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from diffraction of laser-aligned molecules
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2James R. Macdonald Laboratory, Department of Physics, Kansas State University,
Manhattan, Kansas 66506, USA

(Received 28 March 2014; accepted 30 June 2014; published online 9 July 2014)

Diffraction from laser-aligned molecules has been proposed as a method for deter-

mining 3-D molecular structures in the gas phase. However, existing structural

retrieval algorithms are limited by the imperfect alignment in experiments and the

rotational averaging in 1-D alignment. Here, we demonstrate a two-step reconstruc-

tion comprising a genetic algorithm that corrects for the imperfect alignment

followed by an iterative phase retrieval method in cylindrical coordinates. The

algorithm was tested with simulated diffraction patterns. We show that the full 3-D

structure of trifluorotoluene, an asymmetric-top molecule, can be reconstructed

with atomic resolution. VC 2014 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4889840]

Most known molecular structures have been determined using X-ray diffraction from crys-

tallized samples. For molecules that cannot be crystallized, structural determination in the gas

phase becomes important. Gas electron diffraction (GED) has been a successful method for

structure determination for molecules in the gas phase. However, it provides only 1-D informa-

tion (interatomic distances), which limits the complexity of structures that can be retrieved.

Laser alignment breaks the spherical symmetry of randomly oriented molecules in the gas

phase, creating a possible solution for 3-D imaging without crystallization.1,2 In 1-D alignment,

a linearly polarized laser pulse is used to align the most polarizable axis of the molecule. For

symmetric-top molecules, the molecule is free to spin with respect to this axis, while for

asymmetric-top molecules, the laser affects the angular distribution about two molecular axes.3

In 3-D alignment, either two laser pulses or an elliptically polarized laser pulse are used to

align all three axes.4,5 Most studies of structure determination from diffraction of aligned mole-

cules have focused on 1-D alignment because it provides a higher degree of alignment.

Existing reconstruction algorithms6–12 are limited by several factors. First, they require an

extremely high degree of alignment, which is not compatible with current diffraction experi-

ments. In order to reach a high degree of alignment it is necessary to start with very cold mole-

cules that can only be produced at densities that are several orders of magnitude below those

needed for diffraction experiments. Second, each method is limited to a specific type of mole-

cule. Third, only a 2-D projection of the 3-D structure can be reconstructed unless the symme-

try of the molecule can be assumed to be known. Diffraction from a single molecule could in

principle be used for 3-D imaging with atomic resolution; however, in general it is not possible

to accumulate enough scattering events before the molecule is damaged (either with X-rays or

electrons). X-ray free-electron lasers (X-FELs) could potentially be operated in single-molecule

diffraction mode if sufficiently short and intense pulses become available.13

Structure determination from diffraction of aligned molecules is currently an area of great in-

terest.6–12,14–16 Even for the case of perfect 1-D alignment, a general method for structural recon-

struction has not been demonstrated. The difficulty lies in the rotational averaging over all azi-

muthal angles with respect to the alignment axis.3 Iterative phase retrieval in cylindrical

coordinates can be used to reconstruct an azimuthal projection of molecules with a high degree of

rotational symmetry.6,7 A holographic method has been applied to symmetric-top molecules in
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which one of the atoms has a scattering cross section that is much higher than the others.8 An angu-

lar-correlation-function method9–12 can be used to reconstruct the axial projection of an object11,12

and the 3-D structure of objects of cylindrical symmetry9,10 with 1-D perfect alignment. It has been

recently shown that angular correlation functions are able to reconstruct the 3-D structure from ran-

domly oriented objects with helical symmetry14 or icosahedral symmetry,17 provided that single-

shot diffraction patterns from a single molecule or a few molecules are available. Recently, the

holographic method, combined with a genetic algorithm, has been used to reconstruct an azimuthal

projection of a symmetric-top molecule from experimental data.2

In this Letter, we demonstrate a two-step method for retrieving the 3-D structure of trifluoroto-

luene (C6H5CF3), an asymmetric-top molecule, using two diffraction patterns: one corresponding

to partial 1-D alignment and the other to randomly oriented molecules. Perfect alignment corre-

sponds to a delta-function-like angular distribution, while partially aligned molecules have a con-

tinuous angular distribution. The diffraction pattern of partially aligned molecules can be treated as

a convolution of the diffraction pattern of perfectly aligned molecules with the angular distribution.

