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Magnetic materials are vital to many devices and the manipulation of spins is central

to the operation of novel devices such as spin transistors. It is important to understand

the effect of spin fluctuations on such systems. In this dissertation, first-principles

calculations and models further the understanding of spin fluctuation effects in the

transport and thermodynamics of magnetic metals.

A simple classical spin-fluctuation Hamiltonian with a single itinerancy parame-

ter is studied using the mean-field approximation, Monte Carlo simulations, and a

generalized Onsager cavity field method. The results of these different methods are in

agreement. It is found that the thermodynamics are sensitive to the choice of phase

space measure and that short-range order is weak for all degrees of itinerancy.

Spin injection from a half-metallic electrode in the presence of thermal spin disor-

der is analyzed using a combination of random matrix theory, spin-diffusion theory,

and explicit simulations for the tight-binding s-d model. It is shown that spin-flip

scattering from the interface destroys spin coherence. Spin injection is possible and

is constrained by the mean-free path and spin diffusion length in the semiconductor.

The spin-disorder resistivity (SDR) is calculated for the Gd-Tm series in the para-

magnetic state using two complimentary first-principles approaches. The SDR in the

series follows an almost universal dependence on the exchange splitting and is under-

estimated when compared with experiment. Frozen atomic displacements (phonons)



are then introduced along with spin disorder and the total resistivity is calculated as

a function of the mean-square displacement for Fe and Gd. The resistivity increases

non-linearly for small displacements and transitions to a linear dependence at larger

displacements that, when fitted, enhances the SDR. The enhancement observed in Gd

is substantial. The enhancements are electronic in origin, and the rapid increase ob-

served in Gd is traced to a strong, disorder-induced interaction between the electron

and hole Fermi surfaces, while the linear trend at large displacements is a saturation

effect brought on by strong disorder.
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2
, (h) ∆2

ph = 0.2305 Å
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Chapter 1

Introduction

Magnets are a fixture of everyday life. Many people have played with permanent

magnets as children, captivated by the mysterious behavior and physics that result

from like poles repelling and opposite poles attracting. The fascination with magnets

has a long history, from the invention of the compass in China to William Gilbert’s

experimental determination in 1600 that the Earth itself can be considered a giant

magnet. Nowadays magnets are a crucial component in many technological devices,

such as hard drives, cars, radios, televisions, refrigerators, and cellphones. Modern

life would be very different without permanent magnets.

The development of the classical theory of magnetism began with Oersted’s dis-

covery in 1820 that magnetic forces are produced by electric currents. Further studies

by Biot and Savart, as well as Ampére furthered the understanding of magnetic forces,

and the development of electromagnetic field theory by Faraday and Maxwell placed

the field of classical electromagnetism on firm footing. However, the spontaneous

magnetism of solids is a phenomenon that can only be understood in the framework

of quantum mechanics [13]. The spin degree of freedom of the electron in combina-

tion with the exchange interaction is now understood to be the microscopic origin of

magnetism.
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Beyond current commercial applications, the manipulation of electronic spins in

materials holds tremendous promise for future devices and for the continuation of

Moore’s law. Moore’s law is the observation that the number of transistors on inte-

grated circuits doubles roughly every two years. The standard approach to increasing

the number of transistors on a chip is to scale down the size of each transistor. How-

ever a fundamental limit is approached when the transistor is only a few nanometers

long [14]. At these small length scales electrons can tunnel from source to drain

without an applied gate voltage and the transistor no longer behaves like a binary

switch. Assuming this could be solved, there is the ultimate length-scale limit of ap-

proximately 1.5 nanometers, which is thought to be the smallest scale possible where

a source and drain may still be defined. Additionally, packing these small transistors

together and passing a current through them results in Joule heating, and there are

significant challenges to efficiently removing heat at these length scales without sac-

rificing performance [15]. Using the electron’s spin degree of freedom in transistors

instead of its charge has been proposed [16]. This is an attractive option to continuing

Moore’s Law as pure spin currents do not give rise to Joule heating, which overcomes

one of the significant obstacles in scaling. There is hope that spin transistors will lead

to faster and smaller transistors. However, in order to ultimately develop commercial

versions of these devices, a solid understanding of the physics of spin manipulation

is required, especially in the context of finite temperature where spin fluctuations

become important.

In the rest of this introductory chapter, the classical theory of paramagnetism

and the quantum origin of magnetism will be reviewed. This is followed by a discus-

sion of the origin of ferromagnetism. Afterwards, a background overview to prepare

the reader for the forthcoming chapters will be discussed, including ferromagnetic

ordering in local and itinerant systems, spin-diffusion transport theory, and magnetic
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scattering in the heavy rare-earth metals. The introductory chapter concludes with

an overview of the rest of this dissertation.

