BCD

with imbalance tolerance [41] and the big stick design (BSD) of Soares and Wu [90].
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The first extension, the BCD with imbalance tolerance, denoted BCDWIT (γ, c)

randomizes the nth patient to Treatment A with probability

φn =



0 if c ≤ Sn−1

1− γ if 0 < Sn−1 < c

1
2

if Sn−1 = 0

γ if − c < Sn−1 < 0

1 if Sn−1 ≤ −c

for a fixed biasing probability, γ ∈
[
1
2
, 1
)
, and positive constant c. The value of c is the

cutoff after which, if BCD(γ) fails to adequately address the growing imbalance, the

next patient is deterministically assigned to the treatment with fewer exposures. The

second extension is a special case of the first. That is, the big stick design BSD(c) is

actually BCDWIT
(
1
2
, c
)
,

φn =


1 if c ≤ Sn−1

1
2

if − c < Sn−1 < c

0 if Sn−1 ≤ −c

.

In this case, subjects are assigned to treatment with equal probability until the dif-

ference threshold c is crossed. The next enrollee is then automatically allocated to

the treatment with fewer patients.

1.2.1.4 Dynamic Biased Coin Designs

In 1977, Wei [101] points out that Efron’s BCD only accounts for the existence of

an imbalance in treatment assignments, but not for the magnitude of the imbalance.

That is, γ is fixed whether one treatment has been assigned two extra patients or 200
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extra patients. In designs motivated by Wei’s approach, γ varies based on the value

of Sn, rather than simply its sign. Biased coin designs which account for the mag-

nitude of treatment differences by altering the assignment proportions conditionally

are referred to as generalized biased coin designs (GBCDs) [89], adjustable biased

coin designs [12], or adaptive biased coin designs [103], despite not being adaptive

procedures in the current sense of the word. See Section 1.3.1 for more details on

terminology. This class of biased coin designs are actually urn models and hence are

approached from the context of a generalized Friedman’s urn (GFU), also known as

a generalized Polya urn.

The urn design described by Wei [102], UD(ω, α, β) with ω, α, β nonnegative,

may be applied to sequential randomization of a clinical trial with K treatments, as

follows. An urn is filled with ω balls of each of the K colors. When a patient arrives,

draw a ball from the urn with replacement, noting its color. For a ball of color k,

with k = 1, . . . , K, assign the patient to treatment k. Update the urn by adding α

balls of color k and β balls of each of the other colors. If ω = 0, for the first patient,

select a color k with probability 1
K

, assign the patient to treatment k, and update the

urn as above. The allocation of such a design has a higher degree of randomization

early on for larger ω, while the design favors balance when ω is smaller or when α is

small relative to β. When α = β, UD(ω, α, β) is a CRD.

In 1977 [101], Wei shows that the subclass of designs UD(ω, 0, β) with K = 2 can

force a RCT to be balanced when the number of patients allocated is small, but will

relax towards complete randomization as the sample grows. Wei writes:

Therefore, the [UD(ω, 0, β)] forces the experiment to be more balanced

when severe imbalance occurs and also forces small-sized experiments to

be balanced, but when n is large enough, the UD(α, β) puts less weight on
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balancing the experiment and tends toward the complete randomization

scheme.

In 1978, Wei proves the trade-off between forcing balance for a small number of

assignments and acting like complete randomization in larger samples still holds [103].

He also presents a multi-urn method of incorporating covariates into the allocation

rule, by having distinct urns for individual levels of prognostic factors [102]. This

suggestion is equivalent to randomizing independently within each stratum in order

to balance similarly across population strata. Wei reiterates that a GBCD of this

type shares the balancing properties of Efron’s BCD, but, “behaves more and more

like the complete randomization scheme as the size of the experiment increases.”

Additionally, for a predetermined minimum sample size, Wei’s GBCD requires fewer

excess patients than the BCD to achieve both the minimum sample size and complete

balance in the trial.

Extensions of the GBCD begin in the 1980s and include developments in the

last decade. Smith, for instance, leverages the martingale invariance principle to

study generalizations of Wei’s GBCD [89]. Atkinson leverages optimal design theory

to suggest conditional allocation proportions under treatment imbalance [5]. The

adjustable BCD of Baldi Antognini and Giovagnolli [12] generalizes Efron’s [46] and

Wei’s [102] BCDs to obtain a GBCD of the form

φn =


g(Sn−1) if Sn−1 > 0

1
2

if Sn−1 = 0

1− g(Sn−1) if Sn−1 < 0

based on the function g(Sn) which takes on values in [0, 1] and has the property

g(x) = 1 − g(−x) for all integers x. From a coin perspective, the randomization
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scheme in [12] allows an infinite number of thresholds c and biased probabilities γ

for a BCD with continuous levels of imbalance intolerance. From an urn perspective,

the link function g(·) in [12] defines the values of α and β—specifying a continuum

of fractional numbers of balls to place into the generalized urn after each patient

assignment.

1.2.2 Ethics

Despite the favor curried by balanced RCTs and their rampant use in modern settings,

ethical trial design proposals date back to the mid-1900’s. For example, in sequentially

enrolled clinical trial design proposals such as [96], Bayesian approaches are solicited

to help bias patient allocation toward the better-performing treatment arm. This

allows more patients to be exposed to the superior therapy throughout the course of

a medical experiment. Other ethical proposals for clinical trial design surfaced shortly

after 1950 [1, 2, 42, 43, 78]. These ideas include multi-phased studies, early stopping

rules, flexible designs, and minimizing patient exposure to the inferior treatment—all

of which are gaining popular consideration and real-world application only in recent

years [51, 82, 94].

1.2.2.1 Bayesian Approaches

William Thompson’s “On the Likelihood that One Unknown Probability Exceeds

Another in View of the Evidence of Two Samples” pioneered the field of response-

adaptive randomization [96]:

there can be no objection to the use of data, however meagre, as a guide

to action required before more can be collected ... If [RAR] were adopted,

... it seems apparent that a considerable saving of individuals otherwise
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sacrificed to the inferior treatment might be effected. This would be im-

portant in cases where either the rate of accumulation of data is slow or

the individuals treated are valuable, or both.

In 1933, he proposed that, in view of the probability that one treatment is better

than another, more patients should be allocated to that treatment. Thompson then

examines a particular function of allocation which adheres to such a principle. For

this function, he derives its properties using Bayesian analysis and provides tables

which may be used to determine the probability with which one should allocate the

subsequently enrolled individual to the first of the two treatments.

The simplicity of the Bayesian ideology as well as the ability to incorporate—and

subsequently, automatically update—uninformative prior distributions in the face

of a complete lack of reliable information contribute to the current popularity of

Bayesian designs in medical studies. Advances in modern computing power, including

programing of dynamic algorithms, allow researchers to consider Bayesian procedures

far more complex than tracking sequential results through a static table. Overarching

views of current Bayesian approaches to medical research are summarized by [91] in

2004 and by [27] in 2010.

1.2.2.2 Multistage Approaches and Optimal Allocations

In 1952, Herbert Robbins also writes about how to best allocate patients to treatment

[78]. Robbins’ article on sequential design expands on the scant literature of the time

(namely Sequential Analysis of a single population by Wald [100]) by considering

how best to sample from two normal populations whose means and variances are

unknown. He notes that for a fixed sample size, the variance for the estimator x1−x2

of µ1−µ2, σ
2 =

σ2
1

n1
+
σ2
1

n1
, is minimized when n1

n2
= σ1

σ2
. Robbins then suggests a two-stage



18

approach in which 2m samples are taken and the parameters µi and σi are estimated

for i = 1, 2 in the first stage. During the second stage, the appropriate number of

subsequent samples are drawn until the entire sample of n1 from population 1 and

n2 from population 2 has been drawn such that n1

n2
= σ̂1

σ̂2
. The choice of m, he notes,

must balance the fact that smaller m will provide weaker estimates of σ1 and σ2 but

larger m may make it difficult to efficiently utilize said estimates. Robbins goes on

to suggest that a two-stage design could be generalized to a multi-stage design by

estimating the variances after each sequential observation is sampled.

The open problem Robbins summarizes is equivalent to that of choosing the op-

timal RAR scheme to minimize the number of treatment failures for two treatments

with binary outcomes. In 1963, Theodore Colton considers a different slant on the

optimization conundrum, focusing on minimizing the number of patients assigned to

the inferior treatment [42]. Colton selects a loss function in terms of treatment assign-

ment rather than treatment failures, comparing “minimax, maximin, and Bayesian

approaches” to determine the appropriate two-stage sequential trial design. Six years

later, Cornfield et al. extend the two-stage, optimal allocation approach by consider-

ing multiple phases, each with different allocation proportions [43]. While the authors

admit that generalizing a multi-stage procedure by simply continuing a two-step pro-

cess is not optimal, their approach is practical, ethical, and effective.

Multi-stage testing research takes many forms in current clinical research. Con-

sider Jennison and Turnbull’s text [66] for an introduction to group sequential designs,

interim analyses, and early stopping rules. Chapter 14 in [44] tackles the same topics

from an oncology perspective, including real-world examples. In Chapter 5 of [77],

Jennison and Turnbull present an adaptive perspective on group sequential designs.

Chapter 13 from [77] provides a thorough but succinct overview of seamless Phase

II/III designs.
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Optimal allocation research continues today as well. For the target allocation of

a randomization scheme to be optimal, it must be the solution to an optimization

problem with formal optimization criteria. Intuitive optimality criteria include max-

imizing power, minimizing allocation variance, maximizing the number of patients

assigned to the superior treatment, minimizing patient failures, as well as timing and

cost measures. Sylvie wrote the book on Optimal Design [86], but Hu and Rosen-

berger [58] provide an article specifically for RAR. Robbins’ approach of minimizing

the number of treatment failures is commonly referred to as RSIHR in RAR liter-

ature, named after the authors who derived the optimal solution to this allocation

problem for binary treatment outcomes in [83]. For optimal allocations minimizing

treatment failures in clinical trials with continuous outcomes, see [33] and [35]. Myr-

iad other criteria are actively being pursued such as compound ethical optimality [13,

28], optimality across more than two treatments [36, 67], and determinant optimality

[56].

1.2.2.3 Adaptive Biased Coin Designs

Sections 1.2.1.3 and 1.2.1.4 describe biased coin designs (BCDs) and urn models that

are nonadaptive, targeting balanced treatment allocations. These randomizations bias

exposure probabilities toward the under-assigned treatment based on the difference

in treatment assignments Sn−1. If the skewing proportions are conditioned on patient

responses, however, instead of on differences in the number of subjects exposed to

each arm, these BCDs become RAR designs.

Perhaps the most famous RAR is Zelen’s play-the-winner rule [106] wherein pa-

tients are enrolled sequentially to one of two treatment arms. Patient responses are

binary (success or failure) and are observed before the next patient arrives. If a pa-

tient is successfully treated, the subsequent patient is exposed to the same arm. If
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a patient fails, the subsequent patient is exposed to the other arm. Each subject in

the study is thus assigned to the treatment which “won” (or at least did not fail) in

the prior round of testing. In this deterministic coin design, treatment assignment is

known with certainty based on previous participant outcomes, allowing for potentially

large selection biases. Nevertheless, the design is simple and intuitive, requiring no

computational or implementation support.

The randomized version of the play-the-winner rule, proposed by Wei and Durham

[104], follows the UD(ω, α, β) urn model described in Section 1.2.1.4. An initial

number ω of balls of each treatment type are in an urn. Patients are allocated by

selecting a ball from the urn with replacement and exposing the patient to that

treatment type. Throughout the experiment, α balls of one type and β balls of the

other types are added to the urn. The biggest difference is the design’s adaptive

nature—instead of adding balls to the urn based on which treatment a patient is

assigned, balls are added to the urn based on a patient’s response to the assigned

treatment.

In its simplest form, the randomized play-the-winner has only two treatment arms.

If a patient responds successfully after being exposed to treatment A, one ball of type

A is added and no balls of type B are added. If a patient fails to respond after being

exposed to treatment A, no balls of type A are added and one ball of type B is added.

That is, α = 1 ball is added for the “winning” therapy and β = 0 balls are added for

the “losing” therapy. The adaptive UD(1, 1, 0) is the randomization design harnessed

in the initial ECMO trial [23] which terminated after ten balls of one type were added

to the urn. In generalized versions, ω, α, and β assume any nonzero values for a trial

with K ≥ 2 treatments [79].

The companion model to the randomized play-the-winner is the drop-the-loser

design by Ivanova [64]. An initial number ω of balls of each treatment type are in an
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urn. Patients are allocated by selecting a ball from the urn and exposing the patient

to the corresponding therapy. If the outcome is a success, the ball is replaced. If

the outcome is a failure, the ball is not replaced; that ball is “dropped” from the

urn. To ensure a degree of regularization in this randomization scheme—i.e., that the

design does not eliminate a treatment arm—one can also include immigration balls.

Immigration balls, when drawn, are immediately replaced. The only action taken with

an immigration ball selection is to add a predetermined but equal number of balls of

each treatment type to the urn. The larger ω and the immigration components of an

urn are, the less impactful removing balls from the urn will be on the trial allocations.

Even so, the drop-the-loser design boasts minimal allocation variance among similar

RAR designs and increased power over equal allocation [58, 60, 64, 80, 92, 111].

Additional adaptive BCDs are discussed in Section 1.3.3 after the presentation of

RAR statistical framework.

1.3 Adaptive Framework

1.3.1 Terminology

Many researchers point out that the language describing adaptive designs, including

those for RARs, is inconsistent within the literature [5, 6, 17, 38]. In 2006 Dragalin

muses [45],

as often happens with novel approaches, there has been substantial confu-

sion over what these designs are and when they are most applicable. They

are known as adaptive, sequential, flexible, self-designing, multistage, dy-

namic, response-driven, smart, novel designs.
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This dissertation follows the lexicon of Dragalin for general adaptive design terminol-

ogy. Whenever possible, these chapters conform to conventions proposed by Rosen-

berger and fellow authors (e.g., [59, 81, 93]) for respond-adaptive nomenclature and

statistical notation.

Begining 2004, regulatory agencies such as the Food and Drug Administration

(FDA) and the Department of Health and Human Services (DHHS) encourage the use

of adaptive designs to “streamline the clinical trials process.” The agencies stipulate,

however, that this does not include poorly planned protocols or ad hoc analyses [53].

Similarly, Dragalin [45] declares,

Adaptive design is defined as a multistage study design that uses accumu-

lating data to decide how to modify aspects of the study without under-

mining the validity and integrity of the trial.

An adaptive clinical trial, therefore, is one which employs prospectively approved

modifications to its design. Approved alterations focus on one of the following four

categories [45, 93].

• Allocation rules dictate the randomization processes or proportions for as-

signing patients to treatments.

• Sampling rules determine the number of patients to be included.

• Stopping rules designate when a trial should end.

• Decision rules are a catch-all category for rules not detailed above. These

include rules on decisions to be made at interim and final analyses; adjustments

to biomarkers, endpoints, model estimates, populations; alterations of analyses

or hypotheses; etc.



23

As this dissertation proposes and examines a new allocation rule, Section 1.3.2 estab-

lishes the definitions and statistical conventions for RAR.

1.3.2 Allocation Rules

1.3.2.1 Mathematical Framework

Statistical experiments include information on investigative exposures, relevant co-

variates, and measurable outcomes of each experimental unit, as the particulars be-

come available. Allocation rules are randomization algorithms based on various sub-

sets of the above available information. This section explicitly defines these terms

before describing how such factors are employed in adaptive randomization proce-

dures.

Randomization Sequence. The matrix T = (T 1, . . . ,T n)′ is a randomization

sequence, with T i = ek for k = 1, . . . , K, and i = 1, . . . , n.

Example. For K = 2 treatments and n patients, one possible randomization

sequence is

T =

0 0 1 0 · · · 1

1 1 0 1 · · · 0


′

.

Covariate Information. The matrix Z = (Z1, . . . ,Zn)′ represents the covariate

information for all n patients with Zi = (zi1, . . . , ziS) describing the S observed

prognostic factors in patient i.

As subjects accrue in the trial, knowledge of their covariates becomes available

and does not change thereafter. The information for each prognostic factor zis may

describe a patient’s level of a discretely coded covariate or a continuous characteristic.
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Example. When the sole prognostic factor (S = 1) is sex in a trial with n

patients, the ith subject’s covariate information could be Zi =

[
1 0

]
if the patient

is female and Zi =

[
0 1

]
if the patient is male.

Response Variable. The matrix Y = (Y 1, . . . ,Y n)′ with Y i = (Yi1, . . . , YiK) is

the hypothetical sequences of responses which would be observed if every treatment

were assigned to every patient, independently. Realistically, only one Yik is possible

in a typical non-crossover setting.

Clearly the response variables depend on the treatment assignment, and likely on

patient covariates as well. Thus response variables may be considered as functions of

the randomization sequence and prognostic factors.

Example. For K = 2 treatments and n patients, the response matrix would be

Y ′ =

y11 y21 · · · yn1

y12 y22 · · · yn2

 .
In the case that 1 represents a success on a treatment, −1 a failure, and 0 for non-

assignment, the matrix at the trial’s end might be

Y ′ =

 0 0 −1 0 · · · −1

1 −1 0 1 · · · 0

 .
Having established the components on which a randomization procedure might be

conditioned, a randomization procedure is statistically defined as follows.
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Randomization Procedure. Given σ-fields (also known as Borel fields)

Tn = σ(T 1, . . . ,T n), Yn = σ(Y 1, . . . ,Y n), and Zn = σ(Z1, . . . ,Zn),

let Fn = Tn ⊗ Yn ⊗Zn+1. Then for all Fn−1-measurable functions φn,

φn = E[Tn|Fn−1]

is the conditional probability of assigning each treatment to the nth patient, given

all previous and current information available. The information contained in Fn−1

may include previous randomizations, previous results, and nth patient’s known co-

variate information. Alternatively, Fn−1 may be the empty set. Randomization pro-

cedures are partitioned into five categories: complete, restricted, response-adaptive,

covariate-adaptive, and covariate-adjusted response-adaptive [45, 59, 81]. The subse-

quent section describes these five classifications.

1.3.2.2 Randomization Designs

Complete Randomization. Classic randomization procedures such as those em-

ployed in equal-allocation CRDs are often likened to flipping a fair coin or rolling a

fair die. That is, CRDs perform unconditional allocation of each subject, ignoring all

other information:

φi = E[Ti|Fi−1] = E[Ti].

In this case, Fi is empty and φ is constant across all patients
(
e.g. 1

2

)
.

Restricted Randomization. Because complete randomization may in fact assign

patients in unequal proportions (e.g. 30-70 or 60-40), clinical trials tend to imple-
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ment restricted randomization procedures rather than complete ones. In particular,

many medical trials attempt to randomize patients in such a way as to protect bal-

ance, assigning each subject to a treatment so that the number of patients assigned

to each treatment tends to be equally distributed over all treatments. Restricted

randomization procedures take the form

φi = E[Ti|Fi−1] = E[Ti|Ti−1],

with randomization of the ith patient taking into account the treatment allocations of

the i− 1 previous patients—or a function of the prior assignments such as Sn−1. Pre-

viously discussed examples of restricted randomization procedures include permuted

block designs (see, for example, [81]) and biased coin designs (e.g. Efron [46] and Wei

[101]) from Section 1.2.1.

Response-Adaptive Randomization. Expanding the randomization condition-

ing to include available estimates of the treatments produces a method of response-

adaptive randomization (RAR),

φi = E[Ti|Fi−1] = E[Ti|Ti−1,Yi−1].

This will allocate the ith patient to a treatment while accounting for the previous i−1

treatment allocations as well as the previous i− 1 responses.

The goal of RAR is often to assign more patients to the best treatment, based on

previous patient responses, without compromising the goals of the study. Response-

adaptive randomization designs also incorporate the impact due to potential delays

in the availability of information [11, 61, 63, 92, 111]. This will cause randomization

procedures to be conditioned on information accrued up through the jth patient with
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j ≤ i determined by the amount of delay in responses.

Recently, adaptive allocation research embraced an additional factor: patient co-

variates [18, 17, 19, 34, 110, 112]. In cases where stratification over covariates is

desirable, patient covariate information may be included in the conditional random-

izations, up through the ith patient. That is, the current subject’s covariate infor-

mation may be considered in his or her randomization. Typically, randomization has

been assumed to be performed separately within each stratum [18, 68, 102]; how-

ever, this requires the number of prognostic factors to be small and moreover requires

the factors to be discrete. Incorporating covariate-based adaptations into a restricted

randomization scheme produces a covariate-adaptive randomization procedure. Simi-

larly, adjusting for covariates in RAR produces a covariate-adjusted response-adaptive

randomization.

Covariate-Adaptive Randomization. Covariate-adaptive randomizations allo-

cate subjects conditionally with the goal of balancing covariates across treatment

assignments. The procedure

φi = E[Ti|Fi−1] = E[Ti|Ti−1,Zi−1]

will randomize the ith patient knowing the previous i − 1 treatment allocations and

the prognostic factors of all patients past and present.

Covariate-Adjusted Response-Adaptive Randomization. A covariate-adjusted

response-adaptive procedure combines the goals of response-adaptive randomization

and covariate-adaptive randomization. That is, the procedure

φi = E[Ti|Fi−1] = E[Ti|Ti−1,Yi−1,Zi]
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frequently aims to allocate more patients to the best treatment in a manner specific to

each level of prognostic factor combinations, based on previous patient assignments,

responses, and covariates—including the current patient’s covariate information.

1.3.3 History of the Response-Adaptive Biased Coin Design

In 1933 Thompson discusses the “likelihood that one unknown probability exceeds

another in view of the evidence of the two samples” [96] and suggests that as a

patient arrives for study enrollment, the current information from previously sampled

subjects be used to dictate how the new patient is treated. One intuitive example

would be to assign patient i to treatment A in accordance with the probability that

treatment A is superior to treatment B—or the current estimate of that probability

given information from the previous i− 1 patients. Let p̂A(i− 1) denote the estimate

of the probability that treatment A is superior to treatment B based on the outcomes

of subjects 1 through i. Thompson’s proposal is then equivalent to flipping a biased

coin to assign patient i to treatment A with probability φi = p̂A(i− 1).

Thompson goes on to note that this algorithm is merely a special case of the design

which assigns patient i to treatment A proportional to a function of the probability

that treatment A is superior to treatment B—or the current estimate. That is, for a

function f : [0, 1]→ [0, 1] which is monotonically increasing on its domain, one can flip

a biased coin and assign patient i to treatment A with probability φi = f (p̂A(i− 1)).

For particular optimal functions, consider optimality criteria for binomial responses

[58, 83, 97]; an optimal allocation for continuous treatment responses [71]; and optimal

targets generalizable to trials with greater than two treatment arms [16, 30, 33, 55,

108, 109, 114].

A non-optimal function which appears frequently in the literature beginning in
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the 1990’s (for starters, [4, 7, 6, 17, 19, 29, 34, 36, 108]) is the probit link function

Φ(·). Despite its fame as the cumulative distribution function of a standard normal

variable, Φ(·) does not meet any formal optimality criteria. Nevertheless, researches

focusing on biased coin designs with link function Φ(·) aim to allocate more patients

to the treatment with a better response. Assuming large responses are desirable, the

design randomizes patient i to treatment A with probability

φi = Φ

(
µ̂A(i− 1)− µ̂B(i− 1)

T

)
,

where µ̂k(i−1) is the current estimate of the mean of treatment k for k = A,B based

on the data collected from the first i− 1 patients. The value of the scaling parameter

T must be positive and is most often a fixed constant [17, 34]. The value of T has

been arbitrarily set as a small, positive integer in various simulation comparisons [6,

65, 108]. The value of T mitigates the effect of the estimated treatment differences:

larger values of T promote equal allocation, smaller values promote ethical allocation.

In recent decades, researchers have suggested various design enhancements. For in-

stance, the allocation rule can be broadened from a two-arm study to multi-treatment

trials by comparing each treatment to the mean of all treatments. Atkinson [4] sug-

gests randomizing the ith patient to Treatment k with probability

φi = Φ

(
µ̂k(i− 1)− µ(i− 1)

T

)
,

where µ(i−1) is the estimated mean of all treatments based on the first i−1 patients.

Another augmentation includes leveraging a different cumulative distribution func-

tion (CDF) to alter a design’s adaptive nature [17]. Any symmetric distribution’s

CDF can be leveraged as a link function. Moreover, a design may leverage multiple
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link functions throughout the course of a single trial. For example, the link function

may change as more data is collected, say, from a Cauchy CDF in the initial data

collection stage to a normal CDF when the estimates are deemed appropriately trust-

worthy [17]. Centrally weighted distributions will have CDFs that, when employed as

link functions, cause adaptive designs to be more data-driven—that is, more respon-

sive to accumulated findings. This trait is appealing when the data and the treatment

estimates are reliable, but risky when little data or prior knowledge of the treatments

are available. Harnessing heavy-tailed distributions’ CDFs as link functions mini-

mizes the initial risks due to high variability, providing a design with a higher degree

of randomization, but potentially less ethical patient allocations. Exposing an initial

m patients to each treatment prior to commencing adaptive randomization is another

way to alter the design for a similar effect, basing initial estimates on more adequate

quantities of accumulated data.

Modifying the tuning parameter T is a further area of deliberation. On the one

hand, keeping the scaling parameter constant throughout the trial is common in the

literature [6, 7, 19, 31, 34, 40, 73, 75, 108]. On the other hand, the original paper notes

that the value of T need not be constant and may evolve with the data [17]. Biswas,

Huang, and Huang propose—but do not pursue—the idea that T might be replaced

with the current estimate of the treatment standard deviation, assuming treatment

variances are equal [34]. Other authors employ T =
√
σ̂2
A + σ̂2

B or T =
√

(σ̂2
A + σ̂2

B)/2

in comparisons of competing and related designs [15, 20, 21, 32, 65]. Still other designs

have consider weighting functions of various forms. For example, Bandyopadhyay and

De suggest that any adaptive design which incorporates the function ci will conform

to the typical asymptotic behaviors provided ci → 0 as i → ∞ and
∑∞

i=1 ci = ∞

[21]. Biswas and Bhattacharya also embraced this form for weighting information in

designs with dual constraints [28].
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Chapters 2 – 4 extend the design proposed by Bandyopadhyay and Biswas in 2001

by replacing the constant tuning parameter T with the current estimate of the pooled

treatment standard deviation. This idea was initially proposed in [17], wherein the

authors assume that treatment variances are known and equal. Despite this proposal,

using the pooled treatment standard deviation estimate as an adaptive value of T has

not appeared or been studied in any subsequent works. This modification expands the

applicability of the response-adaptive biased coin by eliminating the need for known

and equal treatment variances, improving the ethicality of the allocation, and even

increasing the design power in some cases. Cited reference searches performed as

recently as September 2015 corroborate that no other literature examines the impact

of replacing T with the current estimates of the pooled standard deviation in the

Bandyopadhyay and Biswas design.

This research is valuable because, as of yet, no adaptive design can target a highly

ethical randomization ratio while preserving trial properties including power, type I

error rates, sample size, and allocation variance. The Bandyopadhyay and Biswas pro-

cedure is highly ethical, but in its current form can sustain large losses in power and

inflated type I error risk for many values of treatment parameters. Finding appropri-

ate replacements for T—for example, the pooled treatment standard deviation—can

mitigate the design’s loss of power while simultaneously preserving the ability to ex-

pose more patients to the better treatment. Adopting an ethical adaptive design

for use in clinical trials would be a great step forward for the medical community,

minimizing individual patient risk while performing research necessary to maximize

collective patient benefit.
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Chapter 2

Response-Adaptive Biased Coin

Design with Unknown, Unequal

Treatment Variances

2.1 Summary

Modern medical experiments accrue patients—and hence response data—throughout

the duration of a trial. Designs which prospectively plan to modify patient alloca-

tion by leveraging accumulating data are response-adaptive. This paper examines a

response-adaptive design that randomizes patients relative to current treatment es-

timates, scaled by an arbitrary positive constant T . The design is only suitable in

a limited number of situations: covariate effects must be the same for both treat-

ments, patient responses must be immediately observable, and treatment variances

must be known and equal. This article proposes an intuitive replacement for T that

allocates more patients to the superior treatment while mitigating the loss of power

and increased bias inherent in many response-adaptive designs. This article also ex-
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pands the applicability of the new design by relaxing the assumption of known, equal

variances. The utility and benefits of the new design are illustrated by a real-world

application of an HIV treatment adherence intervention.

Keywords: response-adaptive randomization, biased coin, power, Type I error

2.2 Introduction

2.2.1 Response-Adaptive Randomization

Unlike traditional agricultural experiments where data for all experimental units are

collected nearly simultaneously at the end of a trial, modern medical experiments

accrue and treat patients—hence obtain treatment response data—throughout the

duration of a trial. Researchers may leverage accumulating data to modify vari-

ous aspects of the experiment including the experiment’s population, randomization

rates, available treatments, duration, and/or analysis based on pre-specified criteria.

Designs that evolve in a prospectively planned manner based on accumulated data

are known as adaptive designs.

Adaptive designs gained theoretical support towards the end of the century among

academic statisticians [35]. Towards the end of the 2000s, the US Food and Drug Ad-

ministration called for further research on and implementation of adaptive designs

to improve patient care and accelerate the treatment approval process [16, 17]. The

commercial appeal of harnessing adaptive designs such as response-adaptive random-

ization (RAR) enticed the pharmaceutical industry to encourage research and lever-

age approved adaptive designs. One established advantage of RAR designs is their

potential to assign significantly more patients to the better treatment. Other RAR

designs have the ability to maximize a design’s power (alternatively maintain power
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relative to a nonadaptive design but decrease the requisite sample size) [7, 21, 34].

Unfortunately, no known adaptive design provides both benefits simultaneously [19,

22, 32].

Section 2.5 illustrates an ethical advantage to RARs by transforming a nonadap-

tive HIV intervention into a response-adaptive clinical trial. This real-world recon-

struction highlights the number of additional patients who could benefit from the

more successful treatment under a RAR design while still correctly identifying the

superior treatment.

2.2.2 Biased Coin Designs

One popular adaptive design family is that of the biased coin design (BCD). BCDs

for medical experiments originally surface under the context of encouraging balance

during patient randomization by skewing allocation probabilities towards the therapy

with fewer patient assignments [2, 14, 39, 44]. When a trial has two treatments

(A and B), equal allocation corresponds to an unbiased, nonadaptive coin where

the probability of assignment to either treatment is φ = 1
2
. Other adaptive BCDs

randomize patients to treatment A with probability φ = 1
2

only if the prior allocations

are equally distributed between A and B, with probability φ = g(x) ∈
(
1
2
, 1
]

if there

are more prior patients assigned to treatment B, and with probability φ = 1 − g(x)

otherwise. The function g(x) need only be rotationally symmetric about the point

(0, 1
2
)—i.e., g(−x) = 1 − g(x) for all x ∈ R; it may be a constant as in [14], a step

function like [12] and [40], or any continuous link function per [44].

In adaptive, non-RAR BCDs, x tracks previous treatment assignments to de-

termine the current allocation imbalance. Such BCDs harness this information to

skew the incoming patient’s allocation towards the lesser allocated treatment. RAR
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BCDs are structured similarly but instead of the randomization depending on past

assignments, x may be a function of treatment performance and/or patient covari-

ates. Adaptive BCDs target covariate stratification [3, 36], maximize design power

and efficiency [18, 42, 48], estimate optimal allocation proportions [15, 24, 29], and

assign more patients to superior or successful treatment [4, 34].

2.2.3 Response-Adaptive Biased Coin Designs

Bandyopadhyay and Biswas present a RAR BCD for comparing two treatments with

normal responses having known, equal variances and a common prognostic factor

[8]. The design, referred to as BB, assigns a patient to treatment A with probability

Φ
(
µA−µB

T

)
and to treatment B with probability 1−Φ

(
µA−µB

T

)
, where µk is the mean

response of treatment k for k = A,B; T is an arbitrary positive constant; and Φ is

the cumulative distribution function of the standard normal distribution. Selecting

at value for T is discussed in detail in Section 2.3.2. In reality, if the treatment

means or the difference between treatments were known, no experimentation would

be necessary. Therefore, [8] propose using the currently accrued patient responses to

estimate the treatment differences, assigning incoming patients to treatment based

on the best estimates available at enrollment.

The BB RAR correctly allocates a larger proportions of patients to the better

treatment in simulations. This ethical behavior comes at a cost. The design sustains

a potentially large loss of power to detect a true difference in treatments and a slight

increase to the risk of finding a nonexistent treatment difference compared to equal

allocation. Moreover, both the assignment probability and the Type I and Type II

error rates depend on the arbitrarily selected parameter T . On top of this, the original

BB design is only suitable in a limited number of situations: covariate effects must
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be the same for both treatments, patient responses must be immediately observable,

and—most restrictively—treatment variances must be known and equal.

This article suggests a new design based on BB which embodies similar ethical

advantages but has preferable statistical properties. A large component of the new

design, called BBS, comprises replacing the arbitrary constant T with an intuitive

adaptive statistic S, the pooled treatment standard deviation. With this modification,

the BBS design exposes more patients to the superior treatment while mitigating the

loss of power and increased bias inherent in the BB design. This article also expands

the applicability of the BBS design by relaxing the need for known or equal treatment

variances.

2.3 Clinical Trial Model and Design

2.3.1 Overarching Model

Consider a clinical trial with two treatments that sequentially enrolls and treats pa-

tients. Patients have P prognostic factors Z = (Z1, . . . , ZP ) that are independently

and identically distributed. For example, Z1 might be sex and Z2 might be weight.

The values of patient j’s covariates zj = (zj1, . . . , zjP ) are observed at enrollment.

Patient responses follow a normal distribution conditional on the treatment exposure,

the prognostic factors, and the treatment-covariate interaction:

yjk = µk + βkz
′
j + εjk

for patients j = 1, . . . , N and treatments k = A,B. In the model, µk is the mean

effect of treatment k; βk is the set of (P × 1) slopes scaling the covariate impacts

on treatment k’s response; zj is the vector of prognostic factors for patient j; and
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εjk is the random error for patient j on treatment k, independently and identically

distributed N(0, σ2
k).

2.3.2 BB Design Details

The BB design only applies to situations when the treatment variances are known

and equal (σ2
A = σ2

B). Additionally, the covariate slopes—although not known—are

also equal (βA = βB). Hence the BB model simplifies to

yjk = µk + βz′j + εj

for patients j = 1, . . . , N and treatments k = A,B. In the BB model, µk is the mean

effect of treatment k; β is the vector of covariate slopes; zj is the vector of prognostic

factors for patient j; and εj is the random error for patient j, independently and

identically distributed N(0, σ2).

The first 2m patients to arrive are arbitrarily assigned so that m patients re-

ceive treatment A and m receive treatment B. When patient j enrolls in the trial

(j = 2m + 1, . . . , N), the immediately observed responses of the previous j − 1 pa-

tients are leveraged to estimate the treatment difference µ̂A,j−1 − µ̂B,j−1. Patient

j is then randomly assigned to treatment A with probability Φ
(
µ̂A,j−1−µ̂B,j−1

T

)
and

to treatment B with probability 1 − Φ
(
µ̂A,j−1−µ̂B,j−1

T

)
, with T an arbitrary positive

constant. Patient j’s response is immediately observed and the treatment difference

is re-estimated so that the next patient (j + 1) is allocated according to the latest

estimates. This process is continued until the experiment concludes.

While arbitrary, the choice of T is—not surprisingly—a highly influential factor in

the BB design. In the literature, values of T implemented in simulations vary with all

authors commenting on the importance of the choice of scaling constant. Commonly
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employed values include T = 1 [4, 5, 8, 10, 11, 31], T = 2 [8, 10, 11, 47], and T = 3 [8,

10, 11], but T = 5 and T = 10 are also leveraged [9, 11, 31]. The BB coin’s ability to

assign more patients to the better treatment is enhanced by selecting smaller values

of T and mitigated by larger T . On the other hand, the same is true of the variance of

the treatment estimators; smaller values of T increase the variability of the estimates.

Thus the power to detect a treatment difference is higher in simulations with larger T

for all but one of [8]’s trials of 40 patients. In fact, [8] conclude, “at the initial stages

with inadequate data a larger value of T is preferred. One can start with a larger

value of T and switch over to progressively smaller values at suitable stages.” For

this reason, an adaptive modification of T is proposed that (1) is a more intuitive,

less arbitrary choice and (2) decreases as patients accrue throughout the trial.

2.3.3 BBS Design Details

For a study scenario as described in Section 2.3.1, assume that the treatment variances

are unknown but thought to be equal or similar. Instead of the arbitrary constant T

as the denominator of the RAR BCD, define

S =

√
(NA − 1)s2A + (NB − 1)s2B

NA +NB − 2
,

the pooled treatment standard deviation estimator, to be the new scaling constant.

As before, assign the first set of patients to treatment so that at least m patients

receive and respond to each treatment. When patient j enrolls in the trial (j ≥

2m + 1, . . . , N), the immediately observed responses of the previous j − 1 patients

are leveraged to estimate the treatment difference µ̂A,j−1 − µ̂B,j−1 and the pooled
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standard deviation

Ŝ =

√
(NA,j−1 − 1)s2A,j−1 + (NB,j−1 − 1)s2B,j−1

NA,j−1 +NB,j−1 − 2
.

Patient j is then randomly assigned to treatment A or B with probabilities

Φ

(
µ̂A,j−1 − µ̂B,j−1

Ŝ

)
or 1− Φ

(
µ̂A,j−1 − µ̂B,j−1

Ŝ

)
,

respectively. Patient j’s response is immediately observed and the treatment differ-

ence is re-estimated so that the next patient (j + 1) is allocated according to the

latest estimates. This process continues until all patients are treated. Denote this

modification of the BB design as BBS.

Leveraging the BBS design provides several advantages. First, S is an unbiased

estimator under the assumption of equal variances with Nk the number of patients

who have responded to treatment k and s2k the sample variance estimate for the mean

of treatment k. Second, S is an intuitive choice for scaling treatment estimates,

reminiscent of standardized estimators and forming a statistically pleasing ratio with

the numerator estimates. Third, as the number of patients enrolled increases, the

precision of the estimators increase as well. S, therefore, is largest when the sample

size is small and decreases as patient responses accrue. Hence when the treatment

differences are least precise, they are moderated by suitably sized variance estimators.

As the numerator decreases, the dampening effect is mitigated by increased precision

in the denominator, allowing the BBS coin to be adaptive and assign patients to the

better treatment with higher probability.
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2.4 Simulations and Results

2.4.1 Simulation Specifics

Sections 2.4.2 and 2.4.3 describe the results of simulated clinical trials under equal

allocation, BB, and the newest competitor BBS. Treatment mean pairs (µA, µB) are

set to no effect (0, 0) and three levels of positive effect in treatment A (0.1, 0), (0.5, 0),

and (1, 0). For select scenarios, a positive effect of µB = 1 in treatment B and no

effect in treatment A is also simulated. Individual patient errors are simulated under

equal and unequal conditions; σB = 1 while σA ranges from 0.5 to 1.5 in increments

of 0.2. For select scenarios, σA is held constant at 1 while σB varies from 0.5 to 1.5 in

increments of 0.2. For the BB design, constant values of T = 1, 2, and 3 are selected

and are referred to as BB1, BB2, and BB3, respectively. Further adopting simulation

conventions from [8], one normally-distributed prognostic factor is simulated. While

estimated separately for each treatment, the true covariate effects, variances, and

slopes are identical for both treatments with Z ∼ N(1, 1) and β = 2.

