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Abstract:  
Concrete deck delamination often demonstrates strong variations in size, shape, and temperature 
distribution under the influences of outdoor weather conditions. The strong variations create 
challenges for pure analytical solutions in infrared image segmentation of delaminated areas. The 
recently developed supervised deep learning approach demonstrated the potentials in achieving 
automatic segmentation of RGB images. However, its effectiveness in segmenting thermal images 
remains under-explored. The main challenge lies in the development of specific models and the 
generation of a large range of labeled infrared images for training. To address this challenge, a 
customized deep learning model based on encoder-decoder architecture is proposed to segment the 
delaminated areas in thermal images at the pixel level. Data augmentation strategies were implemented 
in creating the training data set to improve the performance of the proposed model. The deep learning 
generated model was deployed in a real-world project to further evaluate the model’s applicability and 
robustness. The results of these experimental studies supported the effectiveness of the deep learning 
model in segmenting concrete delamination areas from infrared images. It also suggested that data 
augmentation is a helpful technique to address the small size issue of training samples. The field test 
with validation further demonstrated the generalizability of the proposed framework. Limitations of 
the proposed approach were also briefed at the end of the paper.  
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1 Introduction 
 

The deterioration of aged bridges has been recognized as a serious problem for structural 
safety and serviceability [1]. The horizontal debonding in the subsurface of the deck, known as deck 
delamination, often indicates the corrosion-induced deterioration of the deck reinforcement [2]. 
Locating and profiling the extent of delamination thus is an essential task for conducting bridge in-
situ condition evaluations from the perspective of structural health monitoring (SHM). 
Nondestructive detection techniques (NDT) such as Infrared thermography (IRT) have been widely 
adopted for shallow delamination detection [3–7]. The challenge of using IRT lies in data 
interpretation and automatic processing. Previous studies have attempted to analyze the thermal 
images using different methods such as threshold for temperature histogram [8], k-mean clustering 
for temperature density [9], and region-growth for temperature spatial relationship [10,11]. So far, 
these reported methods required engineering judgment for parameter selection or hand-crafted feature 



 

tuning. Essentially, in profiling the delamination by assigning the class of regions in the survey area at 
a dense level could help the engineer to recognize the area and the boundary of delamination from 
the condition map. This expectation exhibits a close tie to the concept of semantic segmentation in 
computer vision. 

Image semantic segmentation in computer vision aims to divide an image into non-overlapped 
meaningful regions to retrieve the high level information such as object class and geometry in a scene 
[12]. Thus, the semantic segmentation is often referred to as the fine-grained inference for dense 
classification at the image pixel or super-pixel level [13]. Existing methods could be put into two major 
categories: unsupervised and supervised frameworks, and comprehensive reviews could be found in 
the literature [12–14]. Often, unsupervised methods required the utilization of hand-crafted features 
such as intensity, color, and SIFT, and thus a specific development of the model for different fields is 
desired. As a result, the generalization capability was often compromised when transferring the model 
from discipline to discipline. Supervised methods provided a framework to train the model to learn 
the labeled data and generate learned features from data instead of handcrafting. It often achieved 
state-of-art performance in scene parsing tasks through better handling of contextual information [12].  

For the task of delamination profiling through thermography, the challenge exists in the 
delamination feature generalization: 1) the shape and the depth of delamination varies, which leads to 
indeterministic feature geometry and contrast; 2) environmental factors such as air temperature and 
solar intensity varies during the day, which introduces the feature variation of the same delamination; 
3) surface textures such as cracks, color difference, patching, and road painting adds external noise 
and the superimposition of non-favorable features. Thus, only using the hand-crafted features for 
delamination profiling required sophisticated designs of the model or fine-tuning of parameters to 
account for these case-by-case variations [8,10,15–17]. In comparison, the learned features from a 
supervised framework could address the issue when including these variations into the training data 
and thus increase the generalization ability of the model [18]. However, this framework demands: 1) 
certain levels of customizations to existing architectures of models for the specific task; 2) an adequate 
amount of annotated data with rich diversity for training to enrich the ability of the model.  

Given the aforementioned challenges, this paper proposes a deep learning model using 
encoder-decoder architecture for automated delamination profiling. To demonstrate the capability of 
the proposed model, the experimental studies were conducted to collect the thermographic data of 
concrete slabs with artificial delamination embedded in different depths under natural environment. 
Then, the data augmentation strategies were implemented to enrich the sample variance for the model 
training. The model performance and the effect of the augmentation strategies are evaluated through 
multiple datasets. Finally, a procedure named, dense sliding window detector, was proposed to 
automatically process and compose the model predictions for the bridge implementation. The post-
processing method by the conditional random field was used for additional refinement of final 
segmentation.  

 
 

2 Background 

 
2.1 The Characteristic of Delamination in Thermal Images   

The pattern of the delamination shown in the thermal image is often recognized as the local 
abnormal region. Depending on the time of observation, it appears as a hot region during the heat-
absorbing stage and a cold region during the heat-release stage. The mechanism behind the 
phenomenon is the change of thermal properties of the bridge deck due to horizontal cracking around 
the rebar level. This means the heat conduction rate is different under solar radiation during the day 
[19]. As a result, the pattern would be varied due to different sizes and depths of the acute delamination, 
as well as different time windows when the data was collected. Fig.1 illustrates several variations 
observed by constructed samples under the natural thermal cycle of the day (see Fig. 6 for the 
experimental design and environment). It shows the thermal images of three mimicked delaminations 
buried at different depths in the concrete slabs at different time windows. The red dash box indicates 
the real size of the delamination. Fig.1a shows the thermal image of the delamination at 11 am with 
a depth of 4.5 cm (left), 7 cm (middle), and 9.5 cm (right) from the top surface. The shallower 
delamination has more temperature contrast than the deeper one at the same time window. Fig.1b 



 

shows the temperature profile of the section (black dash line) at a different time of the day. It reveals 
that the average temperature shifts at different time windows for the same slab. Fig.1c shows the 
preprocessed image by standardization (Eq.1), which is useful to remove the effect of temperature 
shifts.  

 

𝐼𝑠 =
𝐼−𝑚𝐼

𝛿𝐼
,  (1) 

Where 𝐼 refers to the raw thermal image, 𝑚𝐼 is the mean temperature of 𝐼, 𝛿𝐼 is the standard deviation 

of 𝐼. The standardized image 𝐼𝑠 represents the temperature deviation from its own mean at the current 
time. Through the Fig.1c, the contrast variation between different depths and time windows are more 
clearly represented. Additionally, the standardization also centers and normalizes the data, which is 
beneficial to the model convergence during the training by the deep learning framework [20].   
 

 
Figure 1. The pattern of simulated delamination in the thermal image at different time windows: (a) 
raw thermal image of the delamination at 11 am for 4.5 cm (1.75”) deep (left), 7 cm (2.75”) deep 
(middle), and 9 cm (3.75”) deep (right); (b) section profile of the temperature at different time 
windows; (c) section profile after standardization of (b).  

