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1. Introduction

With increasing use of surface coatings techniques in 
aeronautical engineering and semiconductor industry, 
measurements of near-surface mechanical properties 
of solids coated with thin materials play an important 
role in understanding the behaviors of these materials 
and structures in applications. Among various surface–
measurement methods, surface/guided wave method 
is used most extensively, such as the surface Brill-
ouin scattering (SBS), laser-generated surface acoustic 
waves (LSAWs), acoustic microscopy (AM), and sur-
face acoustic wave (SAW) spectrometry and spectros-
copy, etc. [1–5], in which the dispersion relations of 
SAWs propagating in near-surface layers are employed 
as theoretical bases for extracting the mechanical prop-
erties of the near-surface materials from experimen-
tal data. The simplest SAW in elastically isotropic half-
space coated with another elastically isotropic layer is 

the classic Love wave, which has been well addressed 
in the literature [6–8]. So far, anisotropic and hetero-
geneous coating systems such as multilayered thermal 
barrier coatings and functionally gradient coatings have 
been commonly used in enhancing the thermal stability 
and the resistance to chemical corrosion and mechani-
cal wearing of metallic substrates. In an attempt to eval-
uate the mechanical properties of these surface coatings 
by means of surface/guided wave methods, it is desir-
able to study their SAW dispersion relations. In the past 
four decades, a number of investigators have contrib-
uted significantly in this field [9, 10]. The principal as-
pect of the wave spectra of an elastic substrate coated 
with a single layer has been well explored in the liter-
ature, which consists of the supersonic leaking waves 
and subsonic localized SAWs [11]. Both of them are dis-
persive, while the latter does not have energy leakage 
into the substrate. Therefore, subsonic SAWs may be 
used for the characterization of the surface layers. Re-
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cently, wave dispersion relations of anisotropic half-
space coated with another anisotropic surface layer 
has been investigated in details by Shuvalov and Ev-
ery [11], who obtained a family of subsonic SAW dis-
persion curves relevant to various frequency ranges 
and materials. In their work, the impedance method 
was employed, which was initially used in understand-
ing surface and interface waves in anisotropic materials 
[12–14]. SAW dispersion relations of anisotropic multi-
layers are of particular importance to modern surface 
coatings science and technologies, however, not much 
work has been done yet in this filed. Unlike homoge-
nous elastic medium coated with a single layer, the dy-
namic governing equations of SAWs in multilayered 
surface coatings involve multiple displacement–trac-
tion continuities at interfaces, which generally lead to 
a coupled system of wave equations. Physically, wave 
propagation in laminates invokes complicated wave re-
flection, refraction, and deflection at ply interfaces and 
laminate surfaces. This makes experimental evaluation 
much more arduous, especially in the high frequency 
range where the size of microdamages and ply thick-
ness are comparable to the wavelengths.

For wave propagation in isotropic multilayers, quite 
a few methods have been contributed to characterize its 
wave dispersion in the past decades, and exact wave 
dispersion relations have been documented in well-
known monographs [7–8, 15–16]. For anisotropic lam-
inates, historically, Farnell and Adler [17–18] first pro-
posed the partial wave method. Murakami [19] and 
Murakami and Akiyama [20] developed a mixture the-
ory to approach the wave dispersion relations in angle-
ply laminates. In their model the elemental cell with 
ply thickness was introduced to approximate the elas-
tic field across the ply thickness, and interface continu-
ity conditions were satisfied in the weak form of Reiss-
ner’s variation. Utilizing eigenvector expansions of the 
dynamic governing equations of each ply of anisotro-
pic laminates, Liu et al. [21] obtained the exact disper-
sion relations for Lamb wave propagating in the lam-
inates. Meanwhile, Liu et al. [22] further developed a 
purely numerical method based on finite strip elements 
to explore the wave dispersions in composite laminates. 
Applications of Liu’s method in various wave phenom-
ena regarding anisotropic laminates may be found in 
the monograph authored by Liu and Xi [23]. A more 
efficient approach for multilayers, typically called the 
transfer matrix or matrix method, was initially pro-
posed by Adler et al. [24] and Adler [25]. The matrix 
method is known to have computational instabilities 
in some cases. Improvements of this method have been 
made by Smith [26] and Tan [27] using Green’s func-
tions. Moreover, Sun et al. [28] developed an efficient 
method based on a reduced-laminate model to capture 
the wave dispersion relations in thick composite lami-
nates made of angle-plies. In their model, the effective 

