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EVI from multiple wavelet components, the MSSTM approach could take full advantages of the 
unique characteristics of each wavelet component and its corresponding model was selected. 
Through selecting specific model and its corresponding exogenous inputs from climatic variables 
at each scale, the MSSTM approach could efficiently cope with the specific environmental con-
ditions of a target area. 

The wavelet-based methods have been successfully utilized in characterizing multiscale patterns 
of vegetation dynamics (Yang et al. 2012; Martínez and Gilabert 2009; Singh et al. 2012; Qiu et al. 
2014b, 2013a). The proposed MSSTM method took advantage of the multi-scale wavelet decompo-
sition and reconstruction framework. The MSSTM method summed up the approximations and nec-
essary detailed components estimated from proper time-series models. Through incorporating their 
temporal characteristics and associations with climate factors, the MSSTM method was proved to 
be suitable for reconstructing and forecasting EVI time series. 

4.2. Multi-temporal scale vegetation dynamic patterns under the influence of four climate 
variables 
The best overall correlation can be observed between EVI and precipitation with about 1 month’s 
(two 16-day composites) lag. Therefore their correlation coefficients were calculated with two com-
posites’ lag. From intra-monthly to inter-annual scale, the correlation coefficients between EVI com-
ponents and four climatic variables were computed through a per-pixel strategy. Totally 24 images 
of their correlation coefficients were acquired. At smaller scale, the histogram images of their cor-
relation coefficients were provided in Figure 7. At intra-monthly and monthly scales, their correla-
tion coefficients were very low and commonly within [−0.1,0.1] (Figure 7). Their correlation co-
efficients at larger scales (bi-monthly, seasonal, and intra-annual scales) were analyzed at different 
altitudinal gradients (0–100 m, 100–200 m, 200–400 m, 400–700 m, and above 700 m) for agricul-
tural and forest vegetation, respectively (Figure 8). Their correlation coefficients might change from 
strong negative to positive, depending on the analyzed temporal scale, altitudinal gradients, and dif-
ferent climatic variables. 

Figure 7. Histogram of correlation coefficients between climatic variables and EVI components at intra-monthly 
(D1) and monthly (D2) scales. 
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At intra-annual scales, the correlation coefficients of meteorological variables on vegetation dy-
namics generally increased from intra-monthly, monthly, and bi-monthly to seasonal scales (Fig-
ures 7 and 8). Compared with those from intra-monthly and monthly scales, their correlations at bi-
monthly scale (D3) were slightly stronger but their interquartile ranges were still commonly within 
[−0.2,0.2]. Nevertheless, at seasonal scale, there were strong correlations between EVI and climatic 
variables (Figure 8), particularly the temperature (averaged correlation coefficients 0.92) and pre-
cipitation (averaged correlation coefficients 0.52). As the altitude increased, the linear correlations 
between EVI and temperature slightly decreased: the averaged value was 0.9625, 0.9509, 0.9386, 
and 0.9219 for altitudinal bands of below 0–100, 100–200, 200–400, 400–700, and above 700 m, re-
spectively. However, the correlations between EVI and precipitation gently increased with altitude 
at seasonal scale: the averaged value was 0.4612, 0.5119, 0.5297, 0.5813, and 0.621 for altitudinal 
bands of 0–100, 100–200, 200–400, 400–700, and above 700 m, respectively. 

At intra-annual scales, the associations between EVI and precipitation at seasonal scale also dif-
fered among different vegetation types. There slight stronger EVI–precipitation correlations from 
the forest vegetation (averaged 0.56) compared to those from croplands (averaged 0.45). Differed 
from the temperature and precipitation, uncertain relationship was observed between EVI and sun-
shine duration (insolation) at seasonal scale: the correlations coefficients varied from negative to 
positive and its amplitudes generally decreased with altitudinal gradients: the averaged value was 
0.257, 0.294, 0.246, 0.1732, and 0.1879 for altitudinal bands of 0–100, 100–200, 200–400, 400–700, 

Figure 8. Boxplots of correlation coefficients of meteorological parameters as a function of elevation for ag-
ricultural crop (a, c, e) and forest (b, d, f) vegetation at bi-monthly (D3), seasonal (D4) and intra-annual (A5) 
scales. The line in the center of the box refers to the medium value of the population, while inside the box lie 
the 50% of the observations (from the 25th to 75th percentile). 
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and above 700 m, respectively. There were no close linear correlations between EVI and humidity 
even at seasonal scale. 