 
2.2 Encoder-Decoder Architecture for Semantic Segmentation 

The encoder-decoder architecture has been widely used for pixel-wise classification for image 
semantic segmentation [13]. The concept behind this is the architecture built-up based on the 
convolutional neural network (CNN), which is designed to detect the local visual motifs of the object 
[21]. Generally, the image is first passed through the encoder part where the spatial information is 
convolved with the filter banks in each layer to produce a set of feature maps in a down-sampling 
manner. Thus, the information is encoded in dense representations with invariance to the spatial 
locations. The decoder part of the architecture translates the latent information in an up-sampling 
manner to the spatial locations to present segmentation results. The common architectures such as 
AlexNet [22], VGG [23], GoogleNet [24], and ResNet [25] have been recognized as standards for 
object recognition tasks. The encoder part used for semantic segmentation is often built upon or 



 

directly transferred from these architectures with variants in the decoder parts, such as SegNet [26], 
U-Net [27], and FCN [28]. Since most original architectures were proposed for sense parsing problems 
based on regular visible images, there is a lack of implementation in the delamination segmentation of 
the bridge deck based on thermal images. Thus, this study focuses on the fundamental build-up of the 
framework for field application instead of comparing the performance among different architectures.    

 
2.3 Key components of DenseNet and DenseASPP 

The architecture named DenseNet was introduced by Huang et al., (2017) and was selected as 
the encoder part of the proposed architecture. It was designed based on three key observations, which 
enhanced the performance of the model in the past: 1) connections from early layers to later layers; 2) 
concatenation of feature maps; 3) flow of information and gradients through the network. Fig.2 
illustrates an example of the dense block with four layers. It maximized the information flow by 
recursively connecting layers and concatenate feature maps. This was thought to be the key feature of 
the architecture [30]. Each layer in the dense block has a structure started at batch normalization (BN), 
rectified linear unit (ReLu), 1x1 convolution (Conv), and followed by BN-ReLu and 3x3 convolution 
[29]. After each layer, the channel-wise concatenation was conducted to fold feature maps from 
previous layers. After each dense block, a transition layer (T) was used to reduce the size of the feature 
map. We selected this architecture as the first part of the encoder.  

 

 
Figure 2. The diagram of Dense Block with k = 4 layers.  

 
The densely connected atrous spatial pyramid pooling (DenseASPP) was proposed by Yang 

et al. (2018) to address the issue of multi-scale object encoding of image scene parsing for autonomous 
driving tasks. It consists of two key components: 1) dense connection inspired by DenseNet [29]; and 
2) atrous spatial pyramid pooling [32,33].  Fig.3 illustrates the structure of DenseASPP. The feature 
maps, often generated from the early layer, are encoded further by convolution with different dilation 
rates and then densely concatenated. The role of dilated convolution is to create different receptive 
fields, which is the key to capture multi-scale information of the object. We selected this module as 
the second part of the encoder due to its appropriateness for our case because delamination often 
occurs in different sizes and shapes.   

 



 

 
Figure 3. The diagram of DenseASPP with dilation rate of 3, 6, 12, and 18.  

 
 

3 Methodology   
3.1 Model Formation  

The delamination profiling in a thermal image could be formatted in a general form of the 

segmentation problem. 𝑇(𝑖, 𝑗) is a thermal image and will be the input for the model (𝑓𝑚𝑜𝑑𝑒𝑙). In each 

image 𝑇(𝑖, 𝑗) , (i,j) refers to the temperature value at ith row and jth column. The expected output 

𝑃𝑐(𝑖, 𝑗) is a probability map of the class c at location (i,j) of the image (Eq. 2). For our case, two classes 
are assigned to the model’s prediction: delamination and non-delamination. Since the two classes have 
been assigned to the same location, the one-hot encoding (Dummy coding) is often used for multi-

class representation [34]. Once the architecture of the model (𝑓𝑚𝑜𝑑𝑒𝑙) has been built, a cost function 

(𝑓𝑐𝑜𝑠𝑡 in Eq. 3) is used for model training under supervised learning scheme [21]. Since it follows the 

supervised learning framework, the labeled data 𝑌𝑐 is needed. The difference between the label 𝑌𝑐 and 

the prediction 𝑃𝑐 is then measured by the loss function (𝑓𝑙𝑜𝑠𝑠). The training procedure is conducted 

by minimizing the cost function 𝑓𝑐𝑜𝑠𝑡 to fit the model given the input data.  
 

𝑓𝑚𝑜𝑑𝑒𝑙(𝑇(𝑖, 𝑗)) = 𝑃𝑐(𝑖, 𝑗), (2) 

 

𝑓𝑐𝑜𝑠𝑡 = 𝑓𝑙𝑜𝑠𝑠(𝑌𝑐 − 𝑃𝑐) | 𝑓𝑚𝑜𝑑𝑒𝑙,  (3)  
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑐𝑜𝑠𝑡(𝜃),  (4) 

Where 𝜃 refers to the hyper-parameters such as learning rate, parameters for the loss function, etc. 
 
3.2 Model Architecture 

The architecture of the model 𝑓𝑚𝑜𝑑𝑒𝑙  was shown in Fig. 4, which follows the encoder-
decoder structure. The image as the input starts at the left side of the model, and the output is on the 
right side. The input image has a size of 256 by 256 pixel with 1 channel for temperature value. It 
passes through the first convolution layer (C1) consisting of a convolution filter with size 7 and 2 
strides, followed by batch normalization, ReLu layer, and a max-pooling of 2 strides and results in 32 
feature maps and a reduced dimension of 64x64 pixel size. Then the dense block (D1) with 4 layers 
and 16 filters in each layer was followed to enrich the feature maps up to 96 and a dimension reduction 
to 32 by the transition layer (T1), which includes a 1x1 convolution with 96 filters and an average 
pooling with 2 strides. The second dense block (D2) further expands the feature map to 256 with ten 
internal layers. A transition layer (T2) consisting of global batch normalization and dropout layer (DP) 
is followed to regularize the feature maps. Then the Dense ASPP layer remaps and expands the feature 
map into 256 with a dilation rate of 3, 6, 12, 18 for allocating multi-scale information. A compression 
layer (P) is used to reduce the number of feature maps from 256 to 128 by convolving with 3x3 filter. 
The decoder part consists of 3 up-sampling layers, which gradually increases the size of the feature 



 

map and decreases the number of feature maps and finally retrieving the original image size with two 

channels. Each channel refers to the one-hot coding of the probability for each class 𝑃𝑐 .   
 

 
Figure 4. The diagram of the proposed architecture 

 
3.3 Model Parameters and Training Settings 

The loss function and the optimization algorithm are determined by the following a general 
selection from the literature [21,35,36]. Based on the histogram of training classes (Fig.5c), a large 
amount of imbalances in class distribution is observed where there were more numbers in the class of 
non-delamination (“0”) than the ones in the class of delamination (“1”) with the ratio around 8.6:1. 
With the imbalanced samples, the model would suffer low training accuracy [36]. Thus, the focal loss 
[36] was used to handle the imbalance with more focus on the class with fewer samples (defined in 

Eq. 5). There are two parameters in Eq.5, which 𝛼 = 0.25  and 𝛾 = 2  are used. The Adam 
optimization [35] was used to minimize the cost function with learning rate of 0.0005, and 0.9 and 
0.999 for first and second momentum decay factors.  

