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Abstract: In an effort to better understand current test practices

and improve nonclinical testing of cardiovascular metallic

implants, the Food and Drug Administration (FDA) held a public

workshop on Cardiovascular Metallic Implants: corrosion, sur-

face characterization, and nickel leaching. The following topics

were discussed: (1) methods used for corrosion assessments,

surface characterization techniques, and nickel leach testing of

metallic cardiovascular implant devices, (2) the limitations of

each of these in vitro tests in predicting in vivo performance, (3)

the need, utility, and circumstances when each test should be

considered, and (4) the potential testing paradigms, including

acceptance criteria for each test. In addition to the above topics,

best practices for these various tests were discussed, and knowl-

edge gaps were identified. Prior to the workshop, discussants

had the option to provide feedback and information on issues

relating to each of the topics via a voluntary preworkshop

assignment. During the workshop, the pooled responses were

presented and a panel of experts discussed the results. This arti-

cle summarizes the proceedings of this workshop and back-

ground information provided by workshop participants.
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INTRODUCTION

Corrosion resistance is an important property of metallic
implants. For cardiovascular devices specifically, corrosion has
been observed in explanted devices months after implanta-
tion.1–5 Pitting corrosion has been documented as early as 5 mo
postimplantation in explanted nitinol abdominal aortic aneurysm
stent grafts with more severe types of corrosion detected in
devices implanted for up to 8 years. In addition, recent analyses
of human explanted stents suggest localized corrosion and metal
ion release to vascular tissue may occur in these devices.2–4

In addition to mechanical device failures that may occur due
to significant corrosion, adverse biological responses to metal
ions released are a concern. Although variousmodes of toxicities
ranging fromallergic reactiontonephrotoxicityandcarcinogenic-
ity have been reported for nickel compounds at varying doses,6–9

the overall biological impact of metal ion release from implanted
devices is unclear. Corrosion byproducts from metal implants
have been shown to modulate inflammatory cell processes and
in the case of cardiovascular stents, this may be a contributing
factor to neointimal thickening and in-stent restenosis.10,11 In
addition, release of metal ions due to corrosion may affect
patientswithmetal allergies. In particular it has been shown that
nickel can be immunotoxic, especially in those with nickel aller-

gies, which has been estimated at 10% of the adult population
withahigherprevalence inwomen(17%) thanmen(3%).6,12–15

While the true incidence of hypersensitivity-related
adverse events in cardiovascular implants cannot be
determined based on currently available information, the
general incidence appears to be low. Nevertheless, there is a
substantial body of literature consisting of data from case
studies and small to midsized clinical evaluations, which
attribute varying hypersensitivity responses to implants,
both systemic and local, ranging from pruritus to inflamma-
tory reactions leading to in-stent restenosis and peripros-
thetic incompetence in a valve.16–26 Some reported
reactions were transient in nature and could be addressed
with medical management, while other symptoms were per-
sistent and led to rare cases of device explantation. While
these varied and numerous reports of adverse events are
attributed to nickel sensitivity, a clear connection between a
specific clinical failure mode for a device type and nickel
allergy has not yet been established. For example, there
have been a small number of studies examining the
incidence of restenosis in coronary stent patients with
nickel allergy.23,27–30 Half of these studies suggest no corre-
lation between nickel allergy status of the patient and
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restenosis, while the others suggest a positive correlation
with restenosis.

Corrosion of metallic devices may occur through several
pathways and cardiovascular device manufacturers use a
variety of in vitro tests to assess corrosion resistance of
their implants. Some dissolution of metal ions is expected
when metallic devices are implanted in the body, and the
nature and quantity of ions released from devices affect
their biocompatibility. To assess the potential for general
corrosion in real-time, immersion testing may be performed.
Although there is currently no FDA-recognized standard test
method for medical implant metal ion release, this relatively
simple test method involves immersing the device in fluid
such as phosphate buffered saline (PBS) and aliquots of this
fluid are analyzed at prespecified time intervals to deter-
mine the amount of metal ions released from the device.
However, because there is no accepted standard method for
immersion testing, test conditions and data reporting can
vary significantly, making it problematic to compare results
between studies.

The American Standard of Testing and Materials (ASTM)
standard test method F2129 (Standard Test Method for Con-
ducting Cyclic Potentiodynamic Polarization Measurements to
Determine the Corrosion Susceptibility of Small Implant
Devices) is a commonly used method to evaluate localized
corrosion susceptibility by cardiovascular device manufac-
turers. If localized corrosion occurs, this test method provides
the voltage (breakdown potential) required to initiate corro-
sion on the device surface. Although not representative of
in vivo conditions, this accelerated test provides a detailed
method to determine corrosion behavior of devices relatively
quickly and consistently. In 2004, Corbett proposed accep-
tance criteria for this test based primarily on expected electri-
cal potentials in vivo.31 He proposed that implants with a
breakdown potential exceeding 600 mV would be considered
as having acceptable corrosion resistance, while potentials
below 300 mV are unacceptable. However, there is consider-
able debate within the medical device community on the use
of these acceptance criteria and their clinical relevance.32,33

The inability to generate universal acceptance criteria for pre-
clinical corrosion testing is due to difficulties in directly
observing corrosion clinically and correlating this with
in vitro corrosion tests.