At inter-annual scale (A5), positive relationships were also generally observed between temper-
ature and EVI, but less than those at seasonal scale. The precipitation and humidity generally had 
slightly negative or no obvious relationship with vegetation dynamics. There was also somewhat 
positive correlation between sunshine duration and EVI at inter-annual scale for forest vegetation at 
lower altitudes (below 100 m). It suggested limited influence of climatic variables such as precipi-
tation and humidity variations in humid regions at longer temporal scales. 

Considerable recent studies demonstrated that the detailed relationships between vegetation activ-
ities and climate factors might be more complex and highly nonlinear (Herdianto et al. 2013; Gess-
ner et al. 2013). For example, a study in North American continent confirmed that the normalized 
difference vegetation index (NDVI)–temperature correlation was generally positive when energy 
was the limiting factor (Karnieli et al. 2010). Another study in forested catchment in Korea indicated 
that the EVI–temperature relationship exhibited a threshold above which the rate of EVI increase 
changed significantly (Herdianto et al. 2013). Chang et al. (2014) found that EVI was positively re-
lated to temperature and precipitation at monthly scale but not at annual scale, through a case study 
in Taiwan, Southeast Asia. Horion et al. (2013) showed that meteorological variables highly corre-
lated with NDVI at yearly scale were not necessarily associated when considering different periods 
of the growing season, based on 12 regions characterized by dominant and stable cropland or grass-
land covers in Europe and Africa. 

This paper provided knowledge on vegetation–climate associations covering from intra-monthly, 
monthly, bi-monthly, seasonal scales to inter-annual scale through exploring the complex agrofor-
estry vegetation dynamics in subtropical mountains regions based on the proposed MSSTM method. 
First, at seasonal scale, this paper confirmed the strong positive relationship between vegetation dy-
namics and climatic variables (particularly the temperature). Although their strong associations at 
seasonal scale were already indicated in literature due to their synchronous seasonal patterns (Yang 
et al. 2012; Qiu et al. 2014b), this study further revealed that the seasonal patterns varied with alti-
tudes and vegetation. 

Second, at inter-annual scale, this paper found that vegetation dynamics were obviously influenced 
by temperature. Slightly correlations could be observed between EVI and other climatic variables 
such as precipitation, sunshine duration, and humidity for some pixels. The correlation coefficients 
might vary from negative to positive among different altitudes and climatic variables. These find-
ings obviously differed with related studies (Chang et al. 2014). The inconsistency might due to the 
reason that the mean value of all pixels of each vegetation type was applied in Chang et al.’s (2014) 
study. Through a per-pixel strategy, our study exposed the strong spatial heterogeneity as regards to 
the vegetation–climate relationships. The averaged values in Chang et al.’s (2014) study might con-
ceal the variations from negative-to-positive correlation coefficients. 

Third, at intra-seasonal scales, this paper revealed that there were no strong linear relationships 
between vegetation dynamics and four climatic variables (temperature, precipitation, sunshine du-
ration, and humidity). Climatic variables highly correlated with EVI at one scale were not neces-
sarily associated at other scales, which conformed to other related studies (Horion et al. 2013; Yang 
et al. 2012; Qiu et al. 2014b). This paper enriched our knowledge of the complex EVI–climate re-
lationships from monthly to inter-annual scales through incorporation variables of sunshine dura-
tion and humidity. 
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4.3. The sensibility of vegetation anomalies to climate changes 
To better understand the intra-annual variation of the climatic influence on vegetation growth at 
smaller scales, we analyzed how smaller scales’ (intra-monthly, monthly, and bi-monthly) anoma-
lies were temporal associated. The TAA between EVI components and climatic variables were calcu-
lated through a per-pixel strategy. The spatial distribution maps of TAA for climatic variables (tem-
perature, precipitation, and sunshine durations) at intra-monthly, monthly, and bi-monthly scales 
were provided in Figure 9. 

