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MicroCommentary

Deciphering fungal dimorphism: Farnesol’s unanswered
questions

Kenneth W. Nickerson* and Audrey L. Atkin

School of Biological Sciences, University of Nebraska,

Lincoln, NE 68588 0666, USA.

Summary

Candida albicans excretes E,E-farnesol as a viru-

lence factor and quorum sensing molecule that pre-

vents the yeast to hyphal conversion. Polke et al.

(2016) identified eed1D/D as the first farnesol hyper-

sensitive mutant of C. albicans. eed1D/D also

excretes 10X more farnesol and while able to form

hyphae, it cannot maintain hyphae. This mutant ena-

bles new research into unanswered questions,

including the existence of potential farnesol recep-

tors and transporters, regulation of farnesol synthe-

sis, and relationships among farnesol, germ tube

formation and hyphal maintenance. The eed1 farne-

sol hypersensitivity can be explained by higher inter-

nal concentrations of farnesol or lower thresholds for

response. One possibility invokes misexpression of

a transporter. Saccharomyces cerevisiae and C. albi-

cans have transporters for farnesylated peptides, like

the a-factor pheromone, which could potentially also

transport farnesol for virulence and quorum sensing.

Significantly, these transporters are repressed in

MTLa/MTLa C. albicans. An evolutionary pressure for

C. albicans to become diploid could derive from its

use of farnesol. Alternatively, maintenance of hyphal

growth may increase the farnesol response thresh-

old. Finally, Dpp1p, Dpp2p and Dpp3p are non-

specific pyrophosphatases responsible for farnesol

synthesis. Changes in expression of these enzymes

do not explain differences in farnesol levels implicat-

ing involvement of additional factors like a scaffold-

ing molecule.

The capacity to undergo changes in cell morphology is

essential for the ability of many fungal pathogens to

cause disease. Candida albicans is a serious opportun-

istic fungal pathogen of humans. In healthy people, it is

a harmless member of the microbial flora in the gastro-

intestinal and urogenital tracts. However, when host

defenses are compromised, it causes mucosal and dis-

seminated infections that are often life-threatening. C.

albicans, is able to grow in yeast and filamentous cell

forms and, like many fungal pathogens, the ability to

change between different cell forms is strongly corre-

lated with its ability to cause disease.

In 2001, we identified the sesquiterpene E,E-farnesol

as a quorum sensing molecule (QSM) produced by C.

albicans (Hornby et al., 2001). Throughout we will use

farnesol for E,E-farnesol and define quorum sensing

activity as the ability to block the yeast to hypha conver-

sion in a cell density-dependent manner. However, far-

nesol has numerous other biological activities. Early on

it was found that farnesol inhibited C. albicans biofilm

formation (Ramage et al., 2002), triggered apoptosis in

other potentially competing fungi (Semighini et al.,

2006), and acted as a virulence factor in the mouse

model of systemic candidiasis (Navarathna et al., 2007).

This latter finding raised the conundrum of how farnesol

could act as a virulence factor when it also functioned in

vitro to block germ tube formation (GTF) and hyphal

growth, which are themselves essential for pathogene-

sis. This dilemma has been answered in part by the

recent work of Hargarten et al. (2015) who showed that

C. albicans white cells secrete farnesol as a chemoat-

tractive stimulant of macrophages, a phagocyte that

they are able to survive within and escape from. Farne-

sol, which is secreted by white cells only (Dumitru et al.,

2007), is a potent stimulator of macrophage chemokine-

sis; it results in an 8.5-fold increase in macrophage

migration in vitro and a threefold increase in the perito-

neal infiltration of macrophages in vivo (Hargarten et al.,

2015).

Since our publication in 2001, farnesol and its many

roles in the biology of C. albicans have been of great

interest to the Candida community, resulting in ca. 250

publications and 22 patents as of September 2016.