In addition to pitting corrosion, there are other corro-
sion mechanisms such as galvanic and fretting corrosion
that should be considered. There are also many factors that
affect corrosion resistance in metallic devices. The passive
oxide layer is extremely important in corrosion resistance
and biocompatibility of metals exhibiting such an oxide
layer. In particular, the final chemical composition and thick-
ness of the passive oxide layer are factors that affect corro-
sion resistance and metal ion release.34–36 These variables
can be influenced by final processing steps during manufac-
turing such as polishing, passivation, and heat treatment.
For example, Trepanier et al. have shown that surface proc-
essing methods such as electropolishing, passivation, and
certain heat treatments of metal stents can improve in vitro
corrosion behavior compared with untreated stents.37,38

Electropolishing of nitinol has also been shown to reduce
the amount of surface nickel and result in high breakdown
potentials.39 Zhu et al. demonstrated that the time and tem-
perature at which these metals are heat-treated affect the
composition and thickness of the oxide layer. Specifically,
the breakdown potential based on ASTM F2129 testing
decreased from 1000 mV to less than 0 mV when the oxide
thickness increased from 0.01 to 10 mm.40 In addition, they
showed that thick oxide layers can crack under mechanical
stress/strain and may expose the metal subsurface to accel-
erate corrosion. Another important factor in corrosion is the
electrochemical environment of the device in vivo. There are
many different anatomical locations where cardiovascular
devices may be implanted and each location has a unique
local biochemical environment that may include serum, pla-
telets, proteins, and cells. There have been limited studies
to quantify these in vivo driving forces for corrosion. The
earliest work by Hoar and Mears measured rest potentials
of stainless steel and titanium in goat femurs and human
fingers for up to 90 days. They found rest potentials varied
from 100 to 600 mV and that scratching the surface of these
devices caused a transient drop in potential for up to
30 min.41 More recent studies measured rest potentials of
approximately 2300 to 400 mV for nitinol and stainless steel
wires implanted into femoral, iliac, and abdominal arteries of
human subjects.42,43 Although these papers provide informa-
tion on electrical potentials in vivo, there is large variability
among these studies creating difficulties in determining the
driving forces for corrosion when implanted, as well as how
those potentials can vary over time.

In an effort to better understand current test practices
and improve nonclinical testing of cardiovascular metallic
implants, the Food and Drug Administration (FDA) held a
public workshop. This article summarizes the proceedings
of the 2012 FDA Workshop on Cardiovascular Metallic
Implants: Corrosion, Surface Characterization, and Nickel
Leaching.

FDA WORKSHOP

The FDA held a workshop March 8–9, 2012 attended by
members of the cardiovascular medical device community
including device manufacturers, contract test laboratories,
and academics. Approximately 60 representatives from the
medical device community discussed the following topics:
(1) Current corrosion test methods, surface characterization
techniques, and nickel leaching methods used to evaluate
metallic cardiovascular implant devices; (2) limitations of
each of these tests to predict actual in vivo performance; (3)
need, utility, and circumstances when each test should be
considered; and (4) potential testing paradigms, including
possible acceptance criteria for each test. The workshop
was divided into four sessions: corrosion; surface character-
ization of nickel-containing alloys; nickel leach and toxicity;
and summary and potential testing paradigms. Each session
included one to three presentations followed by a brief sum-
mary of the responses compiled from a voluntary prework-
shop assignment, and then discussion among participants.
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DATA COLLECTION

Workshop participants were asked to complete a voluntary
preworkshop assignment to obtain a better understanding
of current bench testing strategies and practices, and to facili-
tate discussion during the meeting. There were a total of 23
individual respondents; 18 medical device manufacturers, 3
contract test laboratories, and 2 other (material supplier and
consultant). Raw data were aggregated and analyzed by FDA.
Some respondents provided data for multiple devices, and in
these cases, data from each device were analyzed as a unique
entry. In some cases, respondents did not provide responses
to all questions, and as a result, the total sample size varied
for each question. The device types for which preworkshop
assignment responses were received include coronary stents,
peripheral vascular stents including renal and neurovascular
stents, cardiac implants (e.g., valves, occluders, other coronary
implants), and other noncoronary vascular implants (e.g., var-
ious stent grafts, various endovascular stents, inferior vena
cava filters).

RESULTS

Corrosion
To better understand the current corrosion testing land-
scape, participants were requested to provide information
on corrosion test practices, outcomes, and proposed modifi-
cations to existing test methods in the preworkshop assign-
ment. Basic information regarding the respondents’ devices
and types of corrosion testing performed for cardiovascular
implants (n5 94) was collected. Respondents indicated that
their devices were composed of nitinol (53%), 316L stain-
less steel (18%), cobalt chrome alloys (27%; MP35N, L605,
Elgiloy), or other alloys (2%). Fifty-three percent (n550/
94) of devices were electropolished with and without other

treatments such as passivation or coating, 7% (n5 7/94)
were only subjected to passivation, 17% (n5 16/94) used other
surface finishing methods, 4% (n54/94) had no finishing treat-
ment (2 nitinol, 2 cobalt chrome alloy) and the surface finishing
method was unknown or unreported for 18% of devices.

Ninety percent (n5 85/94) of devices were assessed
using pitting corrosion testing (per ASTM F2129), and 52%
(n5 48/93) of devices were assessed using galvanic corro-
sion testing. Fretting corrosion was assessed as part of
fatigue testing for 40% (n537/92) of the devices. Fretting
corrosion was assessed separately from fatigue testing for
16% (n5 15/93) of the devices. When asked if other corro-
sion tests were performed on these devices, 57% (n5 39/
68) of responses indicated “yes” or “maybe,” and the tests
included open circuit potential, explant analysis, and/or
immersion tests.

In addition to the types of testing performed, respond-
ents were asked whether corrosion was observed in in vitro
(n5 17) or in vivo (n517) testing. For in vitro testing, 12%
indicated that corrosion was observed (nickel release and
corrosion) and for in vivo testing, 11% indicated corrosion
was observed (handling-induced corrosion was suspected
for one of the two cases).