1.1 Classical theory of magnetism

The classical understanding of the dynamics of electromagnetic fields is contained in

the Maxwell equations. Typically, the Maxwell equations are presented in two differ-

ent versions: the microscopic and macroscopic forms. This division is for convenience

and it can be shown that the microscopic electric and magnetic fields due to the clas-

sical versions of atoms and/or molecules in a solid lead naturally to the macroscopic

fields D and H, see Refs. [17–19] for formal proofs. This analysis connects the mag-

netic field B to the macroscopic field H and the magnetization M via the familiar

equation,

H =
B

µ0

−M. (1.1)

In classical theory, the magnetization vector M encapsulates the magnetic field due

to the induced and permanent magnetic moments in materials. Below follows a

brief historical overview of the classical description of paramagnetism and the Weiss

theory of ferromagnetism, followed by a discussion of the problems presented by a

purely classical treatment.

The response of M to an applied field H is parameterized by the magnetic sus-

ceptibility χM ,

M = χMH, (1.2)
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where

χM =

(
dM

dH

)
H=0

. (1.3)

In general, the magnetic susceptibility is a tensor and can have a complicated depen-

dence on different properties, such as field orientation and magnitude, temperature,

and the application of stress and strain. Typical analysis assumes the magnetic

response to be isotropic and χM is simply a temperature-dependent scalar. The con-

tributions to the magnetic susceptibility can be broken down into two categories,

diamagnetic and paramagnetic. The diamagnetic response, which produces a magne-

tization that opposes an applied field and is present in all substances, is the result of

applied fields inducing molecular currents, in accordance with Lenz’s law. The para-

magnetic response, which is much stronger than the diamagnetic response, produces

a magnetization parallel to an applied field and occurs in materials with intrinsic

magnetic moments. Thus all atoms, ions, and molecules with an odd number of elec-

trons exhibit paramagnetism. Elements with partially-filled d or f shells (transition

and rare-earth elements) are paramagnetic, as are many metals [13]. In subsequent

discussions only the paramagnetic response will be considered. The diamagnetic re-

sponse can usually be evaluated separately. It is important to remember that for

a full description both the diamagnetic and paramagnetic contributions need to be

taken into account.

Paramagnets do not exhibit a magnetization in the absence of an applied field de-

spite having permanent microscopic magnetic moments because thermal fluctuations

randomize them. When an external field is applied, the field produces a torque on the

moments, making it favorable for them to align parallel to the field, competing with

thermal fluctuations which destroy this alignment. When the field is strong enough
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(called the saturation field), all the moments will be parallel and the magnetization

will reach its maximum value. Langevin solved the problem of a classical gas of rigid,

magnetically polarized molecules with moment m [20], finding the magnetization M

to be

M = NmL

(
mH

kBT

)
, (1.4)

where N is the number of magnetic molecules, kB is the Boltzmann constant, T is

the temperature, and L(x) = cothx − (1/x) is the classical Langevin function. The

magnetic susceptibility can be found via Eq. 1.3, and for low fields µH � kBT the

paramagnetic susceptibility simplifies to Curie’s law [21],

χM =
Nm2

3kBT
, (1.5)

Performing a measurement of the susceptibility as a function of temperature and

fitting to Eq. 1.5 gives an experimental estimation of the local moment for a param-

agnetic material.

The paramagnetic theory does not explain ferromagnetic behavior, where a spon-

taneous magnetization is sustained in the absence of external fields. Weiss postulated

the existence of an internal molecular field Hmol to explain ferromagnetic alignment

[22], replacing H → Hext +Hmol, where Hmol = βM . This modifies the paramagnetic

theory, predicting the magnetization to be

M = NmL

[
m (Hext + βM)

kBT

]
(1.6)

which is finite in the absence of external fields. The magnetization vanishes above

the Curie temperature Tc = βNm2/3kB as the moments are completely randomized
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and the system becomes paramagnetic. Above Tc, the magnetic susceptibility is

χM =
Nm2/3kB

T − βNm2/3kB

=
χ0

T − Tc
, (1.7)

which is known as the Curie-Weiss law. The Langevin-Weiss theory, which was rea-

sonably successful in describing the physics of a variety of simple ferromagnets, was

the state of the classical theory of ferromagnetism at the beginning of the twentieth

century.