However, despite this interest, 15 years later we still do
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not know: 1/if there is a receptor/sensor for farnesol; 2/if

there is a transport system for farnesol; 3/how farnesol

synthesis is regulated [opaque and anaerobic cells turn

off synthesis whereas tup1 and nrg1 mutants elevate

synthesis 17–19 fold (Kebaara et al., 2008); and 4/what

the relationship is between farnesol and commitment.

Commitment was defined by Mitchell and Soll (1979)

and Chaffin and Wheeler (1981) for C. albicans and

Muthukumar and Nickerson (1985) for Ceratocystis ulmi

as the point in the events leading to germination or bud-

ding at which a cell may no longer choose. These

organisms remain committed to a given morphology

even in the absence of the original inducing conditions,

i.e. resuspension in a growth medium which promotes

the alternate morphology. In C. albicans, the yeast to

hypha transition is well studied because of the syn-

chrony inherent in starting with totipotent, single cells. In

contrast, the transition from hyphae to yeasts is poorly

studied, despite its evident importance in pathogenesis,

e.g. the release of yeasts from biofilms as a reservoir

for infection.

Differentiation from resting cells into filamentous cells

can be broadly divided into four steps (Fig. 1): 1/resting

cells in the G0 phase of the cell cycle are totipotent and

responsive to farnesol, 2/germ tube formation, unre-

sponsive to farnesol, 3/hyphal or pseudohyphal growth,

unresponsive to farnesol and 4/hyphal or pseudohyphal

cells that respond to farnesol leading to budding of

yeast cells. Experimentally we know that farnesol blocks

the yeast to hypha conversion but does not block the

elongation of preexisting hyphae, at least for a period of

6–10 h following GTF. This latter phenomenon is of

direct relevance to morphogenesis and disease.

EED1 or epithelial escape and dissemination 1 regulates
hyphal maintenance

EED1 (Epithelial Escape and Dissemination 1) is a

unique C. albicans gene that is important for mainte-

nance and persistence within the epithelium (Zakikhany

et al., 2007; Martin et al., 2011). EED1 expression is

Fig. 1. The relationships between morphological development, related transcriptional changes, and farnesol signaling in C. albicans. Black
lines represent active regulatory relationships while dotted lines represent potential indirect relationships. Transcription regulators are
represented by ovals.
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sevenfold higher in hyphal-inducing conditions than in

conditions favoring growth as yeasts. It is also upregu-

lated in C. albicans in both a reconstituted human oral

epithelium infection model and in samples from patients

with oral candidiasis. It was first discovered by Zaki-

khany et al. (2007) who used the reconstituted human

oral epithelium infection model to follow the establish-

ment of oral candidiasis. Wild type C. albicans forms

hyphae upon attachment to the epithelial surfaces, lead-

ing to invasion of the epithelial cells. The fungus then

proliferates, disseminating deeper into the epithelial

layers leading to cell damage and clinical symptoms of

the disease. Like wild type C. albicans, mutants lacking

EED1 are able to form filaments and invade epithelial

cells. However, these mutants then switch to yeasts that

still proliferate intracellularly, but cannot escape from

epithelial cells. As a result the mutants do not dissemi-

nate to other epithelial cells and thus cause reduced

epithelial tissue damage (Zakikhany et al., 2007). In

vitro, these eed1 mutants initially form filaments in

response to hyphal stimulants such as contact with plas-

tic surfaces in RPMI with 10% serum at low cell den-

sities (Zakikhany et al., 2007; Martin et al., 2011).

However, hyphal elongation is always short lived and lat-

eral yeast formation occurs remarkably quickly (Martin

et al., 2011). Thus, the study of EED1 and Eed1p allows

the researcher to separate the initiation of hyphae from

the extension of hyphae (Fig. 1). We take pleasure in

noting that this distinction between cell division and cell

elongation was the major theme in the work of W.J.

Nickerson on yeast-mycelial dimorphism in C. albicans

and other dimorphic fungi (Nickerson, 1948; Nickerson

and Falcone, 1956). EED1 likely encodes a positive reg-

ulator of hyphal extension. The availability of eed1D/D
as a research tool overcomes one of the major difficul-

ties in studying the hypha to yeast transition – its

extended and non-synchronous time frame.