 

𝑓𝑙𝑐𝑜𝑠𝑡 = −𝛼(1 − 𝑝𝑡)𝛾log (𝑝𝑡), where 𝑝𝑡 = {
𝑝            𝑖𝑓 𝑦 = 1

1 − 𝑝  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  | 𝑝 ∈ 𝑃𝑐, 𝑦 ∈ 𝑌𝑐 (5) 

Here, 𝛼 refers to the balanced variant, and 𝛾 refers to the tunable focusing factor. Total iteration 
(epoch) of training was set to 30, and the mini-batch was deployed with the size of 24 [37].  

 
3.4 Data Augmentation 

The generalization ability is one of the key factors to determine the wellness of a model in 
terms of its robustness in the application. To have a good model, the dataset for training needs to be 
rich enough to cover the image variations in the population. For instance, ImageNet [38] has 1000 
classes of labeled scenes with over 1 million images. The lack of a database of thermal images for 
delamination profiling in the current stage creates barriers for the transition of the state-of-art 
framework to the field implementation of NDT. To address the issue, the experimental study was 
conducted to collect the thermal images with three concrete slabs under the natural environment (See 
section 4.1 for detail). Under the experimental setup for the data collection, we identified that the 
collected data was still not representative of the practical condition in real-word scenarios which: 1) 
the size, shape, and location of mimicked delamination were fixed in the experiments but varied in 
real cases; 2) camera plan angle and zoom range always vary in real cases during data collection instead 
of the fixed height in the experiment. Thus, the data augmentation strategy, random crop with automatic 
zoom & rotation, was adopted to increase the sample variation to a more realistic situation (Algorithm 
1):  

 



 

 
 
The algorithm runs for the batch during the training following the uniform randomization and 
simultaneously processes the images and labels. The process of the random crop with automatic zoom 
aims to address the practical condition that the delamination is partially presented in the image with 
different scales. The random rotation fixes the issue for the situation that the camera or the surveyed 
bridge surface may be presented in any orientations. The only input for the algorithm is the lower 
bound 𝑏𝑙 and upper bound 𝑏𝑢 for the range of cropping in which 𝑏𝑙 = 90 and 𝑏𝑢 = 255 were used in 

the current study. Fig.5a illustrates a sample image collected from the experiment without 
augmentation. It shows the lowest variation of the sample in terms of fixed size and location under 
the experimental setup. Fig.5b and c show two samples after applying the augmentation in which the 
presences of delamination are varied by sizes and locations. 

 

 
Figure 5. Sample data for raw and augmented images and labels: (a) sample image without 
augmentation; (b) corresponding label in (a); (c) class distribution for training (“0” for non-

delamination and “1” for delamination); (d) sample 1 with augmentation and its label; (e) sample 2 
with augmentation and its label.  

 
 
3.5 Performance Evaluation Metrics 

Since the outcome of the analysis is represented in the binary image, white regions in the image 
refer to the delamination (foreground) and the black regions to the non-delamination (background). 

Algorithm 1 Random crop with automatic zoom and rotation         

For i in batch 

 𝑑𝑙 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑏𝑙 , 𝑏𝑢)                   𝑑𝑙 : random length to be cropped   

 𝑑𝑑 = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 360)             𝑑𝑑 : random degree between (0,360) 

 𝑥 = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 𝑤 − 𝑑 + 1)            random start-point at 𝑥 within image width 𝑤 

 𝑦 = 𝑟𝑎𝑛𝑑𝑜𝑚(0, ℎ − 𝑑 + 1)                           random start-point at 𝑦 within image height ℎ 

 𝐼𝑖_𝑐𝑟𝑜𝑝 = 𝐼𝑖[y: y + d, x: x + d]                           cropped image 𝐼𝑖_𝑐𝑟𝑜𝑝 from original image 𝐼𝑖 

 𝐼𝑖_𝑟𝑒𝑠𝑖𝑧𝑒 = 𝑖𝑛𝑡𝑒𝑟𝑝(𝐼𝑖𝑐𝑟𝑜𝑝
, [𝑤, ℎ])                       resize image to original size by interpolation 

 𝑀𝑟 = 𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡(𝑐𝑒𝑛𝑡𝑒𝑟, 𝑑𝑑)                get rotation matrix at image center by degree of 𝑑𝑑 

 𝐼𝑖_𝑟𝑜𝑡 = 𝑎𝑓𝑓𝑖𝑛𝑒(𝐼𝑖𝑟𝑒𝑠𝑖𝑧𝑒
, 𝑀𝑟)                           apply rotation matrix to resized image 𝐼𝑖_𝑟𝑒𝑠𝑖𝑧𝑒 

End for  



 

Several metrics can be used to evaluate the performance of the proposed architecture. Generally, it is 
defined as the comparison between the prediction by the algorithm and the ground-truths. Here, we 
adopt the intersection over union (IOU) in Eq.6, and area accuracy (Eq.7) to measure the accuracy 
of delamination segmentation. The IOU is a well-accepted metric measuring similarity between two 
sets and is often used for the performance evaluation in the image segmentation task [14]. IOU is also 
referred to as the Jaccard index, which quantifies the percent of the overlapped area between the 
prediction and the ground truth over the union of them [39]. This metric returns 0 if there is no 
overlapping and 1 if it is perfectly matched. It is also equivalent to true positive over the sum rates of 
true positive, false positive, and false negative, which accounts for both type I and type II errors. The 

area accuracy (𝑅𝑎𝑟𝑒𝑎) defined in Eq.7 is another indicator that calculates the rate of the detected area 

over the entire valid area. 𝑅𝑎𝑟𝑒𝑎 is often used as a reference for maintenance decisions in practice, 
which is expected to be as close as possible to the ground truth. Precision and recall are often used 
metrics to give further understanding of prediction outcome. Precision, in our case, defines how many 
defected areas have been correctly detected given the ground truth (Eq.8). Recall measures the true 
positive among the positive detection (Eq.9).       

 

𝐼𝑂𝑈 =
|𝐴𝑝∩𝐴𝑔|

|𝐴𝑝∪𝐴𝑔|
=

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (6) 

 

𝑅𝑎𝑟𝑒𝑎 =
𝐴𝑝

𝐴𝑡𝑜𝑡𝑎𝑙
   (7) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (9) 

 

Where in Eq.6, 𝐴𝑝  is the predicted area by the algorithm, 𝐴𝑔  is the ground truth area; 𝐴𝑝 ∩ 𝐴𝑔 

calculates the intersection between prediction and ground truth, and 𝐴𝑝 ∪ 𝐴𝑔 returns the union area 

among prediction and ground truth. Also, TP refers to truth positive, FP refers to false positive, and 

FN refers to false negative. In Eq.7,  𝐴𝑡𝑜𝑡𝑎𝑙 refers to the total surveyed area.  
 