The first step in our method is a deconvolution to retrieve the diffraction pattern corresponding to

perfectly aligned molecules from the two input diffraction patterns, using a genetic algorithm.2,18

The second step is to reconstruct the molecular structure from the deconvolved diffraction pattern.

Briefly, an iterative phase retrieval algorithm in 3-D cylindrical space is used to reconstruct the full

3-D molecular structure. The genetic algorithm used in the first step is applicable for the case where

a single axis of the molecule is aligned. For asymmetric-top molecules, 1-D alignment affects the

angular distribution about two molecular axes. We were able to apply the genetic algorithm by

selecting a time at which the angular distribution is narrow along the most polarizable axis and

approximately random along the second-most polarizable axis.

The genetic algorithm converts the problem of achieving perfect alignment experimentally

into a problem that is much easier to solve—achieving partial alignment with a known angular

distribution. The genetic algorithm deconvolution requires the diffraction patterns and the angu-

lar distribution as inputs. The angular distribution can be measured experimentally or calculated

if the moments of inertia and polarizability of the molecule are known.16,19 If the angular distri-

bution is not known, an estimated distribution can be used as a starting point, and then it is opti-

mized by the genetic algorithm until the distribution that best matches the data is found. The

result with lowest final error gives the best retrieval pattern.19 Since most published reconstruc-

tion algorithms assume a pattern corresponding to perfect alignment to begin with, their

functions are comparable to our second step, the iterative phase retrieval. Our iterative phase re-

trieval is ab initio—it does not require any structural information of the molecule, as opposed to

standard GED and ultrafast electron diffraction (UED) methods were an initial model of the

structure is needed.20 This advantage will be particularly important for determining the structure

of intermediate states in ultrafast reactions, for which it is difficult to obtain accurate theoretical

models. In this algorithm, multiple cylindrical harmonics are used to resolve the symmetry of

different groups in the molecule, and a 3-D atomicity constraint is applied to retrieve the full

3-D structure with atomic resolution. The atomicity constraint, first implemented in 1952,21 takes

advantage of the fact that the scattering arises from a limited number of point-like objects.

The temporal evolution of the angular distribution of the molecules was calculated in order

to simulate the diffraction pattern corresponding to partial alignment. The calculation of the

time-dependent rotational wave function for an asymmetric top molecule following an aligning

laser pulse has been detailed in prior work.16 Briefly, we solve the time-dependent Schrodinger

equation (TDSE) for a rigid rotor interacting with a non-resonant laser pulse. The laser pulse

excites only rotational transitions through the polarizability interactions from the initial ground

vibronic state, and centrifugal distortion is not taken into account. A thermal distribution of ini-

tial asymmetric top states is used, and the lack of rotational symmetry of trifluorotoluene

implies that each rotational state is equally weighted. Focal volume averaging is neglected.

The time-dependent Hamiltonian is

H ¼ Hrot �
1

2
E tð Þ � aE tð Þð Þ; (1)

044101-2 Yang et al. Struct. Dyn. 1, 044101 (2014)



where Hrot ¼ AJ2
a þ BJ2

b þ CJ2
c is the field-free Hamiltonian for an asymmetric rigid rotor, a is

the lab frame polarizability tensor of the molecule, and E(t) is the envelope of the laser pulse

in the polarization direction, assumed to be Gaussian. The polarizabilities for trifluorotoluene

are assumed to be same as that of toluene found in Ref. 22, and the rotational constants A, B,
and C can be found in Ref. 23. Since the laboratory frame polarizability tensor contains both

the Euler angles h and v, the wave function also depends on both angles and is calculated in

the symmetric top basis. We follow the convention in Zare,24 where h, v, and u are the Euler

angles, denoting the polar angle, the azimuthal angle in the molecular frame, and the azimuthal

angle in the laboratory frame, respectively. The Boltzmann-weighted squares of the propagated

wave functions for each initial state are summed to give the angular distribution q as a function

of time during and after the pulse

qðh; v; tÞ ¼
X

J0;s0;M0

e�EJ0 ;s0 ;M0
=kT jWJ0;s0;M0

ðh; v; tÞj2; (2)

where J0, s0, and M0 are the asymmetric top angular momentum indices for the initial states in

the thermal distribution, EJ0;s0;M0
is the field-free energy for a particular initial state, and

WJ0;s0;M0
ðh; v; tÞ is the time-dependent wave function for the same initial state. k is Boltzmann’s

constant and T is the rotational temperature. The distribution function q is calculated numeri-

cally on a 20� 20 grid in h and v from the wave function.