There is a caveat to the claim that EED1 is unique in

C. albicans. Maguire et al. (2013) showed that EED1

was an example of a rapidly evolving gene, whose

homology was revealed by a combination of BLASTP

and synteny information, but not by BLASTP alone.

Maguire et al. (2013) concluded that EED1 was present

in the common ancestor of the CTG clade, but that it is

rapidly evolving and has undergone some particularly

significant changes in the C. albicans lineage, probably

associated with the ability of C. albicans to undergo true

hyphal growth, a phenotype that is almost unique in the

CTG clade. Thus, EED1 may have a unique physiologi-

cal function in C. albicans.

The molecular function of Eed1p is unknown, however

it is important for expression of hyphal-specific or

hyphal-associated genes (HSGs) during hyphal growth

(Martin et al., 2011; Fig. 1). In wild type C. albicans,

HSG expression is induced at the onset of germ tube

formation and remains elevated during the subsequent

hyphal growth (reviewed in Biswas et al., 2007;

Whiteway and Bachewich, 2007). Hyphal-associated

gene expression is also induced in eed1D/D at the onset

of germ tube formation, but is not maintained (Martin

et al., 2011). Instead expression of genes required for

growth as yeasts, including NRG1, increases. The effect

of Eed1p on HSG expression is largely mediated by

Ume6p, a transcription factor, because ectopic expres-

sion of Ume6p rescues filamentation in an eed1D/D
mutant and restores expression of HSGs (Martin et al.,

2011; Fig. 1).

EED1 expression is regulated by transcription factors

that are also involved in the response to farnesol

(Fig. 1). The sevenfold increase in EED1 expression in

hyphal-inducing conditions is dependent on Efg1, the

key transcriptional regulator of the Ras-cAMP signal

transduction pathway (Martin et al., 2011). Efg1 is a

transcriptional activator of hyphal-specific genes that is

activated in response to environmental signals that

induce hyphal growth. Eed1p functions downstream of

Efg1p because ectopic expression of EED1 rescues the

filamentation defect of an efg1 mutant (Martin et al.,

2011). Similarly, EED1 is repressed by Tup1p and

Nrg1p because EED1 expression is higher in tup1D/D
and nrg1D/D mutants in conditions that favor both yeast

and hyphal growth (Martin et al., 2011). Tup1p is a tran-

scription repressor that negatively regulates the change

from yeasts to hyphae by inhibiting hyphal-specific gene

expression while Nrg1p is one of three DNA binding pro-

teins that functions with the Tup1p complexes to inhibit

gene expression. Farnesol blocks activation of the

hyphal-specific genes regulated by Efg1 by inactivating

the Ras-cAMP pathway and causes a �2.5-fold

increase in Tup1p expression (Davis-Hanna et al., 2008;

Kebaara et al., 2008; Hall et al., 2011; Lindsay et al.,

2012; Piispanen et al., 2013). Collectively, these interac-

tions create a delicately poised feedback loop regulating

cell morphology (Fig. 1).

Mutants altered in their response to farnesol

Polke et al. (2016) have now laid the foundation for a

new way of addressing unanswered questions about far-

nesol function by examining several farnesol-related

aspects of EED1. One approach to discerning farnesol’s

mode of action is to screen existing collections for C.

albicans mutants which are altered in their response to

farnesol. Langford et al. (2013) used this strategy to

identify six mutants, including czf1, which were impaired

in their farnesol response, i.e. they were still filamentous

at 378C in the presence of 50 mM farnesol. Now Polke
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et al. (2016) have identified the first mutant (eed1D/D)

that is hypersensitive to farnesol. This mutant was

blocked in the yeast to hypha conversion by only 0.1 mM

farnesol, making it 50–100 times more sensitive to far-

nesol than wild type C. albicans. The involvement of

EED1 in the response to farnesol is not surprising given

its position in the hyphal induction mediated by the Ras-

cAMP pathway (Fig. 1). What is surprising is that eed1

is hypersensitive to farnesol because mutations in TPK1

and CZF1, which encode a cAMP-dependent PKA and

a transcription regulator of this pathway, respectively,

both confer resistance to farnesol (Langford et al.,

2013).