Despite the successes of the Langevin-Weiss theory, there are a number of funda-

mental problems with it that cannot be resolved in the classical description. Relaxing

the assumption that the magnetic moments are rigid is necessary for a rigorous de-

scription. Within the classical picture, the magnetic moments are generated by elec-

trons that circle around atoms in orbits, and there is no a priori reason to constrain

the radius of these orbits. If the Boltzmann distribution is applied to all electronic

degrees of freedom in the atoms, then it is found that the diamagnetic and paramag-

netic contributions exactly cancel each other and the magnetic susceptibility is zero

[23, 24]. Another problem is that the classical free electron gas is predicted to not

have a diamagnetic response. The Langevin-Weiss theory cannot be reproduced if

Boltzmann statistics are applied to the intrinsic degrees of electronic freedom. A well

formed theory ought to be able to handle the intrinsic degrees of freedom, and no

such theory exists in classical mechanics. A proper, rigorous description of magnetism

requires quantum mechanics, which is the topic of the next section.
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1.2 Quantum theory of magnetism

Modern physics has been shown that the electron may be a two-fold source of mag-

netism. The first type of magnetism is the intrinsic spin moment and the second

type of magnetism is due to the translational or orbital motion of the electron [13].

Intrinsic spin angular momentum is quantified by the quantum operator S, has no

classical analog (early theories postulated that the electron itself rotated [25], hence

the name spin), and historically spin was inserted into quantum theory because of

empirical observation of the “duplexity” of atomic spectra. The explanation of the

spin degree of freedom came from Dirac’s equation, where spin is understood to be

a consequence of special relativity. Orbital angular momentum is quantified by the

quantum operator L and has a classical analog: for example the orbital momentum of

an electron circling an atom. Both sources of angular momentum give rise to a mag-

netic moment, and in general the effect of spin is largely responsible for the magnetic

properties of solids.

Both the spin and orbital angular momentum are quantized. In a single-electron

atom, the magnitudes of the respective operators are

|S| = ~
√
S(S + 1), (1.8)

|L| = ~
√
L(L+ 1). (1.9)

The projections of S and L along the quantization axis z are

Sz = ms~; ms = ±1/2, (1.10)

Lz = m`~; m` = L,L− 1, . . . , 0, . . . ,−L. (1.11)

The projections of the magnetic moment along the quantization axis are related to
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the z axis projections of the spin and angular momentum

µ(s)
z = gsmsµB; gs = 2.00231930436153± 5.3× 10−13 [26], (1.12)

µ(`)
z = g`m`µB; g` = 1. (1.13)

Because of the electron’s negative charge, the spin moment µ
(s)
z is aligned anti-parallel

to Sz. The absolute spin and angular magnetic moment, found by substituting Sz →

|S| and Lz → |L| is

|µs| = 2µB
√
S(S + 1), (1.14)

|µ`| = µB
√
L(L+ 1). (1.15)

The above vector model for the single-electron atom also introduces the total angu-

lar momentum operator J = L + S with magnitude |J| = ~
√
J(J + 1) [13]. The

eigenvalues of the operators S, L, and J are used to characterize the state of the

single-electron atom.

In the many-electron atom, the vector summing rules are as follows. The spin and

orbital momentum operators are the sum of the individual electron contributions,

S =
∑

i Si and L =
∑

i Li. The total angular momentum is, as in the one-electron

atom, J = L+S. This corresponds to Russell-Saunders coupling, which is valid when

the electrostatic interaction between the many electrons is much greater than the

spin-orbit interaction, which is the case in the light elements1 [13]. The eigenvalues

1The jj coupling scheme is used for very heavy elements (Z > 75), in which the individual spin
and orbital momentum Si and Li for an electron are coupled with the other electrons’ momenta.
The total momentum for an individual electron is Ji = Li + Si, and after this is worked out for all
electrons, then the total momentum of the system is J =

∑
i Ji.
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for the total momentum are

|J| = ~
√
J(J + 1); |L− S| ≤ J ≤ |J + S|. (1.16)

The different values of J form a degenerate multiplet, which is lifted via the spin-orbit

interaction. The projection of J along the quantization axis z has the eigenvalues

Jz = mJ~; mJ = J, J − 1, . . . , 0, . . . ,−J. (1.17)

The z axis projection and absolute value of the total magnetic moment are

µ(J)
z = gJmJµB, (1.18)

|µJ | = gJµB
√
J(J + 1), (1.19)

where gJ is the Landé g-factor for the many-electron atom. When an electron cloud of

arbitrary L and S interacts with an external magnetic field, because of the anomalous

spin g-factor, the interaction term involves L + 2S instead of L + S, so it is necessary

to project L + 2S along J and find the g-factor that satisfies (L + 2S) · J = gJ2 [27].

In the approximation that gs = 2, the Landé g-factor is

gJ = 1 +
1

2

J(J + 1) + S(S + 1)− L(L+ 1)

J(J + 1)
. (1.20)

Nonzero values for Eqs. 1.18 & 1.19 in atoms are possible in atoms with an odd

number of electrons and in partially-filled d and f electronic shells, as discussed previ-

ously. In the transition and rare-earth elements, there are multiple orbital occupation

configurations possible, and it is not immediately clear which configuration corre-

sponds to the ground state. A simple method to determine the orbital configuration
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of the ground state in an atom is Hund’s rules (quoting Ref. [13]):

1. “The total spin quantum number S =
∑
ms in the ground state is a maximum

within the limits prescribed by the Pauli principle.