Pitting corrosion. Respondents were asked to provide infor-
mation on test practices for pitting corrosion assessments
performed per ASTM F2129 (Table I). Of the 90 individual
device responses, 21% of responses were of cobalt chrome
alloy devices, 23% stainless steel, and 50% nitinol. For cov-
ered or coated devices, 64% (n523/36) indicated that they
induce damage to the covering such as coating, for stent grafts
and drug-eluting stents. Only 1 respondent (3%) indicated
that they intentionally scratch the surface, 2 (6%) did not
specify how damage was induced, and all others indicate that
they subject devices to simulated use and/or delivery and
deployment to induce damage. Sixty-eight percent (n5 13/
19) of individual respondents provided results from ASTM
F2129 testing performed on devices both before (prefatigue)
and after (postfatigue) cyclic mechanical testing. Five percent
(n5 1/19) indicated that they only performed ASTM F2129
testing on samples post-fatigue, while 26% (n5 5/19) indi-
cated that they only performed testing on nonfatigued sam-
ples. There were no notable differences in test practices for
devices made of different alloys.

In addition to general test practices for ASTM F2129,
respondents provided the number of samples tested pre-
fatigue and post-fatigue, and what they believed current/best
practices are in regards to sample size (Figure 1). For nitinol
devices, the median number of samples tested was about 9,
while for devices composed of other alloys, the median was
about 5. Note that when a respondent submitted a range of
sample size in their response, such as 7–10, the mean value
of the response was used in the analysis.

Histograms of minimum and mean rest potentials (Er) for
nitinol, stainless steel, and cobalt chrome alloys are shown in
Figure 2. The minimum rest potentials reported by respond-
ents for nitinol devices (n5 23) ranged from 2500 to 262
mV. The minimum and mean rest potentials for nitinol devices

TABLE I. Current Testing Practices (Prefatigue Testing)

Aggregated Across All Device Types and Alloys

Scan Rate (mV/s) n 5 83

1 mV/s 36%
0.2 mV/s 64%
Solution n 5 72

PBS 73%
Other (e.g., 0.9% saline, HBSS) 13%
Do you use a control? n 5 47

Yes 49%
No 30%
if appropriate/sometimes/depends 21%
If yes what do you use? n 5 33

another marketed device 94%
Other (self-couple) 6%
For covered or coated devices,

do you induce damage to the

covering such as coating,

for stent grafts and

drug-eluting stents?*

n 5 36

Yes 64%
No 17%
if appropriate/sometimes 19%

PBS, Phosphate-Buffered Saline; HBSS, Hanks-Buffered Saline

Solution
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had median values of 2324 and 2198 mV, respectively. The
minimum rest potentials for stainless steel based devices
(n5 10) ranged from 2300 to 0 mV. For cobalt chrome based
devices (n510), the minimum rest potentials ranged from
approximately 2400 to >0 mV. The minimum and mean rest
potentials for stainless steel devices had median values of
275 and 21 mV, respectively. The minimum and mean rest
potentials for cobalt chrome-based devices had median values
of 2171 and 235 mV, respectively.

Histograms of minimum and mean breakdown potentials
(Eb) for nitinol, stainless steel, and cobalt chrome alloys are
shown in Figure 3. The minimum breakdown potentials
reported by respondents for nitinol devices (n5 24) ranged
from 2100 to 800 mV. The mean breakdown for nitinol
devices was more variable among respondents (n5 22) with
similar frequency of breakdown occurring from 0 to 800 mV.
The minimum and mean breakdown potentials for nitinol
devices had median values of 174 and 388 mV, respectively.
For respondents that used electropolishing as a final surface
treatment, the range of breakdown potentials was 214 mV to
no breakdown; whereas if no surface processing was per-
formed, the breakdown range was 2100 to 250 mV (data not
shown). For stainless steel (n59) and cobalt chrome alloy
(n5 7) devices, minimum breakdown potentials reported for
devices using these materials ranged from 26 to >800 mV.
Respondents for stainless steel and cobalt chrome alloys gen-
erally had minimum breakdown potentials that were higher
compared with nitinol, with mean breakdown potentials typi-
cally in the 300–800 mV range. The minimum and mean
breakdown potentials for stainless steel devices had median
values of 390 and 658 mV, respectively. The minimum and
mean breakdown potentials for cobalt chrome-based devices
had median values of 564 and 654 mV, respectively.

Histograms of minimum and mean breakdown potential
minus the rest potential (Eb 2Er) for nitinol, stainless steel,
and cobalt chrome alloys are shown in Figure 4. The mini-
mum Eb 2Er potentials reported for nitinol devices (n518)
ranged from 63 to >800 mV. The minimum and mean
Eb 2Er potentials for nitinol devices had median values of
345 and 613 mV, respectively. For stainless steel and cobalt
chrome alloy devices, there were fewer responses than niti-
nol devices (n54–6), but minimum Eb 2Er potentials
reported for devices using these materials ranged from 65
to >800 mV. Stainless steel and cobalt chrome devices had
minimum Eb 2Er potentials typically greater than 600 mV.
The mean Eb 2Er potentials for stainless steel devices
(n5 6) varied from 280 mV to no breakdown and the mean
Eb 2Er potential for cobalt chrome (n5 6) alloys were all
greater than 600 mV. The minimum and mean Eb 2Er
potentials for stainless steel devices had median values of
445 and 642 mV, respectively. The minimum and mean

FIGURE 1. (a) Number of samples reported for prefatigue, postfatigue,

and current/best practices for ASTM F2129 testing for nitinol devices,

(b) Number of samples reported for prefatigue, postfatigue, and cur-

rent/best practices for ASTM F2129 testing for devices made of all

other alloys. The median values for nitinol devices were as follows:

prefatigue 5 10, postfatigue 58, and current/best practices 5 10. The

median values for devices made of all other metal alloys were as fol-

lows: prefatigue 5 5, postfatigue 56, and current/best practices 5 5.

