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Domain Wall Relaxation, Creep, Sliding, and Switching in Superferromagnetic Discontinuous
Co80Fe20=Al2O3 Multilayers

X. Chen,1 O. Sichelschmidt,1 W. Kleemann,1 O. Petracic,1 Ch. Binek,1 J. B. Sousa,2 S . Cardoso,3 and P. P. Freitas3

1Laboratorium für Angewandte Physik, Gerhard-Mercator-Universität, Duisburg, D-47048 Duisburg, Germany
2IFIMUP, Departamento de Fisica, Universidade de Porto, 4169-007 Porto, Portugal

3INESC, Rua Alves Redol 9-1, 1000 Lisbon, Portugal
(Received 9 April 2002; published 9 September 2002)

The ac susceptibility of a superferromagnetic discontinuous multilayer �Co80Fe20�1:4 nm�=
Al2O3�3 nm��10 is measured as a function of temperature, frequency, and field amplitude and compared
to static and dynamic hysteresis loops. Its properties are successfully mapped onto the predicted
[T. Nattermann, V. Pokrovsky, and V. M. Vinokur, Phys. Rev. Lett. 87, 197005 (2001).] dynamical phase
transitions, which link the relaxation, creep, sliding, and switching regimes of pinned domain walls.

DOI: 10.1103/PhysRevLett.89.137203 PACS numbers: 75.40.Gb, 75.60.Ej, 75.70.Cn, 78.20.Ls

Recently nanosized magnetic single domain particles
(‘‘superspins’’) and their mutual interactions have at-
tracted much interest both in fundamental research and
applications. A novel type of superferromagnetic (SFM)
behavior was discovered in discontinuous metal-insulator
multilayer (DMIM) systems such as �Co80Fe20�t�=
Al2O3�3 nm��10 [1]. It occurs at nominal CoFe thicknesses
t > 1:2 nm, but below the percolation limit, tp � 1:8 nm,
above which a normal 3D ferromagnetic phase with
Ohmic conduction is encountered [2]. A similar nonper-
colating SFM state of Co islands was observed in
Co�t�=Cu�100� thin films at coverages t < 1:8 monolayers
[3]. Monte Carlo simulations show that the dipolarly
coupled islands attain a nondegenerate noncollinear
ground state [4]. However, in view of clear ferromagnetic
signatures (hysteresis and stable remanence [1,3]), very
probably additional nonclassic ferromagnetic interactions
are involved [5].

Although details of the SFM superspin structure are
not yet known, it is clear that any field-induced change of
its ‘‘order-by-disorder’’ [6] will compete with inherent
random bonds and random anisotropy. Indeed, as shown
in this Letter, the SFM state of the DMIM system
�Co80Fe20�1:4 nm�=Al2O3�3 nm��10 strongly reminds one
of an impure magnet containing a broad distribution of
random field or random bondlike pinning centers for
domain walls. Analysis of its complex susceptibility,
�� � �0 � i�00, as a function of T, frequency f � !=2�
and probing ac field amplitude, h0, evidences fundamen-
tal dynamic features predicted for the dynamic hysteresis
of an impure magnet containing one domain wall [7].

When increasing h0, the magnetization
(M)-versus-magnetic field (h) loop displays four regimes
linked by dynamical phase transitions. At very low fields,
h0 < h!, only relaxation, but no macroscopic motion of
the walls should occur at finite frequencies. Within the
range h! < h0 < ht1, a thermally activated ‘‘creep’’ is
expected, while above the depinning threshold ht1 the
‘‘sliding’’ regime is encountered within ht1 < h0 < ht2.

Finally, for h0 > ht2, a complete reversal of the magneti-
zation (switching) occurs in the whole sample in each half
of the period, � � 1=f. It should be noticed that all
transition fields, h!, ht1, and ht2, are expected to depend
strongly on both T and ! [7].

The DMIM sample of �Co80Fe20�1:4 nm�=
Al2O3�3 nm��10 was prepared by focused ion beam sput-
tering as described previously [2]. Owing to pronounced
Volmer-Weber–type growth, the nonwetting Co80Fe20 al-
loy forms nearly spherical granules in the amorphous
Al2O3 matrix similarly as experienced previously on
Co-based DMIMs [8]. A field-induced uniaxial in-plane
anisotropy defines the easy directions of both the ac
susceptibility measured at frequencies 10�2 	 f 	
103 Hz and temperatures 200 	 T 	 380 K and the dc
magnetization measured at variant fields with a super-
conducting quantum interference device (SQUID) mag-
netometer (Quantum Design MPMS-5S). Prior to each
measurement, flux gate controlled zero-field conditions
were achieved to within j�0Hj< 2 �T by quenching the
superconducting solenoid and compensating the remanent
field. Dynamic hysteresis cycles were measured via the
longitudinal magneto-optical Kerr effect (MOKE) in
sinusoidal fields, h � h0 exp�i!t�, with �0h0 � 6 mT at
0:002 	 f 	 80 Hz.