2. The total orbital quantum number L =
∑
m` in the ground state is a maximum

within the limits prescribed by rule 1.

3. The quantum number J of the total angular momentum for a shell which is not

completely filled is: J = L − S, if the shell is less than half full; J = L + S, if

the shell is more than half full.”

For a justification of Hund’s rules see, for example, Ref. [28].

When determining the ground state of materials Hund’s rules may be applied,

although some care must be taken and in general it cannot be expected to give

a correct quantitative description. In materials, the constituent ions give rise to a

potential throughout the solid called the crystal field. The inhomogeneous crystal field

interacts strongly with the outer electron shells and deviations from atomic behavior

are expected. One consequence is that Lz may average to zero, as observed in the

transition metals, thus “quenching” the orbital angular momentum and causing the

magnetic moment to be determined by spin only (i.e. Hund’s first rule). On the other

hand, highly localized orbitals deeper in the ionic core such as the 4f orbitals in the

rare-earth metals are less affected by the crystal field and exhibit stronger spin-orbit

coupling. These effects contribute to an unquenching of the orbital moment, and the

full set of Hund’s rules should be used.
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1.3 Quantum theory of paramagnetism

In this section two types of paramagnetism will be discussed in the context of quantum

mechanics. The first is the paramagnetism of local moments, which in the proper limit

reproduces the Curie law and the Langevin theory. The second type of paramagnetism

is that of metals, where the electron gas interacts with an external field to develop a

net magnetization. This is also called Pauli paramagnetism.

1.3.1 Paramagnetism of local moments

Consider a system of N non-interacting atoms in a volume V with a degenerate

ground state determined by L, S, and J. The application of a magnetic field lifts the

degeneracy, splitting the ground state into a 2J + 1 multiplet. The fields are small

enough that excitations to higher energy multiplets can be ignored, such that the

energy of an atom in an external field is E = −µ · H. The magnetic moment per

atom is µ = −gJµBJ and the external field is H = Hẑ.

To find the magnetization and magnetic susceptibility as a function of tempera-

ture, the free energy first must be determined. The free energy F of the system is

found by solving the statistical equation

e−βF =
J∑

mJ=−J

e−βgJµBHmJ

=
eβgJµBH(J+1/2) − e−βgJµBH(J+1/2)

eβgJµBH/2 − e−βgJµBH/2
, (1.21)
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where β = (kBT )−1. The magnetization can then be immediately written down as

M = −N
V

∂F

∂H
(1.22)

=
N

V
gJµBJBJ(βgJµBJH), (1.23)

where the Brillouin function BJ is defined as

BJ(x) =
2J + 1

2J
coth

2J + 1

2J
x− 1

2J
coth

1

2J
x. (1.24)

When kBT � gJµBH, x� 1 and the magnetic susceptibility simplifies to

χM ≈
1

V

NJ(J + 1)g2
Jµ

2
B

3kBT
, (1.25)

corresponding to a Curie constant of

C =
dχ−1

M

dT
=

3kB
NJ(J + 1)g2

Jµ
2
B

. (1.26)

Defining an effective moment meff = gJµB
√
J(J + 1), the Langevin result of Eq. 1.5

is recovered.

The effective moment is formally identical to Eq. 1.19. Therefore, measurements

of the Curie constant allow comparison between the experimental value of meff and

the quantum mechanical calculation |µJ |, which reveals the degree of quenching in an

element. The effective moment of the heavy rare-earth metals is, rather remarkably,

predicted with reasonable accuracy when J is determined using Hund’s rules, while

for the transition metals the orbital moment is quenched and one should use J = S

and gJ ≈ 2 [18, 29]. It should be noted that for Fe, for example, using just Hund’s

first rule still does not accurately determine the ground state moment. Instead, an
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accurate determination is possible using first-principles band theory, such as that

described in Chapter 2.

1.3.2 Pauli paramagnetism

When a magnetic field is applied to a metal, the electron gas may exhibit a param-

agnetic response called Pauli paramagnetism. An expression for the response can be

derived in the independent electron approximation and, for simplicity, the conduc-

tion electrons are assumed to have fully quenched orbital moments [30]. An electron

with spin parallel to H contributes a magnetization density −µB/V and with spin

antiparallel contributes µB/V . Let n↑ be the number of electrons with a positive con-

tribution to the magnetization density (anti-parallel spin to H) and n↓ be the number

of electrons with a negative contribution (parallel spin to H). The total magnetization

due to the conduction electrons is

M = µB(n↑ − n↓). (1.27)