FIGURE 2. Histograms of minimum (a) and mean (b) rest potentials (Er) for nitinol (NiTi), stainless steel (SS), and cobalt–chromium (CoCr)

alloys.
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Eb 2Er potentials for cobalt chrome-based devices had
median values of 918 and 949 mV, respectively.

Respondents were also asked to provide the protection
potential (Ep) of their devices. For stainless steel, 73% of
respondents (n5 8/11) indicated repassivation did not occur
during ASTM F2129 testing. Of those that observed repassiva-
tion, Ep values ranged from 2300 to 230 mVwith a median of
248 mV. Approximately 36% of respondents (n55/14)
for nitinol devices indicated that repassivation did not occur.
Of those that observed repassivation, Ep values ranged
from 2300 to 265 mV with median of 2100 mV. For cobalt
chrome-based devices, 43% of respondents (n5 3/7) stated
that repassivation did not occur. The Ep values when repassiva-
tion occurred were highly variable with ranges from 223 to
913 mV and a median value of 458 mV.

A histogram of acceptance criteria for ASTM F2129 min-
imum Eb and Eb 2Er potentials used by respondents is
shown in Figure 5. Approximately 67% of respondents
(n5 16/24) set their minimum acceptance criterion for
breakdown potential to be greater than or equal to 300 mV,
while 25% set a breakdown potential of greater than or
equal to 600 mV as their minimum acceptable level. It is
interesting to note that 17% of respondents did not have an
acceptance criterion for breakdown potential (Eb) for ASTM
F2129 testing. In contrast, 67% of respondents (n516/24)
did not use Eb 2Er potential as their acceptance criterion.

Of those that did, most respondents stated that an Eb 2Er
potential greater than 600 mV was acceptable.

Galvanic corrosion. To better understand when galvanic cor-
rosion testing is considered, respondents were asked under
what conditions they believed galvanic corrosion testing is
needed. Specifically, when asked if galvanic corrosion testing
is needed even if ASTM F2129 test results are “good” for a
single device containing dissimilar metals, the majority of
respondents (n5 16) indicated yes or maybe, with only 2
respondents indicating that they believed testing was not
needed. The most common reason cited for the need for gal-
vanic corrosion testing in addition to ASTM F2129 was the
difference in driving forces for corrosion in the two tests;
externally applied voltage for the potentiodynamic polariza-
tion test, and difference in equilibrium potentials and surface
areas for galvanic corrosion testing. Many “no” and “maybe”
responses also stated galvanic corrosion testing may not be
necessary if the different metal components on the galvanic
series are close, and/or there is a low cathodic to anodic com-
ponent surface area ratio. Some indicated that galvanic corro-
sion testing may be viewed as a confirmatory test for
corrosion susceptibility, in addition to ASTM F2129 testing.

The majority of respondents (n512) indicated that there
is value in testing overlapped devices of dissimilar metals; 4
respondents indicated “no” and 2 responded “maybe.” In
addition to reasons cited above for performing galvanic

FIGURE 3. Histograms of minimum (a) and mean (b) breakdown potentials (Eb) for nitinol (NiTi), stainless steel (SS), and cobalt–chromium

(CoCr) alloys.

FIGURE 4. Histograms of minimum (a) and mean (b) breakdown minus rest (Eb 2 Er) potentials for nitinol (NiTi), stainless steel (SS), and cobalt–chromium

(CoCr) alloys.

1334 NAGARAJA ET AL. CARDIOVASCULAR METALLIC IMPLANTS FDA WORKSHOP



corrosion testing for a single device made of dissimilar met-
als, the most common reasons cited for performing testing
using overlapped devices was to assess performance when
overlap with another device is likely to occur during clinical
use, and to assess effects of localized transient corrosion
behavior due to the overlap. The most common responses
against testing overlapped devices were difficulty in deter-
mining with the galvanic couple to test and obtaining other
devices (e.g., a competitor’s device) to use in the testing, and
that most alloys used in cardiovascular implants are close in
the galvanic series. Respondents were also asked to provide
information on test practices for galvanic corrosion testing,
and these are summarized in Table II.

Surface characterization
The surface characterization session of the workshop and
accompanying preworkshop assignment focused on various
surface characterization techniques, how they are used, and
what information can be gained from these assessments for
devices made from stainless steel, nitinol, and cobalt
chrome alloys. There were three general categories of sur-
face characterization of interest: surface morphology, surface
chemistry, and depth profiling. The technique most com-
monly used to assess surface morphology was scanning
electron microscopy (SEM), X-ray photoelectron spectros-
copy (XPS) and Auger electron spectroscopy for surface
chemistry, and XPS paired with sputtering to etch down the
surface and using a focused ion beam to create a cross-
section of the surface paired with a surface chemistry tech-
nique for depth profiling.