Polke et al. (2016) concluded that farnesol likely acts

on eed1 via a novel mechanism, quite distinct from its

action as a QSM via inhibition of the RAS-cAMP signal-

ing pathway (Davis-Hanna et al., 2008) or its ability to

kill other yeasts and fungi by stimulating their mitochon-

dria to produce excess ROS (Machida et al., 1998).

Finally, and most intriguing, eed1D/D is not only hyper

sensitive to farnesol but it also secretes more farnesol

in a more rapid time frame. The hypersensitivity of C.

albicans eed1D/D mutants to farnesol can be explained

by either: 1/these mutants maintain a higher internal

concentration of farnesol or 2/these mutants have a

lower threshold for response to farnesol.

A regulated farnesol transporter?

An attractive explanation for these phenotypes (both

hypersensitivity and hypersecretion) is that eed1D/D
cells are able to transport farnesol more efficiently than

wild type cells. This possibility would allow higher inter-

nal concentrations of farnesol at lower external concen-

trations. This mechanism could be either direct, via

active transport or facilitated diffusion, or indirect via a

major change in the lipid components of the cytoplasmic

membrane. For instance, Ghannoum et al. (1990)

reported that white cells of C. albicans had 4–7 times

more sterols in their membranes than did opaque cells.

Such major changes in sterol composition could alter

the ease with which farnesol diffuses across these

membranes. More sterols would make the membrane

less fluid and thus less amenable to diffusion. Indeed,

Dumitru et al. (2007) observed that three types of opa-

que cells, C. albicans WO-1, 3740 (MTLa/a), and 3745

(MTLa/a), were lysed by 40 mM farnesol whereas the

corresponding white cells remained 100% viable. Polke

et al. (2016) addressed the possibility of secondary

effects arising from changes in membrane lipid composi-

tion by showing that wild type and eed1 mutants had

equivalent sensitivity to lysis by the anionic detergent

SDS, but it would still be nice to compare the actual

membrane compositions.

Having a regulated farnesol transporter would provide

an attractive explanation for several phenomena: 1/

eed1D/D responds to lower levels of exogenous farne-

sol, Polke et al. (2016), because the farnesol no longer

has to enter by diffusion. Similarly, the eed1 mutant

could excrete farnesol more rapidly because the farne-

sol no longer has to leave by diffusion. 2/eed1D/D
secretes roughly 10X more farnesol than wild type

C. albicans but the amounts of membrane-bound farne-

sol are much lower in eed1D/D (Polke et al., 2016) than

in wild type (Navarathna et al., 2005). 3/Farnesol resist-

ance or sensitivity is not an intrinsic feature of C. albi-

cans. It can vary with the growth phase or other

physiological changes. For instance, lag-and stationary-

phase cells are not inhibited by farnesol concentrations

up to 300 mM while exponential phase cells are inhibited

by only 40 mM farnesol (Langford et al., 2010). This phe-

nomenon had previously been described by Uppuluri

et al. (2007).

These ideas could be tested by characterizing the

uptake kinetics in both wild type and eed1D/D for radio-

labeled or fluorescently labeled farnesol. It would be

problematic to use a chemically modified farnesol such

as biotinylated farnesol because the C-1 hydroxyl of far-

nesol is essential for its QSM activity. Additionally,

Shchepin et al. (2003) found that all 40 of the natural

and synthetic farnesol analogs they tested had less than

10% of the QSM activity of authentic farnesol. Changes

as subtle as replacing a methylene with a sulfur or a

methyl with an ethyl gave only 2-3% of the QSM activity.