Despite the low correlation coefficients at intra-seasonal scales, over one-fifth of EVI anomalies 
were associated with temporal anomalies of climatic variables. The average TAA of these climatic 
variables was 24.46, 19.82, and 20.73 at intra-monthly, monthly, and bi-monthly scales, respectively. 
It indicated that considerable EVI anomalies were attributed to climatic anomalies. Among these four 
climatic variables, the precipitation played the most important role for EVI anomalies. The average 
TAA of precipitation was 17.39, 10.52, and 9.15 at intra-monthly, monthly, and bi-monthly scales, 
respectively. The sunshine duration ranked the second responsibility for EVI anomalies. Despite the 
strong linear correlations with EVI at seasonal scale, the temperature played less important role for 
EVI anomalies compared with precipitation and sunshine duration. 

More research attentions should be paid to develop integrated models that are suitable to multi-
temporal scale vegetation system in order to reflect both long- and short-term effects under various 
disturbances (You, Liu, and Zhang 2015). Our proposed MSSTM method could be applied for this 
purpose. Due to the complexity and nonlinear vegetation– climate relationship, growing research 
interests focused on the anomaly/disturbance analysis of vegetation dynamics (Gessner et al. 2013; 
Kim 2013). These studies revealed that vegetation anomalies were subscribed to disturbances from 
climatic process. For example, a study in the northern Arizona ecosystem found EVI anomalies were 
likely sensitive to the amount of rainfall and the higher elevation areas showed slow recovery (Kim 
2013). Another study in central Asia also showed that vegetation development was sensible to pre-
cipitation anomalies for nearly 80% of study area (Gessner et al. 2013). The start dates significantly 
advanced and end dates remarkably delayed during anomalously warm years in subtropical moun-
tain and hill region (Qiu et al. 2013b). 

Despite the increasing interest in vegetation anomalies, few studies concentrated on the anomaly 
connections with various climatic variables from intra-monthly to bi-monthly scales. Although the 
sensitivity of EVI anomalies to the precipitation was confirmed in recent studies (Kim 2013; Gessner 

Figure 9. The spatial distribution map of TAA of four climatic variables at intra-monthly (a), monthly (b) and 
bi-monthly (c) scales. 
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et al. 2013), the relative roles of precipitation as well as temperature, humidity, and sunshine dura-
tion were fairly unknown. As regards to the third research question proposed in the introduction sec-
tion, this paper provided the following scientific findings under the proposed multi-temporal scale 
modeling framework through the TAA analysis. Among four climatic variables, despite no obvious 
linear correlations, precipitation and sunshine duration are primarily responsible for the vegetation 
dynamics anomalies from intra-monthly to bi-monthly scales. Regardless of the particularly strong 
linear correlations with vegetation dynamics at seasonal scale, the temperature played less important 
role for the intra-seasonal EVI anomalies than precipitation and sunshine duration. 

Therefore, this paper provided knowledge on vegetation–climate associations covering from in-
tra-monthly, monthly, bi-monthly, seasonal scales to inter-annual scale through exploring the com-
plex agroforestry vegetation dynamics in subtropical mountains regions based on the proposed MS-
STM method. 

4.4. Potential applications of MSSTM method 
The proposed MSSTM method is proved to be efficient in characterizing the complex vegetation 
dynamics patterns under global climate change through its applications in subtropical mountainous 
agro-forestry ecosystem. There are also some other potential applications for the established multi-
temporal scale spatiotemporal explicit modeling approaches. Due to its capability of reconstructing 
and foresting, the proposed MSSTM method can be applied to develop spatiotemporal data fusion 
method. Another significant application is to establish time-series classification method for vegeta-
tion/land cover change. 

Several efficient continuous vegetation/land cover change mapping methods have recently been 
established through time-series-based approaches (Zhu and Woodcock 2014; Setiawan and Yoshino 
2014). Zhu and Woodcock (2014) proposed a time-series model for the purpose of continuous change 
detection and classification (CCDC). The CCDC model had components of seasonality, trend and 
break estimates surface reflectance and brightness temperature (Zhu and Woodcock 2014). Simi-
larly, there was also components of seasonal and inter-annual (trend) scales in the MSSTM model. 
However, the ordinary linear regression (OLS) model was applied for estimating the seasonal com-
ponent, instead of the Sin() and Cos() functions utilized in the CCDC model. 