In the BB design, rejection of the null hypothesis H0 : µA ≤ µB is calculated with

a one-sided, two-sample t-test with significance level α = 0.05. Under the assumption

of equal variances, the t-statistic standard error employs the sample pooled variance

estimates. Relaxing the assumption of equal variances expands the applicability of

the proposed BBS design to potentially unequal variance situations. Hence, in the

equal allocation and BBS designs, the t-statistic standard error is calculated using

treatment-specific sample variances. In these cases, the underlying hypothesis dis-

tribution leverages the Welch-Satterthwaite approximated pooled degrees of freedom

[38, 45].

Sample sizes mimic small to large Phase III clinical trials (N = 50; 100; 500;
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1,000; 5,000). The initial number of response estimates necessary to begin adaptive

randomization is a minimum of m = 10 for each treatment. That is, at least 10

patients must be exposed to treatment A and another 10 patients must be exposed

to treatment B before adaptive allocation estimates can be leveraged. These first

patients are assigned to study arms via equal allocation and respond to treatment

immediately. All patient outcomes are assumed to be instantaneously observed; no

delay is incorporated into these trials. For each scenario described, 1,000 replications

are simulated in SAS IML [37].

2.4.2 Patient Allocation

Tables 2.1 – 2.5 contain proportions and standard deviations of patients assigned to

treatment A by design and treatment effect values. Table 2.1 details the average pa-

tient allocations for BBS; BB under T = 1, 2, 3; and equal allocation when treatment

variances are equal (σA = σB = 1.0). In Table 2.1, the left most column indicates

which design simulations results are being described. The second column specifies

which value of µA applies to a particular row with all rows having the same value

of µB = 0.0. The remaining five columns are the mean (SD) proportion of patients

assigned to treatment A over 1,000 simulations for each of the five trial sizes N = 50;

100; 500; 1,000; and 5,000.

The first section of data in Table 2.1 summarizes allocations from simulations

where patients are randomized to treatment under the BBS design. The first row

represents results for treatment means µA = µB = 0.0. Across all five values of

clinical study sizes, the treatment A allocation is 50%—that is, patient assignments

are balanced between treatments. Equal exposure is appropriate in this case as there

is no difference between treatment A and treatment B mean effects. The allocation
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variance is highest when trial sizes are small (0.12 for N = 50 and 0.13 for N = 100)

and the variance decreases for moderate and large studies (0.07 for N = 500 and 0.02

for N = 5,000). The second through fourth rows represent results when the treatment

means differ. Specifically, row two reports results when µA = 0.1, row three when

µA = 0.5, and row four when µA = 1.0. In each of these rows, the proportion of

patients allocated to treatment A increases for a given study size. For example, when

N = 500, allocation to treatment A grows from 50% in row one to 54% in row two,

then jumps to 69% in row three and 83% in row four.

The subsequent sections of Table 2.1 are structured similarly for each simulated

design, beginning with BB1. The values in the second section closely echo those of the

BBS design. As the scaling parameter T increases from 1 to 3, however, the ability of

the BB design to allocate more patients to the treatment with larger mean decreases.

For example, when N = 500, both BBS and BB1 assign 83% of patients to treatment

A when µA = 1.0 and µB = 0.0. When T = 2, BB2’s treatment A allocation drops

to 68% for the same parameters. Furthermore, the BB3 design only randomizes 62%

of patients to treatment A when N = 500 and µA = 1.0. Of course, equal allocation

(Equal) assigns approximately equal proportions of patients to treatment A as to

treatment B regardless of enrollment size or study parameters.

In addition to the declining patient randomization proportions across designs,

the variance of the allocations also decreases across the designs in similar succession.

The assignment proportions allocations decrease as trial size increases, as µA increases

relative to µB, and as the adaptive design denominator increases—forcing the designs

to be more like equal allocation. While the variance in the BBS design is larger than

that of BB2, BB3, and equal allocation for the same sample size, the gains in the

number of patients receiving better treatment can be substantial. For example, BBS

and BB1 report a 10% increase in patients exposed to the superior treatment in clinical
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trials with µA = 0.5 and N = 50 compared to a 4% increase in BB3. That amounts

to 5 additional patients on treatment A for the BBS design versus only 2 additional

individuals for the BB design with T > 1. This extra ethicality is accompanied by a

randomization standard deviation increase of merely 0.03. At N = 500, the patient

benefit includes nearly 10 additional individuals exposed to the better treatment on

BBS with a treatment difference of 0.5 compared to 3-5 additional patients on BB2

or BB3. Again, the difference in standard deviation is still only 0.03.

Figure 2.1 illustrates the trends in patient assignment from Table 2.1 across the

five simulated trial sizes for all three treatment differences when σA = σB = 1.0. As

seen in Table 2.1 and in Figure 2.1, patient allocation is impacted by the difference

in treatment effects, the total enrollment of the study, and the particular random-

ization design when treatment variances are held constant. For a given combination

of treatment mean effects, the allocation patterns across designs and trial sizes are

consistent in their form, but vary in their magnitude. That is, all four RAR designs

rapidly improve in terms of the ethicality of their assignments as studies grow from

small to moderate sizes. This growth plateaus when moving from moderate to large

trials. Moreover, the order and shape of the allocation curves across enrollment sizes

is consistent for each treatment difference, but the curves are scaled relative to the

magnitude of the difference. The BBS and BB1 curves are the most ethical alloca-

tions. BB2 lags behind the frontrunners, peaking in ethically approximately where

the first two designs’ minimum ethical allocations begin. BB3 follows BB2 with a

much smaller gap than between BB2 and BB1. Equal allocation steadily assigns 50%

of patients to treatment A regardless of clinical trial size or difference in treatment

means. Overall, the BBS and BB1 designs continue to expose more patients to the

treatment with larger effect size compared to equal allocation even when the difference

in treatment means is small relative to the treatment variance.
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Figure 2.1: Proportion of patients assigned to treatment A by design and clinical trial
size as µA varies for fixed treatment parameter values, µB = 0, and σA = σB = 1.
Data points are grouped by design; BBS is represented by ∗ with a solid line, BB by
variations on � with a dashed line, and equal allocation by • with a dotted line.
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Tables 2.2 – 2.5 present patient assignment proportions for BBS, BB, and equal

allocation designs under different treatment effect scenarios (µA = 0.0, 0.1, 0.5, and

1.0, respectively, with µB = 0.0 for all four tables) when treatment variances are
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unequal. In Tables 2.2 – 2.5, the first column on the left designates the design for

the section. The second column identifies which value of σA applies to each row. All

rows across all four tables represent σB = 1.0. The remaining five columns are the

mean (SD) proportion of patients assigned to treatment A over 1,000 simulations for

each of the five trial sizes N = 50; 100; 500; 1,000; and 5,000.

The first section in Table 2.2 indicates that when treatment means are equal, the

BBS design randomizes patients to treatment in a nearly balanced allocation, subject

to slight fluctuations tied to treatment variance. For example, the first row demon-

strates that when σA = 0.5, the BBS design assigns 51–52% of patients to treatment

A in small to moderately sized clinical trials and 50% of patients to treatment A for

large studies (N = 5,000). The standard deviation of these allocations decreases as N

increases. For σA = 0.5 and σB = 1.0, the BBS allocation standard deviation starts at

0.13 when N = 50, reaches 0.09 when N = 500, and finishes at 0.03 when N = 5,000.

In the reverse scenario, row six in Table 2.2 demonstrates that when σA = 1.5 and

σB = 1.0, the BBS design assigns 49% of patients to treatment A in all but one

scenario and 50% of patients are allocated to each treatment when N = 5,000. As

with row one, the randomization standard deviation decreases as N increases: 0.12

when N = 50 , 0.08 when N = 500, and 0.03 when N = 5,000. When the treatment

standard deviations are approximately equal (σA = 0.9 or 1.1 in rows three and four),

the BBS assignment is balanced and the data are similar to the first row in Table 2.1.

The following four sections of Table 2.2 share the same organization for each de-

sign, beginning with BB1 and ending with equal allocation. BB1 simulated behavior

follows similar allocation patterns as BBS but with different variance patterns. In

terms of the randomization proportions, when σA = 0.5, slightly more patients are

exposed to treatment A; when σA = 1.5, slightly fewer patients are exposed to treat-

ment A; when σA is closer to 1.0 or when N = 5,000, treatment A and treatment B
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assignment proportions are balanced. BB1 randomization variance is distinct from

BBS. As N increases, the allocation standard deviations decrease; however, within

a fixed value of N , BB1 allocation standard deviation increases as σA increases. For

example, when N = 500, the standard deviation increases from 0.06 when σA = 0.5

to 0.10 when σA = 1.5. The BB2 design shares this allocation variance pattern, but

to a smaller degree. BB3 randomization variance appears predominantly consistent

within a trial size across treatment A variance levels. Moreover, the allocation pro-

portions from BB2 and BB3 are nearly all 50%—no relationship with σA is evident.

As anticipated, equal allocation exposes equal proportions of patients to treatments

A and B. Randomization variance for the nonadaptive design decreases as clinical

trial size increases, but is not altered by treatment standard deviations.

Tables 2.3 – 2.5 adhere to the same format as Table 2.2, except in these tables

a treatment difference exists. In the simulations represented, BBS now allocates

more patients to treatment A. The relationships in randomization proportions and

allocation variance across values of σA and N persist. Across the four tables, the

larger the difference in treatments, the higher the proportion of patients assigned to

treatment A. The BB designs also expose more patients to the superior treatment.

BB1 allocations are closest to BBS, without the same sensitivity to changes in σA.

BB2 and BB3 are each less ethical in their assignments than BB1 but still manage to

randomize more patients to the treatment with larger mean than equal allocation.

To confirm the symmetry of the RAR allocations across values of σA and σB,

all four adaptive designs are also simulated with σA = 1.0 and σB = 0.5, . . . , 1.5

as well as with µA = 0.0 and µB = 1.0. Although the simulation results are not

presented in a table, Figure 2.2 illustrates the patient allocation proportions for BBS

and BB1 when N = 100. Other clinical trial enrollment sizes demonstrate patterns

which follow those exhibited by N = 100. Figure 2.2 contains four graphs depicting
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treatment allocation rates at the four combinations of µA = 0.0 and µB = 1.0 or

µA = 1.0 and µB = 0.0 crossed with σA varying and σB = 1.0 or σA = 1.0 and σB

varying. For example, the top right quadrant of Figure 2.2 contains the proportion

of patients allocated to treatment A by the BBS and BB1 designs when µA = 1.0,

µB = 0.0, σA = 1.0, and σB varies from 0.5 to 1.5 along the horizontal axis. In the

top left quadrant of Figure 2.2, µA = 1.0, µB = 0.0, σB = 1.0, and σA varies from 0.5

to 1.5 along the horizontal axis.

All four graphs illustrate two major trends in the BBS and BB designs. First of all,

for a given set of treatment variances, these ethical RAR designs successfully expose

more patients to the treatment with larger mean effect. Secondly, more patients can

be randomized to the better treatment when the total design variance is minimized

relative to a fixed difference in treatment means.

When considering the graphs in Figure 2.2 in horizontal pairs, an additional pat-

tern emerges for the BBS design. For a fixed set of treatment mean effects and total

treatment variance, BBS exposes more patients to the superior treatment when the

treatment with larger mean effect has smaller variance. For example, when µA = 1.0

and µB = 0.0, 82% of patients can be exposed to treatment A on the BBS design

when σA = 0.5 and σB = 1.0 (left most point in the top left quadrant) versus only

77% when σA = 1.0 and σB = 0.5 (left most point in the top right quadrant). Simi-

larly, when µA = 1.0 and µB = 0.0, 73% of patients can be exposed to treatment A

on the BBS design when σA = 1.0 and σB = 1.5 (right most point in the top right

quadrant) versus 70% when σA = 1.5 and σB = 1.0 (right most point in the top left

quadrant).

Examining diagonal pairs of graphs from Figure 2.2, a final pattern of BBS al-

location becomes obvious. The BBS designs is symmetric in its ethicality, after ac-

counting for total variance. For instance, when the treatment with larger mean effect
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Figure 2.2: Proportion of patients assigned to treatment A by the BBS and BB1

designs for N = 100 patients as µA, µB, σA, and σB vary. Data points are grouped by
design; BBS is represented by ∗ with a solid line and BB1 by � with a dashed line.
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has smaller variance, an additional 32% of patients can be assigned to that treatment

(left most points of the top left and bottom right quadrants), regardless of whether

that larger treatment mean is µA or µB. By contrast, when the treatment with larger

mean effect has larger variance, an additional 27% of patients can be assigned to that
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treatment (left most points of the top right and bottom left quadrants), regardless of

whether that larger treatment mean is µA or µB.

2.4.3 Power and Type I Error

Tables 2.6 – 2.10 contain proportions and standard deviations of trials that reject the

null hypothesis that the mean effect of treatment A is no better than the mean effect

of treatment B. Table 2.6 details the average rejection rates for the BBS; BB under

T = 1, 2, 3; and equal allocation rejection rates when treatment variances are equal

(σA = σB = 1.0). The left most column of Table 2.6 specifies which design’s results

are being described. The second column specifies the clinical trial size N associated

with a particular row. The next three columns contain the mean (SD) proportion of

trials that correctly conclude that µA > µB when µA = 0.1, 0.5, and 1.0, respectively,

with µB = 0.0. The final column reports the mean (SD) proportion of trials that

incorrectly conclude µA > µB when, in fact, µA = µB = 0.0.

The first section of data in Table 2.6 summarizes rejection rates from simulations

where patients are assigned to treatment under the BBS design. The first row rep-

resents results for small studies with N = 50. As expected, the probability of the

BBS accurately rejecting the null hypothesis increases as the difference in treatment

means increases. Specifically, the BBS rejection power across 1,000 simulations is

11% when (µA, µB) = (0.1, 0.0) versus 40% when (µA, µB) = (0.5, 0.0) and 76% when

(µA, µB) = (1.0, 0.0) with standard deviations 0.31, 0.49, and 0.43, respectively. The

probability of falsely rejecting the null hypothesis in a clinical trial of size N = 50 is

7% for the BBS with a standard deviation of 0.26. On the other end of the spectrum,

the fifth row in Table 2.6 represents BBS results for large studies with N = 5,000.

In particular, power when (µA, µB) = (0.1, 0.0) is only 79% with standard deviation
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0.41, but power when (µA, µB) = (0.5, 0.0) or (1.0, 0.0) is 100% with negligible vari-

ance. Moreover, the type I error rate is 5% for the BBS design when N = 5,000 with

a standard deviation of 0.22. Between enrollments of 50 patients and 5,000 patients,

rejection rates increase within a fixed treatment difference and standard deviations

generally decrease. In contrast, rejection rates and their standard deviations decrease

for the BBS as trial size increases when there is no difference in treatment mean

effects.

The remaining four sections of Table 2.6 are structured similarly for each simulated

design, displaying similar power and type I error patterns, as well. All designs present

power ranging from approximately 10% when N = 50 to roughly 80% when N = 5,000

for a 0.1 difference in treatment means and from over 75% when N = 50 to 100%

when N ≥ 500 for a 1.0 difference in treatment mean effects. All five designs also

demonstrate slightly inflated type I errors of 6–7% when N = 50 falling to 5% or

below when N = 5,000 and standard deviations ranging from approximately 0.25 to

just over 0.20. Overall, all four RAR designs exhibit similar rejection rates to those of

the nonadaptive equal allocation design, after adjusting for study size and treatment

effects when σA = σB = 1.0.

Figure 2.3 illustrates the trends in trial rejection from Table 2.6 across the five

simulated trial sizes for all four treatment effect combinations when σA = σB = 1.0.

As seen in Table 2.6 and in Figure 2.3, when treatment variances are held constant,

rejection rates are impacted by the difference in treatment means and the total clin-

ical study enrollment numbers. The particular randomization design employed has

minimal effect on the proportion of simulated trials rejected when the study sizes are

moderate or large.

When no difference in treatments exists (µA = µB = 0.0), rejection rates range

from to 5–7% in small trials (N = 50 or 100) to as low as 3 or 4% whenN = 5,000. The
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Figure 2.3: Proportion of trials which reject the null hypothesis by design when µA
varies, µB = 0.0, σA = σB = 1, and N varies. Data points are grouped by design;
BBS is represented by ∗ with a solid line, BB by variations on � with a dashed line,
and equal allocation by • with a dotted line.
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total range of false rejection rates are small. Moreover, there are no clear patterns

between the five designs’ type I error rate rankings across the different values of

sample size N . BBS is in the middle of the pack for most of the clinical trial sizes;
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BB1 runs high when trial sizes are small but achieves the lowest false rejection rate

when N = 5,000; and equal allocation is at both extremes for moderate clinical trial

sizes.

When the effect size is small relative to the treatment standard deviation (µA =

0.1, µB = 0.0, and σA = σB = 1.0), the power of all designs is low for small clinical

trials and increases slowly as trial size increases. The total power in this cases peaks

at approximately 80%. When the treatment effect size is modest relative to the

treatment error (µA = 0.5, µB = 0.0, and σA = σB = 1.0), minimum rejection rates

more than double for small clinical trials, rising swiftly to a plateau of near perfect

rejection rates once a moderate number of patients are treated. When the treatment

effect size equals treatment error (µA = 1.0, µB = 0.0, and σA = σB = 1.0), minimum

rejection rates are high even for small clinical trials. Power quickly surpasses 95%

even when N = 100, reaching 100% for N ≥ 500. Additional simulation results

not presented in tabular or graphical form confirm that there is no significant loss in

design efficiency in the equal allocation design or the BBS design due to incorporating

the potential for unequal variances when variances are, in fact, equivalent. That is,

leveraging a pooled standard error estimate neither increases power nor decreases

Type I error rates in equal allocation or BBS.

Tables 2.7 – 2.10 contain comprehensive results of rejection rates and standard

deviations of these rates when µA = 0.0, 0.1, 0.5, and 1.0, respectively; µB = 0.0 for

all four tables; and treatment variances are unequal under five different clinical trial

sizes. In Tables 2.7 through 2.10, the first column on the left designates the design

for the section. The second column identifies which value of σA applies to each row.

All rows across all four tables represent σB = 1.0. The remaining five columns are

the mean (SD) proportion of 1,000 simulated clinical trials for each of the five study

sizes N = 50; 100; 500; 1,000; and 5,000.
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The first section in Table 2.7 represents the rate at which the BBS design in-

correctly rejects the null hypothesis. For example, the first row indicates that when

σA = 0.5, the BBS design rejects 10% of small trial null hypotheses (N = 50 or 100)

even when treatment means are equal. Fewer false rejections occur for the BBS when

clinical trials are moderate (9% when N = 500) or larger (6% when N = 1,000 and

7% when N = 5,000). The last row in the BBS section indicates that when σA = 1.5,

BBS rejection rates are closer to the expected type I error rates for hypothesis tests

using α = 0.05: 6% of small trials incorrectly reject the hypothesis of equal treatment

means and only 5% of moderate or large trials falsely conclude that µA > µB. The

variance of the rejection rates decreases as clinical trial sizes increase. Additionally,

the standard deviation of rejections decreases as σA increases from 0.5 to 1.5. In the

case of the BBS design, standard deviations range from 0.29 to 0.23 when N = 50,

from 0.29 to 0.22 when N = 500, and from 0.25 to 0.21 when N = 5,000.

The four subsequent sections of Table 2.7 follow the same organization for each

of the simulated designs. BB1 clinical trials reject the null hypothesis at similar rates

to BBS and with similar variance patterns. BB2 type I errors rates only reach a

maximum of 7% when clinical trials are small and σA is small relative to σB. BB3

rejection behaviors are similar as well, peaking at 9% when N = 50 and σA = 0.5

and decreasing as N increases and as σA increases. Equal allocation false rejection

rates also vary from 5% in some simulations, particularly when the study size is

small (6% for all trials of size N = 50) and treatment variance A differs moderately

from treatment B variance. The rejection variance patterns are similar across all five

designs.

Tables 2.8 – 2.10 adhere to the same format as Table 2.7, except in these tables a

treatment difference exists. In Tables 2.8 through 2.10, larger differences in treatment

means translate into greater power to correctly reject the null hypothesis. Moreover,
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Figure 2.4: Proportion of trials which reject the null hypothesis by design when µA
varies, µB = 0.0, σA varies, σB = 1.0, and N = 100. Data points are grouped by
design; BBS is represented by ∗ with a solid line, BB by variations on � with a dashed
line, and equal allocation by • with a dotted line.
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all designs have increased power rates when σA is small relative to σB regardless of

treatment effect size. The RAR designs’ power levels are comparable to those of equal

allocation, especially when N ≥ 500. When clinical trial sizes are moderate or large,
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the power to correctly reject the null hypothesis exceeds 90%, growing further as σA

decreases, as N increases, and as µA increases.

Figure 2.4 highlights the trends in the five design’s rates of rejecting the null

hypothesis from Tables 2.7 – 2.10 when N = 100 and σA 6= σB. Rejection patterns are

similar in other clinical trial enrollment sizes, except when power levels rise to 100%

for all designs. As seen in Tables 2.7 – 2.10 and in Figure 2.4, when µA = µB = 0.0

and σA is small relative to σB, all designs’ false rejection rates are slightly inflated,

particularly those of BBS and BB1. Type I error rates approach 5% in all designs

once σA ≥ 0.9 and σB = 1.0. When the difference in treatment mean effects is small

(µA = 0.1 and µB = 0.0), BBS—and to a lesser extent the BB designs—correctly

rejects the null hypothesis more frequently than equal allocation when σA is less

than σB. Although the BBS design still maintains the highest rejection rates for

a treatment difference of 0.1 when σA > σB, all designs rejection rates are similar.

Power is comparable across the five designs and changing values of σA for µA = 0.5

and 1.0, as well. Figure 2.4 illustrates how the probability of rejection, correct or

incorrect, decreases as σA increases from 0.5 to 1.5 across all designs.

2.5 Application

Since the 1980s, an estimated 80 million people have been infected with the Human

Immunodeficiency Virus (HIV) and there have been 40 million HIV-related deaths [20,

46]. Antiretroviral therapies help to control the spread of this epidemic, extend the

expected lifespan of infected persons, and increase the quality of life for those living

with the virus—provided adequate adherence to the prescribed therapies is attained

[13, 27]. Inversely, non-adherence may negatively impact not only the individual

patient but the population in general, leading to poor patient outcomes as well as
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development and transmission of treatment-resistant viral strains.

While many interventions consider adherence above an arbitrary threshold as

their binary outcome of success, there is a lack of consensus on what constitutes

adequate adherence and whether or not a measure of adherence is valid [1, 26, 30,

43]. Instead, it may be more prudent and relevant to consider the actual HIV RNA

viral load suppression as a continuous measure of success in a clinical trial. Moreover,

as adherence affects treatment outcomes, baseline adherence can be leveraged as a

useful prognostic factor. Adjusting for baseline adherence gives a more accurate

measure of intervention effectiveness [28, 33].

Modifying [33] based on reasonable estimates from [28, 33] as baseline adherence

covariate and treatment outcome HIV RNA suppression parameters, 244 HIV pa-

tients on antiretroviral therapy are prospectively randomized to standard medication

alone (treatment M) or medication with additional educational and counseling (treat-

ment C). Patients who received medication alone see a treatment effect (standard

deviation) of µM = 0.22 (σM = 0.54) fewer HIV RNA copies/mL versus µC = 0.58

(σC = 0.47) fewer HIV RNA copies/mL when medication is coupled with educational

and counseling therapy. Additionally, baseline adherence is normally distributed for

patients regardless of treatment assignment with mean µZ = 0.60 and standard de-

viation σZ = 0.49. The treatment-covariate interaction also does not differ across

treatments with a slope of β = 1.11. Combining the treatment effects and the co-

variate treatment interactions, medication alone only decreases HIV RNA by 0.89

copies/mL while the combined therapy decreases HIV RNA by 1.25 copies/mL, a

difference which is clinically and statistically significant in [33]. The one-sided null

hypothesis (combination treatment is no more effective than medication treatment

alone) is tested at significance α = 0.05. Delay in response time is ignored for this

simulation, but discussed further in Section 2.6.3.
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Figure 2.5: Proportion (and standard deviation) of 244 HIV antiretroviral therapy
adherence intervention patients assigned to the more effective combined therapy of
medication, education, and counseling (µC = 0.58 fewer RNA copies/mL versus a
reduction of only µM = 0.22 RNA copies/mL on medication alone). Data points
are grouped by design; BBS is represented by ∗, BB by variations on �, and equal
allocation by •.
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All five randomization schemes (BBS, BB with T = 1, 2, 3, and equal allocation)

undergo 10,000 trial simulations for the above parameters. Table 2.11 summarizes

the patient allocations and power of each design. In particular, the first row of Table

2.11 indicates that, under BBS, 75% of simulated patients are exposed to treatment

C with a standard deviation of 0.10. Hence, an expected 182 patients would have
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Figure 2.6: Proportion (and standard deviation) of 10,000 simulated HIV antiretrovi-
ral therapy clinical trials which correctly reject the null hypothesis and conclude that
an education and counseling intervention in combination with medication is more
effective at decreasing HIV RNA copies/mL than medication treatment alone (reduc-
tions of µC = 0.58 versus µM = 0.22 RNA copies/mL). Data points are grouped by
design; BBS is represented by ∗, BB by variations on �, and equal allocation by •.
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received the medication, education, and counseling therapy out of the 244 enrollees.

That means 60 additional patients would have been randomized to the more effective

intervention through the BBS design than by equal allocation. Furthermore, BBS

correctly rejects the null hypothesis in 95% of 10,000 simulations with a standard

deviation of 0.21. In comparison, the last row of Table 2.11 reveals how equal allo-
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cation exposes 50% of simulated patients to treatment C with a standard deviation

of 0.03. Half of all simulated patients receive the superior treatment and half remain

on the inferior treatment resulting in zero additional ethical allocations. The equal

allocation achieves 97% simulated power with a standard deviation of 0.18. Under

the BBS design, more patients would have been exposed to the superior treatment

than through any other design and minimal loss of power predicted.

Figure 2.5 illustrates the simulated assignment proportions of each design as de-

scribed in Table 2.11. The BBS design would achieve the most ethical randomization,

assigning 75% of patients to the superior treatment, followed in ethicality by the BB

designs with T = 1, 2, and 3, respectively. Equal allocation would not deviate from

a 50% exposure rate for each treatment. While exposing the most patients to treat-

ment C, BBS would also have the highest variance in allocation, followed again by the

BB1, BB2, and BB3 designs. Equal allocation standard deviation would be smallest

at 0.03.

Figure 2.6 displays the proportion of simulated trials which correctly reject the

null hypothesis for each design as detailed in Table 2.11. The BBS design concludes

that treatment C is more effective in 95% of simulated trials versus a 96% power for

BB1 and a 97% rejection rate for the other three designs. The simulated standard

deviations of the five designs are also similar: 0.21 for BBS, 0.19 for BB1, and 0.18 for

BB2, BB3, and equal allocation. In Figure 2.6, the rejection rates appear comparable

across all designs.

2.6 Discussion

Response-adaptive randomization biased coin designs leverage accumulating data to

ethically expose patients to treatment during a clinical trial. The BB design from the
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2001 Bandyopadhyay and Biswas paper [8] assigns patients to treatment A with prob-

ability Φ
(
µ̂A−µ̂B

T

)
where µ̂k is the current estimate of treatment k = A,B and Φ(·) is

the CDF of the normal distribution. The BB design has limitations including an ar-

bitrary choice of scaling parameter T , restricted application to real-world situations,

and a potential trade-off between ethical assignment and power to detect a treatment

difference. This paper proposes the BBS design as an improved alternative to the

BB randomization—replacing the constant scaling parameter T from the BB design

with the current estimate of the pooled treatment standard deviation S. Simulations

help examine the BBS capacity to ethically assign patients to treatment, the design’s

applicability to additional clinical scenarios such as unknown and unequal treatment

variances, and the BBS rejection rates. BBS design outcomes are compared to those

of the BB design with values of T fixed at 1, 2, and 3 (referred to as BB1, BB2, and

BB3, respectively), as well as to equal allocation trial behaviors.

2.6.1 Ethical Patient Allocation

In all scenarios simulated with a treatment difference, the BBS design allocates more

patients to the better treatment, regardless of treatment effect size and clinical trial

enrollment levels. In fact, the treatment with larger mean effect has smaller treatment

variance, the BBS performs as well as or better than BB1. When the treatment with

larger mean effect also has larger treatment variance, the BBS design still allocates

more patients to the better treatment than equal allocation, BB2, or BB3; however,

BBS does not perform ethically as BB1.

A clinical experiment need not be large to benefit from the BBS design. The pro-

portion of patients assigned to the better treatment appears to peak in all simulated

adaptive designs between trials of size N = 500 and N = 1,000. The proportion in-
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creases a mere 1% as exposure doubles from 500 to 1,000 patients and, in fact, there

is no further gain as trial size quintuples from 1,000 to 5,000.

One element to note is that variance in allocation rates grows in adaptive designs

compared to fixed allocation, particularly when the treatment variance is large relative

to the treatment difference. In all designs, allocation variance is mitigated as the

trial population grows. The trade-off of the three underlying factors—treatment

difference, treatment variance, and sample size—must be considered when selecting

an appropriate design and choosing design parameters.

2.6.2 Rejection Rates

Under the original assumptions of the BB design, treatment variances must be both

known and equal. These constraints limit the feasibility of the original design. Re-

laxing these requirements for the BBS design expands the relevant scenarios under

which BBS might be applicable. The BBS design employs a t-statistic that estimates

both treatment variances separately but utilizes the Welch-Satterthwaite degrees of

freedom approximation for unequal variances [38, 45].

The BBS design appears to reject the null hypothesis (H0 : µA ≤ µB) at similar

or higher rates as equal allocation. In particular, the BBS design demonstrates com-

parable power to equal allocation with a possible increased rejection rate when the

difference in treatment effects is small relative to treatment variance. Additionally,

the BBS design also appears to have a slightly inflated risk of Type I error compared

to the other designs.
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2.6.3 Delay

The HIV adherence intervention trial in [33] enrolled 244 patients over the course of

three months, provided zero to three educational and counseling sessions during the

four months following a patient’s enrollment, and obtained RNA suppression results

at 6 months post-randomization. If patients are only assigned to treatment after

the previous patient’s results are obtained, this intervention would require 122 years

to adaptively allocate and sequentially treat 244 patients. Fortunately, mechanisms

to incorporate delay exist which do not require postponing patient enrollment or

treatment. While Section 2.5 ignores the delay in patient responses to simulate the

adaptive designs described in this paper, a practical solution must be found to enable

application of the BBS design to trials without significantly extending the study’s

lifespan.

The original BB design assumes that patient responses are instantaneous [8]. In

fact, it is only required that after a patient is enrolled and exposed to treatment,

that patient’s response is observed and incorporated into future randomization cri-

teria prior to assigning the next patient to treatment. The immediate response re-

quirement can thus be circumvented in two possible manners. First, a clinical trial

protocol can be altered to incorporate delays due to halting future patient enroll-

ment and/or exposure until the most recently treated patient responds. This would

result in extending a nine month trial such as [33] by an extra century, as described

above. Second, the randomization scheme can be revised so that estimates leveraged

in assigning patients to treatment depend only on currently responded patients at

the time of a new patient enrollment.

The latter is a common modification, being more practical and ethical than an

unduly delayed clinical trial conclusion [6, 23, 25, 41, 49]. While the aforementioned
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articles prove that delay has minimal impact on the asymptotic characteristics of se-

lect adaptive designs—namely patient allocation proportion and power—convergence

to these properties may slow. Thus small to moderate trials may not behave similarly

under delayed response conditions. Moreover both large and small-sample behavior

may differ by adaptive randomization and delay mechanisms. Further study of the

effect of delay on the BBS design for various sample sizes is warranted.

2.6.4 Recommendations

The goal of most Phase III clinical trials is to determine which of two or more treat-

ments is superior so that more patients gain access to a better standard of care.

Current practice is that, during the clinical trial process, patients are exposed to

treatments in equal proportion, regardless of evidence gathered suggesting the su-

periority of one treatment. As with [33], in many of these clinical scenarios the

treatment variances are unknown and/or unequal, the outcome is not binary but in-

stead continuous, patient covariates must be considered when evaluating treatment

effect, and—most importantly—each patient enrolled can significantly benefit from

receiving the more effective intervention.

The BBS design extends clinicians and researchers the opportunity to leverage

data collected throughout such a clinical trial to expose many more patients to the

better of two treatments during the trial rather than simply after its conclusion. This

ethical advantage is accompanied by an inflated risk of incorrectly concluding one

treatment is superior when, in fact, both treatments are equally effective. While the

risk of a Type I error in the BBS design is less than double that of equal allocation

for each sample size and is anticipated in fewer than 10% of all trials where no

treatment difference is present, an erroneous conclusion of treatment superiority could
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still be detrimental to future patients. For example, if the treatment falsely deemed

superior is considerably more expensive, causes more adverse events, or has decreased

propensity for patient adherence and would be the new standard of care for a large

number of patients, minimizing a Type I error should be appropriately weighted when

selecting a design. On the other hand, such an error could be minimally impactful if,

for instance, the reign of any particular treatment is anticipated to be short, as when

a research pipeline contains continually improving and quickly evolving therapies,

frequently renewing the standard of care. The benefit of increased patient exposure

during a trial must be weighted against the increased risk of incorrectly selecting a

treatment as superior when it is not.

Continued investigation is suggested to better understand the potential influence

of covariates on BBS design outcomes, especially covariates whose impact on patient

outcomes differs by treatment. To expand the applicability of the BBS design to

clinical trials with a delay in patient responses—for example the HIV adherence in-

tervention described in Section 2.5—it is imperative to ascertain how the design fares

under delayed response conditions. Finally, other modifications of the BB design

should be considered, for instance replacing T with the unpooled standard deviation

estimator or the estimate for the standard deviation of the difference in treatment

effects.
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2.7 Appendix

Table 2.1: Proportion (SD) of patients assigned to Treatment A when µA varies,
µB = 0.0, and σA = σB = 1.0. Each section denotes a different randomization
design—BBS; BB with T = 1, 2, or 3; and equal allocation (Equal). Values for
treatment parameter µA are described in the second column on the left. Allocation
proportion and standard deviation across 1,000 simulations of trial size N are given
in the remaining five columns.

σA = σB = 1.0

Design µB = 0.0 N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS

µA = 0.0 0.50 (0.12) 0.50 (0.13) 0.50 (0.07) 0.50 (0.05) 0.50 (0.02)
µA = 0.1 0.52 (0.12) 0.53 (0.13) 0.54 (0.07) 0.54 (0.05) 0.54 (0.02)
µA = 0.5 0.60 (0.11) 0.65 (0.11) 0.69 (0.06) 0.69 (0.05) 0.69 (0.02)
µA = 1.0 0.68 (0.09) 0.76 (0.09) 0.83 (0.06) 0.84 (0.04) 0.84 (0.02)

BB1

µA = 0.0 0.50 (0.12) 0.50 (0.12) 0.50 (0.07) 0.50 (0.05) 0.50 (0.02)
µA = 0.1 0.52 (0.12) 0.53 (0.12) 0.54 (0.08) 0.54 (0.05) 0.54 (0.02)
µA = 0.5 0.60 (0.11) 0.64 (0.11) 0.68 (0.07) 0.69 (0.05) 0.69 (0.02)
µA = 1.0 0.67 (0.09) 0.75 (0.08) 0.83 (0.05) 0.83 (0.04) 0.84 (0.02)

BB2

µA = 0.0 0.50 (0.08) 0.50 (0.07) 0.50 (0.04) 0.50 (0.03) 0.50 (0.01)
µA = 0.1 0.51 (0.09) 0.52 (0.08) 0.52 (0.04) 0.52 (0.03) 0.52 (0.01)
µA = 0.5 0.55 (0.08) 0.58 (0.07) 0.59 (0.04) 0.60 (0.03) 0.60 (0.01)
µA = 1.0 0.60 (0.08) 0.64 (0.07) 0.68 (0.04) 0.69 (0.03) 0.69 (0.01)

BB3

µA = 0.0 0.50 (0.08) 0.50 (0.06) 0.50 (0.03) 0.50 (0.02) 0.50 (0.01)
µA = 0.1 0.50 (0.08) 0.51 (0.06) 0.51 (0.03) 0.51 (0.02) 0.51 (0.01)
µA = 0.5 0.54 (0.08) 0.56 (0.06) 0.56 (0.03) 0.56 (0.02) 0.57 (0.01)
µA = 1.0 0.57 (0.07) 0.60 (0.06) 0.62 (0.03) 0.63 (0.02) 0.63 (0.01)

Equal

µA = 0.0 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
µA = 0.1 0.49 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
µA = 0.5 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
µA = 1.0 0.49 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
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Table 2.2: Proportion (SD) of patients assigned to Treatment A when µA = µB = 0.0,
σA varies, and σB = 1.0. Each section denotes a different randomization design—BBS;
BB with T = 1, 2, or 3; and equal allocation (Equal). Values for treatment parameter
σA are described in the second column on the left. Allocation proportion and standard
deviation across 1,000 simulations of trial size N are given in the remaining five
columns.

Design σB = 1.0 N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS

σA = 0.5 0.51 (0.13) 0.52 (0.13) 0.52 (0.09) 0.52 (0.07) 0.50 (0.03)
σA = 0.7 0.51 (0.12) 0.51 (0.13) 0.51 (0.08) 0.51 (0.06) 0.50 (0.02)
σA = 0.9 0.50 (0.12) 0.50 (0.13) 0.50 (0.08) 0.50 (0.05) 0.50 (0.03)
σA = 1.1 0.50 (0.13) 0.50 (0.13) 0.50 (0.08) 0.50 (0.05) 0.50 (0.02)
σA = 1.3 0.49 (0.12) 0.49 (0.13) 0.50 (0.08) 0.50 (0.05) 0.50 (0.02)
σA = 1.5 0.49 (0.12) 0.49 (0.13) 0.49 (0.08) 0.49 (0.06) 0.50 (0.03)

BB1

σA = 0.5 0.51 (0.11) 0.51 (0.10) 0.51 (0.06) 0.51 (0.04) 0.50 (0.02)
σA = 0.7 0.50 (0.11) 0.50 (0.11) 0.50 (0.06) 0.50 (0.05) 0.50 (0.02)
σA = 0.9 0.50 (0.11) 0.50 (0.12) 0.50 (0.07) 0.50 (0.05) 0.50 (0.02)
σA = 1.1 0.50 (0.12) 0.50 (0.12) 0.50 (0.08) 0.50 (0.06) 0.50 (0.03)
σA = 1.3 0.50 (0.12) 0.49 (0.13) 0.50 (0.09) 0.50 (0.06) 0.50 (0.03)
σA = 1.5 0.49 (0.13) 0.49 (0.15) 0.49 (0.10) 0.49 (0.07) 0.50 (0.03)

BB2

σA = 0.5 0.50 (0.08) 0.50 (0.07) 0.50 (0.03) 0.50 (0.02) 0.50 (0.01)
σA = 0.7 0.50 (0.08) 0.50 (0.07) 0.50 (0.04) 0.50 (0.03) 0.50 (0.01)
σA = 0.9 0.50 (0.09) 0.50 (0.07) 0.50 (0.04) 0.50 (0.03) 0.50 (0.01)
σA = 1.1 0.49 (0.09) 0.50 (0.08) 0.50 (0.04) 0.50 (0.03) 0.50 (0.01)
σA = 1.3 0.50 (0.09) 0.50 (0.08) 0.50 (0.04) 0.50 (0.03) 0.50 (0.01)
σA = 1.5 0.50 (0.10) 0.50 (0.09) 0.50 (0.05) 0.50 (0.03) 0.50 (0.02)

BB3

σA = 0.5 0.50 (0.08) 0.50 (0.06) 0.50 (0.03) 0.50 (0.02) 0.50 (0.01)
σA = 0.7 0.50 (0.07) 0.50 (0.06) 0.50 (0.03) 0.50 (0.02) 0.50 (0.01)
σA = 0.9 0.50 (0.08) 0.50 (0.06) 0.50 (0.03) 0.50 (0.02) 0.50 (0.01)
σA = 1.1 0.50 (0.08) 0.50 (0.06) 0.50 (0.03) 0.50 (0.02) 0.50 (0.01)
σA = 1.3 0.50 (0.08) 0.50 (0.07) 0.50 (0.03) 0.50 (0.02) 0.50 (0.01)
σA = 1.5 0.50 (0.08) 0.50 (0.07) 0.50 (0.03) 0.50 (0.03) 0.50 (0.01)

Equal

σA = 0.5 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 0.7 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 0.9 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.1 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.3 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.5 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
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Table 2.3: Proportion (SD) of patients assigned to Treatment A when µA = 0.1,
µB = 0.0, σA varies, and σB = 1.0. Each section denotes a different randomization
design—BBS; BB with T = 1, 2, or 3; and equal allocation (Equal). Values for
treatment parameter σA are described in the second column on the left. Allocation
proportion and standard deviation across 1,000 simulations of trial size N are given
in the remaining five columns.