Responses regarding surface characterization usage for
each alloy are presented in Table III. The percentage shown for
each assessment technique is based on the total number of
responses for each material type, which is displayed next to
each material-type label. The responses to the questions
regarding the general usage of surface characterization techni-
ques are shown in Table IV. A common theme among the
responses was that once the manufacturing and material proc-
essing has been established, the surface is not expected to
change, and other functional verification methods would iden-

tify surface defects. The cost of equipment, operating costs and
maintenance, lack of expertise, and insufficient work load for
dedicated facilities were common reasons for contracting out
surface characterization. The small scan region and inability to
characterize the entire surface area of a device using these
techniques were the primary reasons respondents identified
for why an acceptance criteria based on surface characteriza-
tion techniques would be inappropriate.

Nickel leach
Unlike other functional testing used to evaluate the surface-
mediated properties of nickel-containing alloys, such as
ASTM F2129 for pitting and crevice corrosion, there is no
standardized method for conducting these in vitro nickel
leach assessments. In general, devices are immersed in solu-
tion and the solution is sampled and analyzed to assess the
nickel concentration at prescribed time points. However,
because the methods are not standardized, one of the goals
of the preworkshop assignment was to assess the extent of
variation in the test methodologies that are currently used.
The responses indicated that there were consistencies
among some of the test parameters. For example, all testing
was conducted on final, sterilized devices at 378C, primarily
using PBS as the immersion medium, with 85% (n5 13) of
respondents reporting using PBS. Testing was also generally
conducted in the absence of external mechanical loads, and
the solution pH and open circuit potential were not moni-
tored. Also, 66% (n5 12) of respondents indicated that test-
ing was only done under static conditions, that is, there was
no stirring or agitation of the solution during the testing.
Seventy-seven percent (n5 13) of respondents used

FIGURE 5. A histogram of ASTM F2129 acceptance criteria (AC)

derived from the minimum breakdown (Eb) or breakdown minus rest

(Eb 2 Er) potentials used by respondents.

TABLE II. Current and Reported “Best Practices” for Galvanic

Corrosion Testing of a Single Device Containing Dissimilar

Metals

Do You Measure the Uncoupled

Potential Before and After?

n 5 20

Yes 50%
No 25%
Only before 25%
Do you monitor the coupled potential? n 5 20

Yes 80%
No 20%
What is the endpoint of your test? n 5 19

Timea 79%
Steady state current 21%
What acceptance criteria do you use

for steady state current?

n 5 15

None 47%
Rate of mass loss or corrosion rate 27%
�4 nA/cm2b 27%
How many samples do you use per test? n 5 18

Number of Samples† Number of
Responses

1 to 3 7
4 to 6 9
>6 2

a 12–24 h was the most common time endpoint used; 11% (n 5 2) of

up to 72 h; 5% (n 5 1) of up to 6 days
b�3 nA/cm2 (n 5 3); 2–4 nA/cm2 (n 5 1) †Median 5 5
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inductively coupled plasma mass spectrometry (ICP-MS) as
the analytical method, although some respondents reported
using analytical methods with lower specificity and higher
limits of detection and quantitation, such as atomic emission
spectroscopy (ICP-AES) and optical emission spectroscopy
(ICP-OES).

In contrast to consistencies identified across some
parameters, there were wide variations in other key test
parameters reported. Characteristics of the distributions of
test parameters that could be quantified are presented in
Table V. The sample size, duration of the testing, and sam-
pling frequency varied substantially. For example, responses
indicated that in vitro nickel release was evaluated for maxi-
mum time periods ranging from 1 week to 1 year. These are
the extremes, however, with most responses indicating that
testing was conducted for anywhere from 30 to 90 days
depending on the observed behavior. The testing was car-
ried out until the transient behavior suggested nickel
release rates were below a prescribed limit indicating sur-
face stability, and this could be demonstrated in as little as
30 days or may require 90 days or longer immersion time.
There was also considerable variation in the number of
time points sampled to characterize both acute (�7 days)
and chronic (>7 days) nickel release. For release occurring
within the first week of immersion, sampling ranged from
daily to only once. We note that even though the median
value for acute sampling was three, the time points selected
were generally biased toward the first 3 days of immersion
to accurately capture the initial leach rates, where the over-

all maximum release rate is expected. The same variability
in the responses was also observed for chronic release sam-
pling over the first 2 months of testing, which varied from
weekly to monthly.

In addition to the quantitative parameters summarized in
Table V, other aspects of the testing were not consistent among
the responses. For example, the method for retrieving the sam-
ple from the solution was divided nearly evenly between two
distinct approaches. In the first approach, small aliquots were
removed from the test container and replaced with an equiva-
lent volume of fresh solution at each prescribed sampling time
point. Alternatively, the entire solution was replaced at each
time point by moving the device to a new test container with
fresh solution. Eight percent (n512) of respondents reported
the presence of precipitates in the solution during testing. To
validate the test method and address this potential issue, a
spike and recovery test can be conducted. However, the
responses indicate that this is not currently a common practice,
with only 33% (n5 12) of respondents indicating that they
perform similar validation studies.

In addition to typical testing protocols, respondents
were also asked to report nickel release rates from in vitro
testing, as well as any acceptance criteria established.
Because responses were primarily restricted to testing con-
ducted on nitinol devices, only those results are presented.
Figure 6 shows the distributions of responses related to the
measured nickel release rates, which includes both the peak
and chronic release rates. The reported values for the peak
release rate range from 0.01 to 40 lg/day, with a median
value of about 0.3 lg/day. Further, the range of proposed
acceptance criteria for peak release, with both minimum
and median values of 35 lg/day and a maximum of 670
lg/day, overlaps slightly with the range of measured values.
Although peak release was observed primarily within 7

TABLE III. Surface Characterization Technique Usage in Terms of Overall Response and Per Material Type

Surface Morphology
Surface Chemistry Depth Profiling

SEM (%) AES (%) XPS (%) XPS 6 Sputter (%) FIB (%)

Nitinol (n 5 17) 100 59 71 35 29
SS (n 5 12) 92 42 42 17 17
CoCr (n 5 7) 100 29 43 14 29

The percentage of usage is based on the total number of response for each material type and is displayed next to each material type label.