Instead, we designed and synthesized a fluorescent far-

nesol (Shchepin et al., 2005) which maintained the 3-

dimensional structure of E,E-farnesol. Farnesol contains

three non-conjugated carbon-carbon double bonds. We

added two more double bonds between those three

double bonds to make a fluorescent farnesol with five

conjugated double bonds. C. albicans A72 cells stained

with this fluorescent farnesol showed that the cytoplas-

mic membrane was stained along with an internal oval

structure occupying ca. 1=4 of the cell volume (Shchepin

et al., 2005). The identity of the internal structure is not

known. No supplies of fluorescent farnesol are still

available.

The a-factor mating pheromone is farnesylated

If the above analysis is correct, C. albicans may have a

previously unrecognized, regulatable system that can

transport farnesol. To identify such a transporter, we

have thought about several approaches and candidates.

The connection is not obvious since it has remained
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undiscovered for the past 15 years. Is there homology

with transport of insect juvenile hormone? Juvenile hor-

mone is after all the 10,11 epoxide of farnesoic acid.

Instead, is it one of the 214 membrane proteins identi-

fied by Cabezon et al. (2009) as the C. albicans plasma

membrane proteome? Alternatively, we could look for

candidate transporters among proteins already known to

exhibit specificity for farnesol (C15) or geranylgeraniol

(C20), such as farnesol transferase (FTase) or geranyl-

geranyl transferase 1 (GGTase) (Kelly et al., 2000). Both

enzymes are zinc-dependent heterodimers comprising

an a and a b subunit, which prenylate proteins by

attaching farnesol or geranylgeraniol, respectively, in a

thioether linkage to the cysteine of a CaaX motif at the

C-terminus. The a subunit (Ram2p) is shared by

GGTase and FTase in both yeasts and mammals while

the b subunits for C. albicans are Cdc43p and Rho3p

for GGTase and FTase respectively. Significantly, Rho3p

(orf19.3534) is one of the proteins in the C. albicans

plasma membrane proteome (Cabezon et al., 2009).

Relevant farnesol specific domains should also be

present in a transporter able to import or export a farne-

sylated protein or peptide. We were drawn to the fact

that both S. cerevisiae and C. albicans secrete a farne-

sylated peptide mating pheromone. This farnesylated

peptide has to be secreted by a mating type cells and

then recognized and imported by a mating type cells, by

Ste6p and Ste3p respectively. Ste3p and Ste6p should

both have farnesol-specific portions of their peptide

binding sites so that they can distinguish farnesylated

peptides from unmodified peptides. In this model, Ste3p

or Ste6p would transport free farnesol as well as the far-

nesylated peptide. Ste6p (orf 19.7440) is an ATP binding

cassette (ABC) transporter that exports the a-factor

peptide. It is not regulated during white opaque switch-

ing and Ste6p is constitutively transcribed. In contrast,

Ste3p (orf19.2492) is the a-factor receptor on a cells.

Expression of STE3 is increased 300–1000 fold in opa-

que cells. A key point is that in MTLa/a heterozygotes,

both a-specific and a-specific gene expression is turned

off. This model is attractive in that it provides a ready

explanation for the farnesol sensitivity of aerobically

grown opaque cells. The white cells are typical budding

yeasts, usually MTLa/a, produce lots of farnesol, and

are resistant to up to 300 mM farnesol. In contrast, opa-

que cells are elongated, either MTLa/a or MTLa/a, do

not secrete farnesol, and are as sensitive to farnesol as

are S. cerevisiae and other fungi. Dumitru et al. (2007)

showed that aerobically opaque cells of C. albicans

were lysed quickly by 20-40 mM farnesol. This observa-

tion is consistent with either Ste3p or Ste6p being

expressed in the opaque cells, with their presence being

responsible for the dramatic farnesol sensitivity of opa-

que cells. However, eed1D/D does not fit the scenario.

Neither STE3 nor STE6 was altered in expression (Mar-

tin et al., 2011). It is possible that another as yet uniden-

tified farnesol transporter is upregulated in eed1D/D
and, as pointed out by Polke et al. (2016), with eed1D/D
as a model for farnesol hypersensitive mutants we may

now discover several more examples of this unusual

phenotype.