The simulated laser pulse duration of 50 fs with a peak intensity of 15 TW/cm2 and linear

polarization lies in the regime of impulsive alignment. An initial rotational temperature of 0.1 K

results in a peak alignment of hcos2hi¼ 0.58, where “hi” indicates averaging over all mole-

cules. While the simulations were performed for impulsive alignment, it is expected that with

adiabatic alignment a comparable degree of alignment could be reached with initial tempera-

tures higher than 10 K, although in this case the distribution along v might be less uniform. The

temporal evolution of hcos2hi and hcos2vi is shown in Fig. 1(a). We simulate the diffraction

patterns using the angular distribution at a time of 1.5 ps before the peak alignment, where

hcos2hi¼ 0.56 and hcos2vi¼ 0.45, indicated by the vertical line in Fig. 1(a). hcos2hi¼ 1 and

hcos2vi¼ 1 correspond to perfect alignment, while hcos2hi¼ 1/3 and hcos2vi¼ 1/2 correspond

to a random distribution of the corresponding angles. This difference is because h is a polar

angle and v is an azimuthal angle. The angular distribution qðh; vÞ at this time is shown in

Fig. 1(b). At this time, the distribution approximates single-axis alignment, to which the genetic

algorithm can be applied. Even though the angular distribution along v is not quite random, the

reconstruction was successful. The diffraction patterns of C6H5CF3 were simulated using a

structure that was calculated using ab initio molecular orbital techniques.25 The atomic scatter-

ing cross sections and scattering phases are listed in Ref. 26. Simulation of diffraction patterns

from imperfectly aligned molecules is described in detail in Appendix A.

FIG. 1. (a) The time evolution of hcos2hi and hcos2vi. The vertical line corresponds to the selected time of diffraction.

(b) The 2-D angular distribution qðh; vÞ at the selected time. Only 0�–90� in each angle is shown due to symmetry in the

laser-alignment process.
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In this manuscript, Irandom, Iperf ect, and Ipartial are used to represent the normalized diffrac-

tion intensities corresponding to randomly oriented, perfectly single-axis-aligned and partially

single-axis-aligned molecules, respectively. All patterns are normalized to the sum of the scat-

tering intensity over all the atoms in the molecule. For the simulation of Iperf ect, Ipartial, and

Irandom, a large set of single-molecule diffraction patterns are calculated for each possible orien-

tation (h, u, v) of the molecule, and the patterns are combined according to the angular distri-

bution. The simulated Iperf ect, Ipartial � Irandom, and Irandom are shown in Fig. 2. We use a

diffraction-difference pattern Ipartial � Irandom that is commonly used in experiments to remove

background noise.20 The alignment axis is vertical in Fig. 2. The diffraction patterns in

Figs. 2(a)–2(c) are displayed as a function of s, where s ¼ 4p
k sin a

2

� �
is the momentum change of

diffracted electrons, k is the electron wavelength, and a is the scattering angle. The diffraction

pattern for partial alignment (Fig. 2(b)) shows significant blurring compared to the one from

perfect alignment (Fig. 2(a)). We assume a 19 Å�1 s coverage in all patterns, which can be

achieved experimentally with an electron beam with a kinetic energy of 100 keV and a detector

with an angular aperture of 6.4�.
We have used a genetic algorithm that combines the patterns Ipartial and Irandom to retrieve a

pattern Iretrieved that approximates Iperf ect. For single-axis alignment, if the angular distribution

qðhÞ and Iperf ect are known, the corresponding Ipartial can be obtained by convolving Iperf ect with

a point-spread function (PSF).18 The PSF uses a known qðhÞ to map each pixel in Iperf ect onto

multiple pixels in Ipartial, which causes the blurring seen in Ipartial. It is impossible to find Iperf ect

from Ipartial via a simple deconvolution with the PSF, since the PSF here is not shift-invariant.