4 Experimental Study 

 
4.1 Experimental Setup and Data Collection  

Experimental studies were conducted by using the mimicked delamination in a reinforced 
concrete slab outdoors in sunny weather [16]. Three concrete slabs were cast. The layout of the slab 
is illustrated in Fig. 6. The Styrofoam, with a size of 25 cm by 25 cm, was buried at a depth of 4.5 cm, 
7 cm, and 9.5 cm from the top surface of each slab (Fig.6b). The thickness of foam was measured 
about 0.4 cm with the thermal conductivity of 0.03 W/(m·K) in order to stimulate the delamination 
in the real bridge deck, which is identified as a thin layer of air with a thermal conductivity around 
0.02 W/(m·K). The slabs were cured indoor over 28 days and then moved outside for the data 
collection. A thermal camera was used to collect the surface temperature data on multiple days in 
August and September 2018 (Fig. 6c).  

 



 

 
Figure 6. Experimental design, setup, and data collection 

4.2 Datasets Partition and Comparison  
After the data was collected, multiple datasets were designed to investigate the effects of the 

model performance and the sample varieties for model training. Each dataset has been divided into 
training and validation sets. Then, the model was trained and tested on different datasets. The training 
data consisted of three collections corresponding to the slabs with three depths in three days (Table 
1: dataset 1, 2, and 3). Each dataset has 1200 thermal images recorded from 10:30 am to 5:30 pm of 
that day. Dataset 4 combined all cases of depths by down sampling each one by the rate of 3 and 
summing up to 1200 samples. Dataset 4, 5, and 6 were combined in pairs from dataset 1 to 3 in a 
similar way. Overall, 7 datasets had been generated for training to represent the conditions of different 
depths. The Testing data followed the same combination but was independently collected on different 
dates (Table 1). Fig.7 shows that each dataset has been divided into a train-validate-test split. For 
each model, 80% of images are used for training and 20% for validation. To further test the model's 
generalization ability, the test data is from different independent experimentation. The similarity of 
the test dataset to the training dataset is assumed based on the similar weather condition. Based on 
the author's past research [40], similar weather conditions such as late-summer would provide the 
comparable thermographic response of the same defect. Although the testing dataset is comparable 
to the training set, variations due to the daily difference are expected. Testing the proposed model on 
handling these variations could furtherly evaluate the robustness of the framework.    

 
Table 1. Dataset description and assignment 

Dataset 1 2 3 4 5 6 7 

Depth combination (cm) 4.5 7 9.5 4.5&7&9.5 4.5&7 4.5&9.5 7&9.5 

Train  Temperature 
Range (ºC)  

29~46 25~38 26~37 25~46 25~46 26~46 25~38 

Dates Day1 Day3 Day4 Day1,3,4 Day1,3 Day1,4 Day3,4 

Validation  Temperature 
Range (ºC)  

31~46 32~45 27~46 27~46 31~46 27~46 27~46 

Dates Day6 Day2 Day5 Day2,5,6 Day2,6 Day5,6 Day2,5 

notes: Day 1(August 25), Day2 (August 27), Day3 (August 29), Day4 (September 10), Day5 (September 12), 
Day6 (September 17) 

 



 

 
Figure 7. Data partition for training, validation, and testing 

 
In addition to the dataset variation for depths and different time windows, the effect of 

augmentation was also compared (Fig.8). Thus, both training and testing datasets had two 
configurations: augmented and non-augmented. Cross evaluation was conducted where the models 
trained with/without augmentation were validated by the augmented and non-augmented validation 
and testing set. As a result, the effects of depths and augmentation could be fully evaluated. To focus 
on the evaluation of the effect of augmentation, the comparison is only made between 100% 
augmentation and 100% non-augmentation. The mixed training or testing for augmentation is not 
included in this study. In total, 14 models had been trained and evaluated based on the exact same 
architecture proposed in section 3.1.  

 

 
Figure 8. Evaluation of augmentation strategy: (a) model trained on an augmented dataset will be 

tested on both augmented and non-augmented validation and testing dataset; (b) model trained on a 

non-augmented dataset will be tested on both augmented and non-augmented validation and 

testing dataset; 

 
4.3 Results Comparison by IOU 

The training results, based on the IOU in Table 2, reveal that the proposed model is capable 
of learning and summarizing different datasets in terms of depth varieties and the simulated practical 
issues. Across the training sets for all datasets with and without augmentation, the models’ prediction 
shows a consistent accuracy (99.77% for the non-augmented training and 88.36% for the augmented 
training). No significant difference was observed in training performance among datasets both in 
augmented and non-augmented training, which indicated the model was able to capture the thermal 
features of delamination at different depths. When comparing the training results averagely between 
the augmented and non-augmented training strategies, a decreased performance (~11%) was found 
in the augmented training. The training results also showed the models generally learned better in easy 
tasks (non-augmented training) than complicated tasks (augmented training).  
 
Table 2. Training results comparison by IOU (%) 

Dataset 1 2 3 4 5 6 7 Mean 

Depth(cm) 
4.5  7  9.5  4.5&7

&9.5 
4.5&7 4.5& 

9.5 
7&9.5  

NON_AUG 99.86 99.87 99.88 99.58 99.70 99.73 99.75 99.77 

AUG 84.85 91.64 90.57 85.98 88.65 88.45 85.14 88.36 

notes:  AUG: augmented training. NON_AUG: non-augmented training. 

 
Table 3 showed the validation results for models using augmented and non-augmented 

training strategies across all datasets. For models trained on non-augmented and validated on non-



 

augmented strategies, all models return consistently high accuracy above 99%, which indicates models 
are well trained under the non-augmented setup.  For models trained on augmented and validated on 
non-augmented strategies, the dataset 6 returned the highest accuracy (83.51%), and the dataset 1 
returned the lowest accuracy (66.96%). For models trained on non-augmented and validated on 
augmented strategies, the dataset 1 returned the highest accuracy (53.22%), and the dataset 3 returned 
the lowest accuracy (15.43%). For models trained on augmented and validated by augmented strategies, 
dataset 2 returned the highest accuracy (91.86%), and the dataset 7 returned the lowest accuracy 
(84.88%). Based on the above comparison, the validation performance did not show a strong 
correlation to depth variations and not affected by the depth combination both in training and 
validation datasets, no matter if augmented or not. Instead, a significate performance degradation was 
observed when using a non-augmented trained model to predict the augmented validation dataset 
(from 88.93% to 33.19% in mean value). It is also observed that the model trained with augmentation 
performed a 10% difference in validation datasets between non-augmentation and augmentation 
(88.93% compared to 76.00% in mean value). It indicates that models with augmented training are 
more robust in spatial variations compared to the models with non-augmented training. When 
comparing the training and validation result, all models are well-trained corresponding to 
augmentation strategy (99.77% in table 2 and 99.76% in table 3, 88.36% in table 2 and 88.93% in 
table 3).     
 
