
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Architectural Engineering -- Dissertations and
Student Research

Architectural Engineering and Construction,
Durham School of

Summer 8-27-2012

An Innovative Solution Set Of Algorithm For Converting An Innovative Solution Set Of Algorithm For Converting

Architectural Drawings To Vector-based Computer Graphics Architectural Drawings To Vector-based Computer Graphics

Yuye Peng
University of Nebraska-Lincoln, ypeng1111@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/archengdiss

 Part of the Architectural Engineering Commons

Peng, Yuye, "An Innovative Solution Set Of Algorithm For Converting Architectural Drawings To Vector-
based Computer Graphics" (2012). Architectural Engineering -- Dissertations and Student Research. 21.
https://digitalcommons.unl.edu/archengdiss/21

This Article is brought to you for free and open access by the Architectural Engineering and Construction, Durham
School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Architectural
Engineering -- Dissertations and Student Research by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/archengdiss
https://digitalcommons.unl.edu/archengdiss
https://digitalcommons.unl.edu/architectengineer
https://digitalcommons.unl.edu/architectengineer
https://digitalcommons.unl.edu/archengdiss?utm_source=digitalcommons.unl.edu%2Farchengdiss%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/774?utm_source=digitalcommons.unl.edu%2Farchengdiss%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/archengdiss/21?utm_source=digitalcommons.unl.edu%2Farchengdiss%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages

AN INNOVATIVE SOLUTION SET OF ALGORITHM FOR CONVERTING

ARCHITECTURAL DRAWINGS TO VECTOR-BASED COMPUTER GRAPHICS

By

Yuye Peng

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Architectural Engineering

Under the Supervision of Professor Haorong Li

Lincoln, Nebraska

Aug, 2012

AN INNOVATIVE SOLUTION SET OF ALGORITHM FOR CONVERTING

ARCHITECTURAL DRAWINGS TO VECTOR-BASED COMPUTER GRAPHICS

Yuye Peng, M.S.

University of Nebraska, 2012

Adviser: Haorong Li

 Appraisal Floor Plan Sketch (AFPS) as a simplified architectural floor plan shows the bird's

eye view of a building’s spatial arrangement. An efficient automated vectorization system of

AFPS not only fulfills AFPS’s preservation and dissemination purposes but also helps extract the

building’s geometric information, which can be used to create 3D models of the building and

improve building energy efficiency. The purpose of this study is to develop an automated system

for converting scanned AFPS into vector based computer graphics.

 Text/graphic separation and corner detection are two essential components in this

vectorization system. Text/graphic separation ensures that only graphic data is processed. Corner

detection locates the dominant points to help extract vectors from image data. Image processing

and analysis techniques were applied and an innovative set of algorithms was developed to

extract digitized information from AFPS. Two hundred AFPS images, sampled from a large local

online database containing more than 150,000 houses, were converted with fast processing speed

(25 seconds on average), high confidence and accuracy level (95%), and minimal fault warning

(1%).

Keywords: Image Vectorization, Architectural Drawing, Floor Plan, Text/Graphic Separation,

Corner Detection

ACKNOWLEDGMENT

I would like to express my immense debt of gratitude to all those who gave me the possibility to

finish this thesis. First and foremost, I would like to thank my advisor, Dr. Haorong Li, for his

continuous and unselfish support, for his encouragement, for his kind concern and considerations,

and especially for providing me the academic freedom to work at my own pace throughout

research for this thesis.

 Many thanks go to Dr. Dongming Peng for his patient and valuable instructions, for his

stimulating and inspiring discussions and for his being everything a true scholar should be. It is

hard to imagine that I could accomplish my master degree requirements without his guidance and

support.

 My sincere acknowledgement is also extended to Dr. Qiuming Zhu. It is him who leads me

into the world of computer vision and pattern recognition. His fantastic classes intrigue my

curiosity and interest to explore more in this academic field.

 Special thanks go to my friends Tina Tian, Moe Barakat and Jon Collison for all the love,

care and support, and for always being there. Because of their precious friendship, my life is full

of sunshine and hope.

 My deepest appreciation goes to my parents, whose understanding, absolute trust,

unconditional support and love become the pillar of my strength to pass through all those rough

times.

Finally, I offer my regards and blessings to all of those who supported me in any respect

during the completion of the project.

Table of Contents

Chapter 1 INTRODUCTION .. 1

1.1 Background of image vectorization .. 1

1.2 Appraisal Floor Plan Sketch (AFPS) vectorization ... 3

1.3 Our thesis .. 5

1.4 The outline of the thesis .. 5

Chapter 2 LITERATURE REVIEW ... 7

2.1 Text/graphic separation ... 7

2.2 Contour based corner detection ... 9

2.2.1 Curvature scale space (CSS) based corner detector ... 10

2.2.2 Chord-to-point distance accumulation (CPDA) corner detector .. 13

2.2.3 other contour-based corner detectors .. 13

Chapter 3 PRELIMINARIES ... 16

3.1 Raster graphics and vector graphics .. 16

3.2 Basic relationships between image pixels ... 17

3.2.1 Neighborhood ... 17

3.2.2 Adjacency ... 18

3.2.3 Path ... 18

3.2.4 Connectivity ... 18

3.2.5 Region .. 18

3.3 Image processing and analysis .. 19

3.3.1 Connected component labeling .. 19

3.3.2 Image histogram ... 19

3.3.3 Morphological operations ... 20

3.3.3.1 Erosion and dilation ... 21

3.3.3.2 Opening and closing .. 22

3.3.3.3 Skeletonization .. 23

Chapter 4 RESEARCH METHODOLOGY ... 24

4.1 Overview of AFPS vectorization system .. 24

4.2 Image preprocessing.. 26

4.3 Text/graphic separation ... 27

4.3.1 Isolated text/ graphic separation ... 28

4.3.2 Touched text/graphic separation ... 29

4.4 Line finding and vectorizaiton .. 29

4.4.1 Horizontal and vertical line finding and vectorization ... 29

4.4.2 Touched text/graphic separation ... 32

4.4.3 Corner detection based zigzag line and circular arc vectorization ... 33

4.5 Post-processing ... 37

Chapter 5 EXPERIMENTAL RESULTS AND EVALUATION .. 38

5.1 Text/graphic separation capability ... 38

5.1.1 Isolated text/graphic separation capability ... 38

5.1.2 Touched text/graphic separation capability .. 39

5.2 Corner detection capability ... 40

5.3 Circular arc detection and vectorization capability ... 41

Chapter 6 CONCLUSION AND FUTURE WORK ... 43

References ... 45

1

Chapter 1 INTRODUCTION

1.1 Background of image vectorization

 Image vectorization (also called image tracing) can be defined as a process of

converting raster images into vector images. A raster image is formed by a grid of pixels,

which conveys information based on the pixel level. In contrast, a vector image consists

of geometric primitives such as the geometry of a bar (straight line segment with nonzero

width) and other line shapes. Those geometric primitives are described by a small number

of attribute values, e.g., two endpoints and line width for lines, and additional center for

circular arcs [1]. It conveys information based on the object level. During the process of

image vectorization, the drawings are approximated by the vector-based geometric

elements such as straight lines, circular arcs, polygons, etc. The resulting vector images

are more compact, scalable, editable and easier to retrieve and extract information from.

Referencing to [2], image vectorization systems generally have six steps:

• Step one: perform image binarization on the original raster images.

• Step two: perform text/graphic separation to extract graphic components.

• Step three: find the lines in the resulting images. Skeletonization is the most

common method for solving this problem.

• Step four: approximate the lines with a set of vectors. Various approximation

criteria are adopted under different contexts. This step is usually performed by

some polygonal approximation methods.