SS, stainless steel; SEM, scanning electron microscopy; AES, Auger electron spectroscopy; XPS, X-ray photoelectron spectroscopy; FIB,

focused ion beam

TABLE IV. Responses to Questions Regarding the Usage

Surface Characterization

Should Surface Characterization

Always be Performed?

N 5 19

Yes 7
No 12
Do you perform surface

characterization in house?

N 5 17

Yes 8
No 9
Do you contract out any surface

characterization work?

N 5 17

Yes 14
No 3
Should there be an acceptance criteria

based on surface characterization?

N 516

Yes 2
No 14

TABLE V. Distributions of Quantifiable In Vitro Nickel Leach

Test Parameters

Median Minimum Maximum n

Number of devices 5 2 25 12
Extraction ratio (cm2/mL) 1.0 0.1 6.0 7
Maximum test

duration (days)
60 7 365 13

Number of sample points,
time�7 days

3 1 7 11

Number of sample points,
7 days< time�60 days

3 1 5 8
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days, 83% (n512) of responses indicated that maximum
release rates occurred within the first 24 h after testing was
initiated. Figure 6, also illustrates that the chronic release
rates are an order of magnitude lower than the peak values,
with median, minimum, and maximum values of 0.065,
0.001, and 1.3 lg/day, respectively. These values are all
below the 6–100 lg/day range of proposed acceptance cri-
teria for this testing. The proposed acceptance criteria for
chronic release were comparable to those specified for peak
release, that is, greater than 35 lg/day, with the exception
of the 6 lg/day limit, which was specified only for infants.

It is unclear from these data if the large variability is
due to material, device surface area or test protocol differ-
ences. In order to make a comparison on a material basis
between devices, the leaching rates should be normalized
by surface area. To facilitate such an analysis, FDA also
asked respondents to report device surface area as part of
the preworkshop assignment. The device surface areas
reported ranged from 1 to 50 cm2. Based on this informa-
tion, the nickel release rates were normalized where possi-
ble. This resulted in a range of normalized peak release
rates of 3–1200 ng cm22 day21 (n5 9), suggesting a similar,
large variation in the material response. For chronic release,
the variability was reduced by the surface area normaliza-
tion with a range of 1–26 ng cm22 day21 (n56). We note
that these ranges are consistent with previous literature
reports on nitinol materials with different processing histor-
ies where the in vitro nickel release rates were assessed
with a consistent set of test parameters.44 This suggests
that the observed variability is primarily due to differences
in device manufacturing and not test protocols.

Nickel toxicity
In addition to in vitro nickel leach testing performed, respond-
ents were asked to provide information on in vivo nickel release
assessments performed. Only 10% (n5 2) of respondents indi-

cated that they perform some type of in vivo assessment. Conse-
quently, remaining questions on findings pertaining to in vivo
assessments, as well as correlations with in vitro results were
returned largely unanswered.

DISCUSSION

The purpose of the 2012 workshop was to provide a forum
for the discussion of (1) various methods used for corrosion
assessments, surface characterization techniques, and nickel
leach testing of metallic cardiovascular implant devices, (2)
the limitations of each of these tests to predict actual
in vivo performance, (3) the need, utility, and circumstances
when each test should be considered, and (4) the potential
testing paradigms, including possible acceptance criteria for
each test. The pre-workshop assignment served as the basis
for discussions. In addition to the above topics, best prac-
tices for these various tests were discussed, as well as
knowledge gaps.

The data provided by device manufacturers for this
workshop gave insight into the nonclinical methods used to
assess corrosion in medical devices. These data indicated
that substantial variability existed in results from general
(i.e., immersion testing) and localized (i.e., ASTM F2129)
corrosion testing. In immersion testing, the peak nickel
release rate for devices normalized by surface area had a
400-fold difference between a device with the largest nickel
release when compared with a device with the lowest nickel
leach rate. Breakdown potentials in ASTM F2129 testing for
nitinol devices also had substantial variability, and to a
lesser extent in stainless steel and cobalt-based alloys. Inter-
estingly, some respondents did report breakdown values for
cobalt chrome alloys although they are not expected to
exhibit breakdown during ASTM F2129 testing.45 Discus-
sants noted that these alloys exhibit transpassive behavior
that may be misinterpreted as breakdown. The variability in
breakdown potentials may be attributed to differences in
surface processing steps such as polishing, heat treatments,
and passivation since respondents used many different final
finishing steps to improve corrosion resistance. However,
we also observed variability that was independent of final
surface processing. For example, electropolished nitinol
devices had breakdown potentials (Eb) ranging from 0 mV
to no breakdown and Eb 2Er potentials ranging from 200
mV to no breakdown. These results indicate that even when
utilizing the same surface processing such as electropolish-
ing, the process parameters used (e.g., solution composition,
polarization conditions, electropolishing duration) may
affect corrosion properties measured in vitro, and the inter-
play between these variables needs to be fully understood
to optimize corrosion resistance. In addition, corrosion
resistance of medical devices is sensitive to other factors
such as design and processing differences. There is also a
potential for additional variability due to differences in test
method parameters, which may be minimized by the use of
standards and common best practices.