Apart from its large polydispersivity [1], the ac sus-
ceptibility surprises by its extreme nonlinearity as shown
in Fig. 1 for two field amplitudes, �0h0 � 50 and 200 �T,
and frequencies 0:01 	 f 	 1 Hz. An increase of �0h0
by a factor of 4 causes the peaks of �0��00� vs T to shift to
lower T by 30(50) K and to shrink by factors of 5(3).
Simultaneously, their profiles change appreciably unlike
the corresponding curves of a DMIM with typical super-
spin glass (SSG) properties as observed in the low ‘‘con-
centration range,’’ t 	 1:0 nm [1,9].

The unusual appearance of SFM polydispersivity
is most clearly recognized in so-called Cole-Cole
diagrams, �00 vs �0 [10], as shown in Fig. 2 for T �
380 �1�, 350 (2), 320 (3), and 260 K (4), with
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�0h0 � 50 [2(a)] and 5 �T [2(b)]. At highest frequen-
cies, f ! 1 kHz (i.e., �0 ! 0), the diagrams start either
with proportionalities, �00 / �0 , or with a horizontal
spectrum, �00 
 const [Figs. 2(a) and 2(b); broken lines].
At increasing �0, the slope d�00=d�0 first increases and—
after passing a point of inflexion and a peak—the dia-
grams finally convert into classic Cole-Cole semicircles
as f ! 10 mHz (broken lines fitted to curves 1 and 2),
thus revealing monodispersivity [10]. In the following, we
first argue that the observed dispersion of �� is solely due
to domain wall processes. Second, we attribute character-
istic features designated by h! in Fig. 2(b) (vertical

arrows) and by ht1 and ht2 in Fig. 2(a) to dynamic phase
transitions predicted for the impure ferromagnet [7].

In order to evidence that the ac susceptometry is con-
trolled by domain wall processes, we inspect the static
and dynamic magnetization curves at various tempera-
tures, 270 	 T 	 370 K (Fig. 3), and frequencies, 5�
10�5 Hz & f 	 80 Hz (Fig. 4), respectively. From both
figures, it is seen that very low fields, j�0hj 	 2 mT,
suffice to switch the magnetization. Hence, susceptome-
try with 5 	 �0h0 	 200 �T as applied in the present
study probes partial hysteresis loops, which—in strong
dependence on h0, T, and f—range from minor loops to
complete switching cycles, thus passing all of the pre-
dicted dynamical critical fields [7].

In Fig. 3, it is seen that both coercive field, Hc, and
remanence, Mr, decrease monotonically as T increases,
the latter reaching zero at Tc 
 407 K. Rounded hystere-
sis loops with ratios Mr=Ms 
 0:5 (Ms � saturation
magnetization) indicate soft ferromagnetism, which de-
magnetizes in zero field via domain formation as in
permalloy or � metal. However, the very slow power-
law–like temporal relaxation of the remanence observed
after field cooling to below Tc predicts astronomic decay
times, e.g., �t 
 1033 s for the 90% decay of Mr / t�0:03

as determined within 10 	 t 	 104 s at T � 320 K.
The dynamical stabilization of the hysteresis is verified

by dynamic MOKE loops as shown in Fig. 4 for T �
294 K. As expected [11], the area of the hysteresis loop
and the coercive field hc increase as the frequency of
magnetization reversal is increased.We find a surprisingly
large factor of about 50 between f 
 5� 10�5 Hz
(SQUID data) and 80 Hz. As in conventional ferromag-
netic ultrathin films, e.g., Fe=GaAs [12], we observe two
dynamical regimes obeying power laws, hc / �dH=dt��,
with different exponents �, where � 
 0:02� 0:07 in the
‘‘low dynamic regime,’’ f < 0:05 Hz, and � 
 0:49�
0:04 in the ‘‘high dynamic regime,’’ f > 1 Hz (Fig. 4,
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FIG. 2. Susceptibility components �00 vs �0 measured at ac
amplitudes �0h0 � 50 (a) and 5 �T (b) at 10 mHz 	 f 	
1 kHz (data points from right to left, connected by interpolat-
ing solid lines) at T � 380 (1), 350 (2), 320 (3), and 260 K (4).
Phase transition features (see text) are marked by broken lines.
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FIG. 3. Static magnetization curves measured by SQUID
techniques at T � 270, 310 (complemented by a zero-field
cooled virgin curve), and 370 K.