The following derivation of the Pauli susceptibility follows Ref. [27]. The energy

density

E

V
=

µ2
B

2χp
(n↑ − n↓)2 − µB(n↑ − n↓)H (1.28)

replicates Eq. 1.27 for the minimization condition ∂E/∂(n↑−n↓) = 0. Physically, the

first term in Eq. 1.28 corresponds to the increase in kinetic energy due to the transfer

of ↓ electrons to unoccupied ↑ states, and the second term is the energy decrease due

to aligning spins with the external field. Alternatively, the energy density can be
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Figure 1.1: The density of states for a Pauli paramagnet in an external field. (a)
When the field is applied, electrons from the ↓ channel populate unoccupied states in
the ↑ channel. (b) The realignment of the Fermi level.

calculated by taking integrations over the density of states (DOS)

E =

∫ E↑

−∞
EN↓(E)dE +

∫ E↓

−∞
EN↑(E)dE − µB(n↑ − n↓)H. (1.29)

Fig. 1.1 illustrates what happens when the field H is applied. Around the Fermi

energy, a small fraction of ↓ electrons populate empty states above the Fermi energy

in the ↑ channel. Because of the Pauli exclusion principle, electrons that occupy

states far below the Fermi energy cannot be promoted to empty states. Since only

the electrons at and near the Fermi energy are effected by the applied field, the DOS

in Eq. 1.29 can be approximated by its value at the Fermi energy, N↑,↓(E) ≈ Ns(EF )

(note that the total DOS at EF is N(EF ) = 2Ns(EF )). It follows from Fig. 1.1

that n↑ − n↓ = Ns(EF )(EF + δE) − Ns(EF )(EF − δE) = 2Ns(E)δE, and that the
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integration limits can be taken from EF to E↑,↓ = EF ± δE. This leads to

E =

∫ EF+δE

EF

ENs(EF )dE +

∫ EF−δE

EF

ENs(EF )dE − µB(n↑ − n↓)H

=
Ns(E)

2

[
(EF + δE)2 + (EF − δE)2 − 2E2

F

]
− µB(n↑ − n↓)H

=
1

2Ns(EF )
(n↑ − n↓)2 − µB(n↑ − n↓)H. (1.30)

Comparing Eqs. 1.28 & 1.30, the Pauli susceptibility χp is found to be

χp = 2µ2
BNs(EF ). (1.31)

Unlike the Curie law result for local moments, the Pauli susceptibility is temperature

independent and depends on the DOS at the Fermi energy.

1.4 Ferromagnetism

A handful of elemental materials and a vast number of compounds exhibit phases

with magnetic ordering, the spontaneous alignment of spins2 in the absence of an

external magnetic field. There are three general cases of ordering: ferromagnetism,

antiferromagnetism, and ferrimagnetism. In ferromagnetic ordering all spins align

parallel to one another, resulting in a macroscopic magnetization. In antiferromag-

netism the spins are aligned anti-parallel to one another and the net magnetization

is zero. Unlike the ferromagnetic case, antiferromagnetic order can be achieved via

different topologies of moment ordering. In some systems, such as materials with a

triangular Kagome lattice crystal structure, different antiferromagnetic orderings can

2In condensed matter, the terms spin and moment are often used interchangeably. When the
orbital moment is quenched, which is the case in the many ferromagnetic substances [13], this
substitution of terms is reasonably accurate. However in unquenched systems such as the heavy
rare-earths, the differentiation between S and J should be made clear.
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be degenerate or energetically similar, giving rise to magnetic frustration. In ferri-

magnetism, the spins order in some non-ferromagnetic way, but the magnetization is

finite. For example, this can occur in compounds with two different magnetic species

with different net moments, so even if the magnetic ordering is reminiscent of an

antiferromagnet, the different moment magnitudes lead to a net magnetization.

This section will discuss the origin of magnetic ordering and then present two

magnetic models, the Heisenberg model for localized moments and the Stoner model

for magnetic, itinerant electrons. For simplicity, only ferromagnetic ordering will be

discussed.

1.4.1 The exchange interaction

The origin of magnetic ordering is the so-called exchange interaction. To illustrate

the concept of exchange as discussed in Ref. [30], consider the hydrogen molecule, a

system of two spatially separated protons and two electrons. The Hamiltonian of the

system is

H = − ~2

2m

(
∇2

1 +∇2
2

)
+ V (r1, r2), (1.32)

and because there are two electrons the spin quantum number can be either S = 0

(anti-symmetric spin singlet state) or S = 1 (symmetric spin triplet state). To keep

the overall wave function anti-symmetric, the spatial wave function must be symmet-

ric for the singlet state and anti-symmetric for the triplet state. The independent

electron approximation is assumed and V (r1, r2) is ignored. The singlet and triplet

states are built using the tight-binding approach, such that the two-electron wave

functions are linear combinations of products of the atomic stationary-state wave
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functions φ1 and φ2 centered at R1 and R2