In CCDC model (Zhu and Woodcock 2014), the coefficients from the time-series model and the 
root mean square error from model estimation are applied as input for classifier. Correspondingly, 
the coefficients and model residuals in the MSSTM method could also be utilized for classifications. 
The vegetation response to climate changes can also be incorporated for vegetation/land cover iden-
tification through the MSSTM approach. Furthermore, by the MSSTM approach, the multi-tempo-
ral EVI components themselves and their relative variability could also be exploited for vegetation/
land-cover mapping. The variations of different multi-temporal EVI components provided signifi-
cant information on vegetation types (Qiu et al. 2013a). For example, roughly equal wavelet vari-
ance was observed from monthly to semiannual scales from multiple cropping croplands (Qiu et al. 
2013a). The multi-temporal EVI components obtained through wavelet transforms were proved to 
be efficient in vegetation/land-cover identifications as parameters inputs (Qiu et al. 2014a; Singh et 
al. 2012; Qiu et al. 2013a). 

The differences between the observed and predicted are utilized as an indication for change detec-
tion in CCDC model (Zhu and Woodcock 2014). When land-cover change occurred on a pixel, there 
will be a gap between the predicted and observed values. Correspondingly, in the MSSTM method, 
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we could identify land-cover change through the model residuals. It is possible to distinguish actual 
land-use change based on landcover dynamics through characterizing temporal vegetation dynamics 
(Setiawan and Yoshino 2014). Nevertheless, this paper only explored vegetation dynamics patterns 
under global climate change through proposing a multi-scale spatiotemporal modeling approach. Po-
tential applications of MSSTM method will be carried out in the future work. 

4.5. Possible influences from data uncertainties and future work 
Given that there is a growing interest in characterizing vegetation dynamics through spatial and tem-
poral explicit time-series approaches, appropriate modeling methods designed particularly for this 
purpose are limited. This paper proposed a MSSTM approach which proved to be efficient in veg-
etation indices reconstructing and forecasting. In addition, it provided full knowledge on the rela-
tionships between vegetation dynamics and climate variables at multi-temporal scales. The relative 
role of four variables, the linear correlations and anomalies associations, were analyzed from intra-
monthly, monthly, bi-monthly, seasonal scales to inter-annual scales. The 16-day composite MODIS 
EVI time-series data sets and the interpolated climatic data sets were utilized. Nevertheless, the MO-
DIS EVI time-series data sets might be disturbed by cloud cover or other noise (Qiu et al. 2013a). 
It could be inferred that a large proportion of EVI anomalies at smaller temporal scales might be in-
troduced by data noise. And uncertainties might also be introduced during the spatial interpolation 
process of climatic variables. 

In order to evaluate the influence of data uncertainties introduced by cloud contaminations, this 
paper identified each MODIS EVI data composite contaminated by cloud contaminations with ref-
erence to the Quality layers during the study period 2001–2011, and calculated frequency of cloud 
contamination durations during the study period. Most pixels (98.25%) were associated with the 
frequency of cloud contamination durations of no more than three continuous data composites (48 
days). Considering the frequency of cloud contamination duration and the wavelet components, the 
detailed components D1 (<24 days) and D2 (24–48 days) would likely be disturbed by cloud con-
taminations. In order to evaluate the influence of each wavelet component on model performance 
of reconstruction, we computed their normalized wavelet-variance (Qiu et al. 2013a). The aver-
age percentage of the normalized wavelet variance for detailed component D1 and D2 is 5.65% and 
4.86%, respectively. Therefore, the detailed component D1 and D2 would have limited influence on 
the model reconstruction. Regarding possible influence of cloud contaminations on TAA at smaller 
scales, this study re-conducted the experiments through discarding the data composites with cloud 
contaminations. There were no fundamental differences between them. The average TAA of these 
climatic variables changed to 18.99, 17.65, and 19.73 at intra-monthly, monthly, and bi-monthly 
scales, respectively. The average TAA of these climatic variables slightly decreased, particularly at 
smaller scale. It is because the TAA at intra-monthly scale probably introduced by cloud contam-
inations were discarded. 