The PSF mapping depends only on qðhÞ, i.e., it does not depend on the structure.

In the genetic algorithm, the simulated patterns Ipartial and Irandom with the corresponding

PSFs are taken as the input. We start with a uniform pattern as the first guess of Iretrieved. In

each iteration, a small random change is made in Iretrieved. The PSF mapping is then used to

generate an I0partial and I0random from the Iretrieved. The error is defined as the difference between

the measured and the guessed patterns. Only changes that reduce the error are kept. The solu-

tion converges after about 105 iterations. The algorithm was run 20 times and the results were

averaged to produce Iretrieved. The retrieved scattering amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iretrieved

p
is shown in Fig. 3(a),

and the simulated
ffiffiffiffiffiffiffiffiffiffiffiffi
Iperf ect

p
is shown in Fig. 3(b) for comparison. Figure 3 illustrates that the

main features in Iperf ect, such as the brightness and position of the local maxima, are retrieved

accurately.

We have tested the genetic algorithm with different levels of shot noise. The same pattern

is retrieved if there are at least 40 scattering events per pixel in a 70� 70 pixels diffraction pat-

tern shown in Figure 3. For example, using an electron source with an energy of 100 keV, the

minimum number of scattered electrons in the diffraction pattern is 4� 107. For a gas jet with

a molecular density of 1015 cm�3 and a diameter of 200 lm, 1010 incident electrons are

required. For an experiment operating at a repetition rate of 10 kHz and 2� 103 electrons per

pulse this means a total acquisition time of 500 s. The quality of the retrieved pattern starts to

degrade for lower signal levels.

Once Iretrieved was found, an iterative phase retrieval algorithm was used to determine the

structure. For single-axis alignment, it is simpler to use cylindrical coordinates. For a single

FIG. 2. The simulated (a) Iperf ect; (b) Ipartial � Irandom; (c) Irandom. The central region corresponding to s< 0.6 Å�1 in (b) and

(c) are zeroed to simulate experimental conditions.
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molecule, the scattering amplitude can be expressed in terms of cylindrical reciprocal space

coordinates ðR;w; fÞ

FðR;w; fÞ ¼
X

m

GmðR; fÞ expðimwÞ; (3)

where GmðR; fÞ is the mth-order expansion in cylindrical harmonics.6,7 For single-axis-aligned

molecules, the rotational averaging removes the dependence of the diffracted intensity IðR; fÞ
on the azimuthal angle w

IðR; fÞ ¼ hjFðR;w; fÞj2iw ¼
X

m

jGmðR; fÞj2: (4)

For a given structure, GmðR; fÞ can be calculated by

GmðR; fÞ ¼
X

k

fk exp½iðfzk � mukÞ�imJmðRrkÞ; (5)

where fk is the form factor of the kth atom, ðrk;uk; zkÞ gives the coordinates of the kth atom in

cylindrical coordinates, and Jm is the Bessel function of order m.6,7

The reciprocal and real space expansion functions are connected by Fourier-Hankel

transforms

Gm R; fð Þ ¼ 1ffiffiffiffiffiffi
2p
p

ð ð
rgm r; zð ÞimJm Rrð Þ exp ifzð Þdrdz; (6)

gm r; zð Þ ¼
1ffiffiffiffiffiffi
2p
p

ð ð
RGm R; fð Þi�mJm Rrð Þ exp �ifzð ÞdRdf; (7)

where ðr;u; zÞ are the coordinates in the molecular frame and gmðr; zÞ is the mth-order expan-

sion of the object in cylindrical harmonics. We selected a square area in Iretrieved to compute

the fast Fourier-Hankel transform. The selected area corresponds to 13.5 Å�1� 13.5 Å�1 in re-

ciprocal space, which results in a 0.23 Å� 0.23 Å pixel size in real space. A central circle with

a radius of s¼ 0.6 Å�1 is zeroed to simulate experimental conditions. The full 3-D object in

real space f ðr;u; zÞ can be reconstructed by summing over all the gm

f ðr;u; zÞ ¼
X

m

gmðr; zÞ expðimuÞ: (8)