ψs(r1, r2) = φ1(r1)φ2(r2) + φ2(r1)φ1(r2) + φ1(r1)φ1(r2) + φ2(r1)φ2(r2), (1.33)

ψt(r1, r2) = 2 [φ2(r1)φ1(r2)− φ1(r1)φ2(r2)] . (1.34)

While correct in the independent electron case, Eq. 1.33 is a very poor description of

the singlet state when electron-electron interactions are considered. Terms three and

four predict that both electrons have a significant probability of being present near

the same atom, which is energetically unfavorable due to Coulomb repulsion. As a

remedy, terms three and four can be dropped from Eq. 1.33, leaving

ψ̄s(r1, r2) = φ1(r1)φ2(r2) + φ2(r1)φ1(r2). (1.35)

This is known as the Heitler-London approximation, and is much more accurate than

Eq. 1.33 for the H2 molecule with widely separated protons. Eq. 1.34 for the triplet

state is reasonable as it does not have two electrons occupying the same atom.

Taking the difference in energy between the singlet state in Eq. 1.35 and the triplet

state in Eq. 1.34 yields

1

2
(Es − Et) =

∫
dr1dr2 [φ1(r1)φ2(r2)]

(
e2

|r1 − r2|
+

e2

|R1 −R2|
+

e2

|r1 −R1|
+

e2

|r2 −R2|

)
[φ2(r1)φ1(r2)] . (1.36)

Eqs. 1.34 & 1.35 differ only through the exchange of spatial electron coordinates r1

and r2 and so the energy difference in Eq. 1.36 is called the exchange splitting. In

spin space, the difference is between parallel and anti-parallel spin alignments of the

electrons, and if Es > Et, then ferromagnetic ordering is energetically preferred. This
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is the origin of spontaneous magnetic ordering and is sometimes viewed as a magnetic

interaction called the exchange interaction. It is important to note that, despite the

terminology, the exchange interaction is nothing more than the effect of electrostatic

interactions and the Pauli exclusion principle.

The interaction just described is called direct exchange, owing to the direct Coulomb

interaction between the electrons on two separate ions. There are other types of

exchange responsible for magnetic ordering. Superexchange is when the exchange

interaction between spins on two separate atoms is mediated by the electrons on a

third, non-magnetic atom [31–33]. This is commonly found in magnetic insulators,

such as the ionic solids CuO and MnO. Indirect exchange is when the exchange be-

tween electrons localized on atoms is mediated by conduction electrons, such as in the

rare-earth metals, and is explained by the Ruderman-Kittel-Kasuya-Yosida (RKKY)

theory [34–36]. Itinerant exchange occurs between the electrons in an electron gas

such as in Fe, Ni, and Co; an example of a theory of itinerant exchange is the Stoner

model to be discussed in Sec. 1.4.3. In many magnetic crystals the overall exchange

interaction responsible for ordering is a combination of the different types discussed

here. This is an immense theoretical challenge as a complete description of magnetism

should be able to interpolate between the different types of exchange.

1.4.2 Heisenberg model

The previous analysis demonstrates how to determine whether the ground state of

a two-electron system contains parallel or anti-parallel spin alignment. Extending

this kind of treatment to a system of N atoms is not straightforward. However

if excitations to states outside the ground state multiplet are ignored, then a spin

Hamiltonian called the Heisenberg model can be constructed. This model reproduces
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the spin structure and is commonly used to investigate the thermodynamics of a wide

variety of magnetic materials.

To motivate the Heisenberg model, the hydrogen molecule is once again consid-

ered. When the hydrogen atoms are very far apart the ground state is fourfold degen-

erate, and the spin on each atom can individually orient up or down. When the atoms

are brought together to form a H2 molecule, the ground state splits into a multiplet,

where the splitting is small compared to the gap between excited states. If higher

energy multiplets are ignored, then the molecule has four possible spin orientations.

The total spin operator for the H2 molecule is

S2 = (S1 + S2)2 =
3

2
+ 2S1 · S2. (1.37)

Using |S2| = S(S + 1), the eigenvalue of S1 · S2 is −3
4

in the singlet state and +1
4

in

the triplet state. Therefore the spin Hamiltonian

Hspin =
1

4
(Es + 3Et)− (Es − Et) S1 · S2 (1.38)

has energy Es in the singlet state and Et in the triplet state. Redefining the zero

energy to remove the constant terms yields

Hspin = −JS1 · S2; J = Es − Et. (1.39)

Parallel spins are favored when J > 0 and antiparallel spins are favored when J < 0.