A potential source of evolutionary pressures for
C. albicans to be a diploid

Why is C. albicans diploid? For many years it was

thought that C. albicans had to be diploid because it

carried many recessive lethal mutations. This idea was

replaced by the seminal work of Hickman et al. (2013)

who isolated a series of haploid C. albicans cells. They

showed that the haploid cells were smaller than the dip-

loid cells and they grew more slowly. However, they

were still able to undergo yeast-hyphal and white-

opaque switching, form both pseudohyphae and chlamy-

dospores, and mate [if haploid opaques of opposite

mating type were present]. Hickman et al. (2013) con-

cluded that haploid formation was not a rare event at all.

However, haploids only constitute a very small % of the

total population because of their low competitive fitness

relative to that of heterozygous diploids. Hickman et al.

(2013) did not define the basis of that low competitive

fitness but increased sensitivity to farnesol is certainly a

possibility. Six MTLa and five MTLa haploid cell lines

are available (Hickman et al., 2013) to assess the farne-

sol concentrations needed to achieve cell lysis or to

block hyphal growth. Are one or both of the haploid mat-

ing type a or a strains hypersensitive to farnesol? If so,

it suggests the evolutionary codicil that the drive to dip-

loid status for C. albicans coincided with the drive to

overproduce and secrete farnesol. It also suggests that

the diploid S. cerevisiae BY4743 (MTLa/a) should be

significantly more resistant to exogenous farnesol than

the isogenic haploid S. cerevisiae BY4741.

The connection between farnesol and the diploid sta-

tus of C. albicans also fits the work of Lockhart et al.

(2005). Farnesol is a known virulence factor for C. albi-

cans (Navarathna et al., 2007; Hargarten et al., 2015).

Lockhart et al. (2005) injected mice with MTLa/a, a/a, or

a/a strains of C. albicans. Their single-strain injection

experiments showed that the MTLa/a strains were far

more virulent than either the MTLa/a or MTLa/a strains.

Similarly, when equal numbers of parent and daughter

cells were co-injected, MTLa/a always exhibited a com-

petitive advantage. Lockhart et al. (2005) proposed that

heterozygosity at the MTL locus repressed white-

opaque switching and the genes involved in the mating

process, but it also affected virulence, providing a
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competitive advantage to the MTLa/a genotype that con-

serves the mating system of C. albicans in nature. We

now suggest that farnesol may provide the mechanism

connecting the MTL locus with virulence.

A decreased threshold for response to farnesol?

Resting cells are in the G0 phase of the cell cycle and

environmental inducers of hyphal growth will trigger

germ tube formation (GTF) (Fig. 1). The addition of far-

nesol to resting cells inhibits GTF if added at any time

up until the actual emergence of germ tubes (Hornby

et al., 2001; Mosel et al., 2005). These cells will remain

as yeasts. However, once a germ tube has emerged, C.

albicans is no longer able to respond to farnesol (Mosel

et al., 2005). C. albicans will typically maintain hyphal or

pseudohyphal growth through multiple cell divisions.

During this phase, cells remain unresponsive to farne-

sol. At some still poorly defined point, cells regain the

ability to switch from hyphal to yeast growth and once

again respond to farnesol (Fig. 1).

Many environmental inducers of hyphal development

initiate signal transduction by the Ras-cAMP pathway

leading to a change in transcriptional regulation (Hogan

and Sundstrom, 2009; Inglis and Sherlock, 2013). Initia-

tion of hyphal development depends on expression of

the HSGs, a process that involves both release from

negative regulation by Tup1p and Nrg1p as well as acti-

vation of HSGs by transcription factors including Efg1p

(reviewed in Liu, 2001). Sustained hyphal growth

depends on continued HSG expression. This is accom-

plished, in part, by expression of the transcription factor

Ume6p and chromatin remodeling of HSG promoters to

prevent binding of Nrg1p (reviewed in Lu et al., 2014a).