Table 3. Validation results comparison by IOU (%) 

Dataset 1 2 3 4 5 6 7 Mean 

Depth(cm) 
4.5  7  9.5  4.5&7

&9.5 
4.5&7 4.5& 

9.5 
7&9.5  

Validation  
Non-AUG 

NON_AUG 99.82 99.89 99.90 99.59 99.70 99.69 99.68 99.76 

AUG 66.96 83.45 73.42 76.84 71.81 83.51 74.54 76.00 

Validation 
AUG 

NON_AUG 53.22 25.91 15.43 30.79 40.07 33.70 25.29 33.19 

AUG 84.96 91.86 91.32 86.47 89.37 89.63 84.88 88.93 

notes:  AUG: augmented training. NON_AUG: non-augmented training. 

 
Table 4 shows the results of models tested on dates other than training datasets. The results 

are used to further test the model's capability on handling variations in weather conditions due to the 
slight daily difference. The testing results agree to the validation results that no strong correlation exits 
in the model between depth variations. It also agrees that models perform more robust to spatial 
variations when trained with augmentation strategy. The major difference observed in the test dataset 
is that a general drop of IOU, ranging from 12% to 19%, is shown in the mean value of table 4 from 
table 3. This indicates that the variations in daily difference could contribute to the degradation of 
performance for current models.   

 
Table 4. Testing results comparison by IOU (%) 

Dataset 1 2 3 4 5 6 7 Mean 

Depth(cm) 
4.5  7  9.5  4.5&7

&9.5 
4.5&7 4.5& 

9.5 
7&9.5  

Testing 
Non-AUG 

NON_AUG 89.62 70.77 83.13 82.03 73.25 83.23 75.58 80.34 

AUG 68.96 55.30 66.68 68.69 62.84 63.48 69.48 64.32 

Testing 
AUG 

NON_AUG 57.67 29.00 17.61 39.24 46.15 40.76 31.96 38.40 

AUG 79.06 74.32 74.17 71.86 75.09 70.96 68.65 74.24 

notes:  AUG: augmented training. NON_AUG: non-augmented training. 

 
Fig.9 shows sampled testing results from dataset 4 to reveal the visual investigation: 1) top 

left section shows the model’s prediction on the augmented testing dataset with augmented training, 
where the most inaccuracy appears for the shape; 2) top right section shows the result on the non-
augmented testing dataset with the augmented training, where the inaccuracy appears at the boundary; 
3) bottom left section shows the results on the augmented testing dataset with the non-augmented 
training, where all predictions are smaller and tend to be located at the center of the image; 4) bottom 
right section shows the results on the non-augmented testing dataset with the non-augmented training, 



 

which returns the highest accuracy. This means the model would profile the delamination in 82% 
accuracy to its real shape, given that the position of delamination is located in the middle of the image 
with different depths (training without augmentation). When the model was trained with augmentation, 
the model could profile the shape with 72% accuracy. It also found that the model could profile 39% 
accurate shape of the delamination given no constrain on size, location, and depth in the images 
(training without augmentation). This accuracy increased to 69% when the augmentation was 
introduced in training. In summary, when the model was trained by the data with high diversity 
(through augmentation), it would be capable of handling more situations than when it was trained by 
the data with low diversity.  
 

 
Figure 9. Testing results for dataset 4 

 

4.4 Results Comparison by Precision and Recall 
Besides the visual inspection of the prediction outcome, evaluating the precision and recall 

provides more insights on understanding the performance. Table 5 shows the mean precision and 
recall for training, validation, and testing results across all datasets. In the training process, both 
precision and recall return high value (larger than 90%) no matter if the augmentation is introduced. 
In the validation process, the precision decrease to 76.8% from 99.9% when the model validated on 
non-augmented dataset shifts training from non-augmentation to augmentation. During the validation 
with augmentation, the model drops in precision and recall significantly (65% and 37% compared to 
92% and 95%) when evaluating the model with non-augmented training. In the testing process, the 
same trending is observed, but a drop in overall precision and recall are also presented. In summary, 
the model trained on the augmented dataset would decrease in precision when it is validated and tested 
on a non-augmented dataset. This means the false positive detection increased based on Eq.8. This is 



 

also agreed with the visual hints in Fig.9 top right section. When the model is trained on a non-
augmented dataset and validated and tested on an augmented dataset, a significant decrease in 
precision and recall are observed. This means the model has high false positive and false negative 
detection.  

 
Table 5. Mean precision and recall for training, validation, and testing results 

 
Training 

Validation 
NON_AUG 

Validation 
AUG 

Testing 
NON_AUG 

Testing 
AUG 

Model 
trained  

NON_ 
AUG 

AUG 
NON_ 
AUG 

AUG 
NON_ 
AUG 

AUG 
NON_ 
AUG 

AUG 
NON_ 
AUG 

AUG 

Precision  99.88 91.98 99.88 76.80 65.23 92.27 87.53 67.78 68.14 84.30 

Recall  99.89 95.29 99.87 98.35 37.47 95.48 89.20 93.41 42.52 85.02 

notes:  AUG: augmented training. NON_AUG: non-augmented training. 

 

4.5 Results Comparison by Area Accuracy (𝑅𝑎𝑟𝑒𝑎) 
The delaminated area percentage is another index that is often used as the reference for 

decision making to the appointment of the bridge maintenance. Thus, the accurate estimation of the 
delamination area percentage is desired. Depending on the selection of whether applying the 
augmentation, the area percentage of ground truth for augmented training and validation datasets was 
around 20.6%, and for non-augmented datasets was about 10.4%. Table 6 shows the predicted area 
percentage differing from its corresponding ground-truth (label) for training datasets. Models from 
both training strategies (augmented and non-augmented) returned less than 1% difference in area 
percentage across all datasets. It indicated the prediction from models were not affected by the depth 
variations during the training. 

 
Table 6. Area deviation from ground truth by training/validation results  

Dataset 1 2 3 4 5 6 7 Mean 

Depth(cm) 4.5  7  9.5  4.5&7&
9.5 

4.5&7 4.5& 
9.5 

7&9.5  

NON_AUG  0 0 0 0 0 0 0 0 

AUG  +2.3 +0.2 +0.5 +0.3 +0.4 +0.7 +1.0 +0.8 

*notes: 1) AUG: augmented training. NON_AUG: non-augmented training. 

 2) Area deviation = 𝑅𝑎𝑟𝑒𝑎(%) − 𝑔𝑟𝑜𝑢𝑑𝑡𝑟𝑢𝑡ℎ 

 
Table 7 shows the results of area accuracy predicted by validation datasets. For models trained 

on non-augmented and validated on non-augmented datasets, it returned 0% deviation for the area 
percentage. For models trained on augmented and validated on non-augmented datasets, dataset 2 
returned the lowest deviation rate (1.3%), and dataset 1 returned the highest deviation rate of 5%. For 
models trained on non-augmented and validated on augmented datasets, dataset 2 returned the highest 
deviation (-10.9%), and the dataset 1 returned the lowest deviation (-7.2%). For models trained and 
validated on augmented datasets, dataset 2 returned the lowest deviations (-0.1%), and the dataset 1 
returned the highest deviation (2.3%). There was no clear relationship found between the depth 
variation and its combination to the model’s prediction in terms of area percentage. When comparing 
the average value of area percentage deviations across all datasets, the model with augmented training 
intended to predict more area by 3% on non-augmented validation datasets and return less than 1% 
increase of area on augmented validation datasets. The model with the non-augmented training 
returned about a 9% decrease in the area on the augmented validation dataset, which agreed with the 
low accuracy in terms of IOU. Interestingly, this amount of less prediction seems to close to the dataset 
whose area without augmentation and thus indicates that the model was “overfitted” to the training 
(low diversity) and performed poorly on the augmented validation (high diversity). 