In general, extending the above procedure to a system of N atoms is complex,

as the analogous starting point would be the degenerate ground state splitting into

a multiplet of (2S + 1)N levels whose eigenvalues need to be replicated by the con-

structed spin Hamiltonian. It turns out, however, that the N -atom system can also be
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described by a modification of the two-electron spin Hamiltonian by simply summing

over all pairs of atoms:

HHeis = −1

2

∑
ij

JijSi · Sj − gµB
∑
i

Si ·Hi, (1.40)

where the factor of 1/2 is introduced to take care of double counting and a Zeeman

energy term was introduced to account for an applied field. This is the Heisenberg

Hamiltonian. The exchange tensor Jij is necessarily symmetric Jij = Jji and in the

absence of symmetry each pair of atoms can, in principle, have a unique exchange

constant associated with it. The exchange constant parameterizes the energy it takes

to flip a spin in a solid. Because Jij can be positive or negative depending on the pair,

the Heisenberg model can be applied to both ferromagnets and antiferromagnets.

The Heisenberg model is a typical starting point for investigating the thermody-

namics of magnetic systems by solving the statistics problem using exact Monte Carlo

simulations or an approximation. The simplest approximation that yields qualitative

results is the mean-field approximation, which is equivalent to the molecular Weiss

field where the complex pair interactions are contained in a simple effective field term.

To apply the approximation, the spin on site i is rewritten in the form

Si = 〈Si〉+ (Si − 〈Si〉) = 〈Si〉+ ∆Si, (1.41)

where 〈Si〉 and ∆Si are the thermal average and fluctuations of Si. Substituting

Eq. 1.41 into the first term of Eq. 1.40,

−1

2

∑
ij

Jij (2Si · 〈Sj〉+ 〈Si〉 · 〈Sj〉+ ∆Si ·∆Sj) . (1.42)
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The fluctuation terms are assumed to be small and terms of order (∆S)2 and higher

are dropped. The second term in Eq. 1.42 can be removed by setting the appropriate

zero energy. For a system with translational symmetry, all spins are identical3 (〈Si〉 =

〈S〉) and the thermal spin average can be related to the total magnetization density

〈S〉 = VM/(NgµB). In the single-site approximation the external field must be

uniform, i.e. Hi = H. The mean-field Hamiltonian is then

HMFA = −gµB
∑
i

Si ·Heff, (1.43)

where the effective field Heff is

Heff = H +
V

N(gµB)2
M
∑
j

Jij

= H + λM (1.44)

with

λ =
V

N

J0

(gµB)2
; J0 =

∑
j

Jij. (1.45)

Eq. 1.43 is formally the same as the Hamiltonian treated in Sec. 1.3.1, so the

statistics problem is solved in the same way and the magnetization is Eq. 1.23 with

the appropriate substitution of variables:

M(T ) =
N

V
gµBSBS(βgµBSH

eff). (1.46)

If the spins are treated as classical vectors (S → ∞), then the Brillouin function in

3This assumption is for ferromagnetic systems only. This symmetry needs to be broken for
anti-ferromagnetic systems.
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Eq. 1.24 simplifies to the Langevin function. Setting m0 = gµBS as the magnetization

due to a single spin at zero temperature, the magnetization is equivalent to Eq. 1.6

from the classical Langevin-Weiss theory:

M(T ) =
N

V
m0

[
coth(βm0H

eff)− 1

βm0Heff

]
. (1.47)

Eq. 1.3 can be used to calculate the susceptibility of the mean-field Heisenberg

model in the paramagnetic state, where kBT � µBH
eff. Starting with Eq. 1.46, this

recovers the Curie-Weiss law

χM =
χ0

T − Tc
(1.48)

with bare susceptibility χ0 and Curie temperature Tc:

χ0 = N(gµB)2S(S + 1)

3kB
, (1.49)

Tc =
S(S + 1)

3kB
J0. (1.50)

The Curie temperature in Eq. 1.50 is generally overestimated when compared with ex-

act solutions of the Heisenberg model (using, for example, Monte Carlo simulations).

This is a well-known deficiency of the mean-field approach.

1.4.3 Stoner model

The previous discussion of the exchange interaction and the Heisenberg model as-

sumed that the electrons responsible for magnetism were localized on individual

atomic sites. This is a reasonable assumption for magnetic insulators and the heavy

rare-earth elements, but it is inadequate in explaining how delocalized electrons can
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support a ferromagnetic ground state, such as in the 3d transition metals Fe, Co, and

Ni. It turns out that the energetic competition between Coulomb repulsion, the Pauli

principle, and the electronic kinetic energy can give rise to a ferromagnetic state. A

band theory of electrons is necessary to explain such ferromagnetic ordering.

The previous discussion of Pauli paramagnetism was based on the band theory

of electrons, and the energy density in Eq. 1.28 contained only terms for the kinetic

energy and the Zeeman energy, ignoring Coulomb repulsion between electrons. If the

Coulomb interaction is introduced, then because of the Pauli principle, electrons that

are close together will have anti-parallel spins at the expense of a greater Coulomb

repulsion energy. Parallel spins will tend to avoid each other, lowering the Coulomb

energy.