moduli for thick-section composite laminates were used 
to represent the laminates as homogeneous but aniso-
tropic media. Their results indicated that for long wave-
lengths the effective modulus solutions converge to the 
exact ones, while with the decrease of wavelength, the 
effective modulus solutions start to deviate from the 
exact ones, depending on the mode of wave motion, 
stacking sequence, and the number of plies in the lami-
nate. Recently, Caviglia and Morro [29–30] further con-
sidered the mathematical formulations of wave prop-
agation in anisotropic multilayers using a Riccati-type 
evolution equation to accommodate the interface con-
tinuities. The wave reflection and transmission ratios 
across the interfaces were demonstrated in their model. 
As a fact, fundamentals of wave propagation in layered 
anisotropic media may be found in the recent mono-
graph by Neyfeh [31].

One may find that the above works for anisotropic 
laminates were largely based on the general solutions 
to elastodynamic equations of anisotropic media with-
out considering the solution structures. Therefore, the re-
sulted dispersion relations in these models are generally 
implicit. As a matter of fact, Stroh’s formalism [14, 32–
33] has been proved as an efficient and concise method 
for describing the elastic behaviors for anisotropic elas-
tic materials, which is a more generalized formalism 
compared with the classic Lekhnitskii’s formalism [34]. 
In his monograph, Ting [14] summarized the general-
ized Stroh’s formalism for the study of steady bulk, sur-
face, and interface wave phenomena in anisotropic me-
dia. In this work, we further utilize Stroh’s formalism to 
study a simple steady phenomenon of antiplane SAWs 
propagating in multilayered anisotropic surface coat-
ings. Based on this formalism, the governing dynamic 
equation of each anisotropic ply and the substrate, in-
terface continuities, and coating surface boundary con-
ditions can be satisfied exactly by the Stroh’s functions. 
During the procedure, by means of Stroh’s formalism 
[14, 32–33], the general solution to each anisotropic layer 
can be expressed directly in terms of analytic functions. 
One of the advantages of this method is that the obtained 
SAW dispersion relation is in closed-form, and the cor-
responding numerical procedure is shown to be very ro-
bust and independent of the layer number. This method 
can be furthered parallelly for the study of dispersion re-
lations of steady inplanar SAWs propagating in multi-
layered anisotropic surface coatings and other layered 
material systems with damages. This method may pro-
vide a solid basis for laminate non-destructive evalua-
tion (NDE), etc.

2. Antiplane elasticity of anisotropic solids

In the absence of body forces, the elastodynamic equa-
tions for solid materials are
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(1)

where ui (i = 1, 2, 3) is the displacement of the material 
point, ρ is the mass density, the repeated indices imply 
the summation, and a comma stands for differentiation. 
The generalized Hooke’s law for a homogenous, aniso-
tropic, and linearly elastic solid is given by

(2)

where εij = 1/2 (ui, j + uj, i) denotes the linearly infinites-
imal strain tensor, and Cijkl is the elastic stiffness tensor 
satisfying the usual symmetry. Due to the symmetry of 
Cijkl relation (2) can be rewritten as

(3)

For a general anisotropic elastic material, the antiplane 
and inplane deformations are coupled, thus no pure an-
tiplane or inplane deformation exists. For some special 
anisotropic materials with the elastic stiffness Cijkl in 
terms of a contracted matrix such that

(4)

the antiplane and inplane deformations can be decou-
pled, and such anisotropic materials are capable of an 
pure antiplane deformation [14], for example the general 
monoclinic materials with C34 and C35 equal to zero and 
with a plane of symmetry at x3 = 0.