Each gm can be obtained from the full 3-D object f ðr;u; zÞ

FIG. 3. (a) The genetically retrieved diffraction amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iretrieved

p
. (b) The simulated diffraction amplitude

ffiffiffiffiffiffiffiffiffiffiffiffi
Iperf ect

p
.
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gmðr; zÞ ¼
ð

f ðr;u; zÞ expð�imuÞdu: (9)

Each gm contains different information about the structure. g0 is the projection of the molecule

on the z-r plane. For m 6¼ 0, each gm contains the part of the object with m-fold rotational sym-

metry. Trifluorotoluene contains a benzene ring (2-fold rotational symmetry) and a trifluoro-

methyl group (3-fold rotational symmetry). The m¼62, 4, 6,. orders contain the structure of

the benzene ring, while the m¼63, 6, 9,… orders contain the structure of CF3. Other orders,

such as m¼61, 5, 7, are zero.

In a conventional phase retrieval algorithm, the amplitude is known and only the phase

needs to be retrieved. Here, only the total diffracted intensity IðR; fÞ is known, and the ampli-

tude and phase of each Gm must be retrieved. We include all orders up to m¼63 in the algo-

rithm. In order to construct the full 3-D structure, at least the m¼ 0, 62, 63 orders need to be

included. We also included the m¼61 orders, which are zero for trifluorotoluene, to ensure

that the algorithm is run without any assumptions on the symmetry of the molecule.

The steps in the retrieval algorithm are similar to those found in Ref. 7. For the initial

guess, we distributed the pattern uniformly over all m orders, jGmðR; fÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðR; fÞ=7

p
, and

associated each pattern with a random phase. In each iteration of the loop, an inverse Fourier-

Hankel transform is applied on each Gm to calculate gm using Eq. (7), and a 3-D object

f ðr;u; zÞ is generated by combining all gm using Eq. (8). The real space constraints (described

below) are applied on f ðr;u; zÞ, and then a new set of gm are computed using Eq. (9).

Finally, the G0m are computed by Fourier-Hankel transform of gm (Eq. (6)), and a Fourier space

constraint is applied on G0m to calculate Gm. The flowchart of the algorithm is shown in

Appendix B.

The Fourier space constraint is

Gm R; fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I R; fð ÞP
mjG0m R; fð Þj2

s
� G0m R; fð Þ: (10)

The algorithm is run for 1600 iterations, separated in 20 cycles with 30 iterations of the Hybrid

Input-Output algorithm (HIO)27 followed by 50 iterations of Charge-Flipping (CF) algo-

rithm28,29 in each cycle. The feedback coefficient b is set to 0.9 for both algorithms.

The real space operations of the HIO and CF are given by

fnþ1ðr;u; zÞ ¼
f 0nðr;u; zÞ if f 0nðr;u; zÞ satisfies the constraints

fnðr;u; zÞ � bf 0nðr;u; zÞ if f 0nðr;u; zÞ violates the constraintsðHIOÞ
�bf 0nðr;u; zÞ if f 0nðr;u; zÞ violates the constraintsðFCÞ

;

8<
: (11)

where f 0n is the 3-D object in the nth iteration obtained using Eq. (8).

We have used three real space constraints: a loose support, positivity in the real part of f,
and atomicity. It has been shown that using the support and positivity constraints, the azimuthal

projection of the object g0 can be retrieved.7 We have introduced the additional constraint of at-

omicity, which has allowed us to reconstruct all 7 gm. We used a fixed loose support of 30� 9

(z� r) pixels. The size of the object (excluding the hydrogen atoms) in g0 is 25� 6 (z� r) pix-

els. The hydrogen atoms are not expected to be reconstructed because their scattering amplitude

is much lower than that of carbon and fluorine. The third dimension u is set to be 20 pixels

deep. The second constraint, positivity of the real part of the object, was verified numerically

using the known atomic scattering phases.26

The atomicity constraint is applied by converting the object from cylindrical coordinates

f ðr;u; zÞ to Cartesian coordinates f ðx; y; zÞ. The local maxima are considered to be the atoms,

i.e., a pixel is identified as an atom if its value is larger than the value of all 6 adjacent pixels

and above a threshold that is set at 7% of the brightest pixel. A 3� 3� 3 voxel area centered

at the identified atom is considered to be satisfying the atomicity constraint. Finally, the

selected voxels are converted back to cylindrical coordinates. The atomicity constraint is