Best practices for testing according to ASTM F2129 that
are not specified in the standard were noted in the course

FIGURE 6. Distributions of reported values from in vitro nickel leach

testing on nitinol devices and acceptance criteria. The plot indicates

the ranges of responses for the reported values (n 5 12) and proposed

acceptance criteria (n 5 6) for the peak nickel release rate as well as

the values (n 5 9) and acceptance criteria (n 5 7) for chronic release

rate. An open circle indicates the median value for each set of

responses. Note that the chronic release statistics (that is, minimum

value) only represent scenarios where finite (nonzero) numbers were

reported.
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of the workshop discussions, as well as the preworkshop
assignment. Based on the responses, there was no indication
that the alloy of the medical device drove the decision to
perform postfatigue corrosion testing. While discussants
had disparate opinions on the value of performing postfa-
tigue ASTM F2129 testing, the considerations surrounding
this testing were identified. A potential value of performing
post-fatigue ASTM F2129 is to assess corrosion susceptibil-
ity of devices after they are damaged due to fatigue/fretting.
However, discussants also noted the challenges in perform-
ing ASTM F2129 testing on post-fatigue samples, such as
the potential effects of drying the sample (required to form
the electrical connections for the test setup), duration of
time between fatigue testing and ASTM F2129 testing, stor-
age condition of samples for this duration, limited number
of samples, and general lack of a standardized test method
for handling postfatigue samples. These challenges confound
the test results and may render them uninterpretable. Sev-
eral discussants noted that assessing corrosion visually
postfatigue may be more informative than ASTM F2129
testing, and some indicated that both visual assessment and
ASTM F2129 testing would be useful. Specifically, damage to
the coating/covering of devices due to fatigue testing would
not otherwise be assessed if only prefatigue samples are
used. Conversely, other discussants noted that the potential
applied via ASTM F2129 testing is greater than in vivo and
would artificially bias areas of damage with a localized
increase in current density. Some discussants noted that
fundamentally, if the repassivation behavior of the damaged
device is of interest, ASTM F2129 is not an appropriate test
to assess this behavior.

Current practices for in vitro nickel leach testing were
also the subject of extensive discussion during the work-
shop. While the sampling approach used was nearly divided
in the pre-workshop assignment responses between taking
an aliquot or replacing all of the media at each time point,
discussants emphasized that the key consideration should
be maximizing the driving force for leaching, that is, using a
sufficiently large solution volume to device surface area
ratio, while maintaining solution concentrations that can be
detected with available analytical methods. This is in con-
trast to typical extractions prepared for biocompatibility
testing (e.g., ISO10993 series of tests), where a relatively
large surface area to volume ratio is used to obtain concen-
trated leachant solutions. It was also noted that a low solu-
tion concentration is not necessarily a limiting factor,
because nickel is nonvolatile, and therefore, it is possible to
concentrate the solutions after sampling. Also, due to the
low nickel concentrations in typical test solutions, it was
suggested that inductively coupled plasma mass spectrome-
try (ICP-MS) is the preferred analytical technique because it
is the most sensitive. Using proper controls, specifically
spike recovery and blank testing, were identified as essen-
tial to validate both the analytical methods and test configu-
ration. This validation testing can obviate concerns with
container contamination, evaporative loss, and the potential
for nickel to precipitate out of solution. Further, acidifying
the samples prior to characterization was suggested by dis-

cussants to ensure the total amount of nickel, not just solu-
ble nickel, is captured and to circumvent concerns with
container-material selection due to adsorption. Because it is
not possible to acidify the solution for intermediate time
points when sampling aliquots of the immersion solution,
the measured nickel release may not be as accurate com-
pared with whole solution replacement at each time point.
The time frame of the test and sampling were also dis-
cussed. Discussants suggested that testing should be con-
ducted until steady state behavior can be demonstrated and
that a duration of 30 days is a common initial benchmark
for assessment. If steady state is not obtained within this
time, the test should be extended until steady state is
achieved. Discussants also suggested that the ability to cap-
ture the steady state should be reflected in the sampling
frequency, by sampling more frequently at early times
where the transient is the largest. Finally, the utility of this
testing postfatigue was questioned because of challenges
such as contamination and potential inadvertent damage to
the device due to handling, and because the samples are
closer to an equilibrium state postfatigue, the release rates
are almost always lower than testing performed prefatigue.

There was a clear concern expressed at the workshop
that the majority of test methods discussed do not correlate
well with in vivo performance. These concerns spanned test
environment, acceptance criteria, as well as general applic-
ability. With regards to corrosion testing per ASTM F2129;
when asked if they had concerns with the limitation of the
current corrosion test methods, 75% of respondents indi-
cated that they did. The majority of these respondents cited
the lack of in vivo performance correlation with the test
results, specifically, how the breakdown potential deter-
mined by the testing relates to clinical/in vivo performance
of a device. When asked if there should be acceptance crite-
ria based on surface characterization, the majority indicated
there should not be, citing that surface characterization is a
local technique making it impractical to scan the entire
device, and a lack of correlation between surface characteri-
zation results and in vivo performance. The discrepancy
between in vitro and in vivo nickel release profiles was also
discussed. Limited studies of serum nickel concentration
after implantation of cardiac occluders and spinal fixation
devices46–48 showed peak levels at approximately 1 month
or up to 2 years post-implantation and remained above
baseline for several months to years postimplantation,
respectively. In contrast, the majority of respondents indi-
cated that in vitro release peaked by 24 h and dropped to
near detection limit levels by about 7 days. Discussants
noted challenges in assessing serum nickel levels in patients
due to the low concentrations and confounding effects of
environmental sources of nickel, and that animal studies
with controlled exposure to nickel may be more suitable.
Better correlation of nickel ion release kinetics from devices
in vitro and in vivo would allow a more accurate assessment
of potential patient exposure to nickel based on in vitro
nickel leach testing results. Alternatively, discussants also
suggested that it may be more practical to develop an
in vitro test for nickel release with good precision and
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benchmark the amount of nickel release from devices with
good clinical performance, rather than to attempt to develop
an in vitro test that more closely mimics in vivo release
kinetics.