In the case of two-dimensional elastodynamic prob-
lems, the Cartesian coordinate system is chosen such that 
the antiplane deformation is in the x3-direction. Let u, v, 
and w represent the displacement components in the x1, 
x2 and x3-directions, respectively. For a steady SH-wave 
propagating along x1-axis, only the antiplane deforma-
tion is evoked such that:

(5)

There the relevant nontrivial shear stresses are τ31 and 
τ32, and c is the wave phase velocity. If the material stiff-
ness matrix is in form of (4), the equilibrium equations 
in the x1 and x2-directions are satisfied naturally, and the 
equilibrium equation in the x3-direction leads to

(6)

where the differential relation ∂2/∂t2 = c2∂2/∂x1
2 has been 

introduced. Equation (6) is the governing equation for an 
anisotropic body under antiplane deformation. The non-
trivial stresses τ13, τ23, and σ33 may be expressed in terms 
of w(x1, x2) as follows:

(7)

For monoclinic materials with the symmetric plane of 
x3 = 0, σ33 = 0.

3. Formal solution of an anisotropic laminate under 
antiplane deformation

Consider steady antiplane SAWs propagating in elas-
tic half-space coated with an anisotropic laminate made 
of n elastically anisotropic piles as shown in Figure 1. 
The boundary conditions of displacement–traction con-
tinuity at interfaces, surface traction-free, and displace-
ment and traction bound at infinity can be expressed as 
follows:

(1) Interface displacement–traction continuities (x2 = hi)

(8)

(2) Traction-free surface condition

(9)

(3) Displacement and traction bound at infinity (x2 → −∞)

(10)

Now let us consider the formal solution of the aniso-
tropic material system shown in Figure 1. By means of 
the generalized Stroh’s formalism for steady waves 
propagating in anisotropic materials [14], the displace-
ment field may be expressed as

(11)

In relation (11), f is an arbitrary purely imaginary function 
with respect to its argument z,  i = √‾–‾1, and p is a constant 
determined by the following characteristic equation:

(12)

Equation (12) yields two roots for p, one of which is

(13)

and the other is its complex conjugate P‾. When c = 0, μ = 
(C44C55 – C2

45)½  is the principal minor of the stiffness ma-
trix Cij which is always positive for realistic anisotropic
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materials. The stress components τ13 and τ23 can be ex-
pressed as

(14)

where the prime indicates the derivative with respect to 
z, Im( ) and Re( ) stand for the imaginary and real parts 
of a complex function, respectively. In a more general-
ized sense, the above expressions can be further simpli-
fied by adopting a stress potential φ proposed by Wu [35] 
such that

(15)

where

φ = Re[ f(z)].                                                          (16)

Thus, the formal antiplane solution for w(x1, x2) and φ 
can be expressed as

(17)

or

φ + iμw = f(z).                                                       (18)

For harmonic SAWs propagating along x1-axis as shown 
in Figure 1, the unknown function f(z) in (11) may be 
written in the following form:

f(x1-ct, x2) = g(x2) exp[ik(x1-ct)],                        (19)

where g(x2) is a complex function with respect to x2 and k 
is the wave number. It is known from (11) that the func-
tion f(x1 − ct, x2) in (19) is analytic with respect to com-
plex variable (x1 − ct + px2), thus g(x2) in the laminate 
plies and the substrate must have the form:

(20)

where G1 and G2 are two complex numbers to be deter-
mined according to the boundary conditions, and the 
choice of g(x2) at x2 < 0 satisfies the possible existence 
of subsonic wave without energy leakage into the sub-
strate. In relation (20) the decay property of the SAWs in 
the substrate has been considered due to p always with 
the positive imaginary part as assumed in Stroh’s for-
malism. As a result, relation (19) can be rewritten as

(21)

Here f is a purely imaginary function since (21) is the 
complete solution involving the conjugate of p based on 
the formal solution (11). With the aid of Figures (11) and 
(21), the displacement and traction along an arbitrary 
line (plane) parallel to x1-axis can be expressed as

(22)

(23)

Equations (22) and (23) can be reformulated in matrix 
form:

Figure 1. SAWs propagating in elastic half-space coated with an anisotropic laminate.
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(24)

where H and Λ(k, x2) are two nonsingular complex 2 × 2 
matrices defined by

(25)

Now let us consider the interface continuity of an aniso-
tropic coating system. In an attempt to further simplify 
the derivation, here we express the elastic field (24) in 
the ith ply as

(26)

where superscript i indicates the ith ply of the laminate 
as shown in Figure 1. With the help of (26), the displace-
ment–traction continuity along the ith interface can be 
expressed as

(27)

The surface boundary conditions can be represented in 
the similar way.

4. SAW dispersion relations

By repeatedly using relation (27) and the properties of 
matrices H and Λ(x2, hi) in (25), the interface continuity 
of the surface laminate can be finally reduced into a sin-
gle matrix equation relating the surface boundary condi-
tions and displacement–traction conditions at the inter-
face between the laminate and the substrate such that

(28)

where

(29)

The above matrices with subscript i indicate the cor-
responding quantities with respect to the ith-ply 
(i = 1,2, … ,n), respectively, Δhi is the ith-ply thickness, 
and hn + 1 = 0 due to this interface located along the x1-
axis. The elements of matrix B can be extended in explicit 
form. From relations (24) and (27), the displacement–
traction continuity along the interface (at x2 = 0) between 
the nth layer and the half-space substrate leads to

(30)

where the superscript (n + 1) indicates the functions in 
half-space substrate. In the case of antiplane SAWs prop-
agating in the above coating system, Equations (28) and 
(30) lead to

(31)

which further yields the dispersion relation, i.e.

B21(k,p,Δh)/μn+1+B22(k,p,Δh)=0.                           (32)

Equation (32) is the general dispersion relation of anti-
plane SAWs propagating in elastic half-space substrate 
coated with an anisotropic laminate, which may be ex-
tended into an explicit algebraic equation.

5. Examples

5.1. SAW dispersion relation for half-space coated with single 
anisotropic layer

In this case, there is only one anisotropic layer of thick-
ness h, and Equation (32) reduces to

(33)

which is the dispersion relation of Love wave in aniso-
tropic materials. It can be shown that there exist modes 
with phase velocities between the shear wave speeds of 
the two component materials, similar to the classic Love 
waves in isotropic materials [7–8]. Equation (33) shows 
that all Love waves are dispersive, and in the limiting 
case of isotropic materials, relation (33) covers the classic 
Love wave dispersion relation in the literature [7–8].
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5.2. SAW dispersion relation for half-space coated with two 
anisotropic layers

In this case, Equation (32) reduces to

where μi (i = 1, 2, 3) are defined in (13) for surface lay-
ers and the substrate, respectively, subscripts and super-
scripts 1, 2 and 3 denote respectively the physical quanti-
ties and thickness of the surface layers and the substrate. 
When material constants of surface layers keep the same 
values such that C44

(1) = C44
(2), C55

(1) = C55
(2), C45

(1) = C45
(2), 

ρ1 = ρ2, thus μ1 = μ2 and relation (34) reduces to the aniso-
tropic Love -wave dispersion relation (33) (h1 + h2 = h).

5.3. SAW dispersion relation for half-space coated with an 
angle-ply composite laminate

In Section 4 one can observes that the dispersion relations 
for antiplane SAWs propagating in elastic half-space 
coated with an anisotropic laminate can be obtained in 
explicit form by expanding relation (32). Here we con-
sider the SAW dispersion relation of elastic half-space 
coated with an angle-ply laminate. The ply stiffness ma-
trix for any lay-up angle may be determined by the ma-
trix rotation between the local ply coordinate frame and 
the global coordinate frame of the laminate. Consider a 
rotation of the global coordinate frame (x1, x2, x3) along 
the x3-axis to the local coordinate frame (x′1, x′2, x′3), as 
shown in Figure 2.

The evoked stiffness elements C′ij  for antiplane defor-
mation in the new coordinate frame may be expressed 
in terms of Cij in the global coordinate frame as follows 
[36, 37]:

(35)

where θ is the rotation angle.