0

2

4

6

8

280 320 360
0

2

4

6

8

µ
0
h

0
=200µ T

f

 

χ
' [

1
0

3
]

f

µ
0
h

0
=50µ T

 

Temperature [K]
 

χ
'' [1

0
3]

FIG. 1. Temperature dependence of the in-plane suscepti-
bility �0 (open symbols) and �00 (solid symbols) of
�Co80Fe20�1:4 nm�=Al2O3�3 nm��10 taken with ac amplitudes
�0h0 � 50 �T at f � 0:01, 0.1, and 1 Hz (see arrows and
symbol codes), and with �0h0 � 200 �T at f � 0:01 Hz.
Solid lines are guides to the eye.
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broken and solid line, respectively). Different domain
processes, viz. wall motion and domain nucleation, re-
spectively, are supposed to dominate these regimes [12].
While the exponents observed in our SFM sample are
very similar to those of continuous ferromagnetic films
[12], the magnetic field sweep rates at the crossover
from the ‘‘low’’ to the ‘‘high dynamic regime’’ are by
about 3 orders of magnitude smaller. This clearly charac-
terizes the extreme softness of our dipolarly coupled SFM
system.

The above considerations of quasistatic and dynamic
hysteresis loops help interpreting the ac susceptometric
results (Figs. 1 and 2), since �� is related to the field
derivative of the nonlinear function M�h� by averaging
over partial loops. Owing to the dynamics of M�h�, one
has to account for its dependence on both T (Fig. 3) and f
(Fig. 4). Hence, for low T and/or high f, a weak field h0
probes relaxation and thermally activated creep of the
domain walls [13] in the central part of the hysteresis
loop, while for high T and/or low f, complete magneti-
zation switching might be accomplished by the same field
amplitude h0. This explains the difference between the
lower and upper parts of the Cole-Cole diagrams in
Fig. 2(a) as will be explained in the following.

At very low h0 and sufficiently high f, the spectra are
observed to start as horizontal lines [Fig. 2(b) for �0h0 �
5 �T]. Obviously, in this limit the response has the
appearance of ‘‘white noise.’’ It corresponds to a constant
power spectrum (via the fluctuation-dissipation theorem)
and is compatible to a power-law dependence �0 / !��

as confirmed experimentally [14]. This behavior is typical
of the reversible relaxation of pinned domain wall seg-
ments with a quasicontinuous distribution of Debye-type
spectra [15].

This spectral behavior changes abruptly at a threshold
frequency denoted by h! [Fig. 2(b)], where the horizontal
line bends up to a finite slope, such that �00 / �0. Here the
predicted [7] transition from the reversible relaxation into
the irreversible creep regime is observed for the first time.
It occurs at all of our h0 values as shown in Fig. 5 by the
respective phase lines denoted as ‘‘h! � 5, 50, and 200.’’
The temperature/frequency regions at T < T�h!� and
! > !�h!� thus refer to reversible wall relaxation re-
gimes being large for ‘‘h! � 5,’’ but very restricted for
‘‘h! � 200.’’

In order to understand the linear relationship �00 / �0

observed in the creep regime for !<!�h!� [Figs. 2(a)
and 2(b); high-f side], let us first consider viscous domain
wall motion in the sliding regime [13]. In a simple stripe
domain model related to up and down domains with
initial uniform width d and magnetization �Ms, the side-
ways motion of their walls along the coordinate x under
an external field h�t� yields the rate equation,

dM=dt � �2Ms=d��wh�t�; (1)

where the wall mobility �w and h�t� determine the wall
velocity, dx=dt � �wh�t�. Assuming constant �w at
weak fields (above the depinning threshold [13]), one
finds a linear time dependence of the magnetization,
M�t� � �2�wMs=d�Ht, in a constant field H, while a
harmonic one, h�t� � h0 exp�i!t�, yields

M�t� � �2�wMs=i!d� �1�h0 exp�i!t�: (2)

Here, the second term refers to the ‘‘instantaneous’’ re-
versible domain wall response occurring on shorter time
scales (see above).Weak periodic fields thus probe a linear
ac susceptibility �� � �1�1� 1=�i!�i�� with �1=�i �
�2�wMs=d�, where �i denotes the time, in which the
interface contribution to the magnetization equals the
instantaneous one, �M � �1h.

10-1 101 103

200

300

400

h
t1

=200

h
t2

=200

h
ω
=200

h
t2

=50

h
t1

=50
h

ω
=50T

e
m

p
e

ra
tu

re
 [

K
]

F requency [Hz]

h
ω
=5

FIG. 5. Dynamical phase transition lines h!, ht1, and ht2 in
the T-f plane determined from Cole-Cole plots for amplitudes
�0h0 � 5, 50, and 200 �T, respectively, (see text).

