From A Pasture to A Silvopasture System

James L. Robinson
NRCS Agroforester, USDA National Agroforestry Center, USDA NRCS, GLTI

Terry Clason
Louisiana State University Agricultural Center

Follow this and additional works at: https://digitalcommons.unl.edu/agroforestnotes

https://digitalcommons.unl.edu/agroforestnotes/21

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Forest Service – National Agroforestry Center at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agroforestry Notes (USDA-NAC) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
From A Pasture to A Silvopasture System

There is potential to diversify a grazing operation and improve economic or environmental benefits on many acres through conversion of pasture to silvopasture. Silvopasture is the integration of trees with livestock grazing and forage operations. Research has demonstrated that, if managed properly, forage production can be maintained while producing high value timber.

Considerations

Southern pines (loblolly, longleaf, and slash) have been found to be compatible with forage production and livestock grazing when properly managed. This technical note provides several options for establishment of southern pines in existing pasture systems for the production and management of both forest and forage products. The following are planning considerations to convert from pasture to silvopasture:

Soils
Determine the soil suitability of the area for establishing pine trees. If the soil is not suited to southern pine species do not convert to a pine silvopasture system.

Tree Planting
Determine the desired row spacing for the pine planting. Planting rates from 100 to 400 trees per acre are typically recommended for planting a silvopasture system. Trees may be grown in single rows or in aggregate rows called sets with wide alleys for for-

Figure 1: Typical layout diagram showing alley width, row spacing, and tree sets for establishing a silvopasture system in existing pasture.
Planting arrangement should consider management objectives, equipment operability, adequate growing space until the first tree harvest, and companion-forage species needs. The desired establishment density, in part, is determined by the existing markets for timber products. Higher planting densities will require the removal of smaller-diameter trees to prevent canopy closure. If readily available markets for small round wood exist then the higher planting densities are feasible options. If, however, these markets don't exist, the lower planting densities have the advantage of reducing the need for non-commercial thinning.

On sloping land, rows should be oriented on the contour to prevent soil erosion within the tree rows during establishment.

Site Preparation and Establishment

Determine site preparation needs. Apply a herbicide or till a strip two to four feet wide for each row to be planted. If the soil has a compacted layer, rip or subsoil down the planting rows. This improves the ease of planting and improves rooting conditions for young seedlings, thus ensuring better survival and growth. In some areas, a prescribed burn or pesticide treatment may be needed to control rodents prior to tree planting. Follow-up with a selective herbicide may be needed for two to three years until trees are well established. Follow locally approved tree planting practices for the establishment of the trees.

Tree Management

Determine the tree management needs.

- **Thinning.** Trees generally have little impact on forage production until shading becomes dense enough to limit sunlight to the understory. Thinning of trees is
scheduled to reduce canopy shade and tree competition for understory forage production. When the trees' combined canopy exceeds 35 to 45 percent, forage production of warm season grasses begins to decline. However, there are differences among the warm season grasses. For instance, Pensacola bahiagrass and Coastal bermudagrass were shown to produce more under tree canopy cover than dallisgrass and carpetgrass. Continuous observation is important in making adjustment in the management strategy. For cool season grasses, shade tolerance of some species may exceed 60 percent and still produce good forage yields. Depending upon the species of grass, tree thinning needs to be conducted to keep canopy cover below the maximum shade tolerance level. With proper establishment densities the first thinning should be planned around 10 to 15 years of age for pulp or small round wood. Successive thinning can be scheduled about every five years until final harvest at approximately 30 to 45 years. This schedule will vary some depending upon the productivity of the site, the species of trees, and the targeted, final wood products.

- **Pruning.** Widely spaced trees delay tree canopy closure benefiting forage crops but the "open grown" trees may develop large branches that can reduce wood quality if trees are not pruned. The object of pruning is to confine the knots created by these branches to a small diameter (four inches) of core wood thereby producing high quality, knot free wood on the outer diameter of the tree stem.
 - Pruning should be initiated when the crop trees reach 15 to 20 feet and/or the stump diameter reaches five inches at a height six inches above the ground.
 - Pruning should strive to remove all of the branches where the trunk diameter is greater than four inches. But, never remove more than 50 percent of the live canopy.
 - Pruning operations should be scheduled periodically until the tree bole is pruned up to 18 feet. Each successive pruning operation proceeds up the main tree stem to a four-inch diameter core but removes no more than 1/3 to 1/2 of the total crown while maintaining a live crown equal to 1/3 of the tree height.
 - Pruning operations continue until a 18-foot knot-free log is developed. (see figure 2) Follow local guidelines from the state forestry agency, NRCS or extension service for proper pruning techniques.

- **Grazing Management.** Very young trees are subject to browsing or trampling by

![Figure 2: Pruning to create a four inch core.](image)
livestock. It is recommended that grazing be restricted or excluded during the first two to three years after establishment or until the terminal bud of the trees is above the reach of livestock. Forage produced during these years can still be mechanically harvested and utilized for hay. Once the terminal bud of the trees is above the grazing height of livestock (six to eight feet), grazing can proceed without damage to the trees. If heavy browsing is observed there may be a deficiency in the livestock diet. Southern pine are not typically browsed by livestock when adequate forage is available.

As with any managed grazing system, soil amendments should be applied as needed to maintain desired forage production levels. An added benefit is that stem production of wood has been shown to increase by 20 to 30 percent in response to fertilizer management for forage production.

Continuous grazing is not recommended for silvopasture systems. A planned grazing system in which multi-grazing units are rested and grazed in a planned sequence should be developed. The grazing management plan should maintain an adequate balance between livestock numbers and forage production.

Close monitoring of forage, livestock and timber performance will provide economic and environmental benefits attainable through silvopasture systems.

Additional Information

“Agroforestry, Proceedings Southeastern Regional Conference Grazing Lands and People”; Pearson, Henry A. 1984. Editors Merkle, Dan; Carter, Roy; Arzt, John L.; December 10-12; Atlanta, GA. 72-79.

Authors

James L. Robinson, NRCS Agroforester, USDA National Agroforestry Center, USDA NRCS, GLTI, Box 6567, Fort Worth, Texas. Phone: 817-509-3215. E-mail: jim_robinson@fw.nrcs.usda.gov

Dr. Terry Clason, Forestry Research Project Leader, Louisiana State University Agricultural Center, Louisiana Agriculture Experiment Station, Hill Farm Research Station, Route 1, Box 10 Homer, Louisiana. Phone: 318-927-2578. E-mail: tclason@agctr.lsu.edu