Figure 2. Rotation of coordinate system along x3-direction.

Figure 3. Antiplane SAWs propagating in elastic half-space coated with a [±45°/02°] composite laminate.

(34)
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Consider steel half-space covered with an angle-ply 
graphite-fiber/epoxy laminate made of Toray P7051S-
20Q-100 unidirectional prepregs. The mechanical proper-
ties of steel are E = 210 GPa, ν = 0.28, and the mass density 
ρ = 7800 kg/m3. The mechanical properties of the unidi-
rectional composite laminate in the local material coordi-
nate system are E1 = 135 GPa, E2 = E3 = 8.5 GPa, G12 = G-

3 = 4.7 GPa, G23 = 3.03 GPa, υ12 = υ13 = 0.34, υ23 = 0.40, the 
ply mass density is ρ = 2500 kg/m3, and the ply thickness 
is h = 0.125 mm. Therefore, the out-of-plane shear mod-
uli in the material coordinate system, (x1 = x2)-plane, are 
C44 = 3.03 GPa, C45 = 0, C55 = 4.7 GPa. As an example, we 
consider the dispersion relation of the surface laminate 
with a [±45°/02°] lay-up as shown in Figure 3. The out-
of-plane shear moduli of plies with lay-up angle ±45° are 
determined from (35).

The dispersion relation can be determined straightfor-
wardly by expanding Equation (32) such that

where μ = (E/[2(1 + ν)]{E/[2(1 + ν)] – ρc2})½, and ρ, E, and 
ν are, respectively, the mass density, Young’s modulus, 
and Poisson’s ratio of the steel substrate. Relation (36) is 
similar to (34) due to the ±45° plies bearing the similar 
out-of-plane properties. When the phase velocity c keep 
μ a pure imaginary, the corresponding dispersive wave 
does not have energy leakage into the substrate.

In the present case C44
(1) = C55

(1) = 3.865 GPa, C45
(1) =  

–0.865 GPa,  C44
(3) = 3.03 GPa,  C55

(3) = 4.7 GPa, and C45
(3) = 

0.0 GPa. By introducing a dimensionless wave number 
and a dimensionless phase velocity such that

(37)

the subsonic non-leakage wave dispersion curves of the 
first four modes are plotted in Figure 4. The numerical 
procedure for finding the roots of wave number at given 
phase speed was performed using the simple searching 
method. This method was proved very robust for the 
present problem.

From Figure 4, one can find that for each subsonic 
wave mode, the wave phase speed tends to the shear 
wave speed of the half-space substrate (stiffer) when the 
wave number tends to zero, while it tends to the shear 
wave speed of 0°-ply close to the substrate when the 
wave number is very large. The 0°-ply has the highest 
shear wave speed in the surface laminate. Consequently, 
from the dispersion relation (36), one can also observe 
that non-leakage SAWs only exist under condition that 
the wave speed of the substrate is higher than that of 
any surface ply. This is similar to the existence condition 
of classic Love waves. The above two wave speeds form 
the upper and lower limits of the subsonic non-leakage 
SAWs in multilayered anisotropic coating systems.

6. Concluding remarks

By means of Stroh’s formalism of anisotropic elasticity, 
explicit dispersion relations of antiplane SAWs prop-
agating in elastic half-space coated with an anisotropic 
laminate have been determined. The existence condition 
of subsonic non-leakage SAWs has been given. It can be 
verified that this condition also holds for inplanar SAW 
cases. It should be mentioned that for inplanar cases the 
eigenvalue problems have to be involved for determin-
ing the corresponding Stroh’s functions. Since the given 
results in this work are exact ones, they are applicable for 
examining the entire subsonic frequency range of aniso-
tropic coating systems. The exact dispersion relations 
can be used as the theoretical basis for the evaluation of 
other approximate methods and NDE based on surface/
guided wave methods. Furthermore, this method can be 
easily furthered for the study of steady waves propagat-
ing in layered surface coatings and composite laminates 
with damages such as delamination.
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