 
Table 7. Area deviation from ground truth by validation results 

Dataset 1 2 3 4 5 6 7 Mean 

Depth(cm) 4.5  7  9.5  4.5&7
&9.5 

4.5&7 4.5& 
9.5 

7&9.5  

Validation NON_AUG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 



 

Non-AUG AUG +5.0 +1.3 +3.1 +2.8 +3.7 +1.9 +3.3 +3.0 

Validation 
AUG 

NON_AUG -7.2 -10.9 -10.6 -9.4 -8.4 -9.2 -9.2 -9.3 

AUG +2.3 +0.1 +0.3 +0.4 +0.4 +0.7 +1.0 +0.8 

*notes: 1) AUG: augmented training. NON_AUG: non-augmented training. 

 2) Area deviation = 𝑅𝑎𝑟𝑒𝑎(%) − 𝑔𝑟𝑜𝑢𝑑𝑡𝑟𝑢𝑡ℎ 

 
Table 8 shows the results of area accuracy predicted by testing datasets. For models trained 

on non-augmented and tested on non-augmented datasets, dataset 5 returned the highest deviation of 
1.2% in area increase while dataset 1 returned 0.1% in area decrease. For models trained on augmented 
and tested on non-augmented datasets, dataset 3 returned the lowest deviation rate (2.3%), and dataset 
6 returned the highest deviation rate of 5.6%. For models trained on non-augmented and validated on 
augmented datasets, the dataset 1 returned the lowest deviation (-7.6%), and the dataset 4 returned 
the highest deviation (-10.5%). For models trained and validated on augmented datasets, the dataset 5 
returned lowest deviations (-0.2%), and the dataset 2 returned the highest deviation (-2.4%). There 
was no clear relationship found between the depth variation and its combination to the model’s 
prediction in terms of area percentage. The testing results agreed to the validation results by the mean 
values, which supported the usefulness of augmentation strategy in the outcome of area accuracy.  
 
Table 8. Area deviation from ground truth by testing results 

Dataset 1 2 3 4 5 6 7 Mean 

Depth(cm) 4.5  7  9.5  4.5&7
&9.5 

4.5&7 4.5& 
9.5 

7&9.5  

Testing 
Non-AUG 

NON_AUG -0.1 -0.2 +0.9 -0.3 +1.2 +0.3 +0.2 +0.3 

AUG +4.4 +5.2 +2.3 +3.6 +5.4 +5.6 +4.1 +4.4 

Testing 
AUG 

NON_AUG -7.6 -8.8 -9.5 -10.5 -8.1 -8.8 -9.9 -9.0 

AUG +0.7 -2.4 -1.6 -1.0 -0.2 +0.9 +0.5 -0.5 

*notes: 1) AUG: augmented training. NON_AUG: non-augmented training. 

 2) Area deviation = 𝑅𝑎𝑟𝑒𝑎(%) − 𝑔𝑟𝑜𝑢𝑑𝑡𝑟𝑢𝑡ℎ 

 

5 Field Implementation 
5.1 Data Collection and Image processing 

An in-service concrete bridge with the deck overlay was surveyed in October 2017 at US 77 
close to Lincoln, Nebraska. Fig.10 shows the field-setup for data collection. Two UAV configurations 
were employed to collect the visible and thermal images of the deck surface. The thermal camera FLIR 
A8300 was mounted on the DJI Matrice 600 with customized design to ensure the orthogonal field 
of view. The camera was controlled by an on-board computer for data storage. The UAV was 
controlled by a licensed remote pilot manually and followed the center of the bridge at a constant 
speed. The raw images were then processed through the customized MATLAB algorithms for 
correction and stitching. Then the quality of the stitched thermal image of the bridge was manually 
checked with the visible image in this case.  
 



 

 
Figure 10. Field step, data collection, and processing 

 
5.2 Sliding Window Detector for Bridge Implementation    

After the model was trained, and the thermal images of the bridge were processed using Eq. 
1, a sliding window detector was proposed to apply the model prediction for the bridge 
implementation (Fig.11). First, a hammer sounding result provided by the Nebraska Department of 
Transportation (NDOT) was used as the reference to help compare the outcome predicted by the 
model. It is a conventional method for shallow delamination profiling on-site (ASTM 4850M-12), and 
the boundaries of delamination were directly marked with chalk lines while hammering. In addition 
to the hammer sounding, 12 coring samples were taken on the bridge deck, which furtherly validated 
the hammer sounding result [16]. Here, we overlapped the hammer sounding result on the raw image 
shown in Fig.11a (blue lines). Then, a sliding window detector was designed to pass through each lane of 
the bridge from one side to another with a fixed interval (red box in Fig.11a). The size of the interval 
defines how much overlapping between two successive windows. Based on the author’s 
experimentation, it was found that in the model’s prediction, the middle strip in the sliding window 
often returns the most stable outcome in terms of shape (Fig.11b). Thus, the only prediction from 
the middle strip of each sliding window was used, and the final output was stitched sequentially from 
each strip. The procedure is shown in the following algorithm2:  

 

 
 

Algorithm 2 Sliding window detector                                     

Define overlapping ratio 𝑟, desired image size (l) 

Rescale 𝐼(𝑟, 𝑐) → 𝐼′(𝑟′, 𝑐′),             rescale the window size to the desired image size (l) 

𝑑 ← (1 − 𝑟) ∗ 𝑙,                 calculate the interval d  

For i in range (1,
𝑟′

𝑑
):                 in the range of total number of sliding windows 

𝑠𝑖 = 𝐼′(: , 𝑖: 𝑖 + 𝑙),              extract each window from rescaled raw thermal image 𝐼′ 

𝑝𝑖 = 𝑚𝑜𝑑𝑒𝑙(𝑠𝑖)            get prediction from trained model given each 𝑠𝑖 

If 𝑖 ∗ 𝑙 > 𝑙/2:  

  𝑜𝑢𝑝𝑢𝑡(𝑖) = 𝑝𝑖(: ,
𝑙

2
:

𝑙

2
+ 𝑑)              extract middle strip for the final output 

End if 

  𝑓𝑖𝑛𝑎𝑙 = 𝑎𝑝𝑝𝑒𝑛𝑑[𝑓𝑖𝑛𝑎𝑙, 𝑜𝑢𝑡𝑝𝑢𝑡(𝑖)]            sequentially stitch for final output 
End for 
 
 



 

Based on this procedure, a small interval of moving was required and resulted in a high overlapped 
area (90% in this paper). The final output is shown in Fig.11c, which is a delamination probability 
pulled out from the softmax layer of the model at each location across the bridge deck (1 indicates 
delamination and 0 indicates non-delamination). Here, we used the model trained on dataset 4 with 
augmentation for illustration. Fig.11d shows the result comparison between hammer sounding and 
our approach. It is found that our approach (area ratio of 20.2%) predicted more regions than the 
hammer soundings (area ratio of 12.6%) as potential delamination. However, it is also found that the 
results indicated by hammer sounding were majorly included by our approach.  