044101-6 Yang et al. Struct. Dyn. 1, 044101 (2014)



updated every 20 iterations. To make the convergence faster, we apply a 2-D atomicity con-

straint in the last 10 out of every 100 iterations. The 2-D atomicity is a local-maxima search in

g0, the projection of molecule in the z-r plane. In 2-D atomicity, a pixel that is brighter than all

4 adjacent pixels is considered a local-maximum. The brightest 15 local maxima are identified

as 2-D atoms. For each 2-D atom, an adjacent 3� 3 pixels area is considered as satisfying the

2-D atomicity. The 2-D atomicity applies uniformly on the third dimension u. More 2-D atoms

are kept than the actual number of 2-D atoms in g0, which is six. Note that an off-axis 2-D

atom might represent one or more atoms in 3-D, depending on the rotational symmetry.

Applying the atomicity constraint requires the atoms to have a separation of at least 2 pixels. In

our case, the minimum bond length excluding hydrogen atoms is 1.32 Å, which corresponds to

more than 5 pixels.

We define an error in real space EReal that is used for monitoring the convergence of the

algorithm

EReal ¼ 1�
P

r;u;zð Þ3S;P;A jf r;u; zð ÞjP
r;u;zð Þ3S jf r;u; zð Þj

; (12)

where S, P, and A represent the loose support, positivity, and atomicity constraints, respectively.P
ðr;u;zÞ3X jf ðr;u; zÞj is the sum of the absolute value of f over all pixels that satisfy the con-

straint X. The gm corresponding to the minimum of EReal is returned as the reconstruction result.

The algorithm was run 20 times, and the 2-D projection of the structure g0 was reconstructed

successfully 15 out of 20 times. Out of the 15 successful 2-D reconstructions, 9 exhibit the

same rotational symmetries, and those are considered successful 3-D reconstructions. The aver-

age of the 9 successful reconstructions is taken as the final reconstruction result.

Figures 4(a)–4(d) show the absolute value of the reconstructed gm for m¼ 0, 1, 2, and 3,

respectively. For gm 6¼0, the discrete Hankel transform limits the reconstruction to r> 0.30

FIG. 4. (a)–(d) The reconstructed g0; g1; g2; and g3 expansion of the structure. Each pixel is 0.23 Å.
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Each off-axis 2-D atom in g0 holds a certain rotational symmetry that can be retrieved

from the gm 6¼0. For example, at the location of the upper off-axis atom, g3 is brighter than g1

and g2, indicating a 3-fold rotational symmetry. At the location of the two lower off-axis atoms

g2 is brighter than g1 and g3, indicating a two-fold rotational symmetry. In the 3-D reconstruc-

tion, for the on-axis atoms, only g0 is used, and, for each off-axis atom, g0 and the gm 6¼0 that is

brightest at that position are used. Only an area of 3� 3 pixels is kept around the atom for the

gm 6¼0.

Figure 5 shows the retrieved 3-D object, along with the ball-and-stick model of the mole-

cule shown in inset. The relative orientation between the benzene ring and the trifluoromethyl

group depends on the relative phase between g2 and g3. It was not possible to accurately retrieve

this relative orientation, most likely because the diffraction pattern is not very sensitive to this

angle. Once the angle is fixed, the position of each atom deviates by less than 0.1 Å from the

theoretical values. The structure is clearly atomized, and both the benzene ring and the trifluor-

omethyl group can be easily identified. For this reconstruction, including rotational symmetries

up to m¼63 was sufficient. More complex molecules might require more orders to be

included and, thus, more information to be retrieved from a single diffraction pattern.

Extending the method to more complex molecules might require providing additional informa-

tion, for example, by increasing the coverage of the diffraction pattern or using inputs from the-

oretical models of the structure.