Farnesol blocks hyphal development in at least three

ways: 1/it inhibits the Ras-cAMP signal transduction

pathway (Davis-Hanna et al., 2008; Hall et al., 2011), 2/

it causes a 2.5-fold increase in Tup1p levels (Kebaara

et al., 2008), And 3/it blocks the Sok1-mediated degra-

dation of Nrg1p (Lu et al., 2014b). The observations of

Polke et al. (2016) that the hypersensitivity of eed1D/D
mutants is independent of both the Ras-cAMP pathway

and Nrg1p suggests that the ability to transition from ini-

tiation of HSG expression to maintenance of HSG is

important for farnesol sensitivity. This finding is unex-

pected because wild type C. albicans become unrespon-

sive to farnesol at the time when germ tubes first

emerge, which is prior to the transition to maintenance

of HSG expression (Mosel et al., 2005). This juxtaposi-

tion also implies that the different cellular responses to

farnesol are additive so that loss of the ability to main-

tain HSG expression lowers the threshold for a cell’s

response to farnesol. Thus the eed1D/D mutant provides

a new opportunity to study the relationships among

maintenance of hyphal gene expression, the response

to farnesol during filamentous growth, and the transition

from filamentous to yeast growth.

Why is farnesol synthesis elevated in tup1, nrg1 and
eed1 mutants?

Farnesol is synthesized from farnesyl pyrophosphate

(FPP) by the lipid pyrophosphatases Dpp2p and Dpp3p

(Navarathna et al., 2007) and possibly also Dpp1p

(Ganguly et al., 2011, Polke et al., 2016). The amounts

of farnesol produced are roughly proportional to the

mass of C. albicans cells grown aerobically in a defined

glucose-phosphate-proline medium at all temperatures

tested from 23 to 438C (Hornby et al., 2001). However,

farnesol synthesis can be regulated: 1/Synthesis is shut

off during anaerobic growth (Dumitru et al., 2004); 2/Far-

nesol is synthesized by white cells but not by opaque

cells (Dumitru et al., 2007); 3/tup1 and nrg1 mutants of

C. albicans overproduce farnesol 19- and 17-fold,

respectively (Kebaara et al., 2008); 4/eed1 mutants

overproduce farnesol 10-fold (Polke et al., 2016) and 5/

zap1 mutants produce sixfold less farnesol (Ganguly

et al., 2011). The challenge in discerning how farnesol

is regulated is evident from the fact that tup1 and nrg1

mutants are locked in filamentous growth, whereas eed1

mutants cannot maintain filamentous growth and are

hypersensitive (0.5 uM) to farnesol.

It is unlikely that farnesol regulation is primarily at the

level of DPP2 and DPP3 expression. DPP2 and DPP3

mRNA levels are not affected by loss of TUP1 or NRG1

or by growth of C. albicans in the white or opaque

phases, producing high and no farnesol, respectively

(Kadosh and Johnson, 2005; Hargarten and Atkin,

unpublished; Kebaara et al., 2008). And farnesol pro-

duction levels were reduced ca. 85% when DPP3 was

knocked out in an auxotrophic SN152 background

(Kadosh and Johnson, 2005; Navarathna et al., 2007)

but remained unchanged, still high, in an eed1 back-

ground (Polke et al., 2016).

Several mechanisms for regulating farnesol production

are possible. First, regulation via carbon flow through the

ergosterol biosynthetic pathway, with carbon flow deter-

mining the FPP pool size. Does the FPP pool size

exceed the Km values for Dpp1p, Dpp2p, and Dpp3p?

We suggested this explanation for our observations that

sublethal levels of zaragozic acid (Hornby et al., 2003)

and four azole antibiotics (Hornby and Nickerson, 2004)

caused 10- to 40-fold increases in farnesol production by

C. albicans. Presumably, blocking the carbon flow to

ergosterol led to the accumulation of precursor molecules

including FPP. As another example, there is no cell
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density or inoculum size effect when C. albicans A72

cells are triggered for GTF by N-acetylglucosamine

(GlcNAc); similar rates were observed with inocula of 105

to 108 cells/ml (Hornby et al., 2003). This observation

was perplexing because the discovery of farnesol as a

QSM was driven by the study of cell density effects in

fungal dimorphism. However, the observation made

sense when viewed in the context that GlcNAc-induced

GTF is a differentiation, not growth, and sterol biosynthe-

sis has not been turned on during that differentiation

(Sundaram et al., 1981). Thus, an indicated experiment

would be to measure the time course of farnesol produc-

tion, if any, during germination as induced by N-

acetylglucosamine versus a complete growth medium

such as mGPP, Spider medium, or Lee’s medium. In any

case, measurement of the FPP pool sizes could usefully

accompany future reports on farnesol production levels.