 

 
Figure 11. Field implementation: (a) procedure of sliding window detector (red box) on the bridge 

with hammer sounding result overlapped (blue color); (b) intermediate result of the detector 

showing that the middle strip returned most stable prediction; (c) delamination probability 

prediction generated from model’s softmax layer; (d) final result by model prediction (red) and 

compared to hammer sounding (blue); (e) refinement of (c) by CRF and compared to hammer 

sounding outcomes 

 
5.3 Refinement by Conditional Random Field (CRF)  

An often-used post-processing technique in deep learning to refine the model prediction was 
to infer the posterior distribution in a conditional random field [41]. CRF refines the distribution given 
predictions from the model and raw image features. In our case, we followed the approach proposed 
by Krähenbühl and Koltun (2011), which was based on the Gaussian kernel for edge potential 
approximation. Fig.11e shows the refined outcome from Fig.11d and the raw thermal image in Fig.10. 
CRF smoothed and refined the boundaries from the trained model’s direct predictions and removed 
small regions. As a result, CRF returned less area percentage deviation (-2.2%) from hammer sounding 
compared to the model’s direct prediction (+6.4%). It also improved the segmentation accuracy by 
15% compared to the model’s direct prediction. Compared to the outcome predicted by the model 
that was trained on same dataset but without augmentation, the performance was significantly 
degraded in both visual clues and quantitative measures. Fig.12a shows the probability result of the 
model prediction exhibiting a clear clue of overfitted model, where three horizontal white bands cross 



 

the whole image. This behavior occurred at models for all datasets (except dataset 1) and thus returned 
poor performance in terms of area percentage and accuracy (Fig.12b). Also, post-processing with 
CRF did not improve the overfitted model (Fig.12c). 

 

 
Figure 12. Model prediction based on non-augmented training for dataset 4: (a) probability display 

of model’s prediction; (b) result comparison between model’s direction prediction (red) and hammer 

sound (blue); (c) result comparison between model’s prediction after CRF (red) and hammer 

sounding (blue) 

  
5.4 Discussion of Different Models  

Across models trained from different datasets, the augmentation had a significant effect on 
the model’s generalization ability for the implementation in the real-world scenario. Table 9 shows 
the IOU accuracies, area deviations, precision, and recall of models with and without CRF post-
processing. Here, we used the hammer sounding result as the reference. Within the results of direct 
prediction of models, accuracy was improved, and deviation of area percentage was reduced when 
comparing the augmented training to non-augmented training (around 10% average reduction in area 
percentage deviation and 20% improvement for accuracy). Within the results post-processed by CRF, 
the accuracy was increased by 30%, and the deviation of area percentage was reduced by 10% when 
comparing the augmented training to non-augmented training. Among the models trained with 
augmentation, the CRF improved the accuracy of segmentation by 14% and reduced the deviation of 
area percentage by 6%. In terms of precision and recall, augmentation increased both values, which 
indicates a general improvement. CRF improved precision significantly in the augmented model, 
which supported the removal of false-positive detection. CRF did not improve the recall, which means 
the model missed some areas. Among models with different datasets in depths, there was no 
significant difference in performance when combining multiple depths sample than the dataset of 
single depth for training.  

 It is noticeable that the current overall model accuracy was lower in the bridge implementation 
than the ones in the experimental studies. The best result is 51% IOU by the model trained with 
augmentation after CRF. Generally, the IOU is larger than 50% can be treated as "good" in objective 
detection tasks [42]. Here we think this threshold is appropriate given that the absolute ground truth 
rather than hammer sound is hard to have. With reviewing the precision and recall of the model's 
prediction on the bridge in Table 9, we found that our model can correctly detect the defected area 
among the ground truth (69.61% in recall before CRF). On the other hand, the model might tend to 
miss classify the sound area as the defected area (72.41% in precision after CRT). In response to the 
miss of detection, we found the thermal signal may be disappeared if there the water invaded the 
delaminated layer. As a result, the hot pattern is no longer feasible for a model to detect. In terms of 
false detection, we found that some foreign dark color spots (caused by sticky asphalt or other external 
dark materials) may cause false-positive results. In general, the developed method has limitations in 
handling special environmental noises (such as uneven dark colors, artificial heat/cold sources, and 



 

shadows etc.), which can fool the developed algorithm and cause inaccurate predictions. However, for 
the concrete bridge decks under normal operations and maintenance, our method proved to be 
effective and efficient. 

 
Table 9. IOU (%), area accuracy (%), precision (%) and recall (%) for bridge implementation  

Model Trained NON-AUG AUG 

Direct Prediction 

IOU 15.8 36.9 

Area Deviation 17.6 7.4 

Precision  21.09 44.01 

Recall  42.14 69.61 

Prediction with CRF 

IOU 18.5 51.0 

Area Deviation 11.9 1.8 

Precision  32.62 72.41 

Recall  37.51 63.54 

*notes: 1) AUG: augmented training. NON_AUG: non-augmented training. 

 2) Area deviation = 𝑅𝑎𝑟𝑒𝑎(%) − 𝑔𝑟𝑜𝑢𝑑𝑡𝑟𝑢𝑡ℎ 
 

Instead of limitations of the proposed model, using the hammer sounding result as "ground 
truth" may not be optimal. Although hammer sounding is a trusted method for shallow delamination 
detection for the bridge deck, the condition of the bridge deck is more complicated; often, multiple 
types of defects existed mutually. Besides, some minor shifts occurred when aligning the hammer 
sounding result to the thermographic result. Thus, a practical evaluation of the bridge deck often 
involved multiple measurements based on different NDT methods [5]. Currently, the inference of 
thermography for bridge deck evaluation is still an active topic in the field of NDT, which requires 
more attention in the community. On the other side, limited training samples with low diversity and 
under-development of the technology implementation are other factors constrained the current state 
of the art.  
 