Keeping these qualitative points in mind, a good starting point is to take the

energy density in Eq. 1.28 and add in the Coulomb repulsion term Un↑n↓ similar

to what is used in the simple Hubbard model [27]. Making use of the definitions

m ≡ n↑−n↓ and n ≡ n↑+n↓, the Coulomb term can be rewritten as U/4(n2−m2). The

first term is a constant and can be eliminated by an appropriate energy shift, while

the second term is dependent on the magnetization of the material. The modified

energy density can be written as

E

V
=

µ2
B

2χp
(n↑ − n↓)2 − I

4
(n↑ − n↓)2 − µB (n↑ − n↓)H, (1.51)

where I ≡ U , by convention. Recalling the expression for χp in Eq. 1.31, Eq. 1.51

can be rewritten as

E

V
=
µ2
B

2χ
(n↑ − n↓)2 − µB (n↑ − n↓)H, (1.52)
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where

χ =
χp

1− INs(EF )
(1.53)

is the exchange-enhanced Pauli susceptibility.

Looking at Eq. 1.53, χ diverges when INs(EF ) = 1 indicating that for INs(EF ) >

1 the paramagnetic state is unstable, and a spontaneous magnetization will develop.

This is the famous Stoner criterion. The intra-atomic Coulomb parameter I, also

called the Stoner parameter, is relatively constant for most metals, with I ≈ 1 eV

[37]. The DOS at the Fermi level, on the other hand, varies significantly from metal

to metal. Fe, Co, and Ni, for example, have a DOS at the Fermi energy large enough

to fulfill the Stoner criterion and support ferromagnetism. Other metals, like Pd, are

close to the transition point, making them easy to polarize.

1.5 Diffusive theory of spin transport

Up to this point the discussion has centered on the origin and thermodynamics of

magnetism and magnetic ordering. Another area of interest in magnetism is the the-

ory of spin transport, a sub-branch of spin electronics or spintronics. Spin transport

theory is relevant to the material to be discussed in Chapter 4. Spintronics is the

field of research concerned with the manipulation of the electron’s spin in electronic

devices, in addition to its charge. One aim of the field is to build a commercially

viable spin transistor [16] that can operate at room temperature. Achieving this goal

means understanding how to generate, manipulate, and detect spin currents in spin

injection geometries.

The problem of spin injection was first worked out by Johnson and Silsbee [38, 39],
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Figure 1.2: A schematic of the magnetization of a ferromagnet/normal metal junction
while current flows from left to right. The interface is at x = 0, the ferromagnet is
at x < 0 and the normal metal is at x > 0. The non-equilibrium magnetization,
called the spin accumulation, exponentially decays away from the interface on both
the ferromagnetic and normal metal sides.

and further investigations were done by van Son [40], Valet and Fert [41], Hershfield

and Zhao [42], and Rashba [43, 44]. When a voltage is applied to a ferromagnet/nor-

mal metal junction and a steady-state current passes through the interface into the

normal metal, a non-equilibrium magnetization develops in the normal metal near the

interface, as shown in the schematic in Fig. 1.2. This is due to spin polarized electrons

entering the normal metal through the interface, which then relax via spin-flip pro-

cesses over the length scale of the spin-diffusion length4 [46, 47]. This non-equilibrium

magnetization is called the spin accumulation and it is the result of successful spin

injection. It is an important concept in spintronics and is relevant to other interesting

spin-dependent phenomena such as giant magnetoresistance [48, 49].

The diffusive spin-dependent transport theory, also called the two spin channel

model, is used to model spin injection. The two channel model is a modification

first postulated by N. F. Mott [50] of the semi-classical diffusive model of transport

relevant to ferromagnets. The general observation is that the conduction electrons

often can be separated into two independent classes based on their spin. Therefore

4The spin-diffusion length, and hence the spin accumulation, in normal metals and semiconduc-
tors can be large. Spin-diffusion lengths can be on the order of micrometers in very pure samples of
Ag, and lengths of over 100 micrometers have been observed in n-doped semiconductors [45].
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Figure 6.7: The spectral function of Gd calculated at the Fermi energy in CPA along
the indicated planes in reciprocal space. The first row of calculations (a), (c), and (e)
are DLM only and the second row of calculations (b), (d), and (f) are DLM with an
Anderson disorder amplitude of 0.95 eV.

effect on the Fermi surface which is nearly identical to the non-magnetic Fermi surface

[219]. As discussed in Ref. [219], the cylindrical sheet centered around the Γ−A line

is a hole Fermi surface and the pockets outside it are electron Fermi surfaces. There

are several points where the electron and hole surfaces approach each other, such as

along the Γ − K line. The surfaces cross