• Step five: perform some posting-processing to find better corners, junction points,

merge collinear vectors and remove redundant vectors.

• Step six: find circular arcs if they exist.

2

Nevertheless, different vectorization systems may put those above steps in a

different order, or merge several of them in a single step-such as finding the lines and

approximating them simultaneously, for instance.

Image vectorization has been applied in various fields. In computer-aided design

(CAD), paper-based drawings are scanned, vectorized and written as CAD files. In

geographic information systems (GIS), satellite or aerial images are vectorized to create

maps. In graphic design and photography, graphics are vectorized for easier usage and

resizing [3]. In image processing and analysis, vectorization is a type of low-level pre-

processing for the high-level object recognition and 3D rendering. There are two types of

image vectorization: manual and automated. Although manual vectorization is suitable

for the modification and refinement of drawings, when it comes to the acquisition of

drawings’ attributes and other geometric information, it requires a huge investment of

time, money, labor and expertise [4]. Thus, automated vectorization (without human

intervention) of drawings is strongly preferred. Tremendous research in the domain of

computer vision and image processing have used the automated image vectorization as a

preprocessing step for further more advanced image processing and analysis. In [5], a

simple and robust vectorization method was used in an expert system to recognize basic

entities in mechanical engineering drawings. In [6], a vectorization module is utilized in a

commercially available CAD conversion system for the recognition of drawing objects

and symbols. In [7], an edge-following vectorization technique is adopted to recognize

the geometric primitives for the recognition of building elements in architectural

drawings. In [8], the vectorization step was used to understand the architectural floor plan

and generate 3D building models.

3

1.2 Appraisal Floor Plan Sketch (AFPS) vectorization

The Floor plan as one of the most fundamental architectural drawings shows the

bird’s eye view of a building’s space arrangement. Vectorizing a floor plan has many

benefits: first, it’s good for preserving and sharing important floor plan documents;

second, it makes them accessible and editable to CAD systems; last but not the least,

since floor plans carry valuable geometric information, floor plan’s vectorization helps to

extract essential features from image data, which can be used for the building’s 3D

rendering and performance simulation; and henceforth, improve building’s energy

efficiency and reduce environmental impacts.

Several studies have been conducted on automated vectorization and

interpretation of both computer-drawn and hand-sketched floor plans [4], [7], [8], [9],

[10]. Non-trivial achievements have been obtained under some assumptions and

constraints. However, as a simplified floor plan, an Appraisal Floor Plan Sketch (AFPS)

seems to be too simple to arouse any interest despite the fact that it has been widely used

in real estate appraisal and property assessment fields because of its simple, concise,

essential geometry and spatial layout information. Figure1 shows one such digitalized

image of an AFPS. In the figure below, we observe that it’s a floor plan of a building that

is 2 ½ stories high. The line segments in this image indicate the building’s boundaries,

shape, structure and spatial division. The text and symbols give spatial and semantic

information about the building.

4

Figure1: an example of Appraisal Floor Plan Sketch (AFPS)

AFPS as one type of architectural floor plan is different from the ordinary floor

plans that were investigated in the previous work. It has two major features, which make

it deserve more attention:

• AFPS is simple and concise. AFPS’s inherent simplicity and conciseness

circumvent the problem caused by the lack of universal drafting standards, which

is the top barrier in traditional floor plan interpretation. In AFPS, only

geometrically primitive solid line segments and circular arcs are used to represent

building interior space structure and exterior wall shapes. Symbols that represent

windows, doors, and staircases are omitted for the emphasis on the big picture of

building space division.

• AFPS is spatially articulated. Spatial articulation was considered during the last

level in automated interpretation of floor plans [7]. Though lacking detailed

information about the buildings elements, AFPS offers clear spatial articulation

5

information, which makes its correct interpretation complementary to ordinary

floor plan interpretation.

Most available AFPS are raster document images, which are data redundant, hard

to retrieve, to modify and to manage. Due to the inherent features of AFPS, the

interpretation of AFPS is essentially similar to what has been attempted for the automated

conversion of engineering drawings into CAD documents, namely, AFPS vectorization.

Manual vectorization of AFPS is notoriously labor-intensive, time-consuming and error-

prone. Therefore, the accurate automated vectorization of AFPS is necessary and

desirable.

1.3 Our thesis

 Our study developed the automatic methods for preprocessing and vectorizing

digitized images of AFPS for the extraction of a building’s geometric information. The

preprocessing steps include noise removal, void filling, dimension reduction and image

binarization; the vectorizing steps include text/graphic separation, line finding, line

thinning, and corner detection. Our algorithms for raster-to-vector conversion capable of

recognizing and fitting straight-line segments, zigzag line segments, and circular arcs, are

presented along with results.

1.4 The outline of the thesis

The remainder of this thesis is organized as follows: chapter 2 reviews the

previous related work in terms of text/graphic separation and corner detection; chapter 3

discusses the basic and preliminary concepts of image processing and analysis used in

this thesis; chapter 4 elaborates on our automated AFPS raster-to-vector conversion

system; experimental results and evaluation are discussed in chapter 5; and lastly,

6

conclusion is presented in chapter 6.

7

Chapter 2 LITERATURE REVIEW

AFPS as a simplified architectural floor plan is nothing but line drawings with

explanatory text. Two essential steps are involved in the conversion of the scanned AFPS

into vector-based data. One is extracting line drawings by separating text components

from graphic components. The other is to identify the corners which link different line

segments together. Thus, our literature review is divided into two sub-categories: 1)

text/graphic separation and 2) corner detection.

2.1 Text/graphic separation

The interest in separating text and graphic objects emerged in the early 1980s, and

has been growing since. A good quality of separation serves a good start for either text

recognition or graphic interpretation. In this part of the literature review, we are going to

discuss a number of representative methods in this field.

In 1999, Chew et al. [11] proposed an agent based pyramid method inspired by

the way human beings distinguish the text blocks in document images. Through building

up a pyramid structure of multi-resolution levels and then using multi-agent operations

and clustering processes on appropriate resolution levels, this allows the extraction of

block from text components with reduced computation cost in spite of extra computation

cost during pyramid construction. The major drawback of this approach is that it only

works well with text rich documents, for example news articles. News articles are full of

text with very detailed words and explanations, but when it comes to graphics rich

documents, the performance of this method is unacceptable. Moreover, the method

boldly assumes that text components are all similar sized which is not true in reality.

What’s worse, different formation of documents (like paragraphing indentations, inter-

8

lines spacing, etc.) will also affect the results. Loo and Tan [12] developed an irregular

pyramid based text extraction method, which has several improvements: more flexible

(with adaptive resolution reduction rate), more efficient (Less computation cost during

pyramid construction), and more capable of handling text components of any font, size,

arrangement and orientation.

Fletcher and Kasturi [13] initially proposed a method for separating text and

graphics objects based on connected component analysis using Hough transform. An

area/ratio filter was used to differentiate text components and graphic objects into

different layers. Hough transform was applied to group together components into logical

text strings, which are composed of characters oriented along the same straight lines. This

method is not affected by the variations of text font, size and orientation. It also has an

obvious improvement over pyramid structure based approaches due to its capability to

deal with engineering drawings and diagrams where text components don’t have to be

predominant in documents. However, the algorithm developed in this method only

performs well under some specific constraints, for example, no graphics touching text, no

connected text characters, certain range of font sizes, certain interline spacing, certain

inter-character gap, etc. In addition, this algorithm is highly CPU intensive and fails to

handle doted or dashed lines. Tombre et al. [14] improved the above method in 2002 by

using additional size and shape filters. An additional layer of elongated components is

separated before text string extraction and dashed line detection. The enclosing rectangle

determined by the direction of each string is calculated for finding the characters

connected to the graphics. However, this method still has its limits: failure to detect

strings completely touching graphics; failure to detect single characters connected to

9

graphics; performance heavily dependent on the correct string orientation calculation, etc.