In summary, we have demonstrated a two-step method for retrieving the full 3-D molecular

structure from diffraction patterns of partially aligned asymmetric top molecules. A genetic

algorithm was used to retrieve a diffraction pattern corresponding to perfect alignment from

patterns corresponding to partially aligned molecules. Then an iterative phase retrieval algo-

rithm in cylindrical coordinates was used to reconstruct the full 3-D molecular structure from

the retrieved diffraction pattern. We have successfully tested this algorithm on a small

asymmetric-top molecule with simulated diffraction patterns. The data were simulated using a

50 fs alignment pulse with 15 TW/cm2 peak intensity and molecules with a 0.1 K initial rota-

tional temperatures. We would expect the algorithm work for shot noise level of no less than

40 scattering events per pixel, on a 70� 70 pixel detector. Our method has the advantage that

it does not require perfect alignment, which makes it compatible with diffraction experiments.

In addition, our iterative phase retrieval is ab initio—it does not require any structural informa-

tion of the molecule, this will be particularly important for determining the structure of interme-

diate states in ultrafast reactions. Moreover, the full 3-D structure can be reconstructed.

The work at UNL was supported by Chemical Sciences, Geosciences, and Biosciences

Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under

FIG. 5. The isosurface rendering of the reconstructed 3-D molecular structure. The overlapped blue sticks show the frame

of the molecule with non-hydrogen atoms in both ends of each stick. The ball-and-stick model of the molecule31 is shown

in the inset.
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Grant No. DE-SC0003931. The work at KSU was supported by the same agency under Grant No.

DE-FG02-86ER13491. This work was completed utilizing the Holland Computing Center of the

University of Nebraska.

APPENDIX A: SIMULATION OF PARTIAL ALIGNMENT DIFFRACTION PATTERNS

Consider an experimental setup shown in Figure 6, where a single molecule is located at ori-

gin, aligned along the Y axis. An electron beam is propagating along Z axis, and the scattering po-

lar angle and azimuthal angle are denoted as h and u. Assume the molecule consists of N atoms,

the position of the nth atom in the laboratory frame is given by a vector ~rn , and the atomic

scattering amplitude is fnðhÞ. In this work, we use the amplitude and phase of atomic scattering in

Ref. 26, and ~rn is given by Ref. 25.

The diffraction of this single molecule is described a spherical wave, and the pattern record

by a camera is given by the following equation:

Iðh;uÞ ¼
����XN

n¼1

fnðhÞ expðikj~rn �~rðh;uÞjÞ
����
2�

r2ðh;uÞ; (A1)

where k is the wave number of the incident electron beam and ~rðh;uÞ is a vector pointing from

the origin to the camera pixel oriented at ðh;uÞ.
For a molecule that is not perfectly aligned, assume it is oriented along ða; bÞ with respect to

the alignment axis. Here, a is the polar angle to Y axis, b is the azimuthal angle, or the angle to X
axis in X-Z plane. The only parameter need to be changed in the previous formula is the position

of atoms ~rn . This can be achieved by a rotation

Iðh;uÞ ¼
����XN

n¼1

fnðhÞ expðikjR̂ða; bÞ � ~rn �~rðh;uÞjÞ
����
2�

r2ðh;uÞ; (A2)

where R̂ða; bÞ is a rotation matrix that rotates the molecule from the initial orientation to ða; bÞ:
For an ensemble of molecules, the total diffraction pattern is an incoherent sum of diffraction

patterns of each molecule. For a given angular distribution Fða; bÞ, the diffraction pattern can be

written as

I h;uð Þ ¼
ðp

0

ð2p

0

����XN

n¼1

fn hð Þ exp ikjR̂ a; bð Þ � ~rn �~r h;uð Þj
� �����

2 F a; bð Þ
r2 h;uð Þ dbda: (A3)

In our simulation, we discretely sample the angular distribution Fða; bÞ and use sums to replace

integrals in Eq. (A3)

FIG. 6. The diagram of single molecule scattering.
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I h;uð Þ ¼
X
a; b

����XN

n¼1

fn hð Þ exp ikjR̂ a; bð Þ � ~rn �~r h;uð Þj
� �����

2 F a; bð Þ
r2 h;uð Þ : (A4)

APPENDIX B: FLOWCHART OF THE ITERATIVE PHASE RETRIEVAL ALGORITHM

Figure 7 shows the flowchart of the iterative phase retrieval algorithm.
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