While there is a lack of in vivo correlation with the
results from these in vitro tests, the tests do provide impor-
tant insight into the behavior of the device. By combining
the results of multiple tests, along with a better understand-
ing of manufacturing and processing techniques, a more
comprehensive picture of anticipated in vivo performance
can be elucidated. It should be noted that no single standar-
dized testing paradigm was identified. Some discussants
suggested that the testing paradigm should be different for
devices made of alloys with a good clinical history of use
than those made from novel alloys, where additional charac-
terization testing such as surface assessments may be war-
ranted. While the majority of respondents perform ASTM
F2129 corrosion testing, there was no dominant opinion on
whether in vitro nickel leach testing should only be per-
formed when corrosion test results are poor or marginal, or
regardless of corrosion testing outcomes since the two tests
assess different device performance characteristics. Several
discussants noted that surface assessments are characteriza-
tion tests rather than device performance tests, and are
best suited to assess why a device may have poor corrosion
resistance and/or high nickel release. Discussants indicated
that the testing needed is ultimately dependent on the risk
analysis for the device. As another use of ASTM F2129 cor-
rosion testing, some discussants indicated that it may be a
suitable initial screening tool when manufacturing changes
are made that may impact the device’s surface properties.

ASTM F2129 does not specify acceptance criteria and
emphasizes comparison to other devices with a history of
successful clinical use. Although workshop discussants gen-
erally indicated that this was a valid approach, difficulty in
obtaining comparison devices was also noted. Establishment
of fixed acceptance criteria would eliminate the need to
obtain comparison devices. In 2004, Corbett published pro-
posed acceptance criteria for ASTM F2129.31 Since publica-
tion, industry has debated what the minimum breakdown
potential should be to prevent corrosion in vivo. With
>40% of respondents setting their minimum acceptable
breakdown potential to be within the “marginally accept-
able” range proposed by Corbett, it appears that a large per-
centage of respondents believe the proposed acceptance
criteria are overly conservative. Since there is limited pub-
lished information on the dynamic electrochemical environ-
ment that drives corrosion in vivo, it is unclear what an
acceptable in vitro threshold to prevent corrosion in vivo
should be. The lack of correlation between in vitro testing
and in vivo corrosion is a significant knowledge gap in this
field. To determine suitable acceptance criteria for ASTM
F2129 testing, controlled studies are needed to establish
the breakdown potentials that result in device pitting for its
intended environment.

The relative lack of response to nickel toxicity-related
questions in the preworkshop assignment may partly reflect
the lack of clear data on the attribution and frequency of

adverse events due to nickel released by metallic implants.
Currently, no data in the literature could be found that sug-
gests nephrotoxicity due to nickel ion release occurs in
patients with cardiovascular metallic implants, and discus-
sants indicated that the exposure to nickel ions needed to
cause kidney damage is much higher than amounts released
by implants, based on in vitro results reported in the work-
shop. Discussants also noted that nickel allergy-related
events are rare in cardiovascular implants, and can often be
resolved with medical management as also reported in a
survey of interventional cardiologists (n556 respondents
and n5 1600 cases).49 The majority of clinical studies
reporting nickel allergy to cardiovascular implants as the
cause of clinical symptoms determined nickel allergy by
using patch testing, which is currently the most widely used
method. However, as discussants noted at the workshop,
patch testing may not be an appropriate predictor of sensiti-
zation response to an implant since the mechanism of
response is different between dermal exposure and expo-
sure to an implant via other routes.50 It was also noted that
the reported incidence of nickel sensitivity to implants
appears to be much lower than the incidence of general
nickel sensitivity in the population. Development of assess-
ment methods for the presence of local and/or systemic
allergic reaction would aid in the determination of the true
rate of metal ion allergy-induced adverse clinical events.
Discussants also noted that a knowledge gap exists in
understanding the form of nickel, that is, released by
implants. These may include particulates, nickel ions, and
soluble or insoluble nickel compounds, and the form might
vary by device use and surface characteristics. Despite these
knowledge gaps, a limit for nickel exposure would be useful
to assess results from in vitro nickel leach testing.

Through the Cardiovascular Metallic Implants workshop,
current test methods to assess corrosion susceptibility,
nickel leach, and surface characteristics were identified, as
well as the range of acceptance criteria used for some of
these tests, and range of test outcomes.* Many knowledge
gaps were identified, and these were primarily focused on
correlation of in vitro test results with in vivo or clinical
outcomes, and acceptance criteria for these in vitro tests.
Nevertheless, workshop participants confirmed the utility of
in vitro corrosion testing, as well as nickel leach testing and
surface characterization in certain situations (e.g., use of a
new alloy or when manufacturing of components is out-
sourced, and determination of the cause of poor corrosion
resistance or high nickel release, respectively). Based on the
information obtained through this workshop, select sections
of the 2010 Non-Clinical Engineering Tests and Recom-
mended Labeling for Intravascular Stents and Associated
Delivery Systems guidance document were updated.†

*Additional information on the workshop including complete tran-

scripts and select presentations can be found at http://onlinelibrary.

wiley.com/doi/10.1002/jbm.b.33630/suppinfo

†http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationand

Guidance/GuidanceDocuments/UCM458490.pdf
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