 

6 Conclusions  
 
This paper presented a framework to utilize supervised deep learning for automating 

delamination profiling using thermography for real-world applications based on limited experimental 
image data. The results of the experimental study and the practical implementation of this framework 
demonstrated the capability of this proposed approach, which provided a way to push the envelope 
of infrared based NDT in concrete delamination segmentation. The paper addressed two challenges 
in the current state-of-the-practice: the training factors affecting model performance and the 
implementation of the bridge case for automatic processing. The experimental study reveals that data 
augmentation strategies such as random crop, zoom, and rotation played significant effects on the 
model’s generalization ability. It was found that introducing the augmentation would decrease by 
around 10% training accuracy but significantly increase the accuracy by over 35% in validation and 
testing datasets when mimicking the random condition in the validation dataset. The model tends to 
be overfitted when no augmentation is introduced in the training data. This observation was later 
supported by the real-world implementation on an in-service concrete bridge. Under further 
evaluation by precision and recall, it reveals that the model intended to falsely predict defected areas 
when it was trained on augmented data and validated and tested on non-augmented data. On the other 
hand, the model suffered both low precision and recall when it was trained on non-augmented data 
and tested on augmented data. This supported the importance of the diversity of training data and, 
thus, the usefulness of the augmentation strategy.  

The fully automatic processing of the thermal image of the real bridge was achieved through 
the proposed algorithm once the model was trained by experimental data. The result comparison of 
different training datasets suggests that proper image augmentation strategies are necessary for 
improving the accuracy and robustness of the model. The post-processing method, conditional 
random field, could be used to further improve the performance. The overall performance of the 
model for field implementation can be improved by including more real-world data in the training 



 

process in the future. Given the fact that most of today’s delamination data processing is largely 
handled by manual methods, being able to automate such a task means significant cost-reduction 
potential in bridge maintenance without the constraints of traffic closure, which are typically needed 
in traditional deck inspections. It also means great quality-enhancement potential by conducting more 
frequent aerial inspections to acquire more updated bridge condition data.   

Several limitations also need to be addressed in future works. The current study focused on 
the applicability of the deep learning model in the encoder-decoder architecture. Other architectures 
existed for visual optical segmentation need further evaluations in terms of performance improvement. 
Also, the study aimed to testify the effectiveness of the augmentation strategy, the effectiveness of 
mixed training strategy (including both augmented and non-augmented datasets) requires further 
evaluation.  
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8 Appendix  
 

Table I. Precision and recall for training datasets 

 
 
Table II. Precision and recall for validation datasets 

 
 
Table III. Precision and recall for testing datasets  

 
Table IV. IOU (%) and area accuracy (%) for bridge implementation by different models 

Model Trained by Dataset 1 2 3 4 5 6 7 
Abs 

Mean 

Direct 
Prediction 

IOU  
NON_AUG 34.4 10.5 6.6 15.1 15.8 14.1 14.1 15.8 

AUG 38.1 37.2 32.7 39.8 40.2 36.3 34.1 36.9 

Area 
Deviation 

NON_AUG -1.4 +7.9 +18.4 +22.1 +24.7 +24.2 +24.2 17.6 

AUG +7.1 +8.9 +6.8 +6.4 +5.1 +9.0 +8.4 7.4 

Prediction 
with CRF  

IOU  
NON_AUG 34.8 9.1 5.3 15.1 16.5 33.4 15.3 18.5 

AUG 49.7 48.0 49.0 54.6 52.2 55.0 48.5 51.0 

Area 
Deviation 

NON_AUG -7.7 -7.2 +8.0 +17.5 +20.8 +5.5 +16.7 11.9 

AUG -1.5 +1.2 -2.2 -2.2 -2.8 -1.6 -1.1 1.8 

Dataset (training)  1 2 3 4 5 6 7 

Mean  
Depth(cm)  4.5 7 9.5 

4.5&7&9.
5 

4.5&7 4.5&9.5 7&9.5 

Training 
NON_AUG 

precision  99.93 99.93 99.94 99.79 99.84 99.86 99.88 99.88 

recall 99.93 99.94 99.94 99.80 99.85 99.87 99.88 99.89 

Training 
AUG 

precision  87.28 95.17 94.07 91.94 93.05 92.31 90.01 91.98 

recall 96.94 96.14 96.09 93.13 95.05 95.55 94.10 95.29 

Dataset (validation) 1 2 3 4 5 6 7 

Mean 
Depth(cm)  4.5 7 9.5 

4.5&7&
9.5 

4.5&7 4.5&9.5 7&9.5 

Validation 
Non-AUG 

NON_AUG 
precision  99.91 99.93 99.96 99.87 99.90 99.85 99.77 99.88 

recall 99.91 99.95 99.94 99.72 99.80 99.85 99.91 99.87 

AUG 
precision  67.15 85.68 75.12 77.74 72.75 84.05 75.11 76.80 

recall 99.58 96.95 97.01 98.52 98.12 99.24 99.04 98.35 

Validation 
AUG 

NON_AUG 
precision  86.66 57.40 38.19 70.30 75.87 70.41 57.80 65.23 

recall 58.07 32.13 20.58 35.41 45.95 39.18 31.00 37.47 

AUG 
precision  87.91 96.20 95.03 90.71 93.24 93.72 89.08 92.27 

recall 96.31 95.34 95.92 94.96 95.62 95.41 94.83 95.48 

Dataset (testing) 1 2 3 4 5 6 7 

Mean 
Depth(cm)  4.5 7 9.5 

4.5&7&
9.5 

4.5&7 4.5&9.5 7&9.5 

Testing 
Non-AUG 

NON_AUG 
precision  95.24 83.46 87.41 91.23 80.40 89.91 85.02 87.53 

recall 93.77 82.24 94.38 88.53 87.06 91.59 86.83 89.20 

AUG 
precision  69.52 59.76 72.73 71.69 64.95 64.91 70.94 67.78 

recall 98.50 87.97 86.85 94.55 91.87 96.80 97.30 93.41 

Validation 
AUG 

NON_AUG 
precision  90.68 57.06 37.20 75.63 79.41 72.95 64.03 68.14 

recall 61.86 35.61 23.67 42.19 51.60 46.13 36.58 42.52 

AUG 
precision  85.61 89.57 86.60 84.00 84.93 80.15 79.27 84.30 

recall 92.37 81.05 82.46 83.33 86.70 86.03 83.22 85.02 



 

 
 
 
Table V. Precision (%) and recall (%) for bridge implementation by different models 

Model Trained by Dataset 1 2 3 4 5 6 7 
Abs 

Mean 

Direct 
Prediction 

NON_ 
AUG 

precision  54.22 15.41 8.77 17.85 18.21 16.57 16.57 21.09 

recall 48.27 25.03 21.60 49.18 53.96 48.46 48.46 42.14 

AUG 
precision  45.20 42.97 40.66 47.30 49.10 42.18 40.67 44.01 

recall 70.77 73.43 62.59 71.50 68.88 72.43 67.69 69.61 

Prediction 
with CRF  

NON_ 
AUG 

precision  92.68 27.90 8.16 18.65 19.47 42.50 18.96 32.62 

recall 35.77 11.91 13.40 44.58 51.70 61.06 44.18 37.51 

AUG 
precision  70.80 62.04 72.82 77.93 78.51 76.11 68.64 72.41 

recall 62.56 67.92 59.94 64.53 60.94 66.53 62.37 63.54 

 
 
 


	Automatic Delamination Segmentation for Bridge Deck Based on Encoder-Decoder Deep Learning Through UAV-based Thermography
	

	tmp.1633238939.pdf.aazHk