Second, excreted farnesol is in equilibrium with both

internal and membrane bound farnesol (Navarathna

et al., 2005). Maintenance of this equilibrium is nicely

exploited by industrial protocols that provide an external

lipid sink such as mineral oil to maximize the microbial

production of farnesol (Muramatsu et al., 2002). If diffu-

sion across the cytoplasmic membrane is the rate limit-

ing step, as seems likely, then farnesol production would

be facilitated by introducing a farnesol transport protein,

as may have occurred in the eed1 mutant characterized

by Polke et al. (2016).

Third, many layers of regulation occur after gene

expression. The presence or absence of FPP pyrophos-

phatase activity could be determined by whether the rele-

vant mRNA are translated, whether Dpp2p and Dpp3p

are activated/inactivated by post-translational modifica-

tions, or whether they are targeted for proteolysis by inter-

actions with farnesol or geranylgeraniol pyrophosphate in

the same manner by which HMG CoA reductase is regu-

lated in S. cerevisiae (Shearer and Hampton, 2005).

Finally, Dpp1p, Dpp2p, and Dpp3p are rather non-

specific pyrophosphatases, active on many lipid pyro-

phosphates (Faulkner et al., 1999). Thus, they have

substrates and products other than FPP and farnesol,

and the dpp1, dpp2, and dpp3 mutants should have

complex phenotypes. The specificity regarding which

lipid pyrophosphate is the actual substrate may be pro-

vided by the presence of a scaffolding protein or RNA

which delivers the intended substrate to the pyrophos-

phatase, or whose presence is necessary for the pyro-

phosphatase to act as a functional a/b dimer.

Future directions

We can use the C. albicans eed1D/D mutant as a tool to

investigate the remaining questions on the role of

farnesol in fungal dimorphism. It is the first mutant that

is hypersensitive to farnesol; does more farnesol enter

the fungal cell or is less farnesol now sufficient to

accomplish the observed changes? Also, we now have

a new tool to separate the initiation of hyphae (GTF)

from the maintenance of hyphae. Is chromatin remodel-

ing a necessary step for either GTF or hyphal mainte-

nance? In both cases, answers may be gleaned, in part,

from mining the gene expression data for the eed1D=D
mutant (Martin et al., 2011). They compared eed1D=D
versus its wild type parent after 1, 12, or 24 h growth on

plastic, and identified 910 genes that were at least two-

fold differentially expressed in the mutant at one of the

time points; 441 were down-regulated and 469 were up-

regulated. STE3 and STE6 were not among the genes

that were up-regulated (alas). In particular, many of the

hyphal associated genes were down-regulated after 12

or 24 h while NRG1 and WOR2 were up-regulated (Mar-

tin et al., 2011). These observations suggest a feedback

loop where EED1 and UME6 are repressed by Nrg1p

while expression of EED1 and UME6 is required for

exclusion of Nrg1p from the HSG promoters (Fig. 1).

These gene expression data sets provide a fertile

resource for answering these questions, with the caveat

that the relevant gene may be expressed at such a low

level it isn’t in the data set or it would have been

detected at some time point between 1 and 12 h. In the

process, we may also discover the mechanism whereby

excess biotin (4 uM) stimulates GTF (Lee et al., 1975;

Ahmad Hussin et al., 2016) as well as histone biotinyla-

tion (Hasim et al., 2013) in C. albicans. Are the two phe-

nomena causally related, possibly via chromatin

remodeling? The response of eed1D=D to biotin has yet

to be investigated.
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