10-5 10-3 10-1 101

0

1

2

-2 0 2
-1

0

1

(b)

µ
0
h

c
 [

m
T

]

SQUID

f [Hz]

 

N
o

rm
a

liz
e

d
 K

e
rr

 R
o

ta
ti

o
n

µ
0
h[mT]

1 2 3 4

(a)

FIG. 4. (a) Normalized MOKE loops obtained at T � 294 K
and f � 0:002 (1), 0.1 (2), 10 (3), and 40 Hz (4), and (b) f
dependence of the coercive field including the quasistatic
SQUID result, best fitted to power laws hc / f� with ��f <
0:1 Hz� � 0:02 and ��f > 1 Hz� � 0:49 (dashed and solid
lines, respectively; see text).

VOLUME 89, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 23 SEPTEMBER 2002

137203-3 137203-3



In the next step, we have to account for the nonlinearity
of v vs h in the creep regime of thermally excited
viscous motion, h! < h < ht1 ( � depinning field) [13].
Approximating this regime roughly by v / h�, � > 1, ��

may be modified phenomenologically by introducing an
exponent �< 1 and an effective relaxation time �eff ,

�� � �1�1� 1=�i!�eff���; (3)

similarly as used in the case of polydispersive Debye-
type relaxation [10].

Decomposing Eq. (3) into �0 � �1�1� cos���=2�=
�!�eff��� and �00 � �1 sin���=2�=�!�eff�� then yields
the linear relationship �00=��0 � �1� � tan���=2�,
which is observed in our experiments (Fig. 2).
Inspection of numerous spectral data �0 and �00 vs log!
[14] reveals power laws with exponents as low as � 

0:1–0:2, which may be interpreted to be due to a wide
distribution of �w.

Upon decreasing ! at a given T and h0, the linearity
�00 / �0 does no longer hold above a threshold value !t1
[Fig. 2(a); arrow designated as ht1]. Tentatively, we as-
sume that the sliding regime is entered above this depin-
ning threshold, where �00 is expected to rise very steeply
under the idealized conditions of a stripe domain model
with equidistant domains (see above). Hence, the end
point of the linear regime provides a criterion for the
transition expected at ht1 [7]. Again, we have checked
numerous data sets �00 vs �0 [14] and thus constructed the
phase lines referring to �0ht1 � 50 and 200 �T in Fig. 5.
Consequently, the regions between the lines ht1 and ht2,
i.e., for T�ht2� > T > T�ht1� and !t2 <!<!t1, comply
with the sliding condition for the respective value of h0.

Complete switching experienced by ac susceptometry
corresponds to Avrami-Fatuzzo–type nucleation and
growth processes [16] approximately obeying first-order
rate equations:

dM=dt � ��1��Ms �M�t��; (4)

with solutions M�t� � �Ms�1� 2 exp��t=���, where al-
ternative signs hold for consecutive half periods. �Ms
and � are the saturation magnetization and an averaged
relaxation time, respectively. The corresponding suscep-
tibility in the linear response regime is Debye-type, �� �
�1=�1� i!��, and yields a perfect Cole-Cole semicircle,
�00 vs �0 [10]. Hence, the broken circles fitted to curves 1
and 2 in Fig. 2(a) refer to those frequencies, at which the
domain wall proceeds from one sample boundary to the
other in the dynamic single domain wall model [7].
According to this criterion, we have determined various
upper frequencies corresponding to �0h0 � ht2 � 50
[Fig. 2(a)] and 200 �T [14] and plotted versus T in
Fig. 5 (dotted curves). Complementarily to the transition
lines in the T vs h phase diagram [7], the regions [T >
T�ht2�, !<!t2] refer to ‘‘full switching.’’ It will be

interesting to test the expected [7] sample size depen-
dence of the critical lines ht2 vs T.

In conclusion, the ac susceptibility measured on SFM
�Co80Fe20�1:4 nm�=Al2O3�3 nm��10 in different frequency
and field regimes reveals for the first time the phase
transitions predicted for the hysteretic dynamics of
pinning-controlled domain wall motion [7]. The linear
responses of wall relaxation [15], creep and sliding wall
motion, and Avrami-Fatuzzo–type switching, respec-
tively, have been described phenomenologically. A sys-
tematic transcription of the hysteresis equations [7] into
those of the linear response (by appropriate Fourier trans-
formation) has still to be accomplished. Experimentally,
it remains a challenge to discover the predicted phase
transitions via direct M vs h measurements, and to image
the domain walls and their field-induced displacement,
e.g., by scanning magnetic force microscopy.

We thank S. Sahoo for valuable discussions and the
DFG (Graduate School ‘‘Structure and Dynamics of
Hetrogeneous Systems’’ and SFB 491) for financial
support.
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