In 1995, Luo[15] used the directional mathematical morphology approach for the

separation of character strings from maps. The main idea of this method is using

directional morphology and histogram analysis to separate long linear lines from short

lines. Long linear lines are assumed as graphics segments while short lines as text

segments. The problem with this method is long lines sometimes can be text segments

and short lines can be a part of graphics. Plus, the heavy dependence on the

morphological operations brings reduced accuracy and efficiency. In 2001, Ruini and

Chew [16] proposed a specific method to solve the overlapping text problem in maps by

assuming that character strokes are shorter than graphics constitute lines. In 2008, Partha

et al. [17] developed a system to segment text and symbols from color maps by using

color features. Color information is used at the beginning to separate maps into different

foreground layers and then Hough Transform and skeleton analysis are applied to

separate text and graphics components. This method is language and font insensitive and

shows encouraging results when colors are distinct. However, this method suffers when

maps have color degradation. In addition, the reliance of Hough Transform causes wrong

separation between text and graphics when long curved lines meet. Overall, due to the

complexity and variety of maps, separating text from graphics is challenging and the

aforementioned methods do not produce the most desirable results.

2.2 Contour based corner detection

Image Corner, one of the salient features in an image, indicates important shape

information of objects. Corners detection plays a vital role in computer vision and pattern

recognition such as shape representation [23], [27], motion tracking [21], [22], [23],

10

object recognition [21], [22], [23], [24], [25], [26], [27], stereo matching [21], [22], [23],

[24], copyright protection [24], [25], [26], etc. Corner detectors, in general, can be

divided into three categories: contour-based, intensity-based and model-based detectors.

The proposed solution for corner detection in this thesis is a contour-based approach.

Hence, in this part of the literature review, we are going to focus on the contour-based

corner detectors. Different from intensity based corner detectors that work directly on

gray-scale images and model based corner detectors that work by fitting image signals

into a predefined model, contour-based corner detectors first extract binary edge maps

from the original image and then search for maximum absolute curvatures or inflection

points as corners. In edge maps, the convergence of two or more edges forms a corner.

Considerable research has been conducted on contour-based corner detection. In

this section, we are going to review a number of well known contour-based corner

detectors as below.

2.2.1 Curvature scale space (CSS) based corner detector

CSS corner detector, one of the earliest contour-based detectors, was initially

proposed by Rattarangsi and Chin in 1992 [18]. This original CSS detector is inspired by

the multi-scale space idea from A.P. Witkin in 1983[19]. It studied isolated simple and

double corner models under a scale-space scenario. A tree organization with a root,

branches and leaves is constructed to represent the surviving absolute curvature maxima

after different Gaussian smoothing scales σ. A root represents surviving absolute

curvature maxima when σ reaches maximum. Branches and leaves represent situations

when σ is decreasing. Due to constructing tree organization, this detector is highly

computationally demanding. And there is no obvious evidence showing that this detector

11

can find corners except from simple geometric shapes.

In 1998, an enhanced version of CSS was proposed by Mokhtarian and Suomela

[20]. With the adoption of the coarse-to-fine tracking technique [19], the enhanced CSS

detector first works on the high Gaussian soothing scale (σcoarse) to find the approximate

location of corners. Then, the curvature of a small neighborhood of those corners is

examined all the way down to the lowest scales (σfine) to increase the corner localization

accuracy. Lastly, a global threshold value t is introduced to remove weak (round corners

with low curvature) and fake corners (noise or trivial details). CSS detector is

demonstrated to have relatively better performance than the previous detectors like the

Kitchen and Rosenfeld detector, SUSAN detector, Plessey detector, etc. [20]; however,

this detector suffers from two major problems. First, the selection of the right smoothing

scale σ is challenging. Too high σ fails to detect true corners while too low σ introduces

weak and fake corners. Second, the selection of global threshold is hard. Too high of a

threshold pruns true corners while too low of a threshold fails to eliminate weak and fake

corners [20]. Furthermore, the application of coarse-to-fine corner tracking techniques are

computationally expensive.

In 2004, He and Yung [21] developed a more advanced CSS based corner detector

with adaptive threshold and dynamic region of support (ROS). Different from [20], it

starts with a relatively low smoothing scale to retain all true corners. Subsequently, an

adaptive threshold for each corner candidate is obtained based on the curvatures of its

neighborhood region, namely, ROS, to eliminate weak corners. In this case, ROS is

defined as from one of the neighboring local curvature minima to the next [21]. At last,

the fact that true corners should have sharp angles is considered to delete false corners.

12

One of the greatest contributions of this detector is the use of adaptive local threshold and

dynamic ROS to identify corners, which is concluded to be more efficient and accurate

than the aforementioned two CSS methods [21].

Zhang et al. [22] devised a new multi-scale curvature product (MSCP) corner

detector in 2007. It obtains its corners by multiplying all the curvatures at three

smoothing scales and the local extremes are reported as corners. MSCP detector has its

own advantages. First, product of curvature values at multi-scales enhances the curvature

extreme peaks effectively, which makes strong corners become more distinguishable

from weak and false corners. Second, multiplication operation effectively suppresses the

disturbances from noise and trivial details. Third, calculating curvatures on three scales

rather than using coarse-to-fine corner tracking technique is more computationally

efficient.

Affine Resilient curvature scale space (ARCSS) corner detector, another

improved multi-scale corner detector based on affine-length parameterization, is

proposed by Awrangjeb et al., in 2007 [23]. Traditional CSS detectors are using arc-

length parameterization to estimate the curvature which is not robust enough for image

transformation. This affine resilient detector searches corner candidates by examining

three consecutive medium soothing scales rather than using one single smoothing scale to

decide all corner candidates [20] . Afterwards, three corresponding edge thresholds are

introduced to eliminate round corners (with low curvature) and the criterion that true

corners’ curvature should be at least double of its neighboring curvature minima is

applied to delete false corners. Experimental results show that this detector has higher

effectiveness than CSS and are more robust to affine transformation. However, this

13

detector’s performance still depends on the selection of smoothing scales.

Overall, there are two major shortcomings associated with CSS based detectors.

The first shortcoming is that CSS detectors are highly sensitive to local invariations and

noise due to the involvement of up to second-order derivatives of curve-point locations in

curvatures calculation. The second shortcoming is related to the application of curve

soothing for minimizing local invariations and noise effects. It shrinks the shape of

curves and may smooth out real corners when σ is high. As a result, the accuracy and

precision of corner location is reduced.

2.2.2 Chord-to-point distance accumulation (CPDA) corner detector

In 2008, Awrangejeb and Lu [24] proposed a new corner detection technique,

which overcomes the above-mentioned shortcomings associated with the existing CSS

corner detectors. Different from traditional curvature estimation involving higher order

derivatives, the detector uses the summation of the Euclidean distances from a moving

chord to a point to represent the curvature of that point on the curve. As a result, this

chord-to-point distance accumulation (CPDA) corner detector is less sensitive to local

variations and noise. In addition, since it works on a single scale, it doesn’t have the

undesirable effect of the Gaussian smoothing. A more computationally efficient version

of this detector is proposed in [25]. Instead of estimating the CPDA curvature on all the

points of the curve, a small subset of the points is selected to represent the whole

curvature change along the curve. Thus, the computation cost is considerably reduced

while still maintaining the similar performance as the original CPDA detector.

2.2.3 other contour-based corner detectors

Apart from the above mentioned corner detectors using conventional curvature

14

measures to evaluate the tangent change along the contour to locate corners, a variety of

other corner detectors have been developed including those based on neural networks

(NN) [26], eigenvalues of covariance matrices (ECM) [27], and spectral clustering (SC)

[28].

Neural network based corner detector [26] uses neural networks to estimate the

curvature on contour points. In [26], a multilayer (three layer) neural network based

detector is designed. For this detector, some generic corners of multiples of 45◦ angles,

stored in a series of 8×8 binary templates, are constructed to train on a neural network.

Then the trained neural network is applied on the edge map of the image to decide

whether the examined point is a corner or not. How well the templates are constructed to

train on the neural network directly affect the results of corner detection. In 1999, Tsai

designed a corner detector [27] that detects corners by employing the eigenvalue of

covariance matrices (ECM) on boundary points. Since curvature is defined as the

reciprocal of the radius of a curve, the smaller the radius the higher the curvature. This

method has been validated to be robust in detecting object shapes containing various

curved and circular arcs. It is able to distinguish true corners and fake corners from

circular arcs. In 2007, Xi et al. presented a novel hierarchical corner detector based on

spectral clustering (SC) [28]. First, two-level wavelet decomposition is used to smooth

the raw contour. The low-frequency signal after decomposition is assumed as the

smoothed contour. Second, a divisive clustering structure is taken for corner cell

extraction. A kernel-weighted cosine curvature measure (KCCM) is developed to select

corner cells. Last, corners are located by finding the local minima of the KCCM. This

method uses a top-down strategy and considers the global shape information of the

15

contour. As a result, this detector is less sensitive to noise and capable of handling multi-

class data efficiently and effectively.

16

Chapter 3 PRELIMINARIES

AFPS, as a simplified type of architectural floor plan, are scanned images. We

need to vectorize them to extract their geometric information. This is done by applying

image processing and analysis techniques. This section describes the basic concepts

presented in this thesis.

3.1 Raster graphics and vector graphics

Raster graphic (also called bitmap) is defined as a grid of pixels. Each pixel is like a

block with a uniform size and is assigned a specific value, which indicates its color (RGB)

or gray intensity. For an 8-bit gray-scale image, there are 256 different pixel values that

range from 0 to 255. Note that in a gray-scale, 8-bit-image, black pixels’ value are 0 and

white pixels’ value are 255. Those values between 0 and 255 represent gray intensities

varying between black and white. The resolution of a raster graphic is defined as the pixel

numbers per inch. The higher the resolution, the more details the graphic displays.

Because they are based on a grid of fixed size, raster graphics suffer image degradation

when scaled up. Thus, the bigger the raster image we need, the higher the resolution is

required to maintain the image quality, which results in larger file size. Completely

different from raster graphics, vector graphics are defined by a group of mathematical

paths (also known as vectors). Vector graphics can be enlarged as much as possible

without losing image quality. The process of converting raster graphics into vector

graphics is called image vectorization. Since vector graphics possesses a number of

advantages over raster graphics, image vectorization attracts more and more attention

with the advent of the computerization era.

The advantages of vector graphics over raster graphics are listed as below:

17

• Memory efficient: with the same display details, vector images are much smaller

than raster images since one is vector based while the other is pixel based;

• Scale independent: can be resized without any distortion or loss of image quality;

• Easy to manipulate and handle: geometric information in vector graphics can be

easily altered by the changing of the parameters of object vectors. This allows for

easy manipulation and is perfect for design industries in which collaboration and

efficiency in change are a necessity.

• Can be modified easily by lots of applications on the market, such as Adobe

Illustrator and Corel Draw etc.

3.2 Basic relationships between image pixels

3.2.1 Neighborhood

In image processing, a pixel P with coordinates (x, y) has four direct neighbors

(denoted by N4 (P)) and four diagonal neighbors (denoted by ND (P)). 8-neighbors of P

(denoted by N8 (P)) is the union of N4 (P) and N8 (P). In terms of pixel coordinate, direct

neighbors have coordinates of (x+1, y), (x, y+1), (x-1, y), (x, y-1) and diagonal neighbors

have coordinates of (x+1, y-1), (x+1, y+1), (x-1, y+1), (x-1, y-1), respectively. The

representation of P and its neighbors are shown in Figure 2.

Figure 2: Representation of pixel’s neighborhood

18

3.2.2 Adjacency

There are three types of adjacency: 4-adjacency, 8-adjacency and m-adjacency.

For two pixels P and Q: they are 4-adjacent if Q is in the set N4 (P); they are 8-adjacent if

Q is in the set N8 (P); they are m-adjacent if Q is in the set N4 (P) or if Q is in the set ND

(P) and the intersection of N4 (P) and N4 (Q) is null. Two image subsets S1 and S2 are

adjacent if some pixel in S1 is adjacent to some pixel in S2. Figure 3 shows the two image

subsets S1 and S2, they are adjacent under 8-adjacency but isolated under 4-adjacency.

Figure 3: S1 and S2 are adjacent under 8-adjacency; S1 and S2 are isolated under 4-

adjacenty.

3.2.3 Path

A path from pixel P to pixel Q is a sequence of distinct pixels where the next pixel

is adjacent to the previous one.

3.2.4 Connectivity

Let S represents a subset of pixels in an image. Two pixels P and Q are said to be

connected in S if there exists a path between them consisting entirely of pixels in S.

3.2.5 Region

Let R be a subset of pixels in an image. We call R a region of the image if R is a

connected set. A number of measure properties can be used to describe a region, for

example:

19

• Area: the total number of pixels in the region.

• Bounding box: the smallest rectangle containing the region of interest. It is

given as a four-tuple (upper-left corner x coordinate, upper-left y coordinate,

x_span, y_span).

• Convex hull: the smallest convex polygon that can contain the region.

• Convex area: the number of pixels in the convex hull.

• Solidity: specifying the proportion of the pixels in the convex hull that are

also in the region. It is computed as ����
���	�
 ����.

3.3 Image processing and analysis

3.3.1 Connected component labeling

For every pixel P in S, the set of pixels in S that are connected to P is called a

connected component of S. Connected component labeling, also called connected-

component analysis is used to group connected pixels into different regions by labeling

them with unique number or color in binary images. A result of connected component

labeling is shown in Figure 4 where each connected component is assigned with a unique

value.

Figure 4: Connected component labeling

3.3.2 Image histogram

Image histogram calculates and displays the distribution of pixels of different

(a) Input Image (b) Output Image

20

gray intensities in the activate image. For an 8-bit gray scale image, there are possible

256 gray values. The x-axis represents the possible gray values from 0(black) to

255(white) and the y-axis shows the number of pixels found for each gray value, as

shown in Fig. 5.

Figure 5: Image histogram

3.3.3 Morphological operations

 Morphological operations refer to a broad set of image processing operations that

analyze and modify an image region’s shapes. A structuring element is constructed to

compare the pixel’s local neighborhoods. The structuring element can be any shape.

Typical shapes are shown in Figure 6.

Figure 6: Typical shapes of the structuring elements

The result of morphological operation depends on the size and configuration of

the original image and the structuring element. Morphological operations play a key role

(a) An input of 8-bit Grayscale Image (b) Output Image after Image Histogram

 (a) N4 (b) N8

21

in applications such as automatic raster-to-vector conversation, shape analysis, image

segmentation and object recognition. Next are the mathematical definitions of the

important morphological operations: erosion, dilation, opening, closing and

skeletonization.

3.3.3.1 Erosion and dilation

Erosion and dilation are two primitive and fundamental morphological operations.

Most other morphological operations are based on them. Erosion shrinks objects by

removing pixels on object boundaries while dilation expands objects by adding pixels to

the boundaries of objects in an image. The number of pixels to be added or removed from

the objects is determined by proper selection of the shape and size of the structuring

element.

 Erosion of the binary image A by a structuring element B is a set of all points x

such that B translated by x is contained in A, given by: A⊖B= {x∈E | Bx ⊆ A}, where Bx

denotes the translation of B by the vector x, i.e., Bx= {b+x | b∈B}, ∀ x∈E. Dilation of the

binary image A by the structuring element B is the set of all x displacement such that B

and A overlap by at least one non-zero element, defined by: A⊕B= {x∈E | (B
S
) Z ⋂ A ≠

}, where B
S
 denotes the symmetric of B, given by B

S
= {x∈E | -x ∈ B}. The effect of

erosion and dilation using a 3×3 square structuring element (see Figure 6 (b)) on a binary

image is shown in Figure 7.

∅

22

Figure 7: Effects of erosion and dilation using a 3×3 square structuring element

3.3.3.2 Opening and closing

Opening and closing are two important operators. They are both derived from the

basic operations of erosion and dilation. Opening tends to break the narrow connections,

eliminate small fragments and thin protruding regions by removing some foreground

pixels from the contours of regions of foreground pixels. Closing tends to fill up small

holes and gaps and bridge narrow openings by adding some foreground pixels to the

edges of regions of foreground pixels. The opening of A by B is obtained by the erosion

of A by B, followed by the dilation by B, that is: A∘B= (A⊖B) ⊕B. The closing of A by

B is produced by the dilation of A by B, followed by erosion by B, that is: AB= (A⊕B)

⊖B.

 Opening is similar to erosion while closing is similar to dilation, but both of them

are less destructive. The effect of opening and closing using a 3×3 square structuring

element (see Figure 6 (b)) on a binary image is shown in Figure 8.

(a) Original Binary Image (b) After Erosion (c) After Dilation

23

Figure 8: Effects of opening and closing using a 3×3 square structuring element

3.3.3.3 Skeletonization

 Skeletonization (i.e., skeleton extraction from a digital binary drawing), also

called medial axis transform, is the process for reducing foreground regions’ pixels as

much as possible without affecting the general shape of the original regions. The skeleton

hence obtained should be as thin as possible (Ideally, the skeleton should be one pixel

wide), but still preserve its extent and connectivity. It is commonly used as a

preprocessing operation to extract line segments from drawings. The effect of

skeletonization on a binary image is shown in Figure 9.

Figure 9: Effects of Skeletonization

(a) Original Binary Image (b) After Opening (c) After Closing

 (a) Input Image [29] (b) Output of the Skeleton [29]

24

Chapter 4 RESEARCH METHODOLOGY

4.1 Overview of AFPS vectorization system

AFPS vectorization system manages to convert raster AFPS into vectorized AFPS.

Important buildings’ geometric information is obtained after AFPS vectorization. In order

to vectorize AFPS with high efficiency, high sub-pixel accuracy, and minimal fault

warning, our system developed its own solution set of algorithms for individual step of

image vectorization [3].

Since the original AFPS may have colored foreground areas enclosed by graphic

loops, colored foreground extraction along with image binarization are implemented at

the first step termed image preprocessing. Due to the existence of isolated and graphic-

touched text in AFPS affects the correct vectorization of graphic components,

text/graphic separation is taken as the second step. Geometric features are considered to

separate isolated texts. The idea that strokes of texts shouldn’t contribute to the

connectivity of graphic loops is used as the criterion to distinguish true line segments and

graphic-touched text strokes. Separating graphic-touched text is complicated and is

intermingled with the third step, which is finding the line segments and vectorizing them.

Since corners define the shape of line segments, corner detection is essential in the third

step. We developed a slope-change rate based corner detector, which is not only able to

locate corners fast and accurately, but also can locate circular arcs whose slopes change

continuously. The fourth step is post-processing. Vector’s ending points’ coordinates are

fine tuned to find better corners, junction points and ensure the closure property of

graphic loops. Every vector is investigated with others to merge closely nested collinear

vectors and remove redundant, trivial vectors. The final step is rebuilding vector-based

AFPS graphics with obtained vector information. Through observation, the rebuilt AFPS

is compared with the original AFPS images to eval

illustrates the overview of our AFPS vectorization system.

Figure10: the Overview

FPS graphics with obtained vector information. Through observation, the rebuilt AFPS

is compared with the original AFPS images to evaluate system’s performance. Fig

illustrates the overview of our AFPS vectorization system.

the Overview of AFPS vectorization system

25

FPS graphics with obtained vector information. Through observation, the rebuilt AFPS

uate system’s performance. Figure10

26

4.2 Image preprocessing

As a scanned architecture drawing, AFPS graphic is stored in gray-scale or color

format and has some background noise associated to it. The gray intensity and color

information related to those formats provides no useful information for our vectorization

purpose; thus, converting AFPS graphics into binary images with less noise is the goal of

our first step, termed image preprocessing. For some scanned AFPS images, the floor

frame-enclosed areas have a foreground color that is close to the graphic frames’ color, as

shown in Figure11 (a). This deteriorates the performance of image binarization since it is

based on the selection of a proper threshold value (i.e. gray intensity or color). Therefore,

the foreground color other than white is converted to white to reduce the effect. In order

to achieve this goal, we utilize image histogram to count the occurrences of each pixel

value. When the count of the second most occurred pixel value exceeds 40000, we

assume that this pixel value is the value of the foreground color. Those pixels with a

foreground color pixel value are changed to the value of the most occurred pixel value to

eliminate the foreground color. As shown in Figure 11(b), the foreground color is

eliminated in the revised image.

After foreground color elimination, the gray scale images are converted into

binary images (i.e. black and white images) through image binarization. Subsequently,

optional image inversion, changing all black pixels into white pixels and changing all

white pixels into black pixels is performed for easier result observation. As a result,

image pixels of graphics and text components become white and the other pixels become

black.

Since image binarization is based on a thresholding operation, some pixels

27

belonging to the foreground region may be classified as part of the background region,

which will create some irregularities like missing pixels and gaps in the foreground

region. In order to solve this problem, morphological closing operation is taken to

increase the authenticity of the resulting images.

Figure11: Image preprocessing

4.3 Text/graphic separation

Due to our system aims at vectorizing AFPS images, text components (like

annotating numbers, letters) as well as other irrelevant symbols must be separated from

graphic components to ensure that the subsequent processing steps only operate on the

graphic data.

Text components are either graphic isolated or graphic touched. Connected

component analysis and some statistical techniques are employed to extract the textual

components and remove them out. Sampling noise from scanning AFPS images are also

extracted and can be deleted during this step. In image analysis and recognition, text

components are often separated from graphical objects at a very early stage for better

graphical data processing. Correct and accurate text/graphics separation is the basis for

good graphic vectorization. We use different algorithms to remove isolated and graphic

touched text blocks.

 (a) Original Image (b) Revised Image (c) Preprocessed Image

28

4.3.1 Isolated text/ graphic separation

Isolated texts, as the name suggests, represent texts that are apart or detached

from graphic data. Every text object is an independent image region. Several

measurement properties such as area (object’s size), bounding box (object’s dimension:

x_span and y_span), and solidity (object’s density) are used to extract isolated texts.

Based on numerous observations and experiments, we decide that, for any connected

component in an image, when it satisfies any of the following criteria, it is regarded as a

text component and should be removed:

1. area<100

2. x_span<5

3. y_span<5

4. x_span<55, y_span<55 and solidity >0.15

A simple example is shown in Figure 12. The region properties of the capital

letter “T” are measured as follows: area=66, x_span=11, y_span=14, convexarea=110,

solidity=0.6. The displayed letter “T” should be removed since it satisfies the first and

fourth criteria. Figure 13 shows an example of AFPS after removing isolated texts.

Figure 12: Region properties’ measurements

Area=66,
x_span=11,
y_span=14,
ConvexArea=110,
Solidity=
Area/ConvexArea
=0.6

29

Figure13: an example after isolated text removal

4.3.2 Touched text/graphic separation

Different from isolated text components, graphics touching text components are

indirectly removed during the next step of line finding and vectorization. The method to

remove graphic touched text components will be elaborated in the 4.3.2 section.

4.4 Line finding and vectorizaiton

A readily observed fact is that an AFPS consists of only three types of line

elements: horizontal and vertical lines, zigzag lines and circular arcs. The line finding and

vectorization step determines the type and location of those line elements from the image

data. During this step, the AFPS is considered as the superposition of those three line

types. Each line type is extracted and vectorized respectively. The strict closure property

of graphic components serves as the criterion of good image vectorization.

4.4.1 Horizontal and vertical line finding and vectorization

Based on the prior knowledge each pixel of a horizontal or vertical line exists on

the same row or column, a fixed-size window is created to scan horizontally and

vertically over the output from the last step to extract them. Let the size of input AFPS

be R×C where R denotes the total row number of the image and C denotes the total

30

column number of the image. To detect horizontal lines, a fixed window of size 1×C is

filtered vertically over the input data from the image’s first row to the last one. All line

segments on each row with no less than 12 pixels are extracted and redrawn on a blank

image with the same size of AFPS. Each of those extracted line segments is an

independent connected component whose measurements can be obtained by calculating

its bounding box. The measurements of the i
th

 line component are defined as:

LCi= [Xi, Yi, X_Spani, Y_Spani] (1)

Where (Xi, Yi) are the coordinates of the component’s upper-left corner and X_Spani and

Y_Spani denoting the component’s horizontal and vertical extent. For horizontal line

segments, X_Spani and Y_Spani specifically represent the length and width of the line

segment. In all architectural drawings, the lines of different widths designate walls of

different thickness. To keep our vectorization system simple, we vectorize lines of

different widths into single-width vectors. Thus, for each horizontal line segment, its

vector information is stored as below:

 HLi= [ri1, ri1, ri2, ci2] (2)

ri1= ri2=<Y= > ?_@ABCD
E F (3)

 ci1=Xi (4)

ci2= Xi> X_Spani-1 (5)

Where (ri1, ci1,) are the coordinates of the vector’s initial point and (ri2, ci2) are the

coordinates of the vector’s terminal point.

The vertical line segments are extracted and vectorized in the same method

replacing rows with columns. Their vector information is stored as follows:

VLi= [ri1, ci1, ri2, ci2] (6)

31

ri1=Yi (7)

ri2=Yi>Y_Spani-1 (8)

ci1=ci2= <Xi > K_LM��D
E F (9)

Figure 14 (a) shows the original combination of the recognized horizontal and

vertical lines.

Figure14: Combination of recognized horizontal and vertical line segments

Due to the chances that short line segments (length<12) exist; we need to add

missing short line segments to close small openings, as shown in Figure 15 (a). Also we

need to fine-tune the coordinates to eliminate spurs and bridge small gaps, as shown in

Figure 15 (b). As shown in Figure 14 (b) is a revised combination of recognized

horizontal and vertical lines.

Figure 15: Situations need to revise coordinates

(a) Original (b) Revised

(a) (b)

32

4.4.2 Touched text/graphic separation

Blindly separating graphic touched texts from graphic data is hard and often takes

high time complexity. Our system develops an innovative, object-oriented, simple

algorithm, which can solve the separation problem based on the already recognized

horizontal and vertical line segments with high accuracy and precision. Two methods are

taken to remove the graphic touched texts. The first method removes the texts that are

connected to the horizontal and vertical line segments. The second method removes those

texts that don’t contribute to the closure of graphic loops.

• Method1: draw black lines on both sides of the recognized horizontal and vertical

line segments, as illustrated in Figure16; this will separate the connected text from

those line segments. Next, we apply the same method for removing isolated text to

remove graphic touched texts. Most of horizontal and vertical line segments touched

texts are removed on this step.

Figure 16: Illustration of step one

• Method 2: First, we delete all the recognized horizontal and vertical line segments

from the output image of the step1. Next, we use skeletonization technique to shrink

all the components left into one-pixel width objects. These objects may consist of

strokes of texts (including noise), zigzag line segments and circular arcs. Objects that

contribute to the closure property of graphic loops are selected as the candidates of

zigzag lines and circular arcs. The rest are regarded as graphic touched texts and are

removed.

(a) With Graphic Touched Texts (b) Texts Detached

33

After implementing the two methods, two purposes have been fulfilled. One is we

have detached graphic touched texts and removed them; the other is we have found the

potential zigzag line segments and circular arcs for the next step of vectorizing them.

4.4.3 Corner detection based zigzag line and circular arc vectorization

A zigzag line is a group of straight-line segments linked by several corners. In

contrast, a circular arc is a part of a circle, which has no corners. Therefore, corners are a

very important feature to distinguish zigzag line segments and circular arcs. In addition,

as corners are dominant points in line drawings, they determine the shape of line objects.

Through corner detection, zigzag line segments are decomposed into small line segments

for vectorization.

 In our algorithm, a corner’s location is estimated by calculating two

measurements: the discontinuity of average slopes and the curvature of the line

subsections. By adopting the edge-linking algorithm developed by Peter Kovesi in 2007,

all the edge points are linked together into lists of coordinate pairs:

[(r1, c1), [r2, c2]… [rN, cN]] (10)

Where N is the number of edge points, (r1, c1) is the initial point’s coordinates and (rN, cN)

is the terminal point’s coordinates.

Starting from the initial point, we pick up the sampling points every subsequent10

pixels (sampling step=10 pixels) to calculate the discontinuity of slopes, as illustrated in

Figure17. Red color marked pixels are selected pixels. The discontuinity of two adjacent

average slopes are calculated among those pixels and is defined as:

δ = ∆S
T�
 (SDUV,SD) (11)

∆ρ = |ρ=YZ [ρ=| (12)

34

ρ\ =]DUV^]D
�DUV^�D

 (13)

Where δ denotes the discontinuity, i is the order number of the line subsection, (Ri, Ci) is

the coordinates of the i
th

 selected edge point. when δ > 0.5 , we assume there is a

potential corner at the line subsection. 0.5 is an empirial number which is associated with

the sampling step we chose.

Figure 17: Illustration of discontinuity measurement

Since a potential corner often exists when a relatively high curvature appears, we

developed a new algorithm to approximate the curvature of line subsections, which is

fast and effective. The principle of this algorithm is that the difference between a line

segment’s convex area and its area increases when its curvature increase. Let C denotes

the curvature, α denotes the convex area, β denotes the area. The potential corner exists

when the following criterion are satisfied:

C = α [β > EbL\�M
c > 2 (14)

35

Let γ denotes the number of line subsections with potential corners and n denotes

the number of line subsections of a line object. If
e
� > 0.4 , the line object is a circular

arc; otherwise, it is a zigzag line segment. 0.4 is an empirial number incidating the rate of

slope change.

 For vectorizing zigzag line segments, the line subsections with potential corners

are examined to find out the exact positions of corners. Instead of checking all edge

points on the line subsection, we are only interested in those points having maximum or

minimum of row or column numbers. Those points, as a matter of fact, are corner

candidates. Figure18 generates five basic types of line subsections with potential corners.

As we can see, corners either have maximum (or minimum) row number or maximum (or

minimum) column number of the examined line subsection. Type A’s corner is of the

maximum row number; Type B’s corner is of the minimum row number; Type C’s corner

is of the maximum column number; Type D’s corner is of the minimum column number;

Type E’s corner is at the starting point or ending point and may have maximum row

number and minimum column number or have minimum row number and maximum

column number.

Figure18: Five basic types of corners

 For each obtained line subsection of potential corner, we do the same analysis as

below to check all the cases to locate the exact positions of corners. First, let rs and cs

(a) (b) (c) (d) (e)

36

denote the starting point’s row number and column number and let re and ce denote the

ending point’s row number and column number. Let maxr, minr denote the maximum

and minimum of row numbers of the line subsection and maxc, minc denote the

maximum and minimum of column numbers of the line subsection. The corner’s position

can be determined by analyzing the following five conditions:

Condition 1:

 If maxr≠riand maxr≠j� , the corner is the point of the maximum row number. This

type of corner is illustrated in Figure 18(a);

Condition 2:

 If minr≠ri and minr≠j� , the corner is the point of the minimum row number. This

type of corner is illustrated in Figure 18(b);

Condition 3:

If maxc≠ci and maxc≠k� , the corner is the point of the maximum column number. This

type of corner is illustrated in Figure 18(c);

Condition4:

If minc≠ki and minc≠k�, the corner is the point of the minimum column number. This

type of corner is illustrated in Figure 18(d);

Condition5:

If minc=min(ki, k�), maxc=max(ki, k�), minr=min(ji, j�) and maxr=max(ji, j�).

This type of corner is illustrated in Figure 18(e).

Lastly, a zigzag line segment is divided into several subsections and its vector

information is stored as follows:

 ZL= {[r11, c11, r12, c12], [r21, c21, r22, c22]… [rn1, cn1, rn2, cn2]} (15)

37

Where n denotes the number of subsections a zigzag line segment is divided into.

For vectorizing a circular arc, the center and radius of the arc are the two features

that needed to be extracted. Based on the simple rules of mathematical geometry, the

center is the point that can reach any points of a circular arc by travelling the same

distance. The distance is its radius.

4.5 Post-processing

In this step, we perform some cleanup of the set of vectors by relocating their

coordinates’ data. Ending points, such as corners, junction points are fine tuned to

maintain the closure property of graphic components. Every vector is investigated with

others to merge closely nested collinear vectors and remove redundant, trivial vectors.

Our vectorization algorithms, “although based on a few simple principles, require

considerable iterative refinement, including the adding of heuristics and the tuning of

parameters until satisfactory accuracy is attained.” [5]. At last, the vectorized AFPS is

rebuilt with the extracted vectors. Different colors are displayed to render the different

line types.

38

Chapter 5 EXPERIMENTAL RESULTS AND EVALUATION

In this chapter, the experimental results and evaluation of our AFPS vectorization

system are presented. Our system is developed with Matlab R2010a software and several

image processing and analysis techniques are applied. Out of a large local online database

containing more than 150,000 houses, two hundred AFPS images are randomly sampled

and tested to maximize the generalizability of the experimental results.

 According to Vaxiviere and Tombre [5] “the vectorization requirements, like

those of other phases of drawing conversion, cannot be precisely specified except by

reference to a human who can judge whether a given raster pattern has been correctly

converted”, our vectorization system’s results are also based on human observation

between the rebuilt vector data and the original data. Our developed set of algorithms is

validated in the following categories: text/graphic separation capability; corner detection

capability; and arc detection capability.

5.1 Text/graphic separation capability

5.1.1 Isolated text/graphic separation capability

The biggest challenge of separating isolated texts from graphics is to delete big

text objects and meanwhile keep small graphic objects. 100% of the test images validated

that our system is robust enough to erase every isolated text with high accuracy and

precision. As shown in Figure 19, big letters “MULTILEVEL” as well as other texts are

successfully removed.

39

Figure19: Removal of isolated texts including big letters

 5.1.2 Touched text/graphic separation capability

Graphic touched texts specifically are letters attached to graphic data. They are

small and completely random. Good AFPS images have readily separated graphic

components and text components. Unfortunately, most AFPS have the texts and graphics

overlapping. Our system is capable to remove most of the touched texts. Especially for

texts connected to horizontal and vertical line segments, the success rate reaches 99%.

However, our algorithm is limited in removing texts connected to zigzag line segments

and circular arcs. Figure 20 shows an example of successful utilization of touched text

removal and subsequent vectorization.

Figure 20: Removal of graphic touched texts

(a) With Isolated Text (b) Without Isolated Text

(a) With Touched Text (b) Without Isolated Text

40

5.2 Corner detection capability

 Our corner detection algorithm locates corners through the calculations of two

measurements and an observation to find out the positions of corners. The first

measurement is the discontinuity of two adjacent slopes and the second is curvature.

They can be computed by the following two equations, respectively:

δ = ∆S
T�
 (SDUV,SD) (11)

C = α [β > EbL\�M
c > 2 (14)

 Both the discontinuity of slopes and the new curvature are affected by the

sampling step. Overly wide sampling steps may cause a failure in the detection of some

potential corners and too narrow sampling steps may decrease the accuracy and precision

of corner detection. For our system, the sampling step equal to 10 works with good

results. Figure 21(a) shows an example of AFPS with two zigzag line segments. The

corners were correctly detected as shown in Figure 21(b).

Figure 21: Corner detection for zigzag line segments vectorization

(a) Input of Zigzag Line Segments (b) Output of Vectorized Zigzag Line

Segments

41

5.3 Circular arc detection and vectorization capability

 Circular arc detection and vectorization is our last part of raster-to-vector

conversion. Thus, our system’s capability to detect and vectorize circular arcs is based on

the performance of the previous steps. Circular arcs are easy to detect and vectorize only

if the resulting images contain intact and clearly defined circular arcs. Figure 22 shows

two examples of circular arc detection and vectorization.

Figure 22: Circular Arc Detection and Vectorization

Fig. 22 shows two examples of circular arc detection and vectorization. The first

example shows the results when there are long radiuses and arc lengths. The second

example shows the results when there are short radiuses and arc lengths.

(a) Example One of Input of Circular Arcs (b) Output with Circular Arcs Vectorized

(a) Example Two of Input of Circular Arcs (b) Output with Circular Arcs Vectorized

42

The limitations of our circular arc detection and vectorization algorithm are

concluded as follows:

• Tends to vectorize circular arcs into fragments when they are too big or too thick.

Part of those circular arcs will be recognized as horizontal and vertical line segments.

• Only capable of vectorizing singular circular arc. When two or more circular arcs are

connected together, the system will try to vectorize them together like a single big

circular arc.

• When text touches the arc, the frequency incorrect vectorication increases, even fault

warnings even appear.

43

Chapter 6 CONCLUSION AND FUTURE WORK

In this study, we have developed an innovative, efficient and accurate

vectorization system to convert architectural drawings, specifically Appraisal Floor Plan

Sketch (AFPS), into vector-based computer graphics. Three types of line segments

including: horizontal and vertical line segments, zigzag line segments, and circular arcs in

AFPS are effectively converted into vectors with full respect to the original drawings.

The performance of our system, to some extent, depends on a set of parameter

selections, like the sampling step “10”, but the fact that our system does not involve

domain knowledge enables its potential application on a variety of other graphics-rich

documents, with only a few parameter modifications.

The newly developed algorithms of separating texts from graphics and detecting

corners are two of the most important contributions in our study. The new idea of

extracting and vectorizing horizontal and vertical line segments first and then removing

the graphic touched texts is object-oriented and effective. Two new measurements:

discontinuity of adjacent slopes and the curvature estimation are developed to locate the

potential corners, and then five situations of line subsections with potential corners are

discussed to find out the corners’ positions. The two measurements can be calculated in a

short time; however, the adoption of edge-linking algorithm to track contours slows down

the processing speed.

The using of our algorithm may not be appropriate to process electronic drawings

that do not strictly follow drafting standards; have missing or overlapping graphical

entities; or have low image resolution. However, to improve the system’s robustness it

will definitely result in much longer processing time.

In general, the most productive avenue of future work is to develop a thinning

44

algorithm which can convert thick zigzag line segments and circular arcs into one-pixel

connected components. In our current system, skeletonization technique is adopted for

that purpose, but the results are getting unacceptable with the increasing line widths. The

shape distortion and displacement of dominant points (corners, junction points, etc.)

caused by applying skeletonization definitely reduce our system’s capability to vectorize

thick zigzag line segments and circular arcs. The next important future work may be

directed towards the separation of texts that touched zigzag line segments and circular

arcs. The text/graphic separation method proposed in [14] would allow our system to be

more effective in resolving this problem as long as the texts are not completely connected

to the graphics. Hough transform is also a possible solution which can group collinear

letters into logical words and Optical Character Recogntion (OCR) is another choice but

both of them may burden our system with a lot of computations.

45

References

[1] D. Dori, and W. Liu, “Sparse Pixel Vectorization: An Algorithm and Its Performance

Evaluation,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21,

no. 3, pp.202-215, Mar. 1999.

[2] K. Tombre, C. Ah-Soon, P. Dosch, G. Masini and S. Tabbone, “Stable and Robust

Vectorization: How to Make the Right Choices,” In Computer Science Graphics

Recognition Recent Advances, vol. 1941, pp. 3-18, 2000.

[3] Wikipedia contributors, "Vectorization (image tracing)," Wikipedia, The Free

Encyclopedia,

http://en.wikipedia.org/w/index.php?title=Vectorization_(image_tracing)&oldid=486539

404 (accessed July 18, 2012).

[4] A. Shio and Y. Aoki, “Sketch plan: a prototype system for interpreting hand-sketched

floor plans,” in Systems and Computers in Japan, vol. 31, no. 6, pp 10-18, June 2000.

[5] P. Vaxiviere and K. Tombre, “Interpretation of Mechanical Engineering Drawings for

Paper-CAD Conversion,” In Proceedings of IAPR Workshop on Machine Vision

Applications, pp. 203-206 Nov. 1990.

 [6] A. J. Filipski and R. Flandrena, “Automated conversion of engineering drawings to

CAD form,” Proceedings of the IEEE, vol. 80, no. 7, July 1992.

[7] A. Koutamanis and V. Mitossi, “Automated recognition of architectural drawings,”

Pattern Recognition, vol. 1, pp. 660-663, Sep. 1992.

[8] S.H. Or, K. H. Wong, Y. K. Yu and M. M. Chang, “Highly Automatic Approach to

Architectural Floorplan Image Understanding & Model Generation,” in Pattern

Recognition, Nov. 2005.

[9] Y. Aoki, A. Shio, H. Arai, K. Odaka, “A prototype system for interpreting hand-

sketched floor plans,” in Patter Recognition, vol. 3, pp. 747-751, Aug. 1996.

[10] T. Lu, C. L. Tai, F. Su and S. Cai, “A new recognition model for electronic

architectural drawings,” in Computer-Aided Design, vol. 37, no. 10, pp. 1053-1069, Sept.

2005.

 [11] C. L. Tan, B. Yuan, W. Huang, Q. Wang and Z. Zhang, "Text/graphics separation

using agent-based pyramid operations," Document Analysis and Recognition, pp. 169-

172, Sep 1999.

[12] P. K. Loo and C. L. Tan, "Word and Sentence Extraction Using Irregular Pyramid,"

Proceedings of the 5th International Workshop of Document Analysis Systems, pp. 307-

318, 2002.

[13] L. Fletcher and R. Kasturi, “A robust algorithm for text string separation from mixed

text/graphics images, ” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 10, pp. 910-918, 1988.

[14] K. Tombre, S. Tabbone, L. Plissier, B. Lamiroy, and P. Dosch, “Text/graphics

separation revised, ” in Document Analysis Systems V, SER. Lecture Notes in Computer

46

Science, D. Lopresti, J. Hu and R. Kashi, Eds. Springer Berlin/Jeode; berg, vol.2423, pp.

615-620, 2002.

[15] H. Luo, G. Agam and I. Dinstein, "Directional mathematical morphology approach

for line thinning and extraction of character strings from maps and line drawings,"

Document Analysis and Recognition, vol. 1, pp. 257-260, Aug 1995.

[16] R. Cao and C.L.Tan, “ Separation of overlapping text from graphics,” In Proceedings

of 6
th

 International Conference on Document Analysis and Recognition, Seattle (USA),

pp. 44-48, Sep.2001.

[17] P.P. Roy, E. Vazquez, J. Llados, R. Baldrich and U. Pal, "A System to Segment Text

and Symbols from Color Maps," Graphics Recognition. Recent Advances and New

Opportunities, pp. 245-256, 2008.

[18] A. Rattarangsi and R. T. Chin, “Scale-based detection of corners of planar curves,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 4, pp. 430-449, Apr. 1992.

[19] A. P. Witkin, “Scale-Space Filtering,” In Int. Joint Conf. Artificial Intelligence,

Karlsruhe, West Germany, pp. 1019-1021, 1983.

[20] F. Mokhtarian and R. Suomela, “Robust image corner detection through curvature

scale space,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 12, pp. 1376–1381,

Dec. 1998.

[21] X. C. He and N. H. C. Yung, “ Curvature scale space corner detector with adaptive

threshold and dynamic region of support,” in Proc. Int. Conf. on Pattern Recognition,

Cambridge, U. K., vol. 2, pp. 791-794, Aug. 2004.

 [22] X. Zhang, M. Lei, D. Yang, Y. Wang, and L. Ma, “Multi-scale curvature product for

robust image corner detection in curvature scale space,” Pattern Recognition Letters, vol.

28, no. 5, pp. 545-554, 2007.

[23] M. Awrangjeb, G. Lu, and M. Murshed, “An affine resilient curvature scale-space

corner detector,” in Proc. Int. Conf. Acoustics, Speech, Signal Processing, vol. 1, pp.

1233-1236, Apr. 2007.

 [24] M. Awrangjeb and G. Lu, “Robust image corner detection based on the chord-to-

point distance accumulation technique,” IEEE Trans. Multime- dia, vol. 10, no. 6, pp.

1059–1072, Oct. 2008.

[25] M. Awrangjeb, G. Lu, C. S. Fraser, and M. Ravanbakhsh, “A fast corner detector

based on the chord-to-point distance accumulation technique,” In Proc. Digital Image

Computing: Techniques and Applications, pages 519–525, Melbourne, Australia, Dec

2009.

[26] P. Dias, A. Kassim, and V. Srinivasan, “A neural network based corner detection

method,” in IEEE International Conference on Neural Networks, vol. 4, pp. 2116–2120,

1995.

[27] D. M. Tsai, H. T. Hou and H. J. Su, “Boundary-based Corner Detection Using

Eigenvalues of Covariance Matrices”. Pattern Recognition Letters. 20, pp. 31- 40,

Elsevier, 1999.

47

[28] X. Li, W. Hu and Z. Zhang, “Corner Detection of Contour Images using Spectral

Clustering”. IEEE Int. Conf. on Image Processing, vol. 3, pp. 37-40, 2007.

[29] http://www.mathworks.com/help/toolbox/images/ref/bwmorph.html

	An Innovative Solution Set Of Algorithm For Converting Architectural Drawings To Vector-based Computer Graphics
	

	Microsoft Word - 305754-text.native.1343403573.docx