Design σB = 1.0 N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS

σA = 0.5 0.54 (0.12) 0.56 (0.13) 0.57 (0.10) 0.57 (0.08) 0.56 (0.04)
σA = 0.7 0.53 (0.12) 0.54 (0.13) 0.56 (0.08) 0.55 (0.06) 0.55 (0.03)
σA = 0.9 0.53 (0.12) 0.54 (0.13) 0.54 (0.07) 0.54 (0.05) 0.54 (0.02)
σA = 1.1 0.52 (0.12) 0.53 (0.13) 0.54 (0.07) 0.53 (0.05) 0.54 (0.02)
σA = 1.3 0.51 (0.12) 0.52 (0.13) 0.53 (0.07) 0.53 (0.06) 0.53 (0.02)
σA = 1.5 0.51 (0.12) 0.51 (0.13) 0.52 (0.08) 0.52 (0.05) 0.53 (0.03)

BB1

σA = 0.5 0.52 (0.11) 0.54 (0.10) 0.54 (0.06) 0.55 (0.04) 0.54 (0.02)
σA = 0.7 0.52 (0.11) 0.53 (0.11) 0.54 (0.06) 0.54 (0.05) 0.54 (0.02)
σA = 0.9 0.53 (0.12) 0.53 (0.12) 0.54 (0.07) 0.54 (0.05) 0.54 (0.02)
σA = 1.1 0.52 (0.12) 0.53 (0.13) 0.54 (0.07) 0.54 (0.06) 0.54 (0.03)
σA = 1.3 0.51 (0.12) 0.52 (0.14) 0.53 (0.09) 0.53 (0.06) 0.54 (0.03)
σA = 1.5 0.51 (0.14) 0.52 (0.15) 0.52 (0.10) 0.53 (0.07) 0.54 (0.03)

BB2

σA = 0.5 0.51 (0.08) 0.52 (0.07) 0.52 (0.04) 0.52 (0.02) 0.52 (0.01)
σA = 0.7 0.51 (0.09) 0.52 (0.07) 0.52 (0.04) 0.52 (0.03) 0.52 (0.01)
σA = 0.9 0.51 (0.09) 0.51 (0.07) 0.52 (0.04) 0.52 (0.03) 0.52 (0.01)
σA = 1.1 0.51 (0.09) 0.52 (0.07) 0.52 (0.04) 0.52 (0.03) 0.52 (0.01)
σA = 1.3 0.51 (0.09) 0.51 (0.08) 0.52 (0.04) 0.52 (0.03) 0.52 (0.01)
σA = 1.5 0.51 (0.09) 0.51 (0.09) 0.52 (0.05) 0.52 (0.03) 0.52 (0.02)

BB3

σA = 0.5 0.51 (0.08) 0.51 (0.06) 0.51 (0.03) 0.51 (0.02) 0.51 (0.01)
σA = 0.7 0.51 (0.08) 0.51 (0.06) 0.51 (0.03) 0.51 (0.02) 0.51 (0.01)
σA = 0.9 0.51 (0.08) 0.51 (0.06) 0.51 (0.03) 0.51 (0.02) 0.51 (0.01)
σA = 1.1 0.51 (0.08) 0.51 (0.06) 0.51 (0.03) 0.51 (0.02) 0.51 (0.01)
σA = 1.3 0.51 (0.08) 0.51 (0.07) 0.51 (0.03) 0.51 (0.02) 0.51 (0.01)
σA = 1.5 0.51 (0.08) 0.51 (0.07) 0.51 (0.03) 0.51 (0.02) 0.51 (0.01)

Equal

σA = 0.5 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 0.7 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 0.9 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.1 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.3 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.5 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
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Table 2.4: Proportion (SD) of patients assigned to Treatment A when µA = 0.5,
µB = 0.0, σA varies, and σB = 1.0. Each section denotes a different randomization
design—BBS; BB with T = 1, 2, or 3; and equal allocation (Equal). Values for
treatment parameter σA are described in the second column on the left. Allocation
proportion and standard deviation across 1,000 simulations of trial size N are given
in the remaining five columns.

Design σB = 1.0 N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS

σA = 0.5 0.63 (0.11) 0.70 (0.12) 0.79 (0.10) 0.79 (0.09) 0.79 (0.06)
σA = 0.7 0.62 (0.11) 0.68 (0.12) 0.74 (0.09) 0.74 (0.07) 0.74 (0.04)
σA = 0.9 0.60 (0.11) 0.65 (0.11) 0.70 (0.07) 0.70 (0.05) 0.71 (0.02)
σA = 1.1 0.59 (0.11) 0.64 (0.12) 0.68 (0.07) 0.68 (0.05) 0.68 (0.02)
σA = 1.3 0.58 (0.11) 0.62 (0.11) 0.65 (0.07) 0.66 (0.05) 0.66 (0.02)
σA = 1.5 0.57 (0.12) 0.60 (0.12) 0.64 (0.06) 0.64 (0.05) 0.64 (0.02)

BB1

σA = 0.5 0.60 (0.10) 0.65 (0.09) 0.69 (0.06) 0.69 (0.04) 0.69 (0.02)
σA = 0.7 0.60 (0.10) 0.65 (0.10) 0.69 (0.06) 0.69 (0.05) 0.69 (0.02)
σA = 0.9 0.59 (0.11) 0.65 (0.10) 0.69 (0.07) 0.69 (0.05) 0.69 (0.02)
σA = 1.1 0.60 (0.11) 0.63 (0.11) 0.69 (0.07) 0.69 (0.05) 0.69 (0.02)
σA = 1.3 0.59 (0.12) 0.64 (0.13) 0.68 (0.07) 0.69 (0.06) 0.69 (0.03)
σA = 1.5 0.58 (0.13) 0.63 (0.13) 0.68 (0.09) 0.68 (0.06) 0.69 (0.03)

BB2

σA = 0.5 0.55 (0.08) 0.58 (0.07) 0.59 (0.04) 0.6 (0.02) 0.60 (0.01)
σA = 0.7 0.55 (0.09) 0.58 (0.07) 0.59 (0.04) 0.6 (0.03) 0.60 (0.01)
σA = 0.9 0.55 (0.09) 0.58 (0.07) 0.59 (0.04) 0.6 (0.03) 0.60 (0.01)
σA = 1.1 0.55 (0.09) 0.58 (0.08) 0.59 (0.04) 0.6 (0.03) 0.60 (0.01)
σA = 1.3 0.55 (0.09) 0.58 (0.08) 0.59 (0.04) 0.6 (0.03) 0.60 (0.01)
σA = 1.5 0.54 (0.10) 0.57 (0.08) 0.59 (0.05) 0.6 (0.03) 0.60 (0.01)

BB3

σA = 0.5 0.54 (0.07) 0.55 (0.06) 0.56 (0.03) 0.56 (0.02) 0.57 (0.01)
σA = 0.7 0.54 (0.08) 0.55 (0.06) 0.56 (0.03) 0.56 (0.02) 0.57 (0.01)
σA = 0.9 0.53 (0.08) 0.55 (0.06) 0.56 (0.03) 0.57 (0.02) 0.57 (0.01)
σA = 1.1 0.53 (0.08) 0.55 (0.07) 0.56 (0.03) 0.56 (0.02) 0.57 (0.01)
σA = 1.3 0.53 (0.08) 0.55 (0.07) 0.56 (0.03) 0.56 (0.02) 0.57 (0.01)
σA = 1.5 0.53 (0.08) 0.54 (0.07) 0.56 (0.03) 0.56 (0.03) 0.57 (0.01)

Equal

σA = 0.5 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 0.7 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 0.9 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.1 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.3 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.5 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
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Table 2.5: Proportion (SD) of patients assigned to Treatment A when µA = 1.0,
µB = 0.0, σA varies, and σB = 1.0. Each section denotes a different randomization
design—BBS; BB with T = 1, 2, or 3; and equal allocation (Equal). Values for
treatment parameter σA are described in the second column on the left. Allocation
proportion and standard deviation across 1,000 simulations of trial size N are given
in the remaining five columns.

Design σB = 1.0 N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS

σA = 0.5 0.71 (0.09) 0.82 (0.07) 0.93 (0.05) 0.95 (0.04) 0.97 (0.02)
σA = 0.7 0.69 (0.09) 0.79 (0.08) 0.89 (0.05) 0.91 (0.04) 0.92 (0.03)
σA = 0.9 0.68 (0.09) 0.77 (0.08) 0.85 (0.06) 0.86 (0.05) 0.86 (0.02)
σA = 1.1 0.66 (0.10) 0.75 (0.09) 0.81 (0.05) 0.82 (0.04) 0.82 (0.02)
σA = 1.3 0.65 (0.10) 0.72 (0.09) 0.78 (0.05) 0.79 (0.04) 0.79 (0.02)
σA = 1.5 0.63 (0.11) 0.70 (0.09) 0.75 (0.05) 0.76 (0.04) 0.76 (0.02)

BB1

σA = 0.5 0.67 (0.09) 0.76 (0.08) 0.83 (0.05) 0.84 (0.04) 0.84 (0.02)
σA = 0.7 0.67 (0.09) 0.75 (0.08) 0.83 (0.05) 0.84 (0.04) 0.84 (0.02)
σA = 0.9 0.67 (0.09) 0.75 (0.08) 0.83 (0.05) 0.84 (0.04) 0.84 (0.02)
σA = 1.1 0.66 (0.09) 0.75 (0.09) 0.83 (0.06) 0.84 (0.04) 0.84 (0.02)
σA = 1.3 0.66 (0.10) 0.74 (0.10) 0.83 (0.06) 0.84 (0.05) 0.84 (0.02)
σA = 1.5 0.65 (0.11) 0.74 (0.10) 0.82 (0.06) 0.83 (0.05) 0.84 (0.02)

BB2

σA = 0.5 0.60 (0.08) 0.65 (0.06) 0.68 (0.03) 0.69 (0.03) 0.69 (0.01)
σA = 0.7 0.60 (0.08) 0.65 (0.07) 0.68 (0.04) 0.69 (0.03) 0.69 (0.01)
σA = 0.9 0.60 (0.08) 0.65 (0.07) 0.68 (0.04) 0.69 (0.03) 0.69 (0.01)
σA = 1.1 0.60 (0.08) 0.64 (0.07) 0.68 (0.04) 0.69 (0.03) 0.69 (0.01)
σA = 1.3 0.60 (0.09) 0.65 (0.07) 0.68 (0.04) 0.69 (0.03) 0.69 (0.01)
σA = 1.5 0.59 (0.09) 0.64 (0.08) 0.68 (0.04) 0.69 (0.03) 0.69 (0.01)

BB3

σA = 0.5 0.57 (0.07) 0.60 (0.06) 0.63 (0.03) 0.63 (0.02) 0.63 (0.01)
σA = 0.7 0.57 (0.07) 0.60 (0.06) 0.63 (0.03) 0.63 (0.02) 0.63 (0.01)
σA = 0.9 0.57 (0.08) 0.60 (0.06) 0.63 (0.03) 0.63 (0.02) 0.63 (0.01)
σA = 1.1 0.57 (0.08) 0.60 (0.06) 0.62 (0.03) 0.63 (0.02) 0.63 (0.01)
σA = 1.3 0.57 (0.08) 0.60 (0.06) 0.62 (0.03) 0.63 (0.02) 0.63 (0.01)
σA = 1.5 0.57 (0.08) 0.60 (0.07) 0.62 (0.03) 0.63 (0.02) 0.63 (0.01)

Equal

σA = 0.5 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 0.7 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 0.9 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.1 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.3 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
σA = 1.5 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
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Table 2.6: Proportion (SD) of trials where the null hypothesis is correctly rejected
for (µA, µB) = (0.1, 0.0), (0.5, 0.0), and (1.0, 0.0) or incorrectly rejected for (µA, µB)
= (0.0, 0.0) under equal treatment variances (σA = σB = 1.0). Each section denotes
a different randomization design—BBS; BB with T = 1, 2, or 3; and equal allocation
(Equal). Values for clinical trial enrollment size N are described in the second column
on the left. Rejection rates and standard deviations across 1,000 simulations are given
in the remaining four columns.

Power (µA, µB) Type I Error

Design N (0.1, 0.0) (0.5, 0.0) (1.0, 0.0) (0.0, 0.0)

BBS

50 0.11 (0.31) 0.40 (0.49) 0.76 (0.43) 0.07 (0.26)
100 0.14 (0.34) 0.54 (0.50) 0.96 (0.19) 0.06 (0.23)
500 0.20 (0.40) 0.99 (0.09) 1.00 (0.00) 0.06 (0.24)

1,000 0.30 (0.46) 1.00 (0.00) 1.00 (0.00) 0.05 (0.23)
5,000 0.79 (0.41) 1.00 (0.00) 1.00 (0.00) 0.05 (0.22)

BB1

50 0.09 (0.29) 0.36 (0.48) 0.80 (0.40) 0.07 (0.25)
100 0.10 (0.30) 0.55 (0.50) 0.95 (0.22) 0.07 (0.26)
500 0.20 (0.40) 0.98 (0.13) 1.00 (0.00) 0.06 (0.24)

1,000 0.30 (0.46) 1.00 (0.00) 1.00 (0.00) 0.06 (0.23)
5,000 0.80 (0.40) 1.00 (0.00) 1.00 (0.00) 0.03 (0.17)

BB2

50 0.11 (0.31) 0.34 (0.47) 0.78 (0.42) 0.06 (0.24)
100 0.11 (0.32) 0.53 (0.50) 0.96 (0.19) 0.07 (0.26)
500 0.19 (0.39) 0.99 (0.10) 1.00 (0.00) 0.07 (0.25)

1,000 0.30 (0.46) 1.00 (0.00) 1.00 (0.00) 0.05 (0.21)
5,000 0.78 (0.41) 1.00 (0.00) 1.00 (0.00) 0.05 (0.22)

BB3

50 0.10 (0.30) 0.35 (0.48) 0.79 (0.41) 0.06 (0.24)
100 0.10 (0.30) 0.56 (0.50) 0.96 (0.19) 0.05 (0.21)
500 0.19 (0.39) 0.99 (0.11) 1.00 (0.00) 0.06 (0.23)

1,000 0.30 (0.46) 1.00 (0.03) 1.00 (0.00) 0.06 (0.23)
5,000 0.81 (0.39) 1.00 (0.00) 1.00 (0.00) 0.06 (0.23)

Equal

50 0.10 (0.31) 0.35 (0.48) 0.77 (0.42) 0.07 (0.25)
100 0.12 (0.32) 0.54 (0.50) 0.96 (0.19) 0.06 (0.24)
500 0.20 (0.40) 0.98 (0.13) 1.00 (0.00) 0.05 (0.22)

1,000 0.29 (0.45) 1.00 (0.00) 1.00 (0.00) 0.06 (0.24)
5,000 0.80 (0.40) 1.00 (0.00) 1.00 (0.00) 0.04 (0.20)



84

Table 2.7: Proportion (SD) of trials where the null hypothesis is incorrectly rejected
when µA = µB = 0.0, σA varies, and σB = 1.0. Each section denotes a different
randomization design—BBS; BB with T = 1, 2, or 3; and equal allocation (Equal).
Values for treatment parameter σA are described in the second column on the left.
Rejection rates and standard deviations across 1,000 simulations of trial size N are
given in the remaining five columns.

Design σB = 1.0 N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS

σA = 0.5 0.10 (0.29) 0.10 (0.30) 0.09 (0.29) 0.06 (0.24) 0.07 (0.25)
σA = 0.7 0.09 (0.29) 0.10 (0.29) 0.06 (0.23) 0.07 (0.25) 0.06 (0.23)
σA = 0.9 0.07 (0.25) 0.08 (0.28) 0.06 (0.24) 0.05 (0.21) 0.06 (0.23)
σA = 1.1 0.06 (0.24) 0.06 (0.23) 0.05 (0.22) 0.04 (0.20) 0.04 (0.20)
σA = 1.3 0.07 (0.26) 0.06 (0.24) 0.04 (0.20) 0.06 (0.24) 0.05 (0.22)
σA = 1.5 0.06 (0.23) 0.06 (0.23) 0.05 (0.22) 0.05 (0.22) 0.05 (0.21)

BB1

σA = 0.5 0.10 (0.30) 0.09 (0.28) 0.08 (0.26) 0.07 (0.26) 0.05 (0.22)
σA = 0.7 0.09 (0.29) 0.08 (0.27) 0.06 (0.24) 0.06 (0.23) 0.05 (0.22)
σA = 0.9 0.08 (0.28) 0.06 (0.23) 0.05 (0.21) 0.04 (0.20) 0.06 (0.24)
σA = 1.1 0.06 (0.23) 0.07 (0.26) 0.05 (0.21) 0.05 (0.22) 0.05 (0.22)
σA = 1.3 0.05 (0.22) 0.04 (0.20) 0.05 (0.22) 0.05 (0.22) 0.05 (0.22)
σA = 1.5 0.05 (0.22) 0.03 (0.18) 0.04 (0.19) 0.04 (0.20) 0.06 (0.23)

BB2

σA = 0.5 0.07 (0.25) 0.07 (0.26) 0.05 (0.22) 0.06 (0.23) 0.06 (0.24)
σA = 0.7 0.07 (0.26) 0.06 (0.24) 0.06 (0.24) 0.06 (0.24) 0.06 (0.23)
σA = 0.9 0.06 (0.23) 0.05 (0.22) 0.05 (0.21) 0.05 (0.21) 0.06 (0.23)
σA = 1.1 0.05 (0.21) 0.04 (0.21) 0.04 (0.20) 0.03 (0.18) 0.05 (0.21)
σA = 1.3 0.05 (0.22) 0.05 (0.22) 0.04 (0.19) 0.05 (0.21) 0.06 (0.24)
σA = 1.5 0.05 (0.21) 0.05 (0.22) 0.04 (0.19) 0.04 (0.20) 0.05 (0.21)

BB3

σA = 0.5 0.09 (0.29) 0.07 (0.26) 0.05 (0.22) 0.06 (0.24) 0.05 (0.22)
σA = 0.7 0.06 (0.24) 0.06 (0.23) 0.06 (0.23) 0.04 (0.20) 0.06 (0.24)
σA = 0.9 0.08 (0.28) 0.05 (0.22) 0.05 (0.22) 0.05 (0.22) 0.05 (0.22)
σA = 1.1 0.07 (0.25) 0.05 (0.22) 0.05 (0.21) 0.05 (0.22) 0.05 (0.23)
σA = 1.3 0.05 (0.21) 0.04 (0.20) 0.04 (0.21) 0.05 (0.21) 0.06 (0.23)
σA = 1.5 0.03 (0.17) 0.04 (0.21) 0.04 (0.19) 0.05 (0.21) 0.04 (0.21)

Equal

σA = 0.5 0.06 (0.24) 0.07 (0.26) 0.07 (0.25) 0.05 (0.21) 0.06 (0.24)
σA = 0.7 0.06 (0.24) 0.06 (0.24) 0.05 (0.21) 0.06 (0.23) 0.05 (0.22)
σA = 0.9 0.06 (0.24) 0.05 (0.22) 0.06 (0.23) 0.05 (0.21) 0.05 (0.22)
σA = 1.1 0.06 (0.23) 0.06 (0.24) 0.07 (0.25) 0.06 (0.23) 0.04 (0.19)
σA = 1.3 0.06 (0.24) 0.05 (0.22) 0.05 (0.22) 0.04 (0.21) 0.05 (0.21)
σA = 1.5 0.06 (0.24) 0.07 (0.25) 0.05 (0.21) 0.04 (0.19) 0.05 (0.22)
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Table 2.8: Proportion (SD) of trials where the null hypothesis is correctly rejected
when µA = 0.1, µB = 0.0, σA varies, and σB = 1.0. Each section denotes a different
randomization design—BBS; BB with T = 1, 2, or 3; and equal allocation (Equal).
Values for treatment parameter σA are described in the second column on the left.
Rejection rates and standard deviations across 1,000 simulations of trial size N are
given in the remaining five columns.

Design σB = 1.0 N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS

σA = 0.5 0.16 (0.36) 0.20 (0.40) 0.30 (0.46) 0.44 (0.50) 0.94 (0.24)
σA = 0.7 0.12 (0.33) 0.16 (0.36) 0.29 (0.45) 0.36 (0.48) 0.90 (0.30)
σA = 0.9 0.12 (0.33) 0.12 (0.33) 0.22 (0.41) 0.30 (0.46) 0.85 (0.36)
σA = 1.1 0.10 (0.30) 0.12 (0.32) 0.20 (0.40) 0.29 (0.45) 0.75 (0.43)
σA = 1.3 0.10 (0.30) 0.11 (0.31) 0.17 (0.37) 0.28 (0.45) 0.70 (0.46)
σA = 1.5 0.08 (0.27) 0.10 (0.29) 0.18 (0.38) 0.20 (0.40) 0.63 (0.48)

BB1

σA = 0.5 0.14 (0.35) 0.18 (0.38) 0.31 (0.46) 0.47 (0.50) 0.94 (0.24)
σA = 0.7 0.13 (0.33) 0.15 (0.35) 0.25 (0.43) 0.39 (0.49) 0.91 (0.29)
σA = 0.9 0.12 (0.33) 0.13 (0.34) 0.22 (0.41) 0.31 (0.46) 0.82 (0.38)
σA = 1.1 0.09 (0.29) 0.09 (0.29) 0.18 (0.38) 0.30 (0.46) 0.77 (0.42)
σA = 1.3 0.07 (0.25) 0.10 (0.29) 0.15 (0.35) 0.22 (0.42) 0.68 (0.47)
σA = 1.5 0.06 (0.24) 0.08 (0.27) 0.12 (0.32) 0.20 (0.40) 0.61 (0.49)

BB2

σA = 0.5 0.15 (0.35) 0.15 (0.36) 0.30 (0.46) 0.43 (0.49) 0.94 (0.23)
σA = 0.7 0.12 (0.32) 0.12 (0.33) 0.27 (0.44) 0.37 (0.48) 0.91 (0.29)
σA = 0.9 0.10 (0.30) 0.11 (0.31) 0.23 (0.42) 0.30 (0.46) 0.83 (0.37)
σA = 1.1 0.08 (0.27) 0.10 (0.30) 0.18 (0.38) 0.26 (0.44) 0.79 (0.41)
σA = 1.3 0.09 (0.28) 0.08 (0.27) 0.18 (0.39) 0.24 (0.43) 0.69 (0.46)
σA = 1.5 0.08 (0.28) 0.07 (0.25) 0.14 (0.35) 0.21 (0.41) 0.62 (0.49)

BB3

σA = 0.5 0.12 (0.33) 0.14 (0.35) 0.29 (0.46) 0.42 (0.49) 0.93 (0.25)
σA = 0.7 0.11 (0.31) 0.12 (0.32) 0.26 (0.44) 0.37 (0.48) 0.89 (0.31)
σA = 0.9 0.10 (0.29) 0.12 (0.33) 0.23 (0.42) 0.35 (0.48) 0.83 (0.38)
σA = 1.1 0.11 (0.31) 0.09 (0.29) 0.20 (0.40) 0.27 (0.45) 0.79 (0.41)
σA = 1.3 0.09 (0.28) 0.09 (0.28) 0.16 (0.37) 0.25 (0.43) 0.70 (0.46)
σA = 1.5 0.07 (0.26) 0.09 (0.28) 0.14 (0.34) 0.20 (0.40) 0.63 (0.48)

Equal

σA = 0.5 0.11 (0.31) 0.13 (0.34) 0.29 (0.45) 0.43 (0.49) 0.95 (0.22)
σA = 0.7 0.10 (0.30) 0.11 (0.31) 0.23 (0.42) 0.39 (0.49) 0.91 (0.29)
σA = 0.9 0.09 (0.28) 0.11 (0.31) 0.21 (0.41) 0.33 (0.47) 0.82 (0.38)
σA = 1.1 0.10 (0.29) 0.11 (0.31) 0.19 (0.39) 0.27 (0.44) 0.77 (0.42)
σA = 1.3 0.10 (0.29) 0.08 (0.28) 0.18 (0.39) 0.26 (0.44) 0.69 (0.46)
σA = 1.5 0.09 (0.29) 0.09 (0.28) 0.16 (0.37) 0.22 (0.41) 0.61 (0.49)
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Table 2.9: Proportion (SD) of trials where the null hypothesis is correctly rejected
when µA = 0.5, µB = 0.0, σA varies, and σB = 1.0. Each section denotes a different
randomization design—BBS; BB with T = 1, 2, or 3; and equal allocation (Equal).
Values for treatment parameter σA are described in the second column on the left.
Rejection rates and standard deviations across 1,000 simulations of trial size N are
given in the remaining five columns.

σB = 1.0 N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS

σA = 0.5 0.52 (0.50) 0.72 (0.45) 1.00 (0.03) 1.00 (0.00) 1.00 (0.00)
σA = 0.7 0.45 (0.50) 0.67 (0.47) 1.00 (0.06) 1.00 (0.00) 1.00 (0.00)
σA = 0.9 0.39 (0.49) 0.59 (0.49) 1.00 (0.07) 1.00 (0.00) 1.00 (0.00)
σA = 1.1 0.31 (0.46) 0.53 (0.50) 0.98 (0.15) 1.00 (0.00) 1.00 (0.00)
σA = 1.3 0.33 (0.47) 0.46 (0.50) 0.96 (0.20) 1.00 (0.03) 1.00 (0.00)
σA = 1.5 0.28 (0.45) 0.41 (0.49) 0.96 (0.20) 1.00 (0.06) 1.00 (0.00)

BB1

σA = 0.5 0.57 (0.50) 0.75 (0.43) 1.00 (0.04) 1.00 (0.00) 1.00 (0.00)
σA = 0.7 0.45 (0.50) 0.70 (0.46) 1.00 (0.05) 1.00 (0.00) 1.00 (0.00)
σA = 0.9 0.40 (0.49) 0.61 (0.49) 0.99 (0.10) 1.00 (0.00) 1.00 (0.00)
σA = 1.1 0.34 (0.47) 0.48 (0.50) 0.98 (0.14) 1.00 (0.00) 1.00 (0.00)
σA = 1.3 0.26 (0.44) 0.44 (0.50) 0.96 (0.20) 1.00 (0.00) 1.00 (0.00)
σA = 1.5 0.22 (0.41) 0.37 (0.48) 0.91 (0.29) 1.00 (0.00) 1.00 (0.00)

BB2

σA = 0.5 0.51 (0.50) 0.73 (0.44) 1.00 (0.03) 1.00 (0.00) 1.00 (0.00)
σA = 0.7 0.43 (0.50) 0.67 (0.47) 0.99 (0.08) 1.00 (0.00) 1.00 (0.00)
σA = 0.9 0.38 (0.49) 0.61 (0.49) 0.99 (0.09) 1.00 (0.00) 1.00 (0.00)
σA = 1.1 0.32 (0.47) 0.56 (0.50) 0.97 (0.16) 1.00 (0.00) 1.00 (0.00)
σA = 1.3 0.28 (0.45) 0.43 (0.50) 0.95 (0.22) 1.00 (0.00) 1.00 (0.00)
σA = 1.5 0.23 (0.42) 0.37 (0.48) 0.94 (0.25) 1.00 (0.06) 1.00 (0.00)

BB3

σA = 0.5 0.51 (0.50) 0.72 (0.45) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.7 0.46 (0.50) 0.67 (0.47) 1.00 (0.03) 1.00 (0.00) 1.00 (0.00)
σA = 0.9 0.34 (0.47) 0.58 (0.49) 0.99 (0.08) 1.00 (0.00) 1.00 (0.00)
σA = 1.1 0.32 (0.47) 0.50 (0.50) 0.98 (0.14) 1.00 (0.00) 1.00 (0.00)
σA = 1.3 0.27 (0.45) 0.44 (0.50) 0.97 (0.17) 1.00 (0.00) 1.00 (0.00)
σA = 1.5 0.24 (0.43) 0.37 (0.48) 0.91 (0.28) 0.99 (0.08) 1.00 (0.00)

Equal

σA = 0.5 0.50 (0.50) 0.73 (0.44) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.7 0.44 (0.50) 0.65 (0.48) 1.00 (0.03) 1.00 (0.00) 1.00 (0.00)
σA = 0.9 0.37 (0.48) 0.58 (0.49) 0.99 (0.08) 1.00 (0.00) 1.00 (0.00)
σA = 1.1 0.33 (0.47) 0.52 (0.50) 0.99 (0.11) 1.00 (0.00) 1.00 (0.00)
σA = 1.3 0.29 (0.45) 0.45 (0.50) 0.97 (0.18) 1.00 (0.04) 1.00 (0.00)
σA = 1.5 0.24 (0.43) 0.43 (0.50) 0.93 (0.26) 0.99 (0.08) 1.00 (0.00)
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Table 2.10: Proportion (SD) of trials where the null hypothesis is correctly rejected
when µA = 1.0, µB = 0.0, σA varies, and σB = 1.0. Each section denotes a different
randomization design—BBS; BB with T = 1, 2, or 3; and equal allocation (Equal).
Values for treatment parameter σA are described in the second column on the left.
Rejection rates and standard deviations across 1,000 simulations of trial size N are
given in the remaining five columns.

σB = 1.0 N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS

σA = 0.5 0.90 (0.30) 0.99 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.7 0.84 (0.37) 0.98 (0.13) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.9 0.83 (0.38) 0.96 (0.19) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.1 0.77 (0.42) 0.94 (0.24) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.3 0.67 (0.47) 0.91 (0.29) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.5 0.63 (0.48) 0.88 (0.33) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

BB1

σA = 0.5 0.91 (0.28) 0.99 (0.09) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.7 0.89 (0.31) 0.99 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.9 0.82 (0.38) 0.98 (0.16) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.1 0.74 (0.44) 0.94 (0.24) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.3 0.66 (0.47) 0.88 (0.32) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.5 0.55 (0.50) 0.81 (0.39) 1.00 (0.03) 1.00 (0.00) 1.00 (0.00)

BB2

σA = 0.5 0.92 (0.28) 1.00 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.7 0.89 (0.31) 0.99 (0.10) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.9 0.81 (0.39) 0.98 (0.13) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.1 0.73 (0.44) 0.95 (0.21) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.3 0.68 (0.47) 0.89 (0.31) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.5 0.62 (0.49) 0.85 (0.36) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

BB3

σA = 0.5 0.92 (0.27) 1.00 (0.07) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.7 0.89 (0.32) 0.99 (0.09) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.9 0.80 (0.40) 0.98 (0.16) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.1 0.73 (0.44) 0.95 (0.23) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.3 0.64 (0.48) 0.90 (0.30) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.5 0.60 (0.49) 0.86 (0.35) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Equal

σA = 0.5 0.92 (0.27) 1.00 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.7 0.88 (0.32) 0.99 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 0.9 0.80 (0.40) 0.97 (0.16) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.1 0.75 (0.44) 0.95 (0.23) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.3 0.69 (0.46) 0.90 (0.30) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
σA = 1.5 0.64 (0.48) 0.87 (0.34) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
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Table 2.11: HIV antiretroviral therapy adherence intervention patient allocation and
power by design. PC (SD) represents the proportion (standard deviation) of 244
enrolled patients randomized to the more effective therapy of combined medication,
education, and counseling (µC = 0.58 versus µM = 0.22 fewer RNA copies/mL on
medication alone). NC reports the expected number of patients assigned to treatment
C while Diff is the difference between NC and 122—the number of patients expected
to receive each treatment under equal allocation. Power (SD) details the proportion
(standard deviation) of 10,000 clinical trials which correctly reject the null hypothesis
and conclude that combined medication, education, and counseling is more effective
than medication intervention alone.

Design PC (SD) NC Diff Power (SD)

BBS 0.75 (0.10) 182 60 0.95 (0.21)

BB1 0.63 (0.06) 153 31 0.96 (0.19)

BB2 0.56 (0.04) 138 16 0.97 (0.18)

BB3 0.54 (0.04) 133 11 0.97 (0.18)

Equal 0.50 (0.03) 122 0 0.97 (0.18)
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Chapter 3

Response-Adaptive Biased Coin

Design with Unknown, Unequal

Covariate Slopes

3.1 Summary

Adaptive designs—experiments which leverage accumulating data to modify various

aspects of the investigative plan in a prospectively defined manner—are advocated by

academic statisticians, clinicians and researchers, as well as the US Food and Drug

Administration to improve patient care and accelerate the treatment approval process.

This paper focuses on an adaptive design which progressively allocates more patients

to the treatment with larger effect size while preserving randomization and even blind-

ing processes. Unlike its predecessor, this new design is applicable when treatment

variances are unknown or unequal. Simulations confirm that the new design continues

to be preferable even when covariate-treatment interactions are present. The utility

and benefits of the modified design are illustrated with a real-world application of an
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HIV treatment adherence intervention.

Keywords: adaptive randomization, ethical allocation, covariate-treatment inter-

action

3.2 Introduction

3.2.1 Adaptive Designs

Adaptive designs—experiments which leverage accumulating data to modify various

aspects of the investigative plan including population, randomization, trial duration,

and/or analysis in a prospectively defined manner—have been advocated by academic

statisticians and select clinicians since the 1970s [8, 27, 30, 32, 36, 43]. More recently,

the US Food and Drug Administration called for further research on and implemen-

tation of such designs to improve patient care and accelerate the treatment approval

process [15, 16].

One advantage of certain adaptive designs is the potential to treat patients more

effectively while preserving randomization and even blinding processes. For example,

this paper focuses on a modified design which progressively allocates more patients

to the treatment with larger effect size [4]. Other adaptive designs have the ability

to maximize a design’s power (alternatively maintain power relative to a nonadaptive

design but decrease the requisite sample size) [3, 19, 31]. Unfortunately, no known

adaptive design provides both benefits simultaneously [17, 20, 28].



97

3.2.2 BBS Design

In Chapter 2, the author introduces an improvement to the adaptive biased coin design

proposed by [4]. The original design, referred to as BB, assigns a patient to treatment

A with probability Φ
(
µ̂A−µ̂B

T

)
, where Φ is the cumulative distribution function of the

standard normal distribution; µ̂k is the current estimate at time of randomization of

the mean effect of treatment k = A,B; and T is an arbitrary, positive constant.

The enhanced design—called BBS—is juxtaposed against equal allocation (as-

signment to treatment A with constant probability 1
2
) and BB with T = 1, T = 2,

and T = 3. The five designs are compared via simulation, calculating patient allo-

cation to the better treatment and evaluating rejection rates of the null hypothesis

(power and Type I error). Overall, BBS performs favorably when compared to equal

allocation. This remains true when compared to BB at all levels, including the most

aggressive of the BB design parameters, T = 1. The BBS design also performs favor-

ably when the BB assumption of equal treatment variances is violated. In particular,

BBS assigns patients to the better treatment more aggressively than BB with T = 1

when the pooled treatment variance is smaller than 1, more conservatively when the

pooled treatment variance is larger than 1, and in equal proportion to BB with T = 1

when both treatment variances are 1. For these reasons, only BB with T = 1—the

best competitor from the original design—is kept for comparison in the simulations

described below. The BB design with T = 1 will be denoted as BB1 for this paper.

The only potential pitfall of the BBS design is an increased risk of falsely concluding

a treatment difference exists.
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3.2.3 Covariate-Treatment Interaction

Recent research highlights many examples of clinical trial with a covariate-treatment

interaction. See [12] for a thorough overview of the topic; [5] for examples in re-

search; [40] for a framework for identification of treatment effect heterogeneity within

a clinical trial; and [49] or [9] for individualized medicine/personalized treatment

approaches to the topic. The BB design requires that no covariate-treatment inter-

action exist which limits the adaptive design’s applicability. The BBS design is less

restrictive and, in particular, is applicable even when covariate-treatment interaction

is present. In this article, the impact on the designs due to covariate influences which

differ across treatments is examined.

This article further demonstrates that BBS is a suitable candidate for use in clin-

ical trials where exposing patients to the superior treatment is a priority. Moreover,

this article confirms that BBS continues to be preferable to BB due to the ability

to safely relax the BB assumptions of known, equal treatment variances and identi-

cal treatment-covariate effects across treatments. Finally, like Chapter 2, this article

illustrates the utility and benefits of the modified BBS design with a real-world ap-

plication of an HIV treatment adherence intervention.

3.3 Design and Simulation Parameters

3.3.1 Theory

Sections 2.3.1 to 2.3.3 in Chapter 2 detail the clinical trial model and design employed

throughout this article. To summarize, a clinical trial seeks to determine which of

two treatments has a larger treatment effect, after removing the covariate impact on

patient response. Prognostic factors are independently and identically distributed,
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known for each patient upon enrollment. Patient responses, conditional on each

patient’s covariate and unknown covariate slope, are normally distributed.

Three randomization designs are considered in this paper. The simplest of the

three is the randomized clinical trial “gold standard” design, equal allocation [26].

With a fixed probability of assignment, equal allocation assigns patients to treatment

A with probability 1
2

and to treatment B with probability 1
2
, regardless of what patient

outcome data may be available. Equal allocation designs help to minimize selection

bias, maximize power, decrease trial size, and promote balance asymptotically [27, 31,

33, 36]. Nevertheless, as the design name implies, equal allocation randomizes patients

to treatment in asymptotically equal proportions, even if one treatment performs

substantially better than the other treatment for the duration of a trial.

The second design is an adaptive biased coin that allocates more patients to

the treatment with larger effect size by updating its randomization proportions over

time. The BB design assigns a fixed number of patients to each treatment, estimates

the difference in treatment effects, and then randomizes each subsequent patient

to treatment A with probability Φ
(
µ̂A−µ̂B

T

)
and to treatment B with probability

1 − Φ
(
µ̂A−µ̂B

T

)
, where the estimates are continually updated after each patient is

treated and immediately responds. In the original BB proposal, T may be any positive

constant. Keeping with the assumptions that treatment variances are known and

both equal to 1.0, this article only considers BB1, the best contender against the BBS

design in Chapter 2.

Like the BB design, BBS assigns a minimum number of patients to each treatment,

estimates the difference in treatment effects, and randomizes subsequent patients

to treatment A with probability Φ
(
µ̂A−µ̂B

S

)
and to treatment B with probability

1−Φ
(
µ̂A−µ̂B

S

)
, where the estimates are regularly updated after each patient is treated

and immediately responds. In the BBS design, however, S is not an arbitrary constant
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but another adaptive estimator, the pooled standard deviation estimate

S =

√
(NA − 1)s2A + (NB − 1)s2B

NA +NB − 2
.

Chapter 2 compares the distinct designs based on which randomization scheme

allocates more patients to the better treatment without sacrificing power or inflating

Type I error rates. This article considers what happens to the three metrics (alloca-

tion, power, and Type I error) when another BB design restriction is relaxed and the

covariate slopes are heterogenous across treatments. Specifically, the effect a prog-

nostic factor has on patient outcome is different between treatment A and treatment

B.

3.3.2 Simulation

Section 3.4 describes the results of simulated clinical trials under equal allocation,

BB1, and BBS. Treatment mean pairs (µA, µB) are set to no effect (0, 0) and positive

effect in treatment A (1, 0). Individual patient errors are simulated under equal and

unequal conditions; σB = 1 while σA ranges from 0.5 to 1.5 by half-steps. The

symmetry of varying treatment A versus treatment B parameters are discussed in

Chapter 2.

One normally-distributed prognostic factor is simulated. While estimated sepa-

rately for each treatment, the covariate effects and variances are identical for both

treatments with Z ∼ N(1, 1). The covariate slopes, however, vary by treatment.

While the covariate-treatment interaction effect for treatment A holds constant at

βA = 2, the slope for treatment B varies from βB = 1 to βB = 3 in unit intervals—

that is, βB = 1, 2, 3. Similarly, while βB is held constant, βA ranges from 1 – 3.

In the BB design, rejection of the null hypothesis H0 : µA ≤ µB is calculated with
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a one-sided two-sample t-test with significance level α = 0.05. Under the assumption

of equal variances, the t-statistic standard error employs the sample pooled variance

estimates. Relaxing the equal variance assumption for the equal allocation and BBS

designs, the t-statistic standard error is calculated using treatment-specific sample

variances. In these cases, the underlying hypothesis distribution leverages the Welch-

Satterthwaite approximated pooled degrees of freedom [35, 44].

Sample sizes mimic small to large Phase III clinical trials (N = 50; 100; 500; 1,000;

5,000). The initial number of patients enrolled prior to switching to an adaptive

method is fixed at m = 10 for each treatment. Patient responses are assumed to be

instantaneous; no delay is incorporated into these trials. For each scenario described,

1,000 replications are simulated in SAS IML [34].

3.4 Results

3.4.1 Patient Allocation

Tables 3.1 – 3.6 contain proportions and standard deviations of patients assigned to

treatment A by design and treatment effect values. Tables 3.1 – 3.3 detail average

patient allocation for equal allocation, the BB1 design, and BBS—respectively—when

neither treatment A nor treatment B have an effect (µA = µB = 0). Tables 3.4 –

3.6 detail average patient allocation for the three designs when treatment A has a

positive impact and treatment B has none (µA = 1, µB = 0). The first two columns

of each table indicate the treatment parameters for the row; (σA, σB) describes the

standard deviations for each treatment while (βA, βB) lists the treatment-covariate

slope by treatment. The remaining five columns are the mean (SD) percent of patients

assigned to treatment A over 1,000 simulations for each of the five trial sizes N =
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50; 100; 500; 1,000; and 5,000.

The top half of each table describes simulations where the relationship between

the covariate and treatment A varies but the relationship between covariate and

treatment B is held constant at βB = 2. In the bottom half of each table, it is βA

which is held constant at βA = 2 while the relationship between the covariate and

treatment B varies. Each half is separated by a dashed line for reading convenience.

Tables 3.1 and 3.4 summarize allocations from simulations where patients are

assigned using equal allocation. In the first row of Table 3.1, there are no differences

in treatment effects, but treatment A variance is 0.5 while treatment B variance is

1.0 and the covariate-treatment slope for treatment A is βA = 1 while the covariate-

treatment slope for treatment B is β = 2. As anticipated for equal allocation, the

probability of assignment to treatment A is 50% with negligible variation across 1,000

simulations at all clinical trial sizes. Table 3.4 reveals similar results: even when

treatment A differs from treatment B in effect size (µA = 1, µB = 0), allocation to

treatment A is consistently half of patients with standard deviation no greater than

0.01.

The first row of Table 3.6 contains the mean proportion of patients assigned to

treatment A from simulations where patients are randomized using BBS, treatment

A has positive effect µA = 1 while treatment B has no effect, and treatment vari-

ances and covariate-treatment slopes are the same as described above. Unlike equal

allocation, BBS assigns more patients to the better treatment: 71% of patients are

randomized to treatment A when N = 50, 82% when N = 100, and more than 90%

of patients receive the superior treatment when trial enrollment is 500 or larger.

Figure 3.1 illustrates the trends in patient assignment from Tables 3.1 – 3.3 across

the five simulated trial sizes for all nine combinations of covariate-treatment slope

and treatment A standard deviation when µA = µB = 0. The covariate-treatment
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interaction of treatment A varies with the non-varying covariate slope of treatment

B set to 2.0. That is, Figure 3.1 contains data from the top half of Tables 3.1 – 3.3.

Figure 3.1: Proportion of patients assigned to treatment A by design when µA =
µB = 0, σA varies, σB = 1, and N varies. Note that total patient enrollment N is
not to scale. Treatment covariate slopes vary for βA and are fixed for βB = 2. Trends
appear similar when βA = 2 and βB varies. Data points are grouped by design; BBS
is represented by ∗, BB1 by �, and equal allocation by •.
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Figure 3.2 illustrates the trends in patient assignment from Tables 3.4 – 3.6 across
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the five simulated trial sizes for all nine combinations of covariate-treatment slope

and treatment A standard deviation when µA = 1, µB = 0. The covariate-treatment

interaction of treatment A varies with the non-varying covariate slope of treatment

B set to 2.0. That is, Figure 3.2 contains data from the top half of Tables 3.4 – 3.6.

As seen in Tables 3.4 – 3.6 and in Figures 3.1 and 3.2, patient allocation is

impacted by treatment effect and variance as well as trial enrollment. Treatment-

covariate slope, however, has negligible impact on patient allocation, regardless of

design. Overall, the BBS and BB1 designs continue to expose more patients to the

treatment with larger effect size compared to equal allocation.

Simulations indicate that the largest influence on patient allocation in the BBS

design (given a difference in treatment effects and sample size) is treatment variance.

For example, in Table 3.6 and in Figure 3.2, as treatment A standard deviation

increases from 0.5 to 1.5 (with standard deviation of treatment B fixed at 1), the

maximum proportion of patients assigned to the superior treatment decreases from

nearly 100% of patients to just over 75%, achieved when N = 5, 000. The minimum

proportion, achieved when N = 50, decreases from 71% to 63%. Little variation in

patient allocation, if any, appears to be associated with changes in covariate slope.

This is evidenced throughout Tables 3.3 and 3.6 and reflected in Figures 3.1 and

3.2: when treatment effects (µA, µB), treatment variances (σA, σB), and trial size (N)

are held constant, patient allocation proportions and standard deviations are similar

across all six combinations of treatment-covariate impact (βA, βB).

Trends in the BB1 design also appear to be due to total trial size, difference in

treatment effects, and treatment variances. The impact of treatment variance on

patient allocation is dampened in BB1 compared to BBS. For example, in Table 3.5

the proportion of patients assigned to the superior treatment by BB1 only fluctuates

by 2% when N = 50 and by 3% when N = 100 compared to the differential noted
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Figure 3.2: Proportion of patients assigned to treatment A by design when µA = 1,
µB = 0, σA varies, σB = 1, and N varies. Note that total patient enrollment N is
not to scale. Treatment covariate slopes vary for βA and are fixed for βB = 2. Trends
appear similar when βA = 2 and βB varies. Data points are grouped by design; BBS
is represented by ∗, BB1 by �, and equal allocation by •.
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in the BBS design in Table 3.6 of 8% when N = 50 and 13% when N = 100.

As with BBS, variation in patient allocation does not appear to be associated with

changes in covariate slope. Tables 3.2 and 3.5 contain similar allocation proportions



106

and standard deviations across treatment-covariate impacts after accounting for other

factors (treatment effect and variance, patient enrollment).

While equal allocation treatment randomization proportions are noisier in trials

with small N than with large N , equal allocation exposes asymptotically equal pro-

portions of patients to treatment A as to treatment B[13, 47]. In Tables 3.1 and 3.4,

assignment of patients to treatment A under equal allocation deviates only minimally

from 1
2
, regardless of changes to treatment effect, treatment variance, treatment-

covariate interaction, or sample size. In each of Figures 3.1 and 3.2, equal allocation

randomization proportions deviate from 0.50 negligibly throughout all 45 simulation

parameter combinations.

When no treatment differences exist, patient allocations by the BBS design are

closer to equal; however, assignments may still be biased due to differences in treat-

ment variances. For example, when σA = 0.5, more patients were assigned to treat-

ment A by BBS than to treatment B across all trial sizes. On the other hand, when

σA = 1.5, fewer patients were randomized by BBS to treatment A regardless of en-

rollment size. The largest variation is seen when N = 100 or 500. When N = 50,

at least 40% of patients are initially assigned using equal allocation before adaptive

randomize begins. This may be responsible for mitigating some of the skewing due

to treatment variances. At the other extrema, when N = 5, 000, patient exposure

differs by less than 1% between treatments.

When no treatment differences exist, the BB1 design behaves similarly to the BBS

design. As seen in the top row of graphs in Figure 3.1, under equivalent treatment

means, BBS deviates from 50–50 allocation more than BB1 when σA = 0.5. The two

designs are comparable for σA = 1.0 and for σA = 1.5.
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3.4.2 Power and Type I Error

Tables 3.7 – 3.12 contain proportions and standard deviations of trials in which the

null hypothesis that treatment A was no better than treatment B was rejected. Each

table consists of data for a different randomization design/treatment effect combina-

tion. Tables 3.7 – 3.9 detail simulated type I error rates for equal allocation, BB1,

and BBS—respectively. That is, these tables relate the average rejection rates when

neither treatment A nor treatment B have an effect (µA = µB = 0). Tables 3.10 –

3.12 detail simulated power for the three designs; the ability of a trial to correctly

reject the null hypothesis when treatment A has a positive impact and treatment B

has none (µA = 1, µB = 0). The first two columns of each table indicate the treatment

parameters for the row; (σA, σB) describes the standard deviations for each treatment

while (βA, βB) lists the treatment-covariate slope by treatment. The remaining five

columns are the mean (SD) proportion of trials which rejected the null hypothesis

over 1,000 simulations for each of the five trial sizes N = 50; 100; 500; 1,000; and 5,000.

The top half of each table describes simulations where the relationship between

the covariate and treatment A varies but the relationship between covariate and

treatment B is held constant at βB = 2. In the bottom half of each table, it is βA

which is held constant at βA = 2 while the relationship between the covariate and

treatment B varies. Each half is separated by a dashed line for reading convenience.

The first row of Table 3.7 summarizes rejection rates from simulations where

patients are assigned using equal allocation, there are no differences in treatment

effects, but treatment A variance is 0.5 while treatment B variance is 1.0 and the

covariate-treatment slope for treatment A is βA = 1 while the covariate-treatment

slope for treatment B is β = 2. The probability of falsely rejecting the null hypothesis

under these conditions is dependent on clinical trial size: 0.06 when N = 50, 100,
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or 1,000 and 0.07 when N = 500 or 5,000. By contrast, in equal allocation based

Table 3.10, treatment A differs from treatment B in effect size (µA = 1, µB = 0) while

treatment variances and covariate-treatment slopes remain consistent with those in

Table 3.7. The first row of Table 3.10 indicates that the power to correctly reject the

null hypothesis under equal allocation is 0.93 when N = 50 and 1 for larger values of

N .

Figure 3.3 illustrates the trends in type I error from Tables 3.7 – 3.9 across the

five simulated trial sizes for all nine combinations of covariate-treatment slope and

treatment A standard deviation when µA = µB = 0. The covariate-treatment inter-

action of treatment A varies with the non-varying covariate slope of treatment B set

to 2.0. That is, Figure 3.3 contains data from the top half of Tables 3.7 – 3.9.

Figure 3.4 illustrates the trends in power from Tables 3.10 – 3.12 across the five

simulated trial sizes for all nine combinations of covariate-treatment slope and treat-

mentA standard deviation when µA = 1, µB = 0. The covariate-treatment interaction

of treatment A varies with the non-varying covariate slope of treatment B set to 2.0.

That is, Figure 3.4 contains data from the top half of Tables 3.10 – 3.12.

As seen in Tables 3.10 – 3.12 and in Figures 3.3 and 3.4, the probability with

which the null hypothesis of a trial will be rejected is impacted by treatment effect

and variance as well as trial enrollment. Treatment-covariate slope, however, has

negligible impact on a trial’s rejection of the null hypothesis, regardless of design.

Overall, the BBS and the BB1 designs continue to reject the null hypothesis that

treatment A is no more effective than treatment B at comparable rates to equal

allocation. The biggest distinction noted in rejection rate simulations involves an

inflated Type I error in BBS and in BB1 when the sample size N is small, especially

when the standard deviation of treatment A is also small. The adaptive designs

incorrectly reject the null hypothesis at similar rates to equal allocation when N is
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Figure 3.3: Proportion of trials which incorrectly reject the null hypothesis by design
when µA = µB = 0, σA varies, σB = 1, and N varies. Note that total patient
enrollment N is not to scale. Treatment covariate slopes vary for βA and are fixed for
βB = 2. Trends appear similar when βA = 2 and βB varies. Data points are grouped
by design; BBS is represented by ∗, BB1 by �, and equal allocation by •.
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large and when the standard deviation of treatment A is large.

Simulations indicate that the largest influences on power in the BBS design are

treatment variance and clinical trial size, for a fixed difference in treatment effects.
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Figure 3.4: Proportion of trials which correctly reject the null hypothesis by design
when µA = 1, µB = 0, σA varies, σB = 1, and N varies. Note that total patient
enrollment N is not to scale. Treatment covariate slopes vary for βA and are fixed for
βB = 2. Tends appear similar when βA = 2 and βB varies. Data points are grouped
by design; BBS is represented by ∗, BB1 by �, and equal allocation by •.

βA = 1 βA = 2 βA = 3

●

● ● ● ●

●

●

● ● ●

●

●

● ● ●

●

● ● ● ●

●

●

● ● ●

●

●

● ● ●

●

● ● ● ●

●

●

● ● ●

●

●

● ● ●

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

σ
A

=
0.5

σ
A

=
1

σ
A

=
1.5

50 100

500

1000

5000

50 100

500

1000

5000

50 100

500

1000

5000

N

R
ej

ec
tio

n 
ra

te Design

●

BBS

BB T=1

Equal

For example, in Table 3.12 and in Figure 3.4, as treatment A standard deviation

increases from 0.5 to 1.5 (with standard deviation of treatment B fixed at 1 and both

covariate-treatment slopes at 2), the BBS design’s power to reject the null hypothesis
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decreases from 0.90 to 0.63 when N = 50, from 0.99 to 0.88 when N = 100, and

is constant at 1.0 for larger N . These numbers hold when treatment A standard

deviation is fixed and treatment B standard deviation varies.

Likewise, the largest influences on Type I error rates for the BBS design appear

to be treatment variance and clinical trial size. As treatment A standard deviation

decreases from 1.5 to 0.5 with the standard deviation of treatment B fixed at 1, the

BBS rate of false rejection the null hypothesis increases, especially for small values of

N . For example, in Table 3.9 and in Figure 3.3, when N = 50, the risk of a BBS trial

producing a Type I error ranges from 0.06 to 0.11; when N = 500 the risk ranges

from 0.04 to 0.10; and when N = 5, 000 the risk increases only from 0.04 to 0.08

across all values of treatment variance and covariate-treatment slope.

Furthermore, little variation in rejection rates appear to be associated with changes

in covariate slope. This is evidenced throughout Tables 3.9 and 3.12 and reflected in

Figures 3.3 and 3.4: when covariate-treatment interactions are simulated, the power

to reject the null hypothesis varies by no more than three percent while treatment

effects (µA, µB), treatment variances (σA, σB), and trial size (N) are held constant.

The influences on power and type I error appear similar for the BB1 design. For

example, in Table 3.11 and in Figure 3.4, as treatment A standard deviation increases

from 0.5 to 1.5, the power of BB1 trials to reject the null hypothesis decreases from

approximately 0.91 to 0.53 when N = 50, from 1.0 to 0.81 when N = 100, and is

constant at 1.0 for larger N—comparable to the trends displayed by BBS power. Like

the BBS, the BB1 design also sees an increased risk of false rejection, particularly for

small N and small treatment A variance. For example, in Table 3.8 and in Figure

3.3, when N = 50, the risk of a BB1 trial producing a type I error ranges from 0.04

to 0.11; when N = 500 the risk ranges from 0.03 to 0.08; and when N = 5, 000

the risk ranges from 0.03 to 0.07—again comparable to BBS type I error. As with
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BBS, variation in BB1 rejection rates do not appear to be associated with changes

in covariate slope. Tables 3.8 and 3.11 contain similar type I error and power rates

across treatment-covariate impacts after accounting for other factors (treatment effect

and variance, patient enrollment).

Both adaptive designs’ power differ only minimally from that of equal allocation.

For example, in Table 3.10 and in Figure 3.4, as treatment A standard deviation

increases from 0.5 to 1.5, equal allocation power decreases from approximately 0.93

to 0.63 when N = 50, from 1.0 to 0.84 when N = 100, and is constant at 1.0 for

larger N—similar to the trends displayed by both adaptive designs. The biggest

difference between equal allocation rejection rates and those of the adaptive designs

is the aforementioned inflation of adaptive type I error rates. While the BBS and

BB1 false rejection rates can vary from 5% of trials to one out of every ten trials, the

equal allocation false rejection rates remain steady. For example, in Table 3.7 and in

Figure 3.3, when N = 50, the risk of an equal allocation trial producing a type I error

ranges only from 0.05 to 0.08; for all larger N , the risk ranges from 0.04 to 0.07; and

when N = 5, 000 the risk ranges from 0.03 to 0.07—again comparable to BBS type I

error. Again, little variation in rejection rates appear to be associated with changes

in covariate slope. This is evidenced throughout Tables 3.7 and 3.10 and reflected in

Figures 3.3 and 3.4: when covariate-treatment interactions are simulated, the power

to reject the null hypothesis in an equal allocation trial varies by no more than one

percent while treatment effects (µA, µB), treatment variances (σA, σB), and trial size

(N) are held constant.
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3.5 Application

As of 2013 estimates, the HIV/AIDS epidemic has seen 80 million individuals world-

wide infected with HIV, half of whom have died from HIV-related causes [46, 18]. Due

to breakthroughs in medical research, transmission of the virus can be curbed, life

expectancies can be extended, and quality of life can be improved—provided patients

achieve adequate adherence to prescribed therapies [7, 23]. Antiretroviral courses

are among the most successful treatments currently offered; however, the complexity

of the medication and dosage combinations, the incessant and inflexible timing of

treatments, and the side effects of medication make compliance difficult [7, 41].

In a 2003 adherence intervention, 244 HIV patients on antiretroviral therapy are

prospectively randomized to standard medication alone or medication with addi-

tional educational and counseling in [29]. The authors examine the intervention’s

effect on adherence as a binary measure and—more directly related to therapeutic

effectiveness—HIV RNA suppression (in RNA copies/mL) as a continuous measure.

Both outcomes are conditioned on baseline adherence as a prognostic factor.

A simulation is performed which modifies [29] based on reasonable estimates from

[24, 29] of baseline adherence covariate and treatment outcome HIV RNA suppres-

sion parameters. Baseline adherence is independently and normally distributed for

each patient regardless of treatment assignment with mean 0.60 and standard de-

viation 0.49. Three treatment-covariate interaction combinations are tested: med-

ication alone (M) and combined medication/education/counseling (C) slope pairs

(βC , βM) = (1.2, 1.0); (1.1, 1.1); (1.0, 1.2). Treatment effect and variance parameters

are chosen so that patient responses (treatment effects with the additional impact due

to covariates) align with [29]’s clinically and statistically significant outcomes. That

is, medication alone only decreases HIV RNA by 0.89 copies/mL with a standard
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deviation of 0.90 while the combined therapy decreases HIV RNA by 1.25 copies/mL

(standard deviation 0.86). The one-sided null hypothesis (combined therapy is no

more effective than medication alone) is tested at significance α = 0.05. Delay in

response time is ignored in these simulations but discussed in Section 3.6.3. Ten-

thousand trials are simulated for each scenario.

Equal allocation, BB1, and BBS are leveraged to assign 244 simulated patients to

treatment. Table 3.13 records simulated patient assignment (counts and proportions)

and power of each design. Data are grouped by design in sets of three rows. The first

two columns (βC , βM) and µC − µM distinguish for which covariate slope pair and

treatment effect difference simulation outcomes are being summarized. The first set

of rows testify that equal allocation assigns 122 or 50% of simulated patients to each

treatment irrespective of changes to the covariate slopes. There would have been no

additional patients (zero patients and a zero percent increase) assigned to the supe-

rior treatment over equal allocation using this method of complete randomization.

The simulated power to detect a difference in treatments ranges from 0.75 when the

superior treatment also has a larger covariate-treatment interaction (hence treatment

effect alone is smallest, 0.24 copies/mL) to 1.00 when the superior treatment has a

smaller covariate-treatment interaction (hence difference in treatment effects is largest

at 0.48 copies/mL). The second set of rows demonstrate that BB1 has nearly iden-

tical simulated power as equal allocation after accounting for covariate slopes. BB1

would have randomized an additional 17, 26, and 33% of patients to the more effec-

tive intervention therapy than equal allocation, based on the difference in treatment

effects. The third set of rows indicate that, although the BBS design rejects the null

hypothesis in only 1% fewer simulated trials in each scenario than equal allocation,

BBS would have exposed 169, 182, and 192 patients to the treatment with larger

effect size and superior outcome. That is, 38% to 57% more patients would have
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been exposed to the superior therapy via BBS randomization than through equal al-

location. The differences in patient allocation across the three designs are significant

(p < 0.001) for each covariate slope combination; the differences in power are not

(p = 0.923, 0.361, 0.896 for (βC , βM) = (1.2, 1.0); (1.1, 1.1); (1.0, 1.2), respectively).

Figures 3.5 and 3.6 illustrate the statistics described in Table 3.13. Figure 3.5

emphasizes the increase in proportion of patients that would have been allocated to

the superior treatment using the BBS design compared to both equal allocation and

BB1, even as the treatment effect size shrinks due to varying covariate treatment

effects. Figure 3.6 demonstrates how similar the probabilities of rejecting the null

hypothesis would have been for each design, especially with respect to the standard

deviation of the probabilities, after accounting for the difference in treatment effect

sizes.

3.6 Discussion

3.6.1 Ethical Patient Allocation

As covariate effects on patient outcomes vary within a reasonable range, their effect

on patient allocation is small. When a difference in treatment effects exists, both

adaptive designs expose more patients to the better treatment than equal allocation.

Chapter 2 illustrates the impact of the magnitude of the difference between treatment

effects on patient allocation by adaptive designs; the larger the treatment difference

relative to the design denominator (T or S), the more patients are likely to be assigned

to the treatment with larger effect size. Chapter 2 also describes how the proportion

of patients exposed to a treatment with larger effect size increases quickly as total

enrollment changes from small to mid-sized clinical trials, but plateaus for medium



116

Figure 3.5: Allocation proportions for HIV antiretroviral therapy adherence inter-
vention by randomization design through 10,000 simulated trials. The points (bars)
represent the proportion (standard deviation) of 244 patients assigned to the more
effective combined therapy of medication, education, and counseling (C) versus the
less effective treatment of medication alone (M). The proportion (SD) is calculated
for each pair of covariate slope values. Data points are grouped by design; BBS is
represented by ∗, BB1 by �, and equal allocation by •. For reference, the difference
in treatment effects (µC−µM) across the three covariate slope combinations from left
to right are 0.48, 0.36, and 0.24 HIV RNA copies/mL.
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Figure 3.6: Rejection rates for HIV antiretroviral therapy adherence intervention by
randomization design through 10,000 simulated trials. The point (bars) represent
the proportion (standard deviation) of simulated antiretroviral therapy clinical trials
which correctly reject the null hypothesis and conclude that an education and counsel-
ing intervention in conduction with medication (C) is more effective than medication
treatment alone (M). The proportion (SD) is calculated for each pair of covariate
slope values. Data points are grouped by design; BBS is represented by ∗, BB1 by �,
and equal allocation by •. For reference, the difference in treatment effects (µC−µM)
across the three covariate slope combinations from left to right are 0.48, 0.36, and
0.24 HIV RNA copies/mL.
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to large trials.

Section 3.4.1 reinforces that another factor in the proportion of patients allocated

to treatment by the BBS design is treatment variance. While the BB1 design ran-

domizes patients irrespective of values of σA and σB, BBS randomization responds

to changes in total variance. This behavior is easily anticipated by considering the

denominator of the allocation proportion in both adaptive designs. In the BB design,

T is constant. Hence, for a fixed difference in treatment effects, the randomization

probability of BB1 is constant. In the BBS design, S is the current estimate of pooled

standard deviation. When either treatment variance grows, the pooled standard de-

viation grows. Hence, for a fixed difference in treatment effects, the randomization

probability of the BBS shrinks. Depending on whether the pooled treatment standard

deviation is smaller or larger than 1, the BBS design assigns more or fewer patients

to the better treatment, respectively, than the BB1 design.

Like many biased coin designs, both adaptive designs considered here attempt

to strike a balance between complete randomization and another desirable condition

with conflicting properties such as uniformity [13, 42, 6], optimal power or allocation

variance [14, 25, 19], and patient performance via treatment failure minimization or

maximizing assignment to the superior treatment [31, 1]. In particular, the BBS

and BB designs are concerned with the latter: maintaining complete randomization

in the face of uncertainty but assigning increasing proportions of patients to the

better treatment based on the credence of superiority developed by accumulating

trial data. The way both designs attempt to achieve this balance is by capitalizing

on a ratio common throughout the history of statistics, the ratio of the difference in

treatment effect estimated means—a proxy for superior treatment—to the variance

in the observations—a proxy for certainty around the former measure of difference.

The biggest difference between the two designs are the underlying assumptions about
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how much or little is known about the treatment effects on the patient population.

In the BB design, researchers are assumed to know the true treatment variances

(and furthermore the variances are assumed to be identical for both treatments).

Therefore, if the BB design can be applied, a constant value for T and moreover a

fixed allocation proportion is reasonable and justified. If, however, those assumptions

are not met and researchers are in a state of uncertainty regarding the true variance

due to treatment effects—or if those treatment variances are not equal, then holding

assignment probabilities constant is illogical and the BBS design is preferable.

The simulation results presented in Sections 3.4.1 and 3.5 confirm that total trial

enrollment, the difference between treatment effects, and the treatment variances (via

the pooled treatment standard deviation) determine the expected patient allocation

proportions for the BBS design. Covariate slopes, including slopes that differ by

treatment, have minimal impact on assignment probabilities. For a given positive

difference in treatment effects, the BBS design provides increased patient exposure to

a superior treatment with minimal loss of power compared to equal allocation. When

there is no difference in treatment effects, the BBS design assigns asymptotically equal

proportions of patients to each treatment with only a marginal increase in risk of type

I error for specific parameter combinations. These behaviors are particularly desirable

in cases where the BB1 design is not an appropriate randomization alternative, for

example when treatment variances (or covariate slopes) are unknown or unequal.

3.6.2 Rejection Rates

As with patient assignment, varying covariate effects within a reasonable range have

little direct impact on rejection rates. Influential factors include total sample size, dif-

ference in treatment effects, and treatment variance. Equal allocation, BB1, and BBS
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all have similar power conditional on the three aforementioned considerations. Cor-

rect rejection rates increase as N increases and as total treatment variance decreases

relative to a fixed difference in treatment effects.

In contrast, when treatment effects are equal, adaptive design behavior may differ

somewhat from equal allocation. With equal allocation, Type I error rates are rela-

tively stable at 0.05 regardless of treatment variance and with only minimal additional

noise accompanying smaller trials and smaller treatment variance. For adaptive de-

signs, false rejection rates also decrease as N increases and as total variance increases.

In smaller trials, however, adaptive designs can incorporate nearly double the risk of

a Type I error compared to equal allocation, particularly when treatment variance is

small. On the other hand, this is only an increased risk of three or four percent to

an error which is typically quite benign. Researchers and clinicians must be mindful

of the increased risk of incorrectly concluding a difference in treatment effects exists

and the tradeoff between a potentially better chance of detecting a true difference.

The simulation results presented in Sections 3.4.2 and 3.5 support that total trial

enrollment, difference between treatment effects, and the treatment variances deter-

mine the power or risk of type I error of a BBS experiment. Covariate slopes, including

slopes that differ by treatment, have minimal impact on rejection rates. For a given

positive difference in treatment effects, the BBS design endures minimal power loss

over that of equal allocation, while assigning more patients to the better treatment.

With no difference in treatment effects, BBS assumes only a marginal increase in

risk of type I error for specific parameter combinations. These behaviors are desir-

able when optimizing patient care while maintaining randomization in a controlled

clinical trial.



121

3.6.3 Delay

As noted in Chapter 2, enrolling 244 patients such that each patient finishes a 6

month intervention and a treatment response is observed prior to randomizing the

next patient would take over a century. While this may sound drastic, a clinical

trial does not have to choose between giving up all adaptivity and acquiring egre-

gious delays. Many response-adaptive randomization schemes can be revised so that

estimates leveraged in assigning patients to treatment depend only on currently re-

sponded patients at the time of a new patient enrollment. In fact, this is a commonly

recommended modification, being simultaneously practical and increasing ethicality

compared to an unduly delayed clinical trial conclusion [2, 21, 22, 37, 48]. While

the aforementioned articles prove that delay has minimal impact on the asymptotic

characteristics of select adaptive designs—namely patient allocation proportion and

power—convergence to these properties may slow. In particular, small to moderate

trials may not behave similarly under delayed response conditions. As trial behavior

may differ across combinations of sample size, adaptive randomization, and delay

mechanisms, further study of the effect of delay on the BBS design is encouraged.

The simulations in Section 3.5 sidestep the issue of delay by assuming patient

response is instantaneous so that patient responses can be immediately incorporated

into the allocation algorithm. There are many applications, however, where a delay

in patient responses would not pose an obstacle. For example, within healthcare,

an adaptive design can easily be implemented when testing new cures for aggressive

diseases such as ebola [10, 45] or a new vaccination to stem acute or airborne viral

outbreaks such as influenza or SARS [38, 11, 39]. In these cases, there may be a

delay in patient responses but the delay is at most a matter of days. Waiting an

extra day to update the randomization ratio is worthwhile when considering the ben-
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efit of adapting the randomization ratio to optimally treat severe cases or maximize

outbreak containment while continuing to accumulate more data on longterm best

intervention options. Incorporating BBS into the toolbox of resource-efficient, ethical

randomization schemes in scenarios where the impact of delay is negligible or minimal

relative to the risk of a complete randomization trial is also encouraged.

3.6.4 Recommendations

As discussed in Chapter 2, the primary goal of many Phase III clinical trials is to

establish one treatment’s superiority and hence determine the best standard of care

for future patients. Following current standards, patients are exposed to treatments

in equal proportions until superiority is concluded or until the trial is terminated.

This holds true regardless of accumulating evidence suggesting the superiority of one

treatment. As with [29], in many of these clinical scenarios each patient enrolled

can significantly benefit from receiving the more effective intervention. Allocation

proportions in these cases should not remain either constant or uniform, but instead

should reflect the accumulating evidence tempered by continued equipoise.

The BBS design is one way to implement a more ethical randomization procedures

with continuous patient outcomes. Results from Chapter 2 indicate that this design is

recommended over the BB design at all values of T and over complete randomization

in the face of unknown and unequal treatment variances, provided covariates have

identical impacts on both treatments. Chapter 2 concludes with a recommendation to

further investigate the potential influence of unknown covariates and covariates whose

impact differs by treatment on the BBS design outcomes. That recommendation is

the focus of Chapter 3 and the results discussed above.

Even when all patients have similar covariates, covariate-treatment interactions
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are common [5, 9, 12, 40]. In fact, the existence of a sizable covariate-treatment

interaction could mean that the sign differs between the difference in treatment ef-

fects and the difference in patient outcomes including covariate impact. For example,

treatment A may have a larger treatment mean than treatment B (µA > µB), but if

treatment A has a small covariate impact relative to that of treatment B then the

outcome of treatment B including covariate impact would be larger than the outcome

of treatment A including covariate impact (µB + βBz > µA + βAz). That is, look-

ing at the treatment means alone, one might consider treatment A to be preferable

while patients on treatment B would actually have overall better outcomes than pa-

tients on treatment A. Of course, if a relatively large covariate-treatment interaction

is present, designs which focus on the difference in treatment effects should not be

employed, regardless of whether the design is adaptive or static. That is, neither

the BB nor the BBS would be suitable randomization candidates in scenarios where

large covariate-treatment interactions exist as both designs highlight the difference in

treatment effects rather than the difference in actual patient performance on a given

treatment. Nevertheless, the simulation results described throughout Chapter 3 lend

confidence to leveraging BBS when small to moderate covariate-treatment interac-

tions exist. That is, when the benefit of a treatment effect is representative of or

similar to the benefit in patient outcome on that treatment, the BBS design allows

researchers to assign patients to treatment more ethically than complete random-

ization, without requiring equal, known treatment variances and uniform covariate

effects across treatments.

The ethical advantage of this adaptive design is accompanied by an inflated risk

of incorrectly concluding one treatment is superior. This risk and its impacts are

discussed further in Chapter 2 and should be considered thoroughly by researchers

prior to choosing any clinical trial design. Additionally, one other area of consideration
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put forth in Chapter 2 bears mentioning: expanding the applicability of the BBS

design to include scenarios with a delay in patient responses. As described in Section

3.6.3, many clinical scenarios have minimally delayed patient outcomes, so not all

clinical trials require immediate responses. When such a testing situation arises, the

BBS design should be strong candidate for ethical randomization. On the other hand,

when the time between treatment and response observation is long—for example the

HIV adherence intervention described in Sections 2.5 and 3.5—it is imperative to

ascertain how the design fares under delayed response conditions prior to being able

to recommend it as an integral part of a researcher’s or clinician’s design toolbox.
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3.7 Appendix

Table 3.1: Proportion (SD) of patients assigned to Treatment A under equal allocation
randomization with µA = µB = 0. Model variables σA, σB, βA, βB are given in the
two leftmost columns. Allocation proportion and standard deviation across 1,000
simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 2) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (3, 2) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (1, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (3, 2) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (1, 2) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (3, 2) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 1) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 2) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 3) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 1) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 3) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 1) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

Continued on next page
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Table 3.1 Allocation proportion under equal allocation with µA = µB = 0 – Cont.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(1.5, 1.0) (2, 3) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

Table 3.2: Proportion (SD) of patients assigned to Treatment A under BB1 ran-
domization with µA = µB = 0. Model variables σA, σB, βA, βB are given in the
two leftmost columns. Allocation proportion and standard deviation across 1,000
simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.51 (0.01) 0.51 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 2) 0.50 (0.01) 0.51 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (3, 2) 0.51 (0.01) 0.51 (0.01) 0.51 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (1, 2) 0.50 (0.01) 0.50 (0.02) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 2) 0.50 (0.01) 0.50 (0.01) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (3, 2) 0.51 (0.01) 0.49 (0.02) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (1, 2) 0.50 (0.02) 0.50 (0.02) 0.49 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 2) 0.50 (0.02) 0.48 (0.02) 0.49 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (3, 2) 0.50 (0.02) 0.49 (0.02) 0.49 (0.01) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 1) 0.51 (0.01) 0.51 (0.01) 0.51 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 2) 0.50 (0.01) 0.51 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 3) 0.50 (0.01) 0.51 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 1) 0.51 (0.01) 0.51 (0.01) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 2) 0.50 (0.01) 0.50 (0.01) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 3) 0.50 (0.01) 0.50 (0.01) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

Continued on next page
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Table 3.2 Allocation proportion under BB1 with µA = µB = 0 – Continued

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(1.5, 1.0) (2, 1) 0.49 (0.02) 0.48 (0.02) 0.48 (0.01) 0.49 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 2) 0.50 (0.02) 0.48 (0.02) 0.49 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 3) 0.49 (0.02) 0.49 (0.02) 0.49 (0.01) 0.49 (0.00) 0.50 (0.00)

Table 3.3: Proportion (SD) of patients assigned to Treatment A under BBS ran-
domization with µA = µB = 0. Model variables σA, σB, βA, βB are given in the
two leftmost columns. Allocation proportion and standard deviation across 1,000
simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.51 (0.01) 0.52 (0.02) 0.52 (0.01) 0.51 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 2) 0.51 (0.01) 0.52 (0.02) 0.52 (0.01) 0.51 (0.00) 0.51 (0.00)

(0.5, 1.0) (3, 2) 0.51 (0.02) 0.52 (0.02) 0.52 (0.01) 0.51 (0.00) 0.51 (0.00)

(1.0, 1.0) (1, 2) 0.51 (0.01) 0.51 (0.01) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 2) 0.50 (0.01) 0.50 (0.02) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (3, 2) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (1, 2) 0.50 (0.02) 0.49 (0.02) 0.49 (0.01) 0.49 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 2) 0.49 (0.02) 0.49 (0.02) 0.49 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (3, 2) 0.49 (0.02) 0.49 (0.02) 0.49 (0.01) 0.49 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 1) 0.51 (0.02) 0.52 (0.02) 0.52 (0.01) 0.51 (0.00) 0.51 (0.00)

(0.5, 1.0) (2, 2) 0.51 (0.01) 0.52 (0.02) 0.52 (0.01) 0.51 (0.00) 0.51 (0.00)

(0.5, 1.0) (2, 3) 0.51 (0.02) 0.52 (0.02) 0.52 (0.01) 0.51 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 1) 0.49 (0.02) 0.49 (0.01) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)
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Table 3.3 Allocation proportion under BBS with µA = µB = 0 – Continued

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(1.0, 1.0) (2, 2) 0.50 (0.01) 0.50 (0.02) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 3) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 1) 0.50 (0.01) 0.48 (0.02) 0.49 (0.01) 0.49 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 2) 0.49 (0.02) 0.49 (0.02) 0.49 (0.01) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 3) 0.50 (0.02) 0.48 (0.02) 0.49 (0.01) 0.50 (0.00) 0.50 (0.00)

Table 3.4: Proportion (SD) of patients assigned to Treatment A under equal allocation
randomization with µA = 1 and µB = 0. Model variables σA, σB, βA, βB are given in
the two leftmost columns. Allocation proportion and standard deviation across 1,000
simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 2) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (3, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (1, 2) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 2) 0.49 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (3, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (1, 2) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (3, 2) 0.51 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 1) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(0.5, 1.0) (2, 2) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)
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Table 3.4 Allocation proportion under equal allocation with µA = 1, µB = 0 – Cont.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (2, 3) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 1) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 2) 0.49 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.0, 1.0) (2, 3) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 1) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 2) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

(1.5, 1.0) (2, 3) 0.50 (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

Table 3.5: Proportion (SD) of patients assigned to Treatment A under BB1 random-
ization with µA = 1 and µB = 0. Model variables σA, σB, βA, βB are given in the
two leftmost columns. Allocation proportion and standard deviation across 1,000
simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.67 (0.01) 0.76 (0.01) 0.83 (0) 0.84 (0) 0.84 (0)

(0.5, 1.0) (2, 2) 0.67 (0.01) 0.76 (0.01) 0.83 (0) 0.84 (0) 0.84 (0)

(0.5, 1.0) (3, 2) 0.67 (0.01) 0.76 (0.01) 0.83 (0) 0.84 (0) 0.84 (0)

(1.0, 1.0) (1, 2) 0.66 (0.01) 0.75 (0.01) 0.83 (0) 0.83 (0) 0.84 (0)

(1.0, 1.0) (2, 2) 0.67 (0.01) 0.75 (0.01) 0.83 (0) 0.83 (0) 0.84 (0)

(1.0, 1.0) (3, 2) 0.67 (0.01) 0.75 (0.01) 0.83 (0) 0.84 (0) 0.84 (0)

(1.5, 1.0) (1, 2) 0.65 (0.01) 0.74 (0.01) 0.82 (0) 0.83 (0) 0.84 (0)

(1.5, 1.0) (2, 2) 0.66 (0.01) 0.74 (0.01) 0.82 (0) 0.83 (0) 0.84 (0)

(1.5, 1.0) (3, 2) 0.66 (0.01) 0.74 (0.01) 0.82 (0) 0.83 (0) 0.84 (0)
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Table 3.5 Allocation proportion under BB1 with µA = 1, µB = 0 – Continued

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (2, 1) 0.67 (0.01) 0.76 (0.01) 0.83 (0) 0.84 (0) 0.84 (0)

(0.5, 1.0) (2, 2) 0.67 (0.01) 0.76 (0.01) 0.83 (0) 0.84 (0) 0.84 (0)

(0.5, 1.0) (2, 3) 0.67 (0.01) 0.76 (0.01) 0.83 (0) 0.84 (0) 0.84 (0)

(1.0, 1.0) (2, 1) 0.67 (0.01) 0.75 (0.01) 0.83 (0) 0.84 (0) 0.84 (0)

(1.0, 1.0) (2, 2) 0.67 (0.01) 0.75 (0.01) 0.83 (0) 0.83 (0) 0.84 (0)

(1.0, 1.0) (2, 3) 0.67 (0.01) 0.75 (0.01) 0.83 (0) 0.84 (0) 0.84 (0)

(1.5, 1.0) (2, 1) 0.66 (0.01) 0.75 (0.01) 0.82 (0) 0.83 (0) 0.84 (0)

(1.5, 1.0) (2, 2) 0.66 (0.01) 0.74 (0.01) 0.82 (0) 0.83 (0) 0.84 (0)

(1.5, 1.0) (2, 3) 0.65 (0.01) 0.74 (0.01) 0.82 (0) 0.83 (0) 0.84 (0)

Table 3.6: Proportion (SD) of patients assigned to Treatment A under BBS random-
ization with µA = 1 and µB = 0. Model variables σA, σB, βA, βB are given in the
two leftmost columns. Allocation proportion and standard deviation across 1,000
simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.71 (0.01) 0.82 (0.01) 0.93 (0.00) 0.95 (0.00) 0.97 (0.00)

(0.5, 1.0) (2, 2) 0.70 (0.01) 0.83 (0.00) 0.93 (0.00) 0.95 (0.00) 0.97 (0.00)

(0.5, 1.0) (3, 2) 0.71 (0.01) 0.81 (0.01) 0.93 (0.00) 0.95 (0.00) 0.97 (0.00)

(1.0, 1.0) (1, 2) 0.67 (0.01) 0.75 (0.01) 0.83 (0.00) 0.84 (0.00) 0.84 (0.00)

(1.0, 1.0) (2, 2) 0.68 (0.01) 0.76 (0.01) 0.83 (0.00) 0.84 (0.00) 0.84 (0.00)

(1.0, 1.0) (3, 2) 0.67 (0.01) 0.76 (0.01) 0.83 (0.00) 0.84 (0.00) 0.84 (0.00)

(1.5, 1.0) (1, 2) 0.64 (0.01) 0.70 (0.01) 0.75 (0.00) 0.76 (0.00) 0.76 (0.00)

(1.5, 1.0) (2, 2) 0.64 (0.01) 0.70 (0.01) 0.75 (0.00) 0.76 (0.00) 0.76 (0.00)
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Table 3.6 Allocation proportion under BBS with µA = 1, µB = 0 – Continued

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(1.5, 1.0) (3, 2) 0.63 (0.01) 0.70 (0.01) 0.75 (0.00) 0.76 (0.00) 0.76 (0.00)

(0.5, 1.0) (2, 1) 0.71 (0.01) 0.82 (0.01) 0.93 (0.00) 0.95 (0.00) 0.97 (0.00)

(0.5, 1.0) (2, 2) 0.70 (0.01) 0.83 (0.00) 0.93 (0.00) 0.95 (0.00) 0.97 (0.00)

(0.5, 1.0) (2, 3) 0.71 (0.01) 0.82 (0.01) 0.93 (0.00) 0.95 (0.00) 0.97 (0.00)

(1.0, 1.0) (2, 1) 0.67 (0.01) 0.75 (0.01) 0.83 (0.00) 0.84 (0.00) 0.84 (0.00)

(1.0, 1.0) (2, 2) 0.68 (0.01) 0.76 (0.01) 0.83 (0.00) 0.84 (0.00) 0.84 (0.00)

(1.0, 1.0) (2, 3) 0.67 (0.01) 0.76 (0.01) 0.83 (0.00) 0.84 (0.00) 0.84 (0.00)

(1.5, 1.0) (2, 1) 0.63 (0.01) 0.70 (0.01) 0.75 (0.00) 0.76 (0.00) 0.76 (0.00)

(1.5, 1.0) (2, 2) 0.64 (0.01) 0.70 (0.01) 0.75 (0.00) 0.76 (0.00) 0.76 (0.00)

(1.5, 1.0) (2, 3) 0.64 (0.01) 0.70 (0.01) 0.75 (0.00) 0.76 (0.00) 0.76 (0.00)

Table 3.7: Proportion (SD) of trials where the null hypothesis is incorrectly rejected
under equal allocation randomization with µA = µB = 0. Model variables σA, σB,
βA, βB are given in the two leftmost columns. Rejection rate and standard deviation
across 1,000 simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.06 (0.06) 0.06 (0.06) 0.07 (0.07) 0.06 (0.06) 0.07 (0.07)

(0.5, 1.0) (2, 2) 0.06 (0.06) 0.07 (0.07) 0.07 (0.06) 0.05 (0.05) 0.06 (0.06)

(0.5, 1.0) (3, 2) 0.07 (0.06) 0.07 (0.06) 0.06 (0.06) 0.05 (0.05) 0.05 (0.04)

(1.0, 1.0) (1, 2) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05) 0.06 (0.06) 0.05 (0.05)

(1.0, 1.0) (2, 2) 0.07 (0.06) 0.06 (0.06) 0.05 (0.05) 0.06 (0.06) 0.04 (0.04)

(1.0, 1.0) (3, 2) 0.06 (0.06) 0.06 (0.06) 0.04 (0.04) 0.05 (0.05) 0.05 (0.05)
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Table 3.7 Rejection rate under equal allocation with µA = µB = 0 – Continued

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(1.5, 1.0) (1, 2) 0.06 (0.06) 0.06 (0.05) 0.04 (0.04) 0.06 (0.05) 0.05 (0.05)

(1.5, 1.0) (2, 2) 0.06 (0.06) 0.07 (0.06) 0.05 (0.05) 0.04 (0.04) 0.05 (0.05)

(1.5, 1.0) (3, 2) 0.07 (0.06) 0.05 (0.05) 0.06 (0.05) 0.06 (0.06) 0.07 (0.06)

(0.5, 1.0) (2, 1) 0.07 (0.07) 0.07 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06)

(0.5, 1.0) (2, 2) 0.06 (0.06) 0.07 (0.07) 0.07 (0.06) 0.05 (0.05) 0.06 (0.06)

(0.5, 1.0) (2, 3) 0.08 (0.07) 0.07 (0.07) 0.06 (0.05) 0.06 (0.06) 0.06 (0.05)

(1.0, 1.0) (2, 1) 0.05 (0.04) 0.06 (0.06) 0.05 (0.05) 0.06 (0.05) 0.05 (0.05)

(1.0, 1.0) (2, 2) 0.07 (0.06) 0.06 (0.06) 0.05 (0.05) 0.06 (0.06) 0.04 (0.04)

(1.0, 1.0) (2, 3) 0.06 (0.05) 0.05 (0.04) 0.06 (0.06) 0.05 (0.05) 0.05 (0.04)

(1.5, 1.0) (2, 1) 0.05 (0.05) 0.07 (0.06) 0.05 (0.05) 0.06 (0.06) 0.06 (0.06)

(1.5, 1.0) (2, 2) 0.06 (0.06) 0.07 (0.06) 0.05 (0.05) 0.04 (0.04) 0.05 (0.05)

(1.5, 1.0) (2, 3) 0.06 (0.06) 0.06 (0.05) 0.06 (0.05) 0.05 (0.05) 0.04 (0.04)

Table 3.8: Proportion (SD) of trials where the null hypothesis is incorrectly rejected
under BB1 randomization with µA = µB = 0. Model variables σA, σB, βA, βB are
given in the two leftmost columns. Rejection rate and standard deviation across 1,000
simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.10 (0.09) 0.11 (0.10) 0.07 (0.06) 0.08 (0.07) 0.06 (0.06)

(0.5, 1.0) (2, 2) 0.10 (0.09) 0.09 (0.08) 0.08 (0.07) 0.07 (0.07) 0.05 (0.05)

(0.5, 1.0) (3, 2) 0.10 (0.09) 0.12 (0.10) 0.07 (0.06) 0.06 (0.06) 0.05 (0.04)

(1.0, 1.0) (1, 2) 0.07 (0.06) 0.06 (0.05) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05)
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Table 3.8 Rejection rate under BB1 with µA = µB = 0 – Continued

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(1.0, 1.0) (2, 2) 0.07 (0.06) 0.07 (0.07) 0.06 (0.06) 0.06 (0.05) 0.03 (0.03)

(1.0, 1.0) (3, 2) 0.07 (0.07) 0.06 (0.06) 0.06 (0.05) 0.05 (0.05) 0.05 (0.05)

(1.5, 1.0) (1, 2) 0.05 (0.05) 0.05 (0.04) 0.04 (0.04) 0.05 (0.05) 0.05 (0.04)

(1.5, 1.0) (2, 2) 0.05 (0.05) 0.03 (0.03) 0.04 (0.04) 0.04 (0.04) 0.06 (0.05)

(1.5, 1.0) (3, 2) 0.04 (0.04) 0.04 (0.04) 0.05 (0.05) 0.06 (0.05) 0.04 (0.04)

(0.5, 1.0) (2, 1) 0.11 (0.10) 0.09 (0.08) 0.08 (0.07) 0.07 (0.06) 0.07 (0.06)

(0.5, 1.0) (2, 2) 0.10 (0.09) 0.09 (0.08) 0.08 (0.07) 0.07 (0.07) 0.05 (0.05)

(0.5, 1.0) (2, 3) 0.10 (0.09) 0.09 (0.08) 0.07 (0.07) 0.07 (0.07) 0.05 (0.05)

(1.0, 1.0) (2, 1) 0.08 (0.07) 0.08 (0.07) 0.05 (0.04) 0.06 (0.06) 0.04 (0.04)

(1.0, 1.0) (2, 2) 0.07 (0.06) 0.07 (0.07) 0.06 (0.06) 0.06 (0.05) 0.03 (0.03)

(1.0, 1.0) (2, 3) 0.07 (0.06) 0.08 (0.08) 0.04 (0.04) 0.05 (0.05) 0.06 (0.05)

(1.5, 1.0) (2, 1) 0.06 (0.06) 0.05 (0.04) 0.03 (0.03) 0.04 (0.04) 0.04 (0.04)

(1.5, 1.0) (2, 2) 0.05 (0.05) 0.03 (0.03) 0.04 (0.04) 0.04 (0.04) 0.06 (0.05)

(1.5, 1.0) (2, 3) 0.05 (0.05) 0.04 (0.04) 0.05 (0.04) 0.05 (0.04) 0.04 (0.04)

Table 3.9: Proportion (SD) of trials where the null hypothesis is incorrectly rejected
under BBS randomization with µA = µB = 0. Model variables σA, σB, βA, βB are
given in the two leftmost columns. Rejection rate and standard deviation across 1,000
simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.09 (0.08) 0.11 (0.10) 0.08 (0.07) 0.06 (0.06) 0.07 (0.06)

(0.5, 1.0) (2, 2) 0.10 (0.09) 0.10 (0.09) 0.09 (0.08) 0.06 (0.06) 0.07 (0.06)
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Table 3.9 Rejection rate under BBS with µA = µB = 0 – Continued

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (3, 2) 0.11 (0.10) 0.11 (0.10) 0.10 (0.09) 0.07 (0.06) 0.06 (0.06)

(1.0, 1.0) (1, 2) 0.07 (0.07) 0.08 (0.07) 0.04 (0.04) 0.06 (0.06) 0.06 (0.05)

(1.0, 1.0) (2, 2) 0.07 (0.07) 0.06 (0.05) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05)

(1.0, 1.0) (3, 2) 0.06 (0.05) 0.08 (0.07) 0.06 (0.05) 0.06 (0.06) 0.04 (0.04)

(1.5, 1.0) (1, 2) 0.07 (0.06) 0.06 (0.06) 0.04 (0.04) 0.06 (0.05) 0.05 (0.04)

(1.5, 1.0) (2, 2) 0.06 (0.05) 0.06 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.04)

(1.5, 1.0) (3, 2) 0.07 (0.06) 0.06 (0.05) 0.06 (0.06) 0.05 (0.05) 0.06 (0.05)

(0.5, 1.0) (2, 1) 0.11 (0.10) 0.11 (0.10) 0.07 (0.07) 0.09 (0.08) 0.08 (0.07)

(0.5, 1.0) (2, 2) 0.10 (0.09) 0.10 (0.09) 0.09 (0.08) 0.06 (0.06) 0.07 (0.06)

(0.5, 1.0) (2, 3) 0.10 (0.09) 0.11 (0.09) 0.09 (0.08) 0.08 (0.07) 0.05 (0.05)

(1.0, 1.0) (2, 1) 0.07 (0.06) 0.04 (0.04) 0.05 (0.04) 0.05 (0.05) 0.06 (0.06)

(1.0, 1.0) (2, 2) 0.07 (0.07) 0.06 (0.05) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05)

(1.0, 1.0) (2, 3) 0.07 (0.07) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05)

(1.5, 1.0) (2, 1) 0.06 (0.06) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05)

(1.5, 1.0) (2, 2) 0.06 (0.05) 0.06 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.04)

(1.5, 1.0) (2, 3) 0.06 (0.06) 0.05 (0.05) 0.04 (0.03) 0.06 (0.05) 0.05 (0.05)



135

Table 3.10: Proportion (SD) of trials where the null hypothesis is correctly rejected
under equal allocation randomization with µA = 1, µB = 0. Model variables σA, σB,
βA, βB are given in the two leftmost columns. Rejection rate and standard deviation
across 1,000 simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.93 (0.06) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 2) 0.92 (0.08) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (3, 2) 0.93 (0.06) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (1, 2) 0.80 (0.16) 0.96 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 2) 0.77 (0.18) 0.96 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (3, 2) 0.78 (0.17) 0.97 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (1, 2) 0.63 (0.23) 0.88 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 2) 0.64 (0.23) 0.87 (0.12) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (3, 2) 0.63 (0.23) 0.87 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 1) 0.92 (0.07) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 2) 0.92 (0.08) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 3) 0.93 (0.07) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 1) 0.76 (0.18) 0.97 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 2) 0.77 (0.18) 0.96 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 3) 0.78 (0.17) 0.97 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 1) 0.63 (0.23) 0.89 (0.09) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 2) 0.64 (0.23) 0.87 (0.12) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 3) 0.64 (0.23) 0.84 (0.13) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
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Table 3.11: Proportion (SD) of trials where the null hypothesis is correctly rejected
under BB1 randomization with µA = 1, µB = 0. Model variables σA, σB, βA, βB
are given in the two leftmost columns. Rejection rate and standard deviation across
1,000 simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.91 (0.08) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 2) 0.91 (0.08) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (3, 2) 0.91 (0.08) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (1, 2) 0.78 (0.17) 0.96 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 2) 0.80 (0.16) 0.95 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (3, 2) 0.78 (0.17) 0.96 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (1, 2) 0.56 (0.25) 0.82 (0.15) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 2) 0.55 (0.25) 0.81 (0.15) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (3, 2) 0.53 (0.25) 0.81 (0.15) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 1) 0.91 (0.08) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 2) 0.91 (0.08) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 3) 0.91 (0.08) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 1) 0.78 (0.17) 0.95 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 2) 0.80 (0.16) 0.95 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 3) 0.79 (0.17) 0.97 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 1) 0.56 (0.25) 0.84 (0.14) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 2) 0.55 (0.25) 0.81 (0.15) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 3) 0.54 (0.25) 0.83 (0.14) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
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Table 3.12: Proportion (SD) of trials where the null hypothesis is correctly rejected
under BBS randomization with µA = 1, µB = 0. Model variables σA, σB, βA, βB
are given in the two leftmost columns. Rejection rate and standard deviation across
1,000 simulations of trial size N given in remaining five columns.

(σA, σB) (βA, βB) N = 50 N = 100 N = 500 N = 1,000 N = 5,000

(0.5, 1.0) (1, 2) 0.91 (0.08) 0.98 (0.02) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 2) 0.90 (0.09) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (3, 2) 0.91 (0.08) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (1, 2) 0.77 (0.18) 0.94 (0.06) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 2) 0.76 (0.18) 0.96 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (3, 2) 0.77 (0.18) 0.96 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (1, 2) 0.66 (0.22) 0.87 (0.12) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 2) 0.63 (0.23) 0.88 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (3, 2) 0.64 (0.23) 0.88 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 1) 0.88 (0.10) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 2) 0.90 (0.09) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(0.5, 1.0) (2, 3) 0.89 (0.10) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 1) 0.75 (0.19) 0.95 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 2) 0.76 (0.18) 0.96 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.0, 1.0) (2, 3) 0.77 (0.18) 0.96 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 1) 0.62 (0.24) 0.87 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 2) 0.63 (0.23) 0.88 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

(1.5, 1.0) (2, 3) 0.66 (0.22) 0.88 (0.10) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
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Table 3.13: HIV adherence intervention summary characteristics by design across
covariate slopes (βC , βM) that may differ by treatment. µC − µM is the difference in
treatment effects (measured in HIV RNA copies/mL) for a particular combination
of covariate slopes, provided for reference. # is the number of additional patients
assigned to the superior treatment over equal allocation. % is the percent of additional
patients assigned to the superior treatment over equal allocation. PC is the proportion
of patients assigned to treatment C, combined medication, education, and counseling
therapy. Not shown is PM = 1−PC , the proportion of patients assigned to treatment
M , medication alone.

Equal Allocation

(βC , βM) µC − µM NC # % PC (SD) Power (SD)

(1.2, 1.0) 0.24 122 0 0% 0.50 (0.03) 0.75 (0.43)
(1.1, 1.1) 0.36 122 0 0% 0.50 (0.03) 0.97 (0.18)
(1.0, 1.2) 0.48 122 0 0% 0.50 (0.03) 1.00 (0.05)

BB Design

(βC , βM) µC − µM NC # % PC (SD) Power (SD)

(1.2, 1.0) 0.24 143 21 17% 0.59 (0.06) 0.75 (0.43)
(1.1, 1.1) 0.36 153 31 26% 0.63 (0.06) 0.96 (0.19)
(1.0, 1.2) 0.48 163 41 33% 0.67 (0.06) 1.00 (0.05)

BBS Design

(βC , βM) µC − µM NC # % PC (SD) Power (SD)

(1.2, 1.0) 0.24 169 47 38% 0.69 (0.12) 0.74 (0.44)
(1.1, 1.1) 0.36 182 60 50% 0.75 (0.10) 0.95 (0.21)
(1.0, 1.2) 0.48 192 70 57% 0.79 (0.08) 1.00 (0.06)
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Chapter 4

Response-Adaptive Biased Coin

Design with Delay

4.1 Summary

Adaptive designs are growing in popularity amongst statisticians, clinicians, and reg-

ulatory agencies. These designs leverage accumulating data and pre-specified criteria

to alter ongoing clinical investigations. This paper explores the relationship between

the delay in recording patient outcomes and an adaptive design’s continued ability

to randomize patients more ethically than complete randomization. Simulations il-

lustrate how, even under the constraint of delayed response, this adaptive design

maintains an ethical advantage over equal allocation by transforming an actual HIV

intervention into a response-adaptive clinical trial.

Keywords: adaptive randomization, ethical allocation, delayed responses



146

4.2 Introduction

4.2.1 Adaptive Designs

Adaptive designs, a new breed of clinical trial design, are growing in popularity

amongst statisticians, clinicians, and regulatory agencies [19, 20, 25, 42, 44, 53, 56].

These designs allow clinical experiments to leverage accumulating data to alter vari-

ous aspects of the investigative plan including patient population, randomization, trial

duration, and/or analysis based on pre-specified criteria. Modifications are geared at

ethical concerns—optimal targeting of or decreased variability in patient assignment,

earlier elimination of treatment arms that are less effective, increasing a treatment’s

speed to market, improved treatment of patient sub-populations by considering ap-

propriate covariates within the randomization scheme. Many adaptive modifications

are financially beneficial to the pharmaceutical industry in addition to clinically eth-

ical. See [27] and [40] for a thorough introduction to adaptive design evolutions,

advantages, and areas of concern.

Chapters 2 and 3 focus on a response-adaptive biased coin design which assigns

more patients to the more effective therapy. In particular, this randomization strat-

egy is shown to be suitable for a continuous outcome with unknown and potentially

unequal variances, unknown covariates, and possible covariate-treatment interaction.

One aspect of adaptive designs which merits further consideration, however, is the

impact of delayed responses on the beneficial factors of a design. This paper explic-

itly explores the relationship between the delay in recording patient outcomes and the

design’s continued ability to randomize patients more ethically than complete ran-

domization, the nonadaptive gold standard. Moreover, Section 4.5 illustrates that,

even under the constraint of delayed response, this design maintains an ethical ad-
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vantage over a similar nonadaptive design by transforming a real HIV intervention

into a response-adaptive clinical trial.

4.2.2 BBS Design

Chapter 2 introduces an improvement to the adaptive biased coin design proposed

by [4]. The enhanced design, referred to as BBS, assigns a patient to treatment A

with probability Φ
(
µ̂A−µ̂B

S

)
, where Φ is the cumulative distribution function of the

standard normal distribution; µ̂k is the current estimate at time of randomization of

the mean effect of treatment k = A,B; and S is the pooled standard deviation of the

two treatments, also estimated at the time of randomization. Simulations confirm

that, even when the treatment variances are unequal, the new design performs well

in comparison to complete randomization and to multiple variations of the original

design. The BBS design expands the scope of applicability from the previous design

with similar or improved allocation ratios, with minimal loss in power, and with only

a slight increased risk of Type I error.

Chapter 3 continues to push the bounds of applicability of BBS via simulation

by additionally considering scenarios where the covariate values differ between the

treatments. Covariate-treatment interactions are shown to have negligible impact

on the design, its ethicality, and rejection rates. Application to a real-world HIV

intervention illustrates the value of BBS in assigning more patients to the treatment

with larger effect size, after adjusting for covariate impact.

Both chapters circumvent the potential impact of delayed responses on all designs.

Instead, simulations assume that all patients immediately respond to treatment, that

all responses are immediately observed, and that all past patient response are incorpo-

rated into future randomizations. This chapter addresses the impact of delay on the
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adaptive benefits of the design. In particular, simulations explore the repercussions

of delayed response on the ability of the design to continue assigning more patients

to the better treatment.

4.2.3 Delay in Treatment Responses

Many fields of medical research involve treating patients whose outcomes will not

be immediately observable. For example, managing depression [32, 55], skin graft

healing [9, 23, 29], human immunodeficiency virus viral load suppression [2, 37, 52]

are all domains with delayed patient responses which nevertheless undergo large-

scale, randomized clinical trials. Unlike classical randomized experiments, response-

adaptive randomization designs depend on the accumulation of patient outcomes to

inform and influence future patient assignments. At the extreme, delayed patient

responses may result in randomization rules which are adaptive by design but do not

actually change from one patient to the next. This must be considered when selecting

an appropriate allocation algorithm.

Delays between a treatment exposure and a patient response may be fixed or

variable. Fixed delays are easily conceptualized. For example, ten hours after a pain

relief medication is introduced, a clinician records how a patient feels on a scale of 1

to 10 [17, 47]. The outcome of interest is the ten-hour improvement and it occurs ten

hours after treatment exposure. In another example, a clinician records the distance a

patient can walk 90 days after a surgical procedure takes place [1, 6, 34]. The outcome

of interest is the 90-day measure and it occurs 90 days after treatment administration.

Variable response times are also a common occurrence in phase III clinical trials.

For instance, a response of primary interest in a study might be the final value of a

biomarker where final is either a particular threshold if achieved prior to 90 days after
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treatment exposure or the value of the biomarker at the 90 day mark [12, 14, 15, 24, 39,

60]. Then the time to response is the time to threshold or 90 days, whichever occurs

first. Alternatively, an outcome of interest may be time-to-event such as hospital

length of stay [30] or time until a particular activity is resumed [5, 16]. Of course,

survival trials also fit into this model with response being censored or uncensored

survival time—for example symptom-free survival, progression-free survival, or simply

survival [1, 6, 33, 35, 50]. Then the time to response is the response itself: the survival

time of interest. As the more complicated of the two types of delay, variable response

times are the focus in this paper but results may likewise apply to fixed delays.

Delayed observation of patient responses have long hindered alternatives to clas-

sical randomization in clinical research [11]. Nevertheless, adaptive designs can be

leveraged in conjunction with delayed patient outcomes in theory [3, 8, 63] as well as

in practice [54]. On the other hand, asymptotic results do not always apply to finite

sample sizes. Simulations are recommended to confirm the impact of the delayed

responses on the trial properties [28, 62, 64]. In this article, the impact on the BBS

design of delay in observing patient responses is examined for small to large Phase

III clinical trials.

This article establishes that BBS is a suitable candidate for use in clinical trials

where exposing patients to the superior treatment is a priority. Moreover, this article

confirms that BBS continues to be more ethical than equal allocation if a treatment

difference exists, even when patient outcomes are not immediately available. Finally,

like Chapters 2 and 3, this article illustrates the utility and benefits of the modified

BBS design with a real-world application of an HIV treatment adherence intervention.
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4.3 Design and Simulation Parameters

4.3.1 Overarching Model

The BBS design applies to two-treatment studies where the outcome of interest is con-

tinuously defined and predetermined prognostic factors are measured at enrollment.

Statistically, assume patient responses yjk follow a normal distribution conditional on

the treatment exposure, the covariates, and the treatment-covariate interaction:

yjk = µk + βkz
′
j + εjk

for patients j = 1, . . . , N and treatments k = A,B. The leftmost term on the

right hand side is µk, the mean effect of treatment k. The rightmost term is εjk,

the random error for patient j on treatment k, and is independently and identically

distributed N(0, σ2
k). The middle term is the product of βk = (βk1, . . . , βkP ), the

slopes of the P covariate effects on treatment k’s response, and zj = (zj1, . . . , zjP ),

the actual covariates for patient j measured at enrollment. Each prognostic factor Zp

is independently and identically distributed for all p = 1, . . . , P but the distribution

may vary for each value of p. For example, one covariate may be the binary factor

sex while another covariate may be weight, a continuous measure.

4.3.2 Study Design

The overarching goal of many clinical trials is to determine which of two treatments

has a superior treatment effect. In this paper, patient responses—conditional on

an individual patient’s covariates and unknown covariate slopes—are normally dis-

tributed with larger responses desirable. Each prognostic factor is independently
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and identically distributed and all factors are known for each patient upon enroll-

ment. Treatment variances are unknown but thought to be equal or similar. Patient

recruitment, randomization, and treatment is assumed to occur simultaneously.

The design considered in this article is an adaptive biased coin [4] that allocates

more patients to the treatment with larger effect size by updating the exposure prob-

abilities over time. When patient responses are immediately observable, the BBS

design begins by assigning a fixed, minimum number m of patients to each treat-

ment in order to estimate the difference in treatment effects µ̂A − µ̂B and the pooled

standard deviation

S =

√
(NA − 1)s2A + (NB − 1)s2B

NA +NB − 2
.

Here µ̂k is the current estimate of the mean effect of treatment k, excluding the

covariate contribution to patient outcomes; Nk is the number of patients who have

been exposed to and immediately responded to treatment k; and s2k is the current

estimated variance for treatment k for k = A or B. The minimum number of patient

responses required for estimation is arbitrarily chosen to be m = 10. Once these

estimates are obtained using an adequate number m of patients on each treatment,

subsequent patients are randomized to treatment A with probability Φ
(
µ̂A−µ̂B

S

)
and

to treatment B with probability 1 − Φ
(
µ̂A−µ̂B

S

)
. These allocation probabilities are

updated each time a patient response becomes available.

When a delay exists between treatment exposures and patient responses, the BBS

design must be adjusted slightly. In a typical phase III clinical trial, patients are re-

cruited sequentially with varying times between each new patient enrollment. Patient

j arrives at time tj, patient j + 1 arrives at time tj+1, and the time between tj and

tj+1 is exponentially distributed with mean equal to the expected inter-arrival time.

If the time between treatment exposures and patient responses varies across patients,
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then treatment outcomes will typically be observed in an order different from that

of patient enrollment and with varying inter-observation times. Patient j arrives,

is randomized, and obtains treatment at time tj; patient j responds to treatment

at time tj + τj where τj derives from an exponentially distributed random variable

with mean equal to the expected delay in outcome observation. Table 4.1 represents

one possible timeline for a clinical trial which enrolls 50 patients with exponentially

distributed inter-arrival times having mean 1 and exponentially distributed patient

response delays with a mean delay time of 40 time units. Table 4.1 is discussed further

in Section 4.3.4.

Like its counterpart with immediately observed outcomes, the BBS design with

delayed responses begins by assigning patients to treatment A with probability 1
2

and

to treatment B with probability 1
2
. This continues until at least m patients have

responded to treatment A and at least m patients have responded to treatment B.

Once an adequate number m of patients respond on each treatment, the allocation

probabilities can be estimated based on observed outcomes and known patient co-

variates. That is, the parameters for the set of prognostic factors Z are estimated

based on all previously recruited patient values. These statistics then support the

estimation of the difference in treatment mean effects and pooled treatment standard

deviation. When each subsequent patient is recruited, Φ
(
µ̂A−µ̂B

S

)
and 1−Φ

(
µ̂A−µ̂B

S

)
are re-estimated based on all previously enrolled patient covariates and all recorded

patient responses. The randomization proportions continue to be updated until the

study enrollment terminates. The proportion of fixed allocation assignments (using

1
2
) relative to the total patient enrollment should be approximately anticipated prior

to the trial commencement based on the expected recruitment time and study size.

In this article, the BBS is juxtaposed with the “gold standard” clinical trial design,

equal allocation [36]. Under equal allocation, patients are assigned to treatment



153

A or treatment B each with fixed probability 1
2
, resulting in asymptotically equal

proportions of patients on each treatment [38]. While there are many beneficial

qualities of a balanced randomization scheme [38, 43, 45, 51], the comparison of

interest is BBS design ability to adaptively allocate patients to the superior treatment

when patient responses are not immediately observable—that is, even as the adaptive

mechanisms of the design are inhibited.

Chapter 2 demonstrates that the BBS design allocates more patients to the better

treatment than equal allocation without sacrificing power or inflating Type I error

rates. It also demonstrates how the BBS design is preferable to its predecessor due to

its ability to account for the degree of certainty or variance present in the data at a

given point during trial enrollment. Chapter 3 confirms that the three aforementioned

BBS design properties are not significantly altered when covariate impact on patient

outcomes differed by treatment within a reasonable range. This article considers

the consequences to the three metrics (allocation, power, and Type I error) as the

response-adaptive randomization is subject to variable delays in patient response.

4.3.3 Simulation

Section 4.4 describes the results of simulated clinical trials under the BBS design

and equal allocation for various treatment mean and standard deviation parameters.

Throughout the simulations, treatment mean pairs (µA, µB) are considered at no effect

(0, 0) and positive effect in treatment A (1, 0). A positive effect in treatment B (0, 1)

is discussed in Chapter 2. Individual patient errors are simulated under equal and

unequal conditions; σB is fixed at 1 in all simulations while σA ranges from 0.5 to 1.5

by half-step increments. One normally-distributed prognostic factor Z ∼ N(1, 1) is

simulated for all patients. The covariate impact on treatment outcomes is a constant
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slope of β = 2 for both treatments.

Additionally, the BBS design simulations are subject to multiple levels of delay

in patient responses. Both patient enrollment and patient responses are unrelated

arrival processes. Patient inter-arrival times are simulated using independent and

identical exponential distributions with mean one (Tj+1 − Tj ∼ exp(1)). When a

nonzero response delay is simulated, the time before a patient responds will be inde-

pendent and identically distributed for all patients following an exponential wait time

with mean equal to the specified delay. Delay means are zero (patient responds to

treatment immediately), 40, 400, and 4,000. As an illustration, when responses have

a mean delay of 40, an average of 40 additional patients will enroll between when a

patient is treated and when that patient’s response is observed—i.e., Tj ∼ exp(40).

Details of the exponential delays are discussed further in Section 4.3.4.

Rejection of the null hypothesis H0 : µA ≤ µB is calculated with a one-sided

two-sample t-test with significance level α = 0.05. Under the assumption of possibly

unequal variances, the t-statistic standard error is calculated using treatment-specific

sample variances, leveraging the Welch-Satterthwaite approximated pooled degrees of

freedom [49, 59]. Sample sizes mimic small to large Phase III clinical trials (N = 50;

100; 500; 1,000; 5,000). Initially, patients are enrolled under nonadaptive, equal

allocation until at least m = 10 patients have responded on each treatment arm.

At that point, the BBS design begins randomizing adaptively based on currently

available treatment estimates whereas equal allocation continues to assign patients

with a fixed ratio. For each scenario described, 1,000 replications are simulated in

SAS IML [48].
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4.3.4 Exponential Delay

The time between a patient’s exposure to a study treatment and the observation

of that patient’s response is simulated as an exponentially distributed delay. An

exponentially distributed random variable has probability distribution function

f(x, λ) =


λe−λx when x ≥ 0,

0 when x < 0,

with mean 1
λ
, median ln(2)

λ
, and variance 1

λ2
. Recalling that ln(2) ≈ 0.7, the median

of an exponential distribution is clearly less than its mean. That is, more than half

of all patients are expected to respond to treatment in a period of time shorter than

the mean delay.

To illustrate, when the expected delay in treatment response is 40 units of time, the

variance in patient delay is 1,600. The median delay from the exponential distribution

with mean 40 is 27.7 units of time—a difference of less than 13 units of time between

the mean and the median. By comparison, the exponential distribution with mean

400 produces a 400 time unit expected delay in observing patient outcomes and a

160,000 time unit variance. This distribution has a 277.3 time unit median delay—a

difference of more than 120 units of time between mean and median.

Figures 4.1 – 4.4 highlight the asymmetry of the three distributions simulated, i.e.,

exponential with means of 40; 400; and 4,000 units of time. Figure 4.1 juxtaposes all

three exponential distributions on the same axes. This image accentuates the changes

in the curvatures of the distributions as the scaling constant increases by a factor of

ten. Figures 4.2 through 4.4 focus on the expected value and quartiles for each of the

three distributions. In these images, the axes are proportional to the scaling constant
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of the distribution; all three graphs now appear similarly shaped. In Figures 4.2 –

4.4, as units of time increase, the probability of a delay length being equivalent to a

particular unit of time decreases monotonically. Moreover, larger expected values for

this distribution correspond to increased variably and skew.

Table 4.1 represents a potential timeline for patient arrivals and responses during

a clinical trial with sample size N = 50 when responses are delayed with an expected

mean of 40 units of time. Starting on the left, the first column in the table is the

patient arrival sequence. The second column contains the patient inter-arrival times.

The first patient does not have an inter-arrival time. All other patients’ inter-arrival

times are derived from independently and identically distributed exponential random

variables. The expected inter-arrival is one unit of time. The third column denotes

the arrival, randomization, and treatment exposure time of each patient relative to

patient 1. Patient enrollment, assignment, and treatment are assumed to happen

concurrently. Patient 1 is considered to arrive, be randomized, and treated at time

0.0. The fourth column indicates the delay between the time a patient is exposed to

treatment and the time the patient’s outcome is observed. All response delays are

values taken from independently and identically exponentially distributed random

variables with mean equal to 40 units of time. The fifth column communicates the

time at which a patient responds to treatment relative to the first patient’s arrival.

The final column illustrates the order in which the 50 patients respond to treatment

according to these inter-arrival and response delay values.

The first row of Table 4.1 does not contain an inter-arrival time for Patient 1 whose

arrival and randomization time is considered to be 0.0, the start of trial enrollment.

Patient 1 responds to treatment after 30.9 units of time and is the 11th patient outcome

observed. Patient 2 arrives 0.1 units after patient 1 at time 0.1. Patient 2’s response

delay is 33.9 time units. Hence, patient 2 responds to treatment at time 34.0 and is
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Figure 4.1: The time until a patient responds to treatment follows an exponential
distribution with mean delay 40; 400; or 4,000 units of time. For each expected delay,
the probability distribution is graphed with increasingly dashed lines as the expected
delay in treatment observation increases.
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the 14th patient to respond. Under this scenario, the 20th observed outcome belongs

to patient 3 and occurs at 44.2 units of time. If 10 of those 20 responses belong to

patients on treatment A and 10 belong to patients on treatment B, then the minimum
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Figure 4.2: For an expected delay of 40 units of time, the exponential probability
distribution is identified with the first, second, and third quartiles highlighted. Half
of patients will respond to treatment in fewer than 27.7 units of time.
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m = 10 patients required to begin adaptive randomization would be achieved when

patient 3 responds. Leveraging BBS, all patients enrolled after time 44.2 would be

allocated with adaptively estimated assignment probabilities. In Table 4.1, patients

47 – 50 are enrolled after time 44.2 and thus could be adaptively randomized in a
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Figure 4.3: For an expected delay of 400 units of time, the exponential probability
distribution is identified with the first, second, and third quartiles highlighted. Half
of patients will respond to treatment in fewer than 277.3 units of time.
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clinical trial employing the BBS design following this timeline.

For another example, consider a moderate sized clinical trial with N = 500 under

the constraint that the mean patient delay in treatment responses is 4,000. Even

though all patients have an expected delay in response of 4,000 units, 2.5% of patients
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Figure 4.4: For an expected delay of 4,000 units of time, the exponential probability
distribution is identified with the first, second, and third quartiles highlighted. Half
of patients will respond to treatment in fewer than 2,772.6 units of time.
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should be anticipated to respond before 100 units of time have passed; 4.9% of patients

would be expected to respond before 200 units of time have passed; 7% of patients are

predicted to respond before 300 units of time have passed; and 9.5% of patients are

expected to respond before 400 units of time have passed. Working backwards, from
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the first 100 patients to be assigned, at least 9.5 outcomes are expected to be observed

before trial enrollment is complete; from the next 100 patients treated, a minimum of 7

more outcomes are predicted to present before enrollment is over; from patients 301 to

400, another 4.9 responses should be expected before enrollment ends. Without even

considering the last 100 patients recruited, more than 20 responses are anticipated

prior to all patients having been randomized. That is, despite individual patients

having an expected delay equal to eight times the predicted trial enrollment period,

the BBS design should still be able to adaptively randomize patients to treatment in

a moderately sized study.

The simulated proportion of patients adaptively randomized by BBS are explored

further in Section 4.4.1 for each clinical trial size and delay combination. As this

last example illustrates, RAR can still positively impact patient assignment when

the expected delay is large relative to the anticipated study enrollment period. The

relationship between the exponential delay, the clinical trial size, and the minimum

number m of responses required prior to beginning adaptive allocation will influ-

ence the design’s ability to assign more patients to the better arm for a given set of

treatment parameters.

4.4 Results

4.4.1 Patient Allocation

Tables 4.2 and 4.3 reflect the proportions and standard deviations of patients assigned

to treatment A by design and delay for zero and non-zero treatment effects under the

BBS design and equal allocation (Equal). Each table contains the average patient

allocation as the BBS design ranges from immediately observed patient responses
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(Delay = 0) up to a delay of 4,000 and under equal allocation with no delay in response

across various treatment parameters and clinical trial sizes. The first two columns

of each table indicate the design (BBS or Equal) and delay (0–4,000) parameters

for the row. The remaining five columns are the mean (SD) proportion of patients

assigned to treatment A over 1,000 simulations for each of the five trial sizes N =

50; 100; 500; 1,000; and 5,000. Each set of five rows (BBS with delay 0, 40, 400, and

4,000; Equal with no delay) is grouped by treatment parameters µA, µB, σA, and σB.

For example, Table 4.2 details the average patient allocation when neither treat-

ment A nor treatment B have an impact (µA = µB = 0). The first row of data

represents BBS patient allocation when responses are immediately observable (Delay

= 0), there are no differences in treatment effects, but σA = 0.5 while σB = 1.0.

With a sample size of N = 50, BBS allocates 51% of patients to treatment A with

a standard deviation of 0.12. With a sample size of N = 100, BBS allocates 52%

of patients to treatment A with a standard deviation of 0.13. For sample sizes of

N = 500, 1,000, or 5,000, BBS allocation with no delay remains close to 50% with no

treatment mean difference. On the other hand, Table 4.3 details the average patient

allocation when treatment A has a positive impact and treatment B has no impact

(µA = 1, µB = 0). The first row of Table 4.3 describes how the BBS allocates at least

70% of patients to treatment A for all clinical trial enrollment sizes simulated when

responses are immediately observed, σA = 0.5, and σB = 1.0.

Figure 4.5 illustrates the trends in patient assignment from Table 4.2 across the

five simulated trial sizes for all three values of treatment A standard deviation when

µA = µB = 0. Allocation means are represented by ∗ for the BBS design and by • for

equal allocation. In both designs, immediate responses (Delay = 0) are represented by

solid lines and for BBS increasing delay in outcomes are represented by increasingly

dashed lines.
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Figure 4.5: Proportion of patients assigned to treatment A by design when µA =
µB = 0, σA varies, σB = 1, and N varies. Data points are grouped by design; BBS
is represented by ∗ and equal allocation by •. The time until a patient responds to
treatment is an exponentially distributed delay. As delay in treatment observation
increases, the line connecting delayed data points are increasingly dashed. No delay
is represented by a solid line (—) and a mean delay of 4,000 is represented by a dotted
line (· · · ).
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As seen in Table 4.2 and Figure 4.5, patient allocation with no treatment effect is

roughly balanced between treatments regardless of design, delay, trial enrollment, or

treatment variance. Both the BBS and equal allocation designs expose approximately

half of patients to each treatment when no treatment effect is present. There is a

slight tendency to expose more patients to treatment A when the total variance is

small and to expose more patients to treatment B when the total variance is large.

Figure 4.6 illustrates the trends in patient assignment from Table 4.3 across the

five simulated trial sizes for all three values of treatment A standard deviation when

µA = 1, µB = 0. Allocation means are distinguished by design and delay parameter; ∗

for BBS and • for equal allocation connected by increasingly dashed lines as response

delay increases.

As seen in Table 4.3 and Figure 4.6, patient allocation can improve dramatically on

the BBS design versus balanced randomization when a treatment effect is present and

there is no delay in observing patient outcomes. That is, when delay is nonexistent

or small (0 or 40), more than 80% of patients can be assigned to the treatment with

larger mean effect size when σA = σB = 1.0 (70% when σA = 1.5 and 90% when

σA = 0.5). As the delay in patient response times grows, the ability of the BBS

design to ethically assign patients to treatment shrinks. In fact, when responses are

delayed so that no patients have responded to treatment prior to the conclusion of

trial enrollment, the BBS design does not attain the ability to be adaptive. Instead,

the BBS design randomizes patients to both treatments in equal proportions; BBS

defaults to equal allocation when sample sizes are small relative to the delay in patent

responses. Nevertheless, even when responses are delayed, as long as an adequate

number of outcomes are observed before all subjects have been enrolled, the BBS

design is still preferable to equal allocation in terms of ethical patient randomization.

For example, when the delay factor is 400 for a trial containing only 500 patients, 72%
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Figure 4.6: Proportion of patients assigned to treatment A by design when µA = 1,
µB = 0, σA varies, σB = 1, and N varies. Data points are grouped by design; BBS
is represented by ∗ and equal allocation by •. The time until a patient responds to
treatment is an exponentially distributed delay. As delay in treatment observation
increases, the line connecting delayed data points are increasingly dashed. No delay
is represented by a solid line (—) and a mean delay of 4,000 is represented by a dotted
line (· · · ).
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of patients are still randomized to the better therapy when treatment variances are

equal compared to only 50% under a balanced design. Furthermore, even for a delay

of 4,000 in a trial with a total enrollment of 500, an additional 3% of patients are

assigned to the superior treatment under BBS than would be under equal allocation

for all three combinations of treatment variance.

4.4.2 Power and Type I Error

Tables 4.4 and 4.5 reflect the proportions and standard deviations of simulated trials

which reject the null hypothesis that the mean effect of treatment A is no larger

than that of treatment B under the BBS design and equal allocation (Equal). Each

table contains the rejection rates as the BBS design ranges from immediately ob-

served patient responses (Delay = 0) up to a delay of 4,000 as well as under equal

allocation with no delay in response. These rates are given for six distinct treatment

parameters—three combinations per table—and five different enrollment levels. The

first two columns of each table indicate the design (BBS or Equal) and delay (0–4,000)

parameters for the row. The remaining five columns are the mean (SD) proportion of

simulated trials which reject the null hypothesis over 1,000 repetitions of each clinical

trial size N = 50; 100; 500; 1,000; and 5,000. Each set of five rows (BBS with delay

0, 40, 400, and 4,000; Equal with no delay) is grouped by treatment parameters µA,

µB, σA, and σB.

For example, Table 4.4 details the simulated rejection rates when neither treat-

ment A nor treatment B have any impact (µA = µB = 0). That is, Table 4.4 relates

type I error rates for BBS and equal allocation. The first row of data represents BBS

type I error rates when responses are immediately observable (Delay = 0), there are

no differences in treatment effects, but σA = 0.5 while σB = 1.0. With a sample size
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of N = 50 or with N = 100, BBS incorrectly rejects 10% of trials with a standard

deviation of 0.29 or 0.30, respectively. With a sample size of N = 1,000, however,

BBS only rejects 6% of trials incorrectly with a standard deviation of 0.24.

On the other hand, Table 4.5 details the simulated rejection rates when treatment

A has a positive impact and treatment B has no impact (µA = 1, µB = 0). That is,

Table 4.5 reports the power for BBS and equal allocation designs. The first row of

Table 4.5 describes how the BBS with no delay correctly rejects 90% of trials with

a standard deviation of 0.30 for N = 50, 99% of trials with a standard deviation of

0.11 for N = 100, and 100% of trials with a standard deviation <0.005 for enrollment

levels of 500 or larger when σA = 0.5 and σB = 1.0.

Figure 4.7 illustrates the trends in type I error from Table4.4 across the five

simulated trial sizes for all three values of treatment A standard deviation when

µA = µB = 0. Rejection rates are represented by ∗ for the BBS design and by • for

equal allocation. In both designs, immediate responses (Delay = 0) are represented by

solid lines and for BBS increasing delay in outcomes are represented by increasingly

dashed lines.

As seen in Table 4.4 and Figure 4.7, rejection rates with no effect in either treat-

ment hover near 6% for both designs, all levels of delay, all trial enrollment sizes, and

all three values treatment A variance. Type I error rates tend to be inflated when

the total variance is small (σA = 0.5, σB = 1.0) and when the clinical trial size is

small to moderate (N ≤ 500). This is particularly true under the BBS design with

no delay: ten percent of trials incorrectly reject the null hypothesis following BBS

randomization with immediately observed patient outcomes for enrollment levels of

50 or 100 patients.

Figure 4.8 illustrates the trends in power from Table 4.5 across the five simulated

trial sizes for all three values of treatment A standard deviation when µA = 1, µB = 0.
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Figure 4.7: Proportion of trials which incorrectly reject the null hypothesis by design
when µA = µB = 0, σA varies, σB = 1, and N varies. Data points are grouped by
design; BBS is represented by ∗ and equal allocation by •. The time until a patient
responds to treatment is an exponentially distributed delay. As delay in treatment
observation increases, the line connecting delayed data points are increasingly dashed.
No delay is represented by a solid line (—) and a mean delay of 4,000 is represented
by a dotted line (· · · ).
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Figure 4.8: Proportion of trials which correctly reject the null hypothesis by design
when µA = 1, µB = 0, σA varies, σB = 1, and N varies. Data points are grouped by
design; BBS is represented by ∗ and equal allocation by •. The time until a patient
responds to treatment is an exponentially distributed delay. As delay in treatment
observation increases, the line connecting delayed data points are increasingly dashed.
No delay is represented by a solid line (—) and a mean delay of 4,000 is represented
by a dotted line (· · · ).
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Rejection rates are distinguished by design and delay parameter; ∗ for BBS and • for

equal allocation connected by increasingly dashed lines as response delay increases.

As seen in Table 4.5 and Figure 4.8, for a fixed difference in treatments (µA = 1,

µB = 0), rejection rates depend largely on clinical trial sample size and treatment

variance. Power is similar between the two designs, including at different levels of

delay, after accounting for N and σA. In fact, the rejection rate for all simulations

with enrollment size at least 500 is 100% with standard deviation <0.005 for both

BBS and Equal designs when treatment A has a positive effect and treatment B

has no effect, regardless of treatment variance values. Moreover, after adjusting for

treatment A variance, power within a clinical trial size differs by no more than 4%

across both designs at all levels of delay, with lower power in the smaller clinical trials.

Similarly, after adjusting for N , rejection rates at each level of treatment variance is

consistent across both designs at all levels of delay, with lower rejection rates as total

variance increases.

4.4.3 Delay

Both the BBS design and equal allocation initially randomize patients using a fixed

allocation ratio of 1
2
. For equal allocation, this randomization proportion continues

for the duration of the enrollment period. By contrast, the BBS design only retains

a constant assignment probability until an adequate number m of patient responses

are collected to inform an adaptive randomization probability. In particular, after ten

responses are received for each treatment arm, the BBS leverages these observations

to estimate a response-adaptive randomization probability, Φ
(
µ̂A−µ̂B

S

)
. Patients as-

signed to treatment using a response-adaptive randomization ratio are considered to

be adaptively randomized; patients assigned to treatment using the fixed allocation
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1
2

are not.

Table 4.6 describes the proportion of patients adaptively randomized under BBS

for all combinations of delay and trial enrollment size. The first two columns indicate

the design (BBS) and delay (0, 40, 400, and 4,000) parameters for the row. The re-

maining five columns are the mean (SD) proportion of patients adaptively randomized

over 1,000 repetitions of each clinical trial size N = 50, 100, 500, 1,000, and 5,000.

For example, the first row of data represents BBS adaptive randomization proportions

when responses are immediately observable (Delay = 0). With a trial enrollment of

N = 50, BBS randomizes 53% of patients adaptively with a standard deviation of

0.07 under conditions of no delay. With a sample size of N = 500, the proportion

rises to 95% with a standard deviation of 0.01. When N = 5,000, nearly 100% of pa-

tients are adaptively randomized and variation in this proportion is negligible. While

not shown, these values are the same across all treatment parameter values. That is,

the size of the treatment mean or variance may impact how a patient is adaptively

allocated, but has no influence on whether or not a patient is adaptively allocated.

Equal allocation is not included in Table 4.6 as no patients are adaptively randomized

under equal allocation regardless of trial parameters or treatment outcomes.

Figure 4.9 illustrates the trends in the proportion of patients adaptively random-

ized from Table 4.6 across the five simulated trial sizes. Adaptively randomized

patient proportions are represented by ∗ for the BBS design and by • for equal al-

location. In both designs, immediate responses (Delay = 0) are represented by solid

lines and for BBS increasing delay in outcomes are represented by increasingly dashed

lines.

As seen in Table 4.6 and Figure 4.9, the proportion of patients adaptively ran-

domized is consistently high for large trials. Clinical trials with 5,000 patients see

more than 90% of the patients adaptively randomized. Trials where N = 1,000 av-
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Figure 4.9: Proportion of patients adaptively randomized by design as N varies. Data
points are grouped by design; BBS is represented by ∗ and equal allocation by •. The
expected time until a patient responds to treatment is the exponentially distributed
Delay. As delay in treatment observation increases, the line connecting delayed data
points are increasingly dashed. No delay is represented by a solid line (—) and a
mean delay of 4,000 is represented by a dotted line (· · · ).
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erage at least 86% of patients adaptively randomized on the BBS design when delay

does not exceed the total number of patients. Moreover, a trial with 1,000 patients

still adaptively allocates more than half of its subjects when the expected time until

a response is observed exceeds the enrollment period by a factor of four (Delay =

4,000).

On the other hand, for small trials the proportion of adaptively randomized pa-

tients barely surpasses 50% for N = 50 and 75% for N = 100 without any delay in

observed outcomes. These rates are due to the requirement that at least 10 patients
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respond to each treatment prior to estimating an adaptive randomization probability.

When the expected response delay is equivalent to the time it takes 40 patients to

arrive, only 4% of 50 patients and 48% of 100 patients are adaptively randomized

by the BBS design. Increasing the mean delay to 400, simulations confirm that no

patients receive the benefit of an adaptive allocation for a small trial with relatively

large delay.

Similarly, if expected delays greatly surpass the trial enrollment period, moder-

ately sized trials will also lose their ability to adaptively randomize patients. For

example, when N = 500 and the anticipated delay is eight times the anticipated the

enrollment period, a trial may only adaptively randomize 14% of its participants—

approximately 70 patients. Doubling the trial size or equivalently halving the rela-

tionship between expected delay and trial enrollment length allows 56% of enrolled

subjects to be adaptively randomized for a clinical trial with 1,000 subjects. This

compares favorably to the aforementioned trial of size 100 with no adaptive expo-

sures for a similar delay to enrollment period relationship.

Figure 4.10 illustrates the nearly linear relationship between the proportion of pa-

tients adaptively randomized and the proportion of patients assigned to treatment A

when treatment A is superior to treatment B and both treatment standard deviations

equal one across all five simulated trial sizes. Equal allocation is excluded from this

scatter plot. Additional levels of delay are included in Figure 4.10. Although specific

delay values are not labeled, smaller delays correspond monotonically to increased

allocation proportions and larger percents of patients adaptively randomized. Delays

simulated and graphed include no delay, 1, 5, 10, 20, 40, 80, 400, 800, 4,000, and

8,000.

Figure 4.10 testifies to the strength of the relationship between a response-adaptive

randomization’s tendencies to expose patients to the better treatment and the pro-
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Figure 4.10: Proportion of patients assigned to treatment A based on the proportion
of patients adaptively randomized as N varies for µA = 1, µB = 0, and σA = σB = 1.
All data points represent the BBS design at varying levels of exponentially distributed
delay in treatment response. Delay values include immediate responses (0) as well as
average delay times 1, 5, 10, 20, 40, 80, 400, 800, 4,000, and 8,000.

N = 50 N = 100 N = 500 N = 1000 N = 5000

40
400

40

400

40

400

40

400

40
400

0.5

0.6

0.7

0.8

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Percent of Patients Adaptively Randomized

A
llo

ca
tio

n 
P

ro
po

rt
io

n

portion of enrolled patients who receive the adaptive randomization. Within each

clinical trial size, greater delays in observing patient outcomes correspond monoton-

ically to decreased allocation proportions. To illustrate, when N = 50, trials with no

response delay adaptively allocated 53% of patients with a total of 68% of patients

exposed to treatment A; trials with responses delayed by a mean rate of 20 addition-

ally enrolled patients were able to adaptively allocate 19% of patients with a total

of 55% of patients exposed to treatment A; and trials with responses delayed by a

mean rate of 40 additionally enrolled patients were only able to adaptively allocate
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3% of patients with a mere total of 51% of patients exposed to treatment A. All

higher levels of delay resulted in negligible response-adaptive randomizations and a

fixed equal allocation to both treatments.

Figure 4.10 also demonstrates the importance of trial enrollment size in this rela-

tionship. When a trial is unaffected by delayed responses, the larger the clinical trial,

the higher the proportion of adaptively randomized patients will be. Similarly, for

unaffected trials, higher the rates of exposure to the superior treatment correspond

to larger trial size, with rates increasing rapidly from small to moderate trials and

plateauing for large trials. Furthermore, for small enrollment populations, delays in

treatment outcomes quickly reduce the BBS ethical allocation towards a fixed, even

treatment split while, for large clinical trials, similar delays in treatment outcomes

have relatively minor impacts to the adaptive and ethical nature of the design.

4.5 Application

In the past 25 years, Human Immunodeficiency Virus (HIV) infected an estimated

80 million people, half of whom are believed to have died from HIV-related causes

[61, 26]. Newer medications such as antiretrovirals can help minimize viral transmis-

sion, extend life expectancies, and generally improve the quality of life of infected

individuals—provided patients practice an adequate level of adherence to their pre-

scribed therapy [13, 31]. Unfortunately, antiretroviral courses are associated with

frequent non-compliance due to the timing and complexity of the medications as well

as their side effects [13, 57]. Moreover, non-adherence may negatively impact the

individual and the larger population via development and transmission of treatment-

resistant viral strains. In a 2003 adherence intervention, [41] prospectively randomize

244 HIV patients on antiretroviral therapy to standard medication alone (treatment



176

M) or medication with additional educational and counseling therapy (treatment C).

The authors examine the intervention’s clinically and statistically significant effect on

HIV RNA suppression (in RNA copies/mL) as a continuous measure, conditioned on

baseline adherence as a prognostic factor (covariate Z).

Simulations in this section leverage findings from [41], including the underlying

adherence covariate parameters and an improved reduction in HIV RNA by 0.36

copies/mL when medication is supplemented with educational and counseling therapy

(µC − µM). In particular, baseline adherence is normally distributed throughout the

patient population with mean µZ = 0.60 and standard deviation σZ = 0.49. That is,

the baseline adherence covariate is Z ∼ N(0.60, 0.492). Adherence impacts individual

outcomes in both treatments, magnified by β = 1.11. Patients on standard medication

therapy have a normally distributed treatment effect of µM = 0.22 fewer HIV RNA

copies/mL with a standard deviation of σM = 0.54 copies/mL. Hence the average

medication-only outcome is a reduction in HIV RNA by YM ≈ µM + βµZ = 0.89

copies/mL. Patients on medication therapy coupled with educational and counseling

therapy have a treatment effect of µC = 0.58 fewer HIV RNA copies/mL with a

standard deviation of σC = 0.47 copies/mL, also normally distributed. Thus the

average supplemented therapy outcome is a reduction in HIV RNA by YC ≈ µC +

βµZ = 1.25 copies/mL. The one-sided null hypothesis (combination treatment is no

more effective than medication alone) is tested at significance α = 0.05. For each

scenario, 10,000 trials are simulated with 244 patients enrolled in each trial.

In [41], patients are assigned to treatment using a balanced design. As the ran-

domization is not adaptive, delay in patient responses does not impact the allocation

scheme. This is simulated via equal allocation. Simulations also consider how em-

ploying the BBS design might impact a clinical trial under similar conditions. For

the BBS design, both patient enrollment (inter-arrival times) and patient outcomes
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(response delay) are modeled via independent exponentially distributed random vari-

ables as described in Section 4.3.3. Patients are sequentially available for enrollment,

arriving at an average rate of one person per unit of time. Patients respond at ex-

ponentially distributed times post-enrollment. In between a patient’s enlistment and

that same patient’s response, 0, 61, 122, 183, or 244 additional patients would be

expected to enroll in the clinical trial, based on the amount of delay incorporated in

the specific simulation. Since the original trial’s enrollment period is three months

with expected response at six months, a delay of 488 is also simulated. All treated pa-

tient prognostic factors are considered, regardless of treatment outcome availability,

for response-adaptive randomization estimates during the trial enrollment period.

Table 4.7 records patient assignment, power, and adaptive randomization for each

combination of design and response delay over 10,000 simulated clinical trials. The

first two columns indicate the design (BBS or Equal) and average delay (0, 61, 122,

183, 244, or 488) for the represented data. The next two columns contain the mean

and standard deviation of the proportion of simulated patients assigned to the supe-

rior treatment C (medication supplemented with educational and counseling sessions)

from a total enrollment of 244. The three subsequent columns represent the average

number of simulated patients assigned to arm C (NC), the average number of addi-

tional simulated patients assigned to the superior treatment than were assigned under

equal allocation, and the average percent of additional simulated patients assigned to

the superior arm for that row versus for equal allocation. The following two columns

catalogue the mean proportion and proportion standard deviation of simulated trials

which correctly reject the null hypothesis to conclude that educational and counseling

therapy coupled with medication provide a greater reduction in HIV RNA copies/mL

than does medication alone. The final two columns describe the average percent and

standard deviation of simulated patients that were adaptively randomized during a
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trial’s enrollment period. This includes all patients who arrive after at least ten

previously enrolled patients respond on each treatment arm.

For example, the first row of data represents BBS patient allocation when re-

sponses are immediately observable (Delay = 0). BBS randomizes 75% of simulated

patients to medication supplemented with educational and counseling sessions with a

standard deviation of 0.10. That means 182 patients would have received the superior

treatment under BBS with no delay—60 more patients or an increase in 49% com-

pared to the number of patients who would have received treatment C under equal

allocation. Moreover, 95% of simulated BBS trials with no delay correctly reject the

null hypothesis with a standard deviation of 0.21. Finally, 90% of simulated enrolling

patients are randomized based on an estimated BBS adaptive randomization prob-

ability. By contrast, in the last row of data, equal allocation assigns only 50% of

244 simulated participants to the superior treatment. Hence only 122 patients would

have received education and counseling sessions with no exposure benefits to leverag-

ing this design. The point estimate of the simulated power of equal allocation is only

slightly higher than that of the BBS designs at a 97% rejection rate and the stan-

dard deviation is also similar to but less than BBS at 0.18. No patients would have

been randomized adaptively, regardless of whether or not responses were available to

inform treatment mean and standard deviation estimates.

Figure 4.11 illustrates the trends in patient assignment from Table 4.7 across the

six BBS delay values as well as equal allocation. Allocation means are represented

by ∗ for the BBS design and by • for equal allocation. In both designs, immediate

responses (Delay = 0) are represented by solid lines and for BBS increasing delay in

outcomes are represented by increasingly dashed lines.

As seen in Table 4.7 and Figure 4.11, ethical patient allocation improves on the

BBS design compared to balanced assignment. When delay is nonexistent, 75% of
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Figure 4.11: Allocation proportions for HIV antiretroviral therapy adherence inter-
vention by randomization design through 10,000 simulated trials. BBS allocation is
represented by ∗ and equal allocation by •. The points (bars) represent the pro-
portion (standard deviation) of 244 patients assigned to the more effective combined
therapy C of medication, education, and counseling versus the less effective treatment
M of medication alone. The difference in treatment effects (µC − µM) is 0.36 HIV
RNA copies/mL. The time until a patient responds to treatment is an exponentially
distributed delay. As response delay increases, associated error bars are increasingly
dashed. No delay is represented by a solid line (—) and a mean delay of 488 is
represented by a dotted line (· · · ).
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Figure 4.12: Power of HIV antiretroviral therapy adherence intervention by random-
ization design through 10,000 simulated trials. BBS allocation is represented by ∗
and equal allocation by •. The point (bars) represent the proportion (standard de-
viation) of simulated antiretroviral therapy clinical trials which correctly reject the
null hypothesis and conclude that an education and counseling intervention C in con-
duction with medication is more effective than medication treatment M alone. The
difference in treatment effects (µC−µM) is 0.36 HIV RNA copies/mL. The time until
a patient responds to treatment is an exponentially distributed delay. As response
delay increases, associated error bars are increasingly dashed. No delay is represented
by a solid line (—) and a mean delay of 488 is represented by a dotted line (· · · ).
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patients in the trial are exposed to the superior treatment versus 50% on equal alloca-

tion. Even when the average response delay is equal to twice the enrollment period,

57% of patients still benefit from superior treatment assignment. In this case, 7%

or 18 more patients are randomized to the better treatment with BBS than with

equal allocation. Assignment variation, however, increases on the response-adaptive

randomization scheme. The standard deviation of assignment proportions run from

0.10 to 0.12 for BBS but is a mere 0.03 for the nonadaptive equal allocation.

Figure 4.12 illustrates the trends in power from Table 4.7 across the six BBS

delay values as well as equal allocation. Rejection rates are distinguished by design

and delay parameter; ∗ for BBS and • for equal allocation with increasingly dashed

lines as response delay increases. As seen in Table 4.7 and Figure 4.12, the mean

proportion of clinical trials rejected differs by a mere 2% across all six scenarios.

Moreover, the standard deviation of trials is also consistent at 0.21 in all but two of

the BBS simulations and at 0.18 for equal allocation.

4.6 Discussion

4.6.1 Ethical Patient Allocation

Previous chapter results suggest the BBS design be considered as a viable alternative

to equal allocation assuming all outcomes are immediately observable. This chapter

investigates the impact to the design when treatment outcomes are not immediately

observable. In particular, Sections 4.4.1 and 4.5 simulate the dampening effect delays

in patient responses can have on the ethical nature of the BBS patient assignment.

In small trials (N = 50), an average delay in patient responses equal to 80%

of the expected enrollment period essentially eliminates any benefit that could be
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derived from using the BBS design. This is not surprising since only 4% of patients (8

individuals) were adaptively randomized in these scenarios. In a small trial, because at

least 20 individuals must respond to treatment before the randomization proportions

can deviate from 1
2
, an adequate number of responses are only available near the end

of a trial.

For moderate sized trials, an 80% delay can still allocate an additional 20% of

patients to the superior treatment. For example, in simulations with N = 500 and

mean delay equal to 80% of the trial enrollment window, at least 10 responses are

collected on each treatment arm after only 30% of patients have been randomized.

In this case, approximately 70% of patients are exposed to the superior therapy.

Moreover, for moderate trials, even when the expected delay exceeds the treatment

window, simulations show that patients benefit from the adapted ratios based on the

responses received. For example, with a 1,000 patient enrollment and a delay four

times that of the enrollment window, half of the patients in a clinical trial may be

adaptively randomized and, in fact, an additional 15% of patients can receive the

better treatment compared to a similar cohort under equal allocation.

For large enough samples, treatment variance has a greater impact on patient

assignment than delay in patient responses, provided an adequate proportion of pa-

tients are adaptively randomized. In particular, for large Phase III trials (N = 5,000

patients), exposure to the superior arm may increase by 10% as σA decreases by 0.5.

Within a fixed level of σA, however, a moderate delay only decreases the proportion

of ethical assignments by a few percentage points. When treatments are identical,

the impact of delay on patient allocation is negligible at all trial size and variance

combinations.

The simulation results presented in Sections 4.4.1 and 4.5 substantiate that the

BBS design will assign more patents to the better treatment when a treatment dif-
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ference exists, provided an adequate number of patient outcomes become available

during the trial enrollment period. In the adaptive version of the small HIV inter-

vention simulated, between 18 and 45 additional patients would receive the improved

intervention even with delayed response. That is, the equal allocation clinical trial

could expose at least 7% and up to 19% of the 244 enrollees to a better therapy by

leveraging BBS randomization, even with significant delays in observed outcomes.

The more patients left in the enrollment period after the design begins adaptively

randomizing, the higher the proportion of ethically allocated patients could be. Re-

searchers must weigh the benefits of improved patient exposure to treatment against

the additional complication of implementing an adaptive randomization schema and

the increased risk of a type I error.

4.6.2 Rejection Rates

Previous chapters determine that the BBS design maintains power levels relatively

well compared to equal allocation; however, the variance in BBS rejection rates in-

crease slightly versus equal allocation. Moreover, type I error rates also risk inflation,

particularly for small trial sizes. This chapter considers the impact to the design’s

power and type I error rates when delayed patient responses are introduced to the

design.

Simulations presented in Sections 4.4.2 and 4.5 further testify that for moderate

to large clinical trials, the BBS design can sustain power levels similar to that of equal

allocation. Redesigning the [41] clinical trial to leverage BBS, the power to detect

the observed difference decreases by only 1% to 2% compared to equal allocation

with standard deviation increase of 0.02 to 0.03. In general, the larger the delay in

treatment response, the less adaptive the BBS randomization scheme is and the more
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this design behaves like equal allocation. Power levels appear to rise as expected

response delays increase. For smaller enrollment sizes, the power of the BBS design

can drop slightly compared to equal allocation; however, with delayed observations

BBS trial power can match and even exceed that of equal allocation. Likewise, type I

error rates can be inflated by an additional four percent above equal allocation for the

BBS design employed in smaller trials when outcomes are immediately available. This

augmented risk also diminishes when responses are delayed and the design adaptivity

decreases.

The BBS design can maintain relatively high power to detect a difference while

simultaneously exposing more patients to the superior treatment. These qualities

are desirable in an allocation algorithm for optimizing patient care while maintaining

randomization in a controlled clinical trial. These trade-offs must be considered when

selecting a randomization scheme, especially in the case of medical research.

4.6.3 Delay Dampening

Both Chapter 2 and 3 ignore the potential impact of delay by only considering simu-

lations and situations where patient outcomes are immediately observable. Unfortu-

nately, in many areas of medicine patients respond to treatment only after a period of

time has passed from the initial therapy or exposure. Section 4.2.3 touches on three

areas where delayed responses are prevalent, but the appearance of delayed outcomes

in clinical trials is vast [7, 11, 28]. This chapter considers the impact to the properties

of a clinical trial leveraging BBS when delayed patient responses are introduced to

the design.

Section 4.6.1 summarizes the relationship between the response-adaptive random-

ization of the BBS design and the expected delay in observing treatment responses.
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The adaptive nature of small trials is already constrained by the initial number of

patients needed to estimate an adaptive assignment probability. Delayed responses

further exacerbate this situation. Even delays which are modest relative to total en-

rollment can overwhelm a trial’s ability to adaptively assign patients. Nevertheless,

for moderately sized Phase III clinical trials, the ethical nature of the adaptive assign-

ment endure except when the expected delay drastically exceeded the total enrollment

period (for example, by a factor of 8).

In scenarios with extended periods of time elapsing before patient responses can

be recorded, researchers may look to shorten this delay even for nonadaptive medical

trials. Common approaches to circumvent this issue involve censoring data after a

certain period, dichotomizing outcomes, and leveraging surrogate measures or alter-

native biomarkers [18, 22, 63]. While none of these solutions are simulated, two of

these options may be suitable for the BBS design.

First, instead of waiting until a patient’s full response is available, it may be

possible to include a patient’s response at a pre-specified time. For example, instead

of waiting for a six month reading of a particular outcome, researchers may instead

leverage the patient’s progress of this measure at month three to help estimate the

adaptive allocation proportion in the interim three months until the true response is

ready. At month six, when the final patient endpoint becomes available, that value

may replace the three month indicator in the randomization probability estimates, if

patient enrollment is still ongoing.

Inclusion of the three-month measure could allow the redesigned trial in Section

4.5 to benefit from allocation levels similar to the BBS design with delay of 244

(equal to the three month enrollment period) rather than the delay of 488 (equivalent

to the six month observed endpoint). That is, 5% of patients could be assigned to

the superior treatment in addition to the 7% already benefiting from the BBS design
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with a six month delay. Up to 29 people would be exposed to the better therapy

above and beyond an equal allocation randomization.

If the three month observation is expected to differ drastically from the six month

outcome—as may be the case in situations where a six month outcome is determined

to be the earliest acceptable final indicator, then interim observations may skew the

assignment probabilities away from the desired allocation ratio. The skewed propor-

tion, however, would still be more ethical than balanced randomization provided that

the skewed ratio falls between 0.5 and the true ratio. Simulations and a thorough

understanding of the endpoint evolution over time are important factors in selecting

an earlier estimate.

Second, instead of employing the true treatment outcome for the response-adaptive

randomization probability, an alternative indicator for the outcome could be utilized

instead. For instance, if the final outcome of interest is the time until an event

occurs, a surrogate measure might be a predictive biomarker correlated with the fu-

ture occurrence of an event. Of course, the alternative indicator is unlikely to be

a perfect predictor. Moreover, the typical biomarker might be otherwise unsuitable:

dichotomous or with known large variance. In fact, the reasons keeping the predictive

indicator from being the final endpoint could also preclude its use in informing allo-

cation proportions. As with many clinical trial choices, a substitution of this nature

must be carefully considered.

Section 4.6.2 highlights how the BBS design’s ability to preserve rejection rates

relative to equal allocation is actually improved when delay is incorporated into a

clinical trial. While the trend manifesting in Section 4.5 is more reminiscent of noise

than of convergence to equal allocation, the power levels simulated in Section 4.4.2

are indeed increasing as delay increases. Furthermore, the impact of delay on both

general simulations and a redesigned clinical trial via decreasingly ethical allocation
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rates is unambiguous. When a response-adaptive randomization such as the BBS is

able to maintain adequate levels of power, such a design should be considered in lieu

of equal allocation. The risks associated with response-adaptive randomization and

delayed responses must be balanced against the benefits to the medical community

and to the individual patients involved in a study when selecting a study design.

4.6.4 Recommendations

As discussed in Chapters 2 and 3, the primary goal of many Phase III clinical trials is

to determine the best care for future patients from a pair or group of similar therapies.

The “gold standard” for such research includes assigning patients to treatments in

equal proportions for the duration of the experiment, ignoring accumulating evidence

about each treatment’s effectiveness [10, 21, 36]. The importance of the individuals

being treated clashes with this historically prevalent ideal [45, 46, 58]. Within a

clinical trial such as [41], exposure to the superior treatment can be life changing.

Balanced randomization studies bear the opportunity cost of introducing more of the

population to the better therapy.

Through detailed simulations, the benefits and risks of the BBS design are clear.

This response-adaptive randomization scheme leverages data garnered during a study

to expose more patients to the better treatment arm throughout the course of the trial,

rather than waiting for the trial conclusion. When the difference in treatment mean

effects are large relative to treatment variance, the ethical gains can be substantial.

There are three main downsides to utilizing BBS within a clinical trial. First and

foremost, the patient assignment—while more ethical than equal allocation—has a

higher variability than a nonadaptive randomization scheme. Second, the type I

error rates can be inflated compared to the rates of incorrectly rejecting the null
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hypothesis when employing equal allocation. This is particularly true for small trials

and is mitigated for moderate to large enrollment levels (N ≥ 500). The absolute

increased risk is a few percentage points and, moreover, may not be clinically relevant

as discussed in Chapter 2. Third, the power of the BBS design can be marginally

less than the rates of correct rejection of the null hypothesis under equal allocation.

Again, the impact is particularly prevalent in smaller sized studies.

The BBS design applies to situations where there are two competing treatments

with continuous outcomes and researchers would prefer a more ethical patient assign-

ment than equal allocation. To employ BBS randomization, the primary indication

of a treatment’s superiority should be the treatment mean effect, net of covariate

impacts. Previous chapters demonstrate the design’s relevance and ethicality when

treatment variances are unknown or unequal as well as when covariate impacts dif-

fer by treatment—provided the covariate-treatment interaction does not contradict

the primary indicator of treatment superiority. This chapter confirms that delays in

patient responses are easily incorporated into the response-adaptive design. Further-

more, this chapter concludes that BBS is more ethical than equal allocation when

delay in outcomes are modest relative to the enrollment period. When delays are ex-

tensive such that no patients are adaptively assigned throughout the trial enrollment,

the BBS design is equivalent to equal allocation.

Redesigning a clinical trial to decrease HIV viral loads with only 244 patients and

large delays in response, the BBS design would expose an extra 7% of patients to the

better treatment with a mere 1% reduction in power versus the original balanced as-

signment. The potential benefit of the BBS design in treating patients during a trial

is clear. Nevertheless, in any situation where adaptive randomization is being consid-

ered, the benefit of ethical patient exposure must be weighed against the increased

complications of implementing an adaptive design. Simulations to increase researcher
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understanding should included anticipated treatment parameters, trial design factors

such as sample size and enrollment length, and delays to patient responses.
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4.7 Appendix

Table 4.1: Representation of arrival and response times for a clinical trial with N = 50
patients with expected inter-arrival time of 1 unit of time and an expected delay
of 40 units of time. Patient inter-arrival times are independently and identically
distributed exp(1). Patients are assumed to be randomized and treated immediately
upon arrival. The arrival, randomization, and treatment of the first patient is time
zero. Patient response delays are independently and identically distributed exp(40).
A patient’s response time depends only on the time of that patient’s randomization
(treatment exposure) and the delay in that patient’s response. In this scenario patient
3 would be the 20th patient to respond to treatment at 44.2 units of time. All patients
assigned after m = 10 responses have been observed on each treatment arm would be
adaptively randomized under the BBS design.

Patient
Inter-arrival Randomization Response Response Response

Time Time Delay Time Order

1 — 0.0 30.9 30.9 11
2 0.1 0.1 33.9 34.0 14
3 3.8 3.9 40.3 44.2 201

4 2.6 6.5 8.0 14.5 2
5 0.2 6.7 24.1 30.8 10

6 1.0 7.6 46.7 54.3 28
7 0.6 8.2 7.5 15.7 3
8 1.7 10.0 18.8 28.8 8
9 0.7 10.7 51.6 62.3 32
10 0.6 11.3 24.0 35.3 18

11 0.5 11.8 8.1 20.0 4
12 0.1 11.9 10.7 22.6 6
13 0.7 12.6 22.0 34.7 17
14 0.1 12.7 111.4 124.1 44
15 0.6 13.3 9.9 23.2 7

16 0.4 13.7 0.3 14.0 1
17 0.4 14.1 21.4 35.5 19
18 2.0 16.1 18.3 34.3 15
19 0.3 16.4 15.8 32.2 13
20 2.4 18.8 45.9 64.7 33

Continued on next page

1Patient 3 is the 20th patient to respond and response occurs at 44.2 time units into the trial.
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Table 4.1 Second header – Cont.

Patient
Inter-arrival Randomization Response Response Response

Time Time Delay Time Order

21 0.5 19.2 2.6 21.9 5
22 2.2 21.5 9.9 31.4 12
23 0.6 22.0 132.1 154.2 48
24 1.2 23.2 11.2 34.4 16
25 0.8 24.1 55.2 79.3 36

26 1.3 25.3 65.9 91.2 40
27 0.5 25.8 24.4 50.2 25
28 0.2 26.0 61.9 87.9 39
29 1.1 27.1 152.0 179.1 50
30 0.1 27.1 24.7 51.9 26

31 0.1 27.2 2.8 30.0 9
32 0.2 27.4 28.0 55.5 30
33 1.7 29.2 136.6 165.8 49
34 1.7 30.9 43.4 74.3 34
35 0.6 31.5 23.7 55.2 29

36 0.0 31.6 55.2 86.8 37
37 1.0 32.6 16.0 48.6 24
38 0.9 33.5 114.1 147.7 47
39 0.8 34.4 44.5 78.9 35
40 1.5 35.8 51.4 87.2 38

41 2.8 38.7 63.7 102.4 42
42 0.7 39.4 100.8 140.2 46
43 1.3 40.6 86.7 127.4 45
44 1.3 42.0 3.5 45.5 21
45 0.8 42.8 16.8 59.6 31

46 1.2 44.0 8.2 52.2 27
472 2.0 46.0 1.3 47.3 23
48 0.4 46.4 45.1 91.4 41
49 0.1 46.5 0.6 47.1 22
50 2.2 48.7 59.7 108.4 43

2Patients 47 – 50 would all be randomized after 20 patients had responded to treatment. As-
suming m = 10 observations had been collected from each trial arm, the BBS design would allocate
these remaining four patients to treatment using an adaptive assignment proportion.
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Table 4.2: Proportion (SD) of patients assigned to Treatment A under BBS and
equal allocation (Equal) with µA = µB = 0. Randomization design and response
delay are given in the two leftmost columns. Allocation proportion and standard
deviation across 1,000 simulations of trial size N given in remaining five columns for
each standard deviation combination simulated.

Design Delay N = 50 N = 100 N = 500 N = 1,000 N = 5,000

µA = 0, µB = 0, σA = 0.5, σB = 1.0

BBS

0 0.51 (0.12) 0.52 (0.13) 0.52 (0.09) 0.51 (0.07) 0.51 (0.04)

40 0.50 (0.07) 0.50 (0.13) 0.51 (0.09) 0.51 (0.06) 0.50 (0.03)

400 0.50 (0.07) 0.50 (0.05) 0.52 (0.15) 0.51 (0.12) 0.51 (0.04)

4000 0.50 (0.07) 0.50 (0.05) 0.50 (0.06) 0.51 (0.16) 0.51 (0.10)

Equal 0 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)

µA = 0, µB = 0, σA = 1.0, σB = 1.0

BBS

0 0.50 (0.12) 0.50 (0.13) 0.50 (0.07) 0.50 (0.05) 0.50 (0.02)

40 0.50 (0.07) 0.51 (0.12) 0.50 (0.08) 0.50 (0.06) 0.50 (0.02)

400 0.50 (0.07) 0.50 (0.05) 0.50 (0.14) 0.50 (0.11) 0.50 (0.03)

4000 0.50 (0.07) 0.50 (0.05) 0.50 (0.06) 0.50 (0.15) 0.50 (0.09)

Equal 0 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)

µA = 0, µB = 0, σA = 1.5, σB = 1.0

BBS

0 0.49 (0.13) 0.49 (0.13) 0.49 (0.08) 0.50 (0.05) 0.50 (0.03)

40 0.50 (0.07) 0.50 (0.12) 0.50 (0.08) 0.50 (0.06) 0.50 (0.02)

400 0.50 (0.07) 0.50 (0.05) 0.49 (0.12) 0.49 (0.09) 0.50 (0.03)

4000 0.50 (0.07) 0.50 (0.05) 0.50 (0.06) 0.49 (0.14) 0.50 (0.07)

Equal 0 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
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Table 4.3: Proportion (SD) of patients assigned to Treatment A under BBS and equal
allocation (Equal) with µA = 1 and µB = 0. Randomization design and response
delay are given in the two leftmost columns. Allocation proportion and standard
deviation across 1,000 simulations of trial size N given in remaining five columns for
each standard deviation combination simulated.

Design Delay N = 50 N = 100 N = 500 N = 1,000 N = 5,000

µA = 1, µB = 0, σA = 0.5, σB = 1.0

BBS

0 0.70 (0.09) 0.83 (0.07) 0.93 (0.05) 0.95 (0.04) 0.97 (0.02)

40 0.51 (0.08) 0.66 (0.09) 0.87 (0.05) 0.92 (0.04) 0.96 (0.02)

400 0.50 (0.07) 0.50 (0.05) 0.75 (0.10) 0.83 (0.07) 0.93 (0.03)

4000 0.50 (0.07) 0.50 (0.05) 0.53 (0.06) 0.67 (0.11) 0.87 (0.06)

Equal 0 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)

µA = 1, µB = 0, σA = 1.0, σB = 1.0

BBS

0 0.68 (0.09) 0.76 (0.09) 0.83 (0.06) 0.84 (0.04) 0.84 (0.02)

40 0.51 (0.07) 0.65 (0.10) 0.81 (0.06) 0.82 (0.04) 0.84 (0.02)

400 0.50 (0.07) 0.50 (0.05) 0.72 (0.10) 0.79 (0.07) 0.83 (0.02)

4000 0.50 (0.07) 0.50 (0.05) 0.53 (0.06) 0.66 (0.11) 0.81 (0.06)

Equal 0 0.49 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)

µA = 1, µB = 0, σA = 1.5, σB = 1.0

BBS

0 0.64 (0.10) 0.70 (0.09) 0.75 (0.05) 0.76 (0.04) 0.76 (0.02)

40 0.51 (0.07) 0.62 (0.10) 0.74 (0.05) 0.75 (0.04) 0.76 (0.02)

400 0.50 (0.07) 0.50 (0.05) 0.69 (0.10) 0.73 (0.06) 0.76 (0.02)

4000 0.50 (0.07) 0.50 (0.05) 0.53 (0.05) 0.64 (0.11) 0.75 (0.05)

Equal 0 0.50 (0.07) 0.50 (0.05) 0.50 (0.02) 0.50 (0.02) 0.50 (0.01)
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Table 4.4: Proportion (SD) of trials where the null hypothesis is incorrectly rejected
under BBS and equal allocation (Equal) with µA = µB = 0. Randomization design
and response delay are given in the two leftmost columns. Rejection rate and standard
deviation across 1,000 simulations of trial size N given in remaining five columns for
each standard deviation combination simulated.

Design Delay N = 50 N = 100 N = 500 N = 1,000 N = 5,000

µA = 0, µB = 0, σA = 0.5, σB = 1.0

BBS

0 0.10 (0.29) 0.10 (0.30) 0.09 (0.29) 0.06 (0.24) 0.07 (0.25)

40 0.07 (0.25) 0.08 (0.27) 0.07 (0.26) 0.06 (0.24) 0.06 (0.24)

400 0.07 (0.25) 0.06 (0.24) 0.08 (0.27) 0.08 (0.27) 0.07 (0.26)

4000 0.08 (0.27) 0.05 (0.22) 0.07 (0.26) 0.07 (0.25) 0.07 (0.26)

Equal 0 0.06 (0.24) 0.07 (0.26) 0.07 (0.25) 0.05 (0.21) 0.06 (0.24)

µA = 0, µB = 0, σA = 1.0, σB = 1.0

BBS

0 0.07 (0.26) 0.06 (0.23) 0.06 (0.24) 0.05 (0.23) 0.05 (0.22)

40 0.05 (0.22) 0.07 (0.25) 0.06 (0.24) 0.06 (0.23) 0.05 (0.22)

400 0.07 (0.25) 0.07 (0.25) 0.06 (0.23) 0.06 (0.23) 0.07 (0.25)

4000 0.08 (0.26) 0.06 (0.24) 0.05 (0.22) 0.06 (0.23) 0.05 (0.23)

Equal 0 0.07 (0.25) 0.06 (0.24) 0.05 (0.22) 0.06 (0.24) 0.04 (0.20)

µA = 0, µB = 0, σA = 1.5, σB = 1.0

BBS

0 0.06 (0.23) 0.06 (0.23) 0.05 (0.22) 0.05 (0.22) 0.05 (0.21)

40 0.07 (0.25) 0.05 (0.23) 0.05 (0.22) 0.06 (0.23) 0.06 (0.23)

400 0.06 (0.24) 0.06 (0.23) 0.05 (0.22) 0.05 (0.22) 0.05 (0.22)

4000 0.07 (0.25) 0.07 (0.25) 0.06 (0.23) 0.07 (0.25) 0.06 (0.24)

Equal 0 0.06 (0.24) 0.07 (0.25) 0.05 (0.21) 0.04 (0.19) 0.05 (0.22)
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Table 4.5: Proportion (SD) of trials where the null hypothesis is correctly rejected
under BBS and equal allocation (Equal) with µA = 1 and µB = 0. Randomization
design and response delay are given in the two leftmost columns. Rejection rate and
standard deviation across 1,000 simulations of trial size N given in remaining five
columns for each standard deviation combination simulated.

Design Delay N = 50 N = 100 N = 500 N = 1,000 N = 5,000

µA = 1, µB = 0, σA = 0.5, σB = 1.0

BBS

0 0.90 (0.30) 0.99 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

40 0.93 (0.25) 0.99 (0.08) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

400 0.93 (0.25) 1.00 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

4000 0.93 (0.25) 1.00 (0.07) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Equal 0 0.92 (0.27) 1.00 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

µA = 1, µB = 0, σA = 1.0, σB = 1.0

BBS

0 0.76 (0.43) 0.96 (0.19) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

40 0.79 (0.41) 0.96 (0.19) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

400 0.78 (0.41) 0.96 (0.19) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

4000 0.78 (0.42) 0.97 (0.18) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Equal 0 0.77 (0.42) 0.96 (0.19) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

µA = 1, µB = 0, σA = 1.5, σB = 1.0

BBS

0 0.63 (0.48) 0.88 (0.33) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

40 0.63 (0.48) 0.87 (0.34) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

400 0.62 (0.49) 0.85 (0.36) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

4000 0.63 (0.48) 0.88 (0.32) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Equal 0 0.64 (0.48) 0.87 (0.34) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
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Table 4.6: Proportion (SD) of patients adaptively randomized under BBS. Random-
ization design and response delay are given in the two leftmost columns. The pro-
portion and standard deviation of patients adaptively randomized across 1,000 simu-
lations of trial size N given in remaining five columns.

Design Delay N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS

0 0.53 (0.07) 0.76 (0.03) 0.95 (0.01) 0.98 (0.00) 1.00 (0.00)

40 0.04 (0.06) 0.48 (0.07) 0.89 (0.01) 0.95 (0.01) 0.99 (0.00)

400 0.00 (0.00) 0.00 (0.00) 0.71 (0.04) 0.86 (0.02) 0.97 (0.00)

4000 0.00 (0.00) 0.00 (0.00) 0.14 (0.10) 0.56 (0.05) 0.91 (0.01)

Table 4.7: HIV adherence intervention summary characteristics by randomization
design and response delay over 10,000 simulated trials. PC (SD) is the proportion
(standard deviation) of patients assigned to the superior treatment of combined med-
ication, education, and counseling (C). NC is the number of patients assigned to
treatment C. # is the number of additional patients randomized to the superior
treatment via the current design compared to equal allocation assignment (Equal).
% is the percent of additional patients assigned to the superior treatment under the
current design versus randomization under equal allocation. Power (SD) is the pro-
portion (standard deviation) of trials which correctly reject the null hypothesis that
the addition of education and counseling does not improve the reduction in HIV RNA
copies/mL over medication alone. AR (SD) is the proportion (standard deviation) of
patients which were adaptively randomized within a trial.

Design Delay PC (SD) NC # % Power (SD) AR (SD)

BBS

0 0.75 (0.10) 182 60 49% 0.95 (0.21) 0.90 (0.01)

61 0.69 (0.10) 167 45 37% 0.96 (0.20) 0.74 (0.03)

122 0.66 (0.11) 160 38 31% 0.96 (0.21) 0.66 (0.05)

183 0.64 (0.12) 155 33 27% 0.95 (0.21) 0.59 (0.06)

244 0.62 (0.12) 151 29 24% 0.95 (0.21) 0.53 (0.06)

488 0.57 (0.10) 140 18 15% 0.96 (0.20) 0.35 (0.08)

Equal 0 0.50 (0.03) 122 0 0% 0.97 (0.18) 0.00 (0.00)
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Chapter 5

Conclusions

5.1 Discussion

Response-adaptive randomization (RAR) is a growing class of clinical trial designs

which leverage accumulating information from patients—in particular treatment out-

comes—to alter the study’s allocation probabilities throughout the trial in a prospec-

tively planned manner [4, 18, 32, 36]. Typically, RAR designs’ adaptivity focus on

ethical aspirations such as minimizing treatment failures or maximizing exposures to

the superior treatment [7, 17, 22, 31, 34]. These aims are important in medicine as

researchers and clinicians attempt to provide each individual with the best available

care. The difficulty with these intentions is exactly what necessitates an experiment

in the first place: the lack of knowledge and/or agreement about which therapy is

“best.” This new breed of design continues to emphasize the practical importance

of randomization while equipoise prevails, but insists on biasing the exposure proba-

bilities as knowledge accrues. Hence RAR attempts to strike a compromise between

the population need (determining the most appropriate treatment for the community

benefit) and the personal obligation (providing the best treatment to each patient)
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[5, 6, 16, 30, 37].

This dissertation proposes a new RAR biased coin design, the BBS design, in-

tended to help phase III clinical trials assign more patients to the treatment with

larger mean effect. While many RAR designs apply in cases where the outcome of

interest is binary, fewer designs exist to modify studies with continuous outcomes [8,

9, 17, 31, 39]. The BBS design discussed in these papers pertains to treatments with

continuous responses and furthermore allows for treatment outcomes to be impacted

by patient covariates. Chapter 2 presents the BBS design, contrasting the newcomer

with its predecessor and with equal allocation. In this chapter, simulations demon-

strate that BBS allocates more patients to the superior treatment while mitigating

the loss of power and increased bias inherent in many adaptive designs. Chapter 2

examines the expanded applicability of the BBS, illustrating the design’s robustness

to relaxing the assumption of known, equal variances. The utility and benefits of the

BBS are illustrated through application to an HIV treatment adherence intervention,

exposing more patients to the superior therapy than equal allocation. Chapter 3 fur-

ther broadens the scope of the BBS design via simulation, confirming its applicability

and ethicality when covariate-treatment interactions are present. Once again, an in-

creased number of patients receive the more effective intervention in a redesigned HIV

clinical trial even as covariate impacts on observed outcomes vary across treatments.

In Chapter 4, simulations explore the impact of delayed treatment responses on the

BBS design’s ability to adaptively and ethically allocate patients. BBS randomization

proves more ethical than equal allocation whenever a minimum threshold of observa-

tions occur prior to the end of the enrollment period. For the HIV intervention study

where patient responses typically lag initial treatment by several months, BBS still

assigned more than half of the recruited population to the more effective treatment

arm.
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In practice, implementing an adaptive design can be challenging [12, 14, 15, 33,

38]. In addition to the concerns associated with a nonadaptive clinical trial, there

are three major components which should be carefully considered for RAR designs.

The first factor gets at the heart of RAR: how ethical the patient allocation will

be under the anticipated range of treatment parameters. The second aspect focuses

on the preservation of the statistical properties of the trial as it undergoes RAR,

namely power and type I error rates. The third facet is the potential impacts of

delayed treatment responses on the design’s abilities to adapt. For the BBS design,

the overarching implications of these three concerns and the results from Chapters 2

through 4 are discussed below. Section 5.1.4 gives a brief treatment of the available

asymptotic research as it applies to the BBS design. This dissertation concludes with

recommendations based on the above findings as well as direction for future research.

5.1.1 Ethical Patient Allocation

Response-adaptive randomization designs depend on available outcomes to modify the

randomization proportions in order to better allocate future subjects. If responses are

scarce, an adaptive design may not have enough data to inform its assignment proba-

bilities. In the case when information is scant or unreliable, an adaptive design—like

the researchers of a trial—should not prefer one treatment assignment over another

[11, 12, 26, 27]. As responses accrue, however, RAR designs can allocate patients to

treatment in a more ethical manner. For example, the BBS design adapts to accu-

mulating information by putting more patients on the treatment which is performing

better, relative to the variability in patient responses.

Chapter 2 establishes that when treatment effects differ, the BBS design assigns

more patients to the trial arm with larger treatment mean. Moreover, BBS does so in
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similar or larger proportions than its predecessor, depending on the scaling parameter

of the original design. A slight tradeoff is noted: as the expected number of patients

exposed to the superior treatment rises, so does the allocation variance. This variance

decreases as the trial enrollment size increases. Simulations show that the BBS design

randomizes an additional 1–6% of patients to the superior treatment compared to

equal allocation when the difference in treatment means is approximately one-tenth

of the pooled standard deviation; an extra 7%–29% of patients when the difference is

about half of the pooled standard deviation; and a total of 63%–97% of patients when

the difference is comparable to the pooled standard deviation. Chapter 3 identifies the

difference in treatment means, the treatment variances, and total enrollment as the

major contributors to the BBS’s ethical assignments. Covariate impacts on patient

outcomes have negligible impact on the design’s allocation in all simulations.

Chapter 4 finds that delays in patient responses impact the BBS design’s ability to

ethically randomize patients. When delay is small relative to the enrollment period, a

majority of participants can be exposed to the superior treatment arm. As the delay

in patient response times grows, however, that majority will decline. As logically

expected, when simulated responses are delayed such that essentially no outcomes

are observed prior to the conclusion of trial enrollment, BBS is nonadaptive. That

is, the BBS performs equal allocation when sample sizes are small and recruitment is

quick relative to the delay in patent responses. Nevertheless, as long as an adequate

number of outcomes are observed before all subjects have been enrolled, the BBS

design is still preferable to equal allocation in terms of ethical patient randomization.

The degree of ethicality follows a nearly linear pattern in relation to the proportion

of patients adaptively randomized within the trial.

Overall, the BBS design is an ethically advantageous RAR procedure compared

to the balanced assignment of equal allocation. Simulations will help researchers
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and clinicians understand anticipated ethical randomization proportions. Factors to

consider include percent of patients adaptively randomized, variance in allocation

proportion, and impact of delay based on likely values of treatment difference, treat-

ment variances, average delay, enrollment size and period of time, and number of

patient responses needed prior to adaptive allocation.

5.1.2 Rejection Rates

Maintaining adequate power to detect a difference in treatments is a common concern

in response-adaptive clinical trials [17, 34]. Maximizing power via equal allocation for

continuous outcomes is standard practice [23]. Nevertheless, exposing patients to ex-

perimental therapies in an ethical manner—especially as equipoise wanes throughout

the course of a clinical trial—is gaining increasing attention, despite potential risks

of decreased power and increased type I error rates[11, 12, 14, 15].

Chapter 2 determines that the BBS design maintains power levels relatively well

compared to equal allocation, particularly when treatment variances are unknown or

unequal. On the other hand, the variance in rejection rates increases slightly with

the BBS design compared to nonadaptive equal allocation. Moreover, type I error

rates also risk inflation under BBS RAR, particularly for small trial sizes. Chapter

3 concludes that the aforementioned rejection rates are not impacted when covariate

impacts differ by treatment. Chapter 4 also supports these findings; BBS rejection

rates depend on the difference in treatments, treatment variances, and clinical trial to-

tal enrollment levels. In fact, power levels appear to rise as simulated response delays

grow and the BBS design allocates an increased number of patients non-adaptively.

Similarly, type I error rates decrease to be on a par with equal allocation when BBS

outcome observations are delayed.
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The power to correctly reject a null hypothesis depends on the difference in treat-

ment effects relative to treatment variance [18, 32] and the BBS design is no ex-

ception to this rule. Maintaining adequate power without drastically extending a

trial or unduly exposing patients to less effective treatment requires thorough inspec-

tion from resourcing and ethical perspectives. Conversely, the incorrectly rejecting a

null hypothesis may not incur detrimental impacts to the future patient population,

particularly in comparison with failing to reject a false null hypothesis and denying

future patients a superior treatment. The risks of type I and type II errors must be

considered—along with possible treatment and covariate parameters, enrolled sam-

ple size, and anticipated delays in response—before implementing any clinical trial,

especially an adaptive design [15].

5.1.3 Delay Dampening

Response-adaptive randomization designs such as the BBS leverage accumulating in-

formation to ethically assign patients to the treatment with superior outcomes. When

an adaptive design is able to maintain adequate levels of power, such a design should

be considered in lieu of equal allocation. Delayed responses are sometimes thought to

preclude implementation of adaptive allocation [10, 35]; however, many RAR designs

are easily revised so that assignment proportions depend only on observed outcomes.

Instead of postponing subsequent patient exposures until previous patients respond to

treatment, patients are assigned to trial arms as they enroll based on the information

available at that time. Delayed outcomes are incorporated into the RAR as they are

observed. This particular modification is commonly recommended due to its practi-

cality, ease of implementation, and ethicality [2, 20, 39, 42]. Unfortunately, while the

aforementioned articles prove that delay has minimal impact on the asymptotic char-
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acteristics of select adaptive designs—namely randomization ratios and power—small

to moderate trials may not behave similarly under delayed response conditions. For

example, both allocation and rejection rates for the BBS design have higher variance

than do equal allocation exposure, power, and type I error rates for similar trial sizes.

Both Chapters 2 and 3 ignore the potential impacts of delayed responses, simulat-

ing instead only instantaneously observed outcomes. Simulations throughout Chapter

4, by contrast, focus on the effects of such delays. The BBS design initially random-

izes patients to treatment A with fixed probability 1
2

until a minimum number of

outcomes are observed in each treatment. Thereafter, BBS leverages the accumu-

lated estimates to adaptively allocate patients to treatment. The longer the delay in

responses relative to the trial enrollment period, the smaller the proportion of adap-

tively randomized patients will be. In the same vein, the larger a trial is for a given

delay, the higher the proportion of adaptively assigned subjects will be.

Small trials are disproportionally impacted due to the size of the minimum nec-

essary outcomes relative to the total trial size. For example, in a trial of 50 patients,

20 instantaneously observed responses must accrue prior to adaptive randomization.

A mere 60% of patients remain who can be adaptively allocated—and this number

shrinks rapidly as responses lag. Compare this with a moderately sized study en-

rolling 500 subjects with 20 outcomes immediately observed: up to 96% of patients

will be adaptively exposed to treatment. Delayed responses still reduce the propor-

tion of recruits adaptively assigned to treatment, but the impact is not as sever as it

is in small trials.

It may be possible to counteract this early reduction in adaptive randomizations by

lowering the number of individuals required to respond before leveraging the adaptive

estimates. Of course, decreasing the initial burn-in requirements may not adequately

offset a delay in responses as the estimated variance will be larger for smaller initial
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estimates. That is, the ratio of treatment mean difference to pooled treatment stan-

dard deviation may not differ enough from a balanced assignment to benefit the few

additional patients who are adaptively randomized. Even so, the minimum number of

responses required for adaptive allocation should be carefully considered, especially

for smaller trials and/or larger delays.

There are myriad applications within healthcare alone where delays in patient

responses are modest relative to the enrollment period of an experiment. For example,

adaptive designs are recommended when testing new cures for aggressive diseases such

as ebola [25, 28, 29]. Adaptive designs are also recommended for emergency medicine

trials [13, 24]. In both of these cases, there may be a delay in patient responses but

final outcomes are observed and recorded within a matter of days—a short length

of time relative to the trial duration of weeks or months. Incorporating BBS into a

researcher’s toolbox of ethical randomization schemes in scenarios where the impact

of delay is moderate relative to the enrollment period is encouraged. As clinical

trial behavior differs across values of treatment parameters, sample size, allocation

probabilities, and delay, design simulations are imperative.

5.1.4 Asymptotic Properties

In the early 2000’s authors Hu and Zhang pioneered asymptotic research in RAR

designs. Their 2004 paper [20] opened the floodgates by deriving the asymptotic

properties of the allocation produced by a generalized adaptive biased coin design.

Subsequently, these results were leveraged towards a variety of outcomes. Hu, Rosen-

bergerm and Zhang [19] derive a lower bound on the asymptotic variance of RAR pro-

cedures with binomial outcomes. Zhang and Rosenberger [39] determine the asymp-

totic distribution of five continuous RAR allocations, including the BB design. Zhang
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and Rosenberger [40] also apply the asymptotic properties to RAR designs with expo-

nential survival outcomes. Hu, Zhang, Cheung, and Chan [21] demonstrate that the

RAR asymptotic properties are “relatively insensitive” to the effects of exponentially

distributed delayed responses, although small sample applications can be impacted by

delay. Additionally, research in the sister field of covariate-adjusted response adaptive

design employs similar asymptotic approaches [41, 43].

In [20], Hu and Zhang find that, for RAR procedures which meet a set of con-

ditions, two asymptotic properties hold. First, as the number of patient responses

increases, the estimated allocation proportion based on patient responses is asymptot-

ically normally distributed with mean equal to the true allocation proportion based

on treatment parameters. Second, as the number of patient responses increases, the

proportion of patients assigned to each treatment is also asymptotically normally

distributed with mean equal to the true allocation proportion. That is,

√
n

(
NA(n)

n
− ρ, ρ̂(n)− ρ

)
→ N

0,

ρ(1− ρ) + 2θ θ

θ θ


 ,

where n is the total number of patients randomized, NA(n) is the number of patients

assigned to treatment A out of n total patients randomized, ρ is the true allocation

proportion for treatment A based on the actual treatment parameters of the design,

ρ̂(n) is the estimated allocation proportion for treatment A based on patient responses

from n randomized patients, and

θ = ∇(ρ)T



Var(X2
A) Cov(X2

A, XA) 0 0

Cov(X2
A, XA) Var(XA) 0 0

0 0 Var(X2
B) Cov(X2

B, XB)

0 0 Cov(X2
B, XB) Var(XB)


∇(ρ)
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with

∇(ρ)T =

[
∂ρ

∂(σ2
A + µ2

A)

∂ρ

∂µA

∂ρ

∂(σ2
B + µ2

B)

∂ρ

∂µB

]
and treatment effects Xk ∼ N(µk, σ

2
k) for k = A,B.

In [39], Zhang and Rosenberger determine that the BB design is, in fact, a special

case of the generalized RAR procedure from [20]. Moreover, [39] explicitly calculates

the asymptotic distributions for the BB design, finding that

√
n

(
NA(n)

n
− ρT , ρ̂T (n)− ρT

)
→ N

0,

ρT (1− ρT ) + 2θT θT

θT θT


 ,

where

ρT = Φ

(
µA − µB

T

)
is the true BB allocation proportion for treatment A based on the actual (unknown)

treatment parameters with Φ(·) as the cumulative distribution function of a standard

normal variable, ρ̂T (n) is the estimated BB allocation proportion for treatment A

based on patient responses from n randomized patients, and

θT =

[
Φ′
(
µA − µB

T

)
· 1

T

]2
σ2

ρT (1− ρT )

with σ2 as the variance of treatment A and of treatment B.

The BBS design is a modification of the BB design, replacing the fixed scaling

constant T with

S =

√
(NA − 1)s2A + (NB − 1)s2B

NA +NB − 2
,

an estimate of the pooled treatment standard deviation. When the treatment vari-

ances σ2
A and σ2

B are equal, then S2 is an unbiased estimator of this single treatment
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variance σ2. Otherwise, S is a weighted average of the two treatments where the

weighting depends on the number of patients assigned to each treatment. In the case

that σ2
A = σ2

B = σ2, the BBS design is also a special case of the generalized RAR

procedure in [20]. Thus the conditions for asymptotic normality are met. Hence the

techniques described in [39] can be applied to compute the asymptotic distribution

of the BBS allocation proportions. In particular, for the BBS design

√
n

(
NA(n)

n
− ρS, ρ̂S(n)− ρS

)
→ N

0,

ρS(1− ρS) + 2θS θS

θS θS


 ,

where ρS = Φ

(
µA − µB

σ

)
is the true BBS allocation proportion for treatment A

based on the unknown treatment parameters, ρ̂S(n) is the estimated BBS allocation

proportion for treatment A based on patient responses from n randomized patients,

and

θS =

[
Φ′
(
µA − µB

σ

)]2 [
1

2
·
(
µA − µB

σ

)2

+ 1

]
1

ρS(1− ρS)

with σ2 as the variance of treatment A and of treatment B.

These asymptotic results can be compared against the simulated study outcomes

in Chapter 2. Table 5.1 contains patient allocation standard deviations from BBS sim-

ulations and from the BBS asymptotic normal distribution, scaled by 1√
N

where N is

the relevant clinical trial size. Outcomes are given for treatment parameters µA = 0.0,

0.1, 0.5, and 1.0; µB = 0.0; σA = σB = 1.0 and clinical trial sizes N = 50; 100; 500;

1,000; and 5,000. In Table 5.1, the first column on the left specifies whether the rows’

values originate from Chapter 2 BBS simulations or from the BBS asymptotic distri-

bution above. The second column identifies which values of µA are represented for a

given row. The remaining five columns present either the simulated BBS treatment
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A allocation standard deviation or the scaled BBS asymptotic treatment A allocation

standard deviation√√√√ 1

N

(
ρS(1− ρS) + 2

[
Φ′
(
µA − µB

σ

)]2 [(
µA − µB

σ

)2

+ 2

]
1

2ρS(1− ρS)

)

for each of the five values of N .

Table 5.1: Patient allocation standard deviations for the BBS design from simulated
and asymptotic results where µA varies, µB = 0.0, and σA = σB = 1.0 for trial size
N .

Design µA N = 50 N = 100 N = 500 N = 1,000 N = 5,000

BBS Simulation

0.0 0.12 0.13 0.07 0.05 0.02
0.1 0.12 0.13 0.07 0.05 0.02
0.5 0.11 0.11 0.06 0.05 0.02
1.0 0.09 0.09 0.06 0.04 0.02

BBS Asymptotic

0.0 0.17 0.12 0.06 0.04 0.02
0.1 0.17 0.12 0.06 0.04 0.02
0.5 0.17 0.12 0.06 0.04 0.02
1.0 0.17 0.12 0.05 0.04 0.02

For example, the first row of Table 5.1 indicates that the BBS simulation for µA =

µB = 0.0 and σA = σB = 1.0 produced treatment allocations with standard deviation

0.12 when N = 50, 0.07 when N = 500, and 0.02 when N = 5,000. Similarly, the

fifth row of Table 5.1 reveals that the BBS treatment allocation asymptotic standard

deviation for µA = µB = 0.0 and σA = σB = 1.0 is 0.17 when N = 50, 0.06 when

N = 500, and 0.02 when N = 5,000. For each value of µA, the treatment allocation

standard deviation decreases as N increases, regardless of whether the row represents

simulated or asymptotic results. Likewise, for a given study sample size, the standard

deviations decrease as µA increases in the BBS simulated outcomes. BBS asymptotic

calculations of standard deviation appear consistent for varying values of µA given
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N .

When N = 50, the simulated standard deviations are smaller than the asymptotic

standard deviations for the BBS design. This reduction is due to the fact that an

initial m = 10 patients must respond to each treatment prior to adaptive allocation.

For N = 50, delaying the adaptive randomization until nearly half of patients are

randomized using the fixed assignment probability 1
2

lowers the allocation standard

deviation. When N ≥ 100, the initial 20 patient burn-in requirements are less im-

pactful; the simulated allocation standard deviations are typically slightly larger than

the associated asymptotic results.

The asymptotic findings in this section support the conclusions derived from pre-

vious chapters’ simulations. The simulated allocation variances for BBS are larger

than those of equal allocation. Nevertheless, simulated BBS allocation standard devi-

ation are comparable to their small-sample adjusted asymptotic standard deviations.

The additional patients assigned to the superior treatment under BBS should be

weighed against the increased allocation variability when considering a clinical trial

randomization design.

5.1.5 Recommendations

If an affliction merits the resources necessary for a large scale clinical trial, it fol-

lows that treating a patient with the best possible care during the investigation is

worth the additional resources of weighing the benefit of a RAR against the risks of

implementing an adaptive trial. While there are potential additional complications

associated with RAR studies [12, 14, 15, 33, 38], the impactful factors are becom-

ing more well known [1, 3, 19, 30, 37, 39]. Moreover, advances in modern computing

power facilitate performing a diverse array of simulations to better understand a RAR
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trial and potential implications of various treatment and design parameters. The BBS

design is a new RAR which preserves rejection rates while allowing more patients to

be exposed to the study arm with superior mean effects, even as treatment outcomes

are delayed. The BBS should be added to medical researchers’ design toolkits and

should be considered in lieu of equal allocation for phase III clinical trials.

While this dissertation contributes a new design to the area of RAR, knowledge

about the BBS is only foundational at this stage. Future study on the asymptotic

properties of the BBS design as well as convergence to these properties is important,

particularly when treatment variances are not assumed to be equal. Additional ques-

tions arise as other modifications are considered. How is the BBS performance altered

when tackling non-gaussian outcomes? What are the optimal burn-in requirements

for initial adaptive allocation estimates? How do other variable delay models impact

the proportion of patients adaptively randomized? Is there a more appropriate vari-

ance estimate that should replace the pooled standard deviation in the BBS design

and how much supplemental bias does such an estimator generate? How do interim

analyses and early stopping rules fit into this RAR schema? Continued research is

imperative to providing the medical research community with adequate designs to

cover the vast array of clinical domains in an ethical manner.
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Appendix A

SAS IML Simulation Code Written

to Support the Work in this

Dissertation

/**********BBS Design with delay**********/

/**********’N’ patients total (’m’ of which give initial estimates) and ’Reps’

replications**********/

proc iml;

/*****This simulation incorporates delay*****/

/*****Overarching strategy is as follows*****/

/*****Begin by creating an ordered vector of N patients*****/

/*****Assign each patient a delay in response times*****/

/*****Random exponential iid delays form a Poisson Process*****/

/*****For this we’ll create a Responded matrix*****/

/*****At each new patient arrival, we know which responses have been received*****/

/*****This matrix will also be used to help with estimates at that point in time–
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not just the number of responses in each estimate*****/

/*****Assign patients using a 50-50 allocation scheme until m patient responses

have been observed in each treatment*****/

/*****Thereafter, assign based on RAR design using the available estimates at

that point in time*****/

/*****Once all patients are assigned, can skip ahead to final estimates*****/

/*****Major components to consider are the typical ones, including*****/

/*****Probability of assignment to better treatment, power, and bias (alpha,

variance in assignment probability)*****/

/*****Variance, Covariate Slope, and Delay differing by treatment assignment

(above plus efficiency)*****/

/*****Which covariates are being used in estimation–All arrived (including cur-

rent, un-randomized patient), All assigned, or All responded*****/

/*****Other major components not included in this simulation*****/

/*****Early stopping rules–possible but unlikely to be desirable given power/bias/

efficiency issues*****/

/*****Cara-izing design–really changes what is being considered here and would

prefer not to include in scope*****/

start Simulate(MuA, MuB, StdA, StdB, CovMu, CovStd, CovSlopeA, CovSlopeB,

IncCurCov, DelayA, DelayB, Alpha, Sides, N, m);

/*****Initialize Simulation Parameters*****/

/*****MuA = Mean Effect Size of Treatment A*****/

/*****MuB = Mean Effect Size of Treatment B*****/

/*****StdA = Standard Deviation of Effect Size of Treatment A*****/

/*****StdB = Standard Deviation of Effect Size of Treatment B*****/

/*****CovMu = Mean of Covariate*****/
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/*****CovStd = Standard Deviation of Covariate*****/

/*****CovSlopeA = Slope of Covariate for Treatment A*****/

/*****CovSlopeB = Slope of Covariate for Treatment B*****/

/*****IncCurCov = Covariate inclusion scheme for estimating randomization pa-

rameters*****/

/*****Options are 0=N, 1=Y, and 9=Resp*****/

/*****0 = N = No, do NOT include current patient’s covariate in estimation–

include all previous patients but not this one*****/

/*****1 = Y = Yes, include current patient’s covariate in estimation–include all

previous and current patients*****/

/*****9 = Resp = Responded, include only responded patients’ covariates in

estimation*****/

/*****DelayA = Exponential mean (and variance) for Treatment A response

times*****/

/*****DelayB = Exponential mean (and variance) for Treatment B response

times*****/

/*****Delays in response times can be negligible (0) for immediate responses*****/

/*****Delays in response times should be considered relative to time between

arrivals (which is set at 1 unit of time)*****/

/*****Alpha = Alpha level to implement*****/

/*****Sides = Specifies whether the test is one-sided or two-sided*****/

/*****N = Number of Patients*****/

/*****m = Initial Number of Patients to assign to each Treatment to get Initial

Estimates*****/

/*****There must be m responses from each Treatment in order to begin RAR*****/
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SeedArrive=0; *Seed for Interarrival Time–0 for system clock; SeedDelay=0;

*Seed for Response Delay Time regardless of treatment–0 for system clock; Seed-

Cov=0; *Seed for Covariate error–0 for system clock; SeedA=0; *Seed for Trt A

error–0 for system clock; SeedB=0; *Seed for Trt B error–0 for system clock; See-

dRand=0; *Seed for patient randomization–0 for system clock;

/*****Create Interarrival Time Vector for time until the next patient arrives*****/

/*****Interarrival times follow a Poisson Process–with IID exponential interar-

rival times of mean/variance 1*****/

InterarrivalTime = J(N-1,1,SeedArrive); *J(r,c,v) creates a matrix of size (rc)

filled with element v;

*We are creating an (N-11) column vector prepped for random number generation;

*Since we have N patients, we only need N-1 interarrival times–N-1 fences between

N fence posts;

call randgen(InterarrivalTime,’EXPONENTIAL’); *Fills the vector with exponen-

tial(1) values;

InterarrivalTime = InterarrivalTime*1; *multiplying by C turns the values into

exponential(C) values–for arrivals C=1;

/*****Create Actual Arrival Time Vector for time each patient actually arrives*****/

/*****Calculate actual arrival times–should be strictly increasing since exponen-

tial is continuous and positive*****/

ActualArrivalTime = 0//CuSum(InterarrivalTime); *Calculate the Actual arrival

times of all N patients;

*First patient arrival time is set to 0, hence Actual Arrival Time Vector is (N1)

column vector;

/*****Create Response Delay Vectors for time until the patient response is obtained–

and which may differ by treatment*****/
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/*****Response Delay times follow a Poisson Process–with IID exponential delay

times of mean/variance DelayA or DelayB based on treatment assignment*****/

DelayTime = J(N-1,1,SeedDelay); *J(r,c,v) creates a matrix of size (rc) filled with

element v;

*We are creating an (N-11) column vector prepped for random number generation;

*Since we have N patients, we only need N-1 response delay times to randomly

assign all patients to treatment–N-1 fences between N fence posts;

call randgen(DelayTime,’EXPONENTIAL’); *Fills the vector with exponential(1)

values;

DelayATime = DelayTime*DelayA; *multiplying by C turns the values into ex-

ponential(C) values–here C=DelayA;

DelayBTime = DelayTime*DelayB; *multiplying by C turns the values into ex-

ponential(C) values–here C=DelayB;

*Confirmed that these to vectors are indeed identical when DelayA = DelayB and

different otherwise, yay!;

/*****Create Actual Response Time Vector for time each patient actually re-

sponds*****/

/*****Calculate actual response times–not necessarily increasing: patients may

arrive faster than treated patients respond*****/

ActualResponseTimeA = ActualArrivalTime+(DelayATime//0); *Calculate the

Actual response times of all N patients if assigned to Trt A;

ActualResponseTimeB = ActualArrivalTime+(DelayBTime//0); *Calculate the

Actual response times of all N patients if assigned to Trt A;

*Last patient delay time is set to 0 because no further patients to be randomized,

hence Actual response time vectors are (N1) column vectors;
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/*****Create Treatment Assignment Vectors to track treatment assignments by

patient*****/

/*****Begin with two (N1) vectors full of zeros*****/

/*****then fill them with 1’s for each patient based on treatment assignment*****/

AssignedA = J(N,1,0); *J(r,c,v) creates a matrix of size (rc) filled with element v;

AssignedB = J(N,1,0); *J(r,c,v) creates a matrix of size (rc) filled with element v;

*We are creating two (N1) column vectors full of only zeros–will add ones as

patients are assigned;

/*****Create Treatment Responded Vectors to track response by treatment for

assigned patients*****/

/*****Begin with two (N1) vectors full of zeros*****/

/*****then fill them with 1’s for each patient based on treatment assignment and

response*****/

RespondedA = J(N,1,0); *J(r,c,v) creates a matrix of size (rc) filled with element

v;

RespondedB = J(N,1,0); *J(r,c,v) creates a matrix of size (rc) filled with element

v;

*We are creating two (N1) column vectors full of only zeros–will add ones as

patients are assigned;

/*****Create Treatment Outcome Vector(s)*****/

/*****First we need the patient covariates which do not vary by treatment*****/

/*****This is done by creating an (N1) column vector for Covariate Effect*****/

/*****Randomly generate numbers from a normal distribution (Z N(0,1))*****/

/*****multiply them by the covariate’s standard deviation*****/

/*****then add this to the covariate’s mean (X=Z*std+mu N(mu,stdˆ2))*****/
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Covariates=CovMu+(normal(J(N,1,SeedCov)))#CovStd; *Create all patient co-

variates;

/*****Then we need the patient response which include the covariates whose

slopes may vary by treatment*****/

/*****This is done by creating two (N1) column vectors for Treatment Out-

come*****/

/*****Randomly generate numbers from a normal distribution (Z N(0,1))*****/

/*****multiply them by the treatment’s standard deviation*****/

/*****then add this to the treatment’s mean (Y=Z*STD+MU N(MU,STDˆ2))*****/

/*****and finally add this to the covariate’s effect–multiplied by trt-dependent

slope (Y=Z*STD+MU+Slope*X)*****/

TrtAOutcomes=(MuA+(normal(J(N,1,SeedA)))#StdA)+(CovSlopeA*Covariates);

*Get outcomes: responses + slopes*covariates;

TrtBOutcomes=(MuB+(normal(J(N,1,SeedB)))#StdB)+(CovSlopeB*Covariates);

*Get outcomes: responses + slopes*covariates;

/*****Start Do Loop for patients 1 through N*****/

do i=1 to N;

*i vector = I(N)[,i]; *I(N) creates an identity matrix of size N (NxN);

*I(N)[,i] just keeps the i-th column of that matrix–a column vector with all zeros

except for a 1 in the i-th row;

*****Don’t think we’re needing/using this right now...;

/*****The first thing to do is to reset the time and update the Responded vec-

tors*****/

CurrentTime = ActualArrivalTime[i,1]; *This sets the current time to the arrival

time of the next patient;
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CurrentTimeVec = J(N,1,CurrentTime); *This makes a whole Nx1 column vector

full of current time;

RespondedA = (ActualResponseTimeA ¡ CurrentTimeVec)#AssignedA;

*First creates vector of zeros and ones, zero where response time is larger than

current time (has not occured yet)

and 1 where response time is smaller than current time (has occurred prior to new

patient arrival);

*Then zeros out all patients that have not been assigned to Trt A (or have not

yet been assigned) where # is element-wise multiplication;

RespondedB = (ActualResponseTimeB ¡ CurrentTimeVec)#AssignedB;

/*****The second thing to do is to check and see if there are at least 2m patients

responded, m from each treatment*****/

ARespTot = RespondedA[+,]; *Matrix[+,columns] returns a row vector of the

sum of all columns specified;

BRespTot = RespondedB[+,]; *Matrix[+,columns] returns a row vector of the

sum of all columns specified;

*Since there are no columns specified, this sums down each of the columns;

*Since there is only one column, these row vectors are actually scalars;

/*****If there are fewer than m patient responses in either treatment*****/

/*****assign patient i to treatment using a 50-50 probability*****/

if (ARespTot ¡ m) | (BRespTot ¡ m) then do; *must use |, cannot use ’or’;

Phi=1/2; *Arbitrarily select first Phi–should be reset before any further random-

ization takes place;

/*****Randomly assign patient i based on Phi and a uniformly randomly gener-

ated number*****/

*If uniformly randomly generated number is less than Phi:



232

*assign patient to Trt A

*update Trt A assignment vector;

*Else assign patient to Trt B and update Trt B assignment vector;

if uniform(SeedRand)¡Phi then do;

AssignedA[i,1]=1; *Adds patient i to list of patients assigned to Trt A;

end;

else do;

AssignedB[i,1]=1; *Adds patient i to list of patients assigned to Trt B;

end;

NotAdRand = i; *Sets NotAdRand to THIS patient just assigned using Phi =

1/2;

*The LAST time this gets updated will be when the last patient randomized using

50-50 probability is allocated;

*Hence it will be set to the LAST PATIENT who does NOT get adaptively ran-

domized;

end; *ends case where estimating for patient i with i ¿= N but fewer than m

responses in at least one treatment;

/*****If there are at least m patient responses in each treatment*****/

/*****estimate parameters that go into Phi: MuA, MuB, and sigma hat–and their

antecedents*****/

/*****and then randomly assign patient i to treatment using a Phi/(1-Phi) prob-

ability*****/

*if (ARespTot ¿= m) & (BRespTot ¿= m) then do; *must use &, cannot use ’and’;

else do;

/*****Estimate Covariate Mean, Sum of Squares (of errors), and Variance*****/
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/*****Determine whether or not current patient covariate is included in covariate

estimate*****/

/*****and truncate recorded covariate vector accordingly so mean can be taken*****/

/*****Only one covariate mean–does not differ by treatment*****/

if IncCurCov = 0 then do; *if 0 = N, then exclude current covariate–use only i-1

randomized patient covariates;

CovariateSub = Covariates[1:i-1,]; *truncate covariate vector to include all pa-

tients up through previous patient, not including this patient;

*X Bar = CovariateSub[:];

*S XX Bar = (CovariateSub-X Bar)[##]; *Calculate sum of squares of Covariate

(technically SS of difference between individual observations and mean of observa-

tions);

*Var X Hat = S XX Bar/((i-1)-1); *Estimate Variance of Covariate (X) using

sums of squares;

Cov A Sub = CovariateSub[loc((AssignedA[1:i-1,]) = 1),1]; *truncate covariate

vector to include only patients who have responded to Trt A;

Cov A Mean = Cov A Sub[:];

Cov A Var = (Cov A Sub-Cov A Mean)[##]/((AssignedA[1:i-1,])[+]-1);

Cov B Sub = CovariateSub[loc((AssignedB[1:i-1,]) = 1),1]; *truncate covariate

vector to include only patients who have responded to Trt A;

Cov B Mean = Cov B Sub[:];

Cov B Var = (Cov B Sub-Cov B Mean)[##]/((AssignedB[1:i-1,])[+]-1);

end;

if IncCurCov = 1 then do; *if 1 = Y, then include current covariate–use all i

patient covariates, including this patient’s covariate even though not yet randomized;
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CovariateSub = Covariates[1:i,]; *truncate covariate vector to include all patients

up through and including this patient;

*X Bar = CovariateSub[:];

*S XX Bar = (CovariateSub-X Bar)[##]; *Calculate sum of squares of Covariate

(technically SS of difference between individual observations and mean of observa-

tions);

*Var X Hat = S XX Bar/(i-1); *Estimate Variance of Covariate (X) using sums

of squares;

Cov A Sub = CovariateSub[loc((AssignedA[1:i,]) = 1),1]; *truncate covariate vec-

tor to include only patients who have responded to Trt A;

Cov A Mean = Cov A Sub[:];

Cov A Var = (Cov A Sub-Cov A Mean)[##]/((AssignedA[1:i,])[+]-1);

Cov B Sub = CovariateSub[loc((AssignedB[1:i,]) = 1),1]; *truncate covariate vec-

tor to include only patients who have responded to Trt A;

Cov B Mean = Cov B Sub[:];

Cov B Var = (Cov B Sub-Cov B Mean)[##]/((AssignedB[1:i,])[+]-1);

end;

if IncCurCov = 9 then do; *if 9 = Resp, then include only covariate of patients

who have responded;

CovariateSub = Covariates[loc((RespondedA+RespondedB) = 1),1]; *truncate

covariate vector to include only patients who have responded to treatment;

*X Bar = (Covariates[loc((RespondedA+RespondedB) = 1),1])[:];

*Average of Responded Covariates: calculates mean of all elements in Covariates

corresponding to patients that have responded to either treatment;

*loc saves the location where RespondedA+RespondedB = 1

–patients who have responded before/though/by arrival of patient i;
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*Covariates[loc,1] turns all the elements in Covariates corresponding to saved lo-

cation into a new vector

–covariates of patients with outcomes/responses recorded before/though/by ar-

rival of patient i;

*[:] takes the mean of all elements in that new, covariates-of-those-who-have-

responded vector;

*S XX Bar = (CovariateSub-X Bar)[##]; *Calculate sum of squares of Covariate

(technically SS of difference between individual observations and mean of observa-

tions);

*Var X Hat = S XX Bar/((ARespTot+BRespTot)-1); *Estimate Variance of Co-

variate (X) using sums of squares;

Cov A Sub = Covariates[loc((RespondedA) = 1),1]; *truncate covariate vector to

include only patients who have responded to Trt A;

Cov A Mean = Cov A Sub[:];

Cov A Var = (Cov A Sub-Cov A Mean)[##]/(ARespTot-1);

Cov B Sub = Covariates[loc((RespondedB) = 1),1]; *truncate covariate vector to

include only patients who have responded to Trt A;

Cov B Mean = Cov B Sub[:];

Cov B Var = (Cov B Sub-Cov B Mean)[##]/(BRespTot-1);

end;

/*****Estimate Treatment Outcome Means for each treatment*****/

TrtASub = TrtAOutcomes[loc(RespondedA = 1),1];

*loc saves the location where RespondedA = 1–patients who have responded be-

fore/though/by arrival of patient i;

*TrtAOutcomes[loc,1] turns all the elements in TrtAOutcomes corresponding to

saved location into a new vector
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–outcomes/responses recorded before/though/by arrival of patient i;

Y A Bar = TrtASub[:];

*Average of Outcome A: calculates mean of all elements in TrtAOutcomes corre-

sponding to patients that have responded;

*[:] takes the mean of all elements in that new, outcomes-of-those-who-have-

responded vector;

TrtBSub = TrtBOutcomes[loc(RespondedB = 1),1];

*loc saves the location where RespondedB = 1–patients who have responded be-

fore/though/by arrival of patient i;

*TrtBOutcomes[loc,1] turns all the elements in TrtBOutcomes corresponding to

saved location into a new vector

–outcomes/responses recorded before/though/by arrival of patient i;

Y B Bar = TrtBSub[:];

*Average of Outcome B: calculates mean of all elements in TrtBOutcomes corre-

sponding to patients that have responded;

*[:] takes the mean of all elements in that new, outcomes-of-those-who-have-

responded vector;

/*****Estimate Covariance between Outcome and Covariate for each treatment–

see above for vector creation/manipulation/calculation details*****/

Cov A Sub = Covariates[loc((RespondedA) = 1),1]; *truncate covariate vector to

include only patients who have responded to Trt A;

*S A XY Bar = (Cov A Sub#TrtASub)[+]-ARespTot*Y A Bar*X Bar;

S A XY Bar = (Cov A Sub#TrtASub)[+]-ARespTot*Y A Bar*Cov A Mean;

Cov A XY Hat = S A XY Bar/(ARespTot-1);

Cov B Sub = Covariates[loc((RespondedB) = 1),1]; *truncate covariate vector to

include only patients who have responded to Trt A;
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*S B XY Bar = (Cov B Sub#TrtBSub)[+]-BRespTot*Y B Bar*X Bar;

S B XY Bar = (Cov B Sub#TrtBSub)[+]-BRespTot*Y B Bar*Cov B Mean;

Cov B XY Hat = S B XY Bar/(BRespTot-1);

*Estimates using sums of products (Y*x), minus double-counting products;

/*****Estimate Slopes (BetaA & BetaB) of Covariate (X) for each treatment*****/

Slope A Hat = (Cov A XY Hat)/(Cov A Var);

Slope B Hat = (Cov B XY Hat)/(Cov B Var);

*Estimates using ratio of covariance/variance–Covariance between Trt and Out-

come over Variance of Covariate;

/*****Estimate Treatment Means and Difference in Treatment Effects*****/

MuA Hat = Y A Bar - Cov A Mean*Slope A Hat; *Estimate Trt A response less

covariate effect;

MuB Hat = Y B Bar - Cov B Mean*Slope B Hat; *Estimate Trt B response less

covariate effect;

Trt Diff Est = MuA Hat - MuB Hat; *Estimate of Trt Diff using all previous

estimates;

/*****Estimate Treatment Variances–variances in treatment effect without ac-

counting for covariate effect*****/

VarA Hat Est = (TrtASub-Y A Bar)[##]/(ARespTot-1) - (Slope A Hat**2)*Cov A Var

- 2*Slope A Hat*0;

VarB Hat Est = (TrtBSub-Y B Bar)[##]/(BRespTot-1) - (Slope B Hat**2)*Cov B Var

- 2*Slope B Hat*0;

*Estimate of Treatment Effect Variances: Use Property of Variance Addition for

Dependent Variables;

/* Var(A+B) = Var(A) + Var(B) + 2Cov(A,B) or equivalently, Var(A) = Var(A+B)

- Var(B) - 2Cov(A,B)
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Outcome = TrtEffect + TrtErr + Slope*(Covariate + CovErr)

= TrtErr + Slope*CovErr + TrtEffect + Slope*Covariate –where latter 2 are

constants with 0 variance

Var(Outcome) = Var(TrtErr) + Var(Slope*CovErr) + 2Cov(TrtErr,Slope*CovErr)

+ 0 + 0

= Var(TrtErr) + Slopeˆ2*Var(CovErr) + Slope*2Cov(TrtErr,CovErr)

Var(TrtErr) = Var(Outcome) - Slopeˆ2*Var(CovErr) - 2*Slope*Cov(TrtErr,CovErr)

Note: 2*Slope*Cov(TrtErr,CovErr) is Covariance of Treatment Error and Covari-

ate Error, NOT of Outcome Error and Covariate Error

Note: Furthermore, Treatment and Covariate errors are independent, uncorre-

lated, and have no covariance, i.e., last term is ZERO

= Var Y - Slopeˆ2*Var X - 0 –with Var Y estimated in the usual manner */

VarA Hat = max(VarA Hat Est,0.00001); *Need to ensure positive (non-zero,

non-negative) variances, so take max just in case;

VarB Hat = max(VarB Hat Est,0.00001); *Need to ensure positive (non-zero,

non-negative) variances, so take max just in case;

/*****Estimate Phi([MuA - MuB]/Sigma) and randomized based on it*****/

/*****Sigma is estimated using a pooled variance estimate that is unbiased when

the variances are equal*****/

Ratio = (MuA Hat - MuB Hat)/sqrt(((ARespTot-1)*VarA Hat+(BRespTot-1)*

VarB Hat)/(ARespTot+BRespTot-2));

Phi = CDF(’NORMAL’,Ratio,0,1);

/*****Now randomly assign patient i based on Phi and a uniformly randomly

generated number*****/

*If uniformly randomly generated number is less than Phi:

*assign patient to Trt A
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*update Trt A assignment vector;

*Else assign patient to Trt B and update Trt B assignment vector;

if uniform(SeedRand)¡Phi then do;

AssignedA[i,1]=1; *Adds patient i to list of patients assigned to Trt A;

end;

else do;

AssignedB[i,1]=1; *Adds patient i to list of patients assigned to Trt B;

end;

end; *ends case where estimating for patient i with i ¡= N but at least m responses

in each treatment;

end; *ends loop for patient 1 through N, inclusive;

/*****All N patients have been assigned*****/

/*****Since there are no more randomizations performed, we can skip ahead to

time when all patients have responded*****/

/*****Gather final estimates to conclude study*****/

if i = N+1 then do;

CurrentTime = max(ActualResponseTimeA[¡¿,1],ActualResponseTimeB[¡¿,1]); *This

sets the current time to the maximum arrival time of all patients;

CurrentTimeVec = J(N,1,CurrentTime); *This makes a whole Nx1 column vector

full of current tie;

RespondedA = (ActualResponseTimeA ¡= CurrentTimeVec)#AssignedA;

*First creates vector of zeros and ones, zero where response time is larger than

current time (has not occurred yet)

and 1 where response time is smaller than or equal to current time;

*Added equals here because we are explicitly choosing the current time to be equal

to a response time
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but we still want to include that response;

*In previous versions of this, did not include equal sign

because times should have been continuous and equal should not happen

but for arguments’ sake if equal, assume would not have had time to adequately

process recorded response, I guess;

*Then zeros out all patients that have not been assigned to Trt A (or have not

yet been assigned) where # is element-wise multiplication;

RespondedB = (ActualResponseTimeB ¡= CurrentTimeVec)#AssignedB;

/*****Find total number of patients assigned to each treatment*****/

ARespTot = RespondedA[+,]; *Matrix[+,columns] returns a row vector of the

sum of all columns specified;

BRespTot = RespondedB[+,]; *Matrix[+,columns] returns a row vector of the

sum of all columns specified;

*Since there are no columns specified, this sums down each of the columns;

*Since there is only one column, these row vectors are actually scalars;

CheckN = ARespTot + BRespTot;

if CheckN ˆ= N then do;

print ”Patients are not all randomized!”, ”i= ”, i, ”N= ”, N, ”Check= ”, CheckN;

end;

CheckA = (AssignedA = RespondedA)[+];

if CheckA ¡ N then do;

print ”A Patients have not all responded!”, ”AssignedA= ”, AssignedA, ”Re-

spondedA= ”, RespondedA, ”CheckA= ”, CheckA;

end;

CheckB = (AssignedB = RespondedB)[+];

if CheckB ¡ N then do;
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print ”B Patients have not all responded!”, ”AssignedB= ”, AssignedB, ”Respond-

edB= ”, RespondedB, ”CheckB= ”, CheckB;

end;

/*****Estimate Covariate Mean, Sum of Squares (of errors), and Variance*****/

* X Bar = Covariates[:];

* S XX Bar = (Covariates-X Bar)[##]; *Calculate sum of squares of Covariate

(technically SS of difference between individual observations and mean of observa-

tions);

* Var X Hat = S XX Bar/(i-1); *Estimate Variance of Covariate (X) using sums

of squares;

/*****Estimate Treatment Outcome Means for each treatment*****/

TrtASub = TrtAOutcomes[loc(RespondedA = 1),1];

*loc saves the location where RespondedA = 1–patients who have responded be-

fore/though/by arrival of patient i;

*TrtAOutcomes[loc,1] turns all the elements in TrtAOutcomes corresponding to

saved location into a new vector

–outcomes/responses recorded before/though/by arrival of patient i;

Y A Bar = TrtASub[:];

*Average of Outcome A: calculates mean of all elements in TrtAOutcomes corre-

sponding to patients that have responded;

*[:] takes the mean of all elements in that new, outcomes-of-those-who-have-

responded vector;

TrtBSub = TrtBOutcomes[loc(RespondedB = 1),1];

*loc saves the location where RespondedB = 1–patients who have responded be-

fore/though/by arrival of patient i;
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*TrtBOutcomes[loc,1] turns all the elements in TrtBOutcomes corresponding to

saved location into a new vector

–outcomes/responses recorded before/though/by arrival of patient i;

Y B Bar = TrtBSub[:];

*Average of Outcome B: calculates mean of all elements in TrtBOutcomes corre-

sponding to patients that have responded;

*[:] takes the mean of all elements in that new, outcomes-of-those-who-have-

responded vector;

/*****Estimate Covariance between Outcome and Covariate for each treatment–

see above for vector creation/manipulation/calculation details*****/

Cov A Sub = Covariates[loc((RespondedA) = 1),1]; *truncate covariate vector to

include only patients who have responded to Trt A;

Cov A Mean = Cov A Sub[:];

Cov A Var = (Cov A Sub-Cov A Mean)[##]/(ARespTot-1);

* S A XY Bar = (Cov A Sub#TrtASub)[+]-ARespTot*Y A Bar*X Bar;

S A XY Bar = (Cov A Sub#TrtASub)[+]-ARespTot*Y A Bar*Cov A Mean;

Cov A XY Hat = S A XY Bar/(ARespTot-1);

Cov B Sub = Covariates[loc((RespondedB) = 1),1]; *truncate covariate vector to

include only patients who have responded to Trt B;

Cov B Mean = Cov B Sub[:];

Cov B Var = (Cov B Sub-Cov B Mean)[##]/(BRespTot-1);

* S B XY Bar = (Cov B Sub#TrtBSub)[+]-BRespTot*Y B Bar*X Bar;

S B XY Bar = (Cov B Sub#TrtBSub)[+]-BRespTot*Y B Bar*Cov B Mean;

Cov B XY Hat = S B XY Bar/(BRespTot-1);

*Estimates using sums of products (Y*x), minus double-counting products;

/*****Estimate Slopes (BetaA & BetaB) of Covariate (X) for each treatment*****/
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Slope A Hat = (Cov A XY Hat)/(Cov A Var);

Slope B Hat = (Cov B XY Hat)/(Cov B Var);

*Estimates using ratio of covariance/variance–Covariance between Trt and Out-

come over Variance of Covariate;

/*****Estimate Treatment Means and Difference in Treatment Effects*****/

MuA Hat = Y A Bar - Cov A Mean*Slope A Hat; *Estimate Trt A response less

covariate effect;

MuB Hat = Y B Bar - Cov B Mean*Slope B Hat; *Estimate Trt B response less

covariate effect;

Trt Diff Est = MuA Hat - MuB Hat; *Estimate of Trt Diff using all previous

estimates;

/*****Estimate Treatment Variances–variances in treatment effect without ac-

counting for covariate effect*****/

VarA Hat Est = (TrtASub-Y A Bar)[##]/(ARespTot-1) - (Slope A Hat**2)*Cov A Var

- 2*Slope A Hat*0;

VarB Hat Est = (TrtBSub-Y B Bar)[##]/(BRespTot-1) - (Slope B Hat**2)*Cov B Var

- 2*Slope B Hat*0;

*Estimate of Treatment Effect Variances: Use Property of Variance Addition for

Dependent Variables;

/* Var(A+B) = Var(A) + Var(B) + 2Cov(A,B) or equivalently, Var(A) = Var(A+B)

- Var(B) - 2Cov(A,B)

Outcome = TrtEffect + TrtErr + Slope*(Covariate + CovErr)

= TrtErr + Slope*CovErr + TrtEffect + Slope*Covariate –where latter 2 are

constants with 0 variance

Var(Outcome) = Var(TrtErr) + Var(Slope*CovErr) + 2Cov(TrtErr,Slope*CovErr)

+ 0 + 0
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= Var(TrtErr) + Slopeˆ2*Var(CovErr) + Slope*2Cov(TrtErr,CovErr)

Var(TrtErr) = Var(Outcome) - Slopeˆ2*Var(CovErr) - 2*Slope*Cov(TrtErr,CovErr)

Note: 2*Slope*Cov(TrtErr,CovErr) is Covariance of Treatment Error and Covari-

ate Error, NOT of Outcome Error and Covariate Error

Note: Furthermore, Treatment and Covariate errors are independent, uncorre-

lated, and have no covariance, i.e., last term is ZERO

= Var Y - Slope2*Var X - 0 –with Var Y estimated in the usual manner */

VarA Hat = max(VarA Hat Est,0.00001); *Need to ensure positive (non-zero,

non-negative) variances, so take max just in case;

VarB Hat = max(VarB Hat Est,0.00001); *Need to ensure positive (non-zero,

non-negative) variances, so take max just in case;

/*****Estimate Phi([MuA - MuB]/Sigma) and randomized based on it*****/

/*****Sigma is estimated using a pooled variance estimate that is unbiased when

the variances are equal*****/

Ratio = (MuA Hat - MuB Hat)/sqrt(((ARespTot-1)*VarA Hat+(BRespTot-1)*

VarB Hat)/(ARespTot+BRespTot-2));

Phi = CDF(’NORMAL’,Ratio,0,1);

end; *ends gathering final estimates for study;

/*****Gather overall study stats*****/

/*****Number and proportion of patients assigned to each treatment*****/

n A = ARespTot;

n B = BRespTot;

P A = n A/N;

P B = n B/N;

/*****Number and proportion of patients assigned using adaptive randomiza-

tion*****/
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NumAdRand = N - NotAdRand;

PctAdRand = NumAdRand/N;

*MuA Hat = MuA Hat;

*MuB Hat = MuB Hat;

*StdA Hat = sqrt(VarA Hat);

*StdB Hat = sqrt(VarB Hat);

/*****Actual and estimated pooled variances*****/

Sigma = sqrt( ((n A-1)*(StdA**2) + (n B-1)*(StdB**2)) / (N-2) );

Sigma Hat = sqrt(((ARespTot-1)*VarA Hat+(BRespTot-1)*VarB Hat)/

(ARespTot+BRespTot-2));

*Ratio = Ratio;

*Phi Hat = Phi;

Phi Real = CDF(’NORMAL’,(MuA - MuB)/sqrt(Sigma),0,1);

/*****Trial acceptance (0) or rejection (1) of the null hypothesis*****/

/*****Use this when under the assumption that the variances are equal*****/

DF Eq = N - 2;

SP Eq = ((ARespTot-1)*VarA Hat+(BRespTot-1)*VarB Hat)/(ARespTot+BRespTot-

2);

*WT = (1/ARespTot + 1/BRespTot);

WT Eq = 1/ARespTot + 1/BRespTot + (Cov A Mean + Cov B Mean)**2/((Cov A Sub

- Cov A Mean)[##]+(Cov B Sub - Cov B Mean)[##]);

SE Eq = sqrt(SP Eq*WT Eq);

*Use this when using a pooled standard error for equal-variances t-test;

/*****Use this when under the assumption that the variances are unequal–generally

safer assumption*****/

W A = VarA Hat/n A;
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W B = VarB Hat/n B;

DF Un = (W A+W B)**2/(W A**2/(n A-1)+W B**2/(n B-1));

*SE Unequal = sqrt((VarA Hat/ARespTot)+(VarB Hat/BRespTot));

SE Un = sqrt((VarA Hat/ARespTot)+(VarB Hat/BRespTot)+

sqrt(VarA Hat*VarB Hat)*(Cov A Mean + Cov B Mean)**2/

((Cov A Sub - Cov A Mean)[##]+ (Cov B Sub - Cov B Mean)[##]));

*Use this when using an unpooled Welsh-Satterthwait standard error for separate-

variances t-test;

/*

Satterthwaite’s DF Approximation

The degrees of freedom are adjusted for unequal group variances as follows

df= (w1 + w2)**2/(w1**2/(n1-1) + w2**2/(n2-1))

where

w1 = s1**2/n1 , w2 = s2**2/n2, s1**2 and s2**2 are the sample variances for

groups 1 and 2, respectively,

and n1 and n2 are the number of observations for groups 1 and 2, respectively.

*/

/*****Define Rejection based on assumption of Equal or Unequal variances for

t-test*****/

/*****Define t-test test statistic based on whether the t-test is one-sided or two-

sided*****/

if Sides = 1 then Reject Equal=( 1-probt((MuA Hat-MuB Hat)/SE Eq,DF Eq) ¡

Alpha/Sides);

else if Sides = 2 then Reject Equal=(1-probt(abs(MuA Hat-MuB Hat)/SE Eq,DF Eq)

¡ Alpha/Sides);
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if Sides = 1 then Reject Unequal=( 1-probt((MuA Hat-MuB Hat)/SE Un,DF Un)

¡ Alpha/Sides);

else if Sides = 2 then Reject Unequal=(1-probt(abs(MuA Hat-MuB Hat)/SE Un,DF Un)

¡ Alpha/Sides);

*RejectTrue=( 3 ¿ 1.96); * = 1 when True–i.e., when Rejecting the Null Hypoth-

esis;

*RejectFalse=( 0 ¿ 1.96); * = 0 when False–i.e., when Failing to reject the Null

Hypothesis;

Dist1 = sqrt(N)*(P A - CDF(’NORMAL’,((MuA - MuB)/Sigma),0,1));

Dist2 = sqrt(N)*(P B - (1-CDF(’NORMAL’,((MuA - MuB)/Sigma),0,1)));

Vec1 = sqrt(N)*(MuA Hat - MuA);

Vec2 = sqrt(N)*(Slope A Hat - CovSlopeA);

Vec3 = sqrt(N)*(MuB Hat - MuB);

Vec4 = sqrt(N)*(Slope B Hat - CovSlopeB);

Ans = n A||n B||P A||P B

||NumAdRand||PctAdRand

||MuA Hat||MuB Hat

||VarA Hat||VarB Hat

||Sigma||Sigma Hat

||Cov A Mean||Cov A Var

||Cov B Mean||Cov B Var

||Slope A Hat||Slope B Hat

||Cov A XY Hat||Cov B XY Hat

||Ratio||Phi||Phi Real

||DF Eq||SE Eq||Reject Equal

||DF Un||SE Un||Reject Unequal
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||Dist1||Dist2||Vec1||Vec2||Vec3||Vec4;

*print Ans;

return(Ans);

finish Simulate;

/*****Iterate the Simulation using varying parameters and allocations*****/

start Iter(MuA, MuB, StdA, StdB, CovMu, CovStd, CovSlopeA, CovSlopeB, In-

cCurCov, DelayA, DelayB, Alpha, Sides, N, m, Reps);

i=1;

Sim = Simulate(MuA, MuB, StdA, StdB, CovMu, CovStd, CovSlopeA, CovS-

lopeB, IncCurCov, DelayA, DelayB, Alpha, Sides, N, m);

do i=2 to Reps;

Sim=Sim//Simulate(MuA, MuB, StdA, StdB, CovMu, CovStd, CovSlopeA, Cov-

SlopeB, IncCurCov, DelayA, DelayB, Alpha, Sides, N, m);

end;

n A = sum(Sim[,1]);

n A Hat = sum(Sim[,1])/Reps;

n B = sum(Sim[,2]);

n B Hat = sum(Sim[,2])/Reps;

P A Hat = sum(Sim[,3])/Reps;

P B Hat = sum(Sim[,4])/Reps;

P A Var = ((Sim[,3]-P A Hat)[##])/(Reps-1);

P B Var = ((Sim[,4]-P B Hat)[##])/(Reps-1);

NumAdRand = sum(Sim[,5]);

NumAdRand Hat = sum(Sim[,5])/Reps;

PctAdRand Hat = sum(Sim[,6])/Reps;

MuA Hat = sum(Sim[,7])/Reps;
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MuB Hat = sum(Sim[,8])/Reps;

VarA Hat = sum(Sim[,9])/Reps;

VarB Hat = sum(Sim[,10])/Reps;

Sigma = sum(Sim[,11])/Reps;

Sigma Hat = sum(Sim[,12])/Reps;

Cov A Mean = sum(Sim[,13])/Reps;

Cov A Var = sum(Sim[,14])/Reps;

Cov B Mean = sum(Sim[,15])/Reps;

Cov B Var = sum(Sim[,16])/Reps;

Slope A Hat = sum(Sim[,17])/Reps;

Slope B Hat = sum(Sim[,18])/Reps;

Cov A XY Hat = sum(Sim[,19])/Reps;

Cov B XY Hat = sum(Sim[,20])/Reps;

Ratio = sum(Sim[,21])/Reps;

Phi = sum(Sim[,22])/Reps;

Phi Real = sum(Sim[,23])/Reps;

DF Eq = sum(Sim[,24])/Reps;

SE Eq = sum(Sim[,25])/Reps;

RejectEqPct = sum(Sim[,26])/Reps;

RejectEqVar = ((Sim[,26]-RejectEqPct)[##])/(Reps-1);

DF Un = sum(Sim[,27])/Reps;

SE Un = sum(Sim[,28])/Reps;

RejectUnPct = sum(Sim[,29])/Reps;

RejectUnVar = ((Sim[,29]-RejectUnPct)[##])/(Reps-1);

CI Eq L = (MuA Hat-MuB Hat) - tinv(1-Alpha/2,DF Eq) * SE Eq;

CI Eq U = (MuA Hat-MuB Hat) + tinv(1-Alpha/2,DF Eq) * SE Eq;
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CI Un L = (MuA Hat-MuB Hat) - tinv(1-Alpha/2,DF Un) * SE Un;

CI Un U = (MuA Hat-MuB Hat) + tinv(1-Alpha/2,DF Un) * SE Un;

Dist1 Mu Hat = sum(Sim[,30])/Reps;

Dist2 Mu Hat = sum(Sim[,31])/Reps;

Dist1 Var Hat = ((Sim[,30]-Dist1 Mu Hat)[##])/(Reps-1);

Dist2 Var Hat = ((Sim[,31]-Dist2 Mu Hat)[##])/(Reps-1);

Vec1 Mu Hat = sum(Sim[,32])/Reps;

Vec2 Mu Hat = sum(Sim[,33])/Reps;

Vec3 Mu Hat = sum(Sim[,34])/Reps;

Vec4 Mu Hat = sum(Sim[,35])/Reps;

Vec1 Var Hat = ((Sim[,32]-Vec1 Mu Hat)[##])/(Reps-1);

Vec2 Var Hat = ((Sim[,33]-Vec2 Mu Hat)[##])/(Reps-1);

Vec3 Var Hat = ((Sim[,34]-Vec3 Mu Hat)[##])/(Reps-1);

Vec4 Var Hat = ((Sim[,35]-Vec4 Mu Hat)[##])/(Reps-1);

Vec12 Cov Hat = ((Sim[,32]-Vec1 Mu Hat)‘*(Sim[,33]-Vec2 Mu Hat))/(Reps-1);

/* dot product (scalar product, inner product) */

Vec13 Cov Hat = ((Sim[,32]-Vec1 Mu Hat)‘*(Sim[,34]-Vec3 Mu Hat))/(Reps-1);

/* dot product (scalar product, inner product) */

Vec14 Cov Hat = ((Sim[,32]-Vec1 Mu Hat)‘*(Sim[,35]-Vec4 Mu Hat))/(Reps-1);

/* dot product (scalar product, inner product) */

Vec23 Cov Hat = ((Sim[,33]-Vec2 Mu Hat)‘*(Sim[,34]-Vec3 Mu Hat))/(Reps-1);

/* dot product (scalar product, inner product) */

Vec24 Cov Hat = ((Sim[,33]-Vec2 Mu Hat)‘*(Sim[,35]-Vec4 Mu Hat))/(Reps-1);

/* dot product (scalar product, inner product) */

Vec34 Cov Hat = ((Sim[,34]-Vec3 Mu Hat)‘*(Sim[,35]-Vec4 Mu Hat))/(Reps-1);

/* dot product (scalar product, inner product) */
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Ans=MuA||MuB||StdA||StdB||CovMu||CovStd||CovSlopeA||CovSlopeB

||IncCurCov||DelayA||DelayB||Sides||m

||N||n A Hat||n B Hat||P A Hat||P B Hat||P A Var||P B Var||PctAdRand Hat

||MuA Hat||MuB Hat

||VarA Hat||VarB Hat

||Sigma||Sigma Hat

||Cov A Mean||Cov A Var

||Cov B Mean||Cov B Var

||Slope A Hat||Slope B Hat

||Cov A XY Hat||Cov B XY Hat

||Ratio||Phi||Phi Real

||DF Eq||SE Eq||RejectEqPct||RejectEqVar

||DF Un||SE Un||RejectUnPct||RejectUnVar

||CI Eq L||CI Eq U||CI Un L||CI Un U

||Dist1 Mu Hat||Dist2 Mu Hat||Dist1 Var Hat||Dist2 Var Hat

||Vec1 Mu Hat||Vec2 Mu Hat||Vec3 Mu Hat||Vec4 Mu Hat

||Vec1 Var Hat||Vec2 Var Hat||Vec3 Var Hat||Vec4 Var Hat

||Vec12 Cov Hat||Vec13 Cov Hat||Vec14 Cov Hat

||Vec23 Cov Hat||Vec24 Cov Hat||Vec34 Cov Hat;

*print Ans;

return(Ans);

finish Iter;

*start Iter(MuA, MuB, StdA, StdB, CovMu, CovStd, CovSlopeA, CovSlopeB,

IncCurCov, DelayA, DelayB, Alpha, Sides, N, m, Reps);

WorkAround = 50 ,100 ,500 ,1000, 5000, 10000;

/*Run Sim over several different intervals*/
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do Row=1 to 5;

CovMu = 1;

CovStd = 1;

CovSlopeA = 2;

CovSlopeB = 2;

IncCurCov = 0; *0=N, 1=Y, 9=Resp;

DelayA = 40;

DelayB = 40;

Sides = 1; *1 or 2;

Alpha = 0.05;

Beta = 0.20;

N = WorkAround[Row];

m = 10;

Reps = 1000;

a = iter(0,0,0.5,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,0,0.7,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,0,0.9,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,0,1.0,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,0,1.1,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,0,1.3,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);
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a = a//iter(0,0,1.5,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(1,0,0.5,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(1,0,0.7,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(1,0,0.9,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(1,0,1.0,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(1,0,1.1,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(1,0,1.3,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(1,0,1.5,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,1,0.5,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,1,0.7,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,1,0.9,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,1,1.0,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,1,1.1,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);
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a = a//iter(0,1,1.3,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

a = a//iter(0,1,1.5,1,CovMu,CovStd,CovSlopeA,CovSlopeB,IncCurCov,

DelayA,DelayB,Alpha,Sides,N,m,Reps);

print ”Simulations for delayed RAR procedure with large response desirable”;

name=repeat(”Delay”,21,1); *3x7=21 rows in table now;

print a[colname=”MuA” ”MuB” ”StdA” ”StdB” ”CovMu” ”CovStd” ”CovSlo-

peA” ”CovSlopeB”

”IncCurCov” ”DelayA” ”DelayB” ”Sides” ”m”

”N” ”nAHat” ”nBHat” ”PAHat” ”PBHat” ”PAVar” ”PBVar” ”PctAdRandHat”

”MuAHat” ”MuBHat” ”VarAHat” ”VarBHat” ”Sigma” ”SigmaHat”

”CovAMu” ”CovAVar” ”CovBMu” ”CovBVar”

”SlopeAHat” ”SlopeBHat”

”CovAXYHat” ”CovBXYHat”

”Ratio” ”Phi” ”PhiReal”

”DFEq” ”SEEq” ”RejectEqPct” ”RejectEqVar”

”DFUn” ”SEUn” ”RejectUnPct” ”RejectUnVar”

”CI Eq L” ”CI Eq U” ”CI Un L” ”CI Un U”

”Dist1 Mu Hat” ”Dist2 Mu Hat” ”Dist1 Var Hat” ”Dist2 Var Hat”

”Vec1 Mu Hat” ”Vec2 Mu Hat” ”Vec3 Mu Hat” ”Vec4 Mu Hat”

”Vec1 Var Hat” ”Vec2 Var Hat” ”Vec3 Var Hat” ”Vec4 Var Hat”

”Vec12 Cov Hat” ”Vec13 Cov Hat” ”Vec14 Cov Hat”

”Vec23 Cov Hat” ”Vec24 Cov Hat” ”Vec34 Cov Hat” rowname=name];

end; *ends iteration of work-around to run through all sims for various sample

sizes;

quit;


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	12-2015

	Simulations of a New Response-Adaptive Biased Coin Design
	Aleksandra Stein

	tmp.1449099101.pdf.d_j41