Due to the limitations of MODIS collections 5 (e.g. BRDF effects), this paper computed the dif-
ference between MODIS collections 5 and the new MODIS Collection 6 products in order to eval-
uate the influence of data uncertainties. Their absolute differences (EVIMODIS5 − EVIMODIS6) and 
the comparative differences (100 × [EVIMODIS5 − EVIMODIS6] / EVIMODIS6) were calculated (fig-
ure below). Most pixels (97.66%) were observed with the absolute differences of less than 0.03. 
The EVI values from MODIS 5 were considerably greater than those from MODIS 6. The aver-
aged absolute difference between these two data sets was 0.0157 over the study area. Regarding 
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the comparative differences, pixels with relatively larger values primarily located in the non-veg-
etated areas. The comparative difference of croplands, forests and non-vegetation was 8.7107, 
8.9429, and 10.7096, respectively. Specifically, 96.11% croplands and 98.86% forests pixels were 
examined with absolute difference of less than 15. The proposed MSSTM approach and its appli-
cations based on MODIS collections 5 was still valuable and it could further apply to these new 
available data sets. 

Future work could be conducted on (1) in order to incorporate the uncertainties from the inter-
polation process of climatic data, spatial explicit climatic map derived from remote sensing images 
could be employed. (2) Other methods of anomaly analysis could be applied the complex vegeta-
tion response to climatic variability in terms of sensibility and resilience to extreme events such as 
drought or frost. (3) Further applications of the proposed MSSTM to other regions are necessary to 
verify the reliability. (4) It was also necessary to further evaluate its ability of forecasting and ex-
ploring the implications of model fitness and model residuals. For example, could the model residu-
als be associated with climatic abnormalities or vegetation disturbance? (5) Further applications for 
designing new automatic detection method of land-cover change could be made based on the pre-
dictive capability and other model parameters. 

5. Conclusions 

The proposed MSSTM was efficient in characterizing and forecasting spatiotemporal vegetation dy-
namics through developing pixel and scale specific time-series models based on its characteristics 
and connections with climatic variables. The MSSTM approach achieved much less averaged PRAE 
for reconstruction than those directly from ARIMAX method. The MSSTM was flexible to incorpo-
rate proper time-series models and influences from extra-variables and neighborhoods. Through its 
application to a subtropical mountainous and hilly region, four research questions proposed in the 
introduction section could be addressed. 

(1) The relationship between climate and vegetation dynamics vary at inter-annual, seasonal, and 
intra-seasonal scales. Climatic variables are highly positively correlated with EVI at seasonal 
scale, particularly with the temperature and precipitation. But their correlations coefficients be-
tween EVI and these two climatic variables were much less at inter-annual scale and there were 
no strong linear correlations between them at intra-seasonal scales. Differed from the tempera-
ture and precipitation, less obvious relationships was observed between EVI and sunshine du-
ration at seasonal scale: the correlations coefficients varied from negative to positive. There 
were somewhat positive correlations between EVI and sunshine duration at inter-annual scale. 
However, there were no strong linear correlations between EVI and humidity from intra-sea-
sonal to inter-annual scales. 

(2) The EVI–climatic association is not consistent among different vegetation/land-use types and 
across various altitudinal gradients. For example, the EVI–temperature correlations decreased 
but the EVI–temperature connections increased with altitudes at seasonal scale. Slightly stron-
ger correlations between EVI and precipitation were obtained in forest vegetation instead of 
the croplands. The correlations coefficients between EVI and sunshine duration generally de-
creased with altitudinal gradients. 
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(3) The sunshine duration, together with precipitation, was principally responsible for consider-
able EVI anomalies at intra-seasonal scales. The variable of humidity had limited influence on 
vegetation dynamics in humid regions. 

(4) Through a per-pixel and scale-specific strategy, this paper indicated the EVI– climate relation-
ships are definitely not consistent among different scales. The proposed MSSTM approach can 
certainly be employed to characterize the complex vegetation dynamics in other regions. The 
model parameters will be very valuable for continuous vegetation monitoring, analysis, and 
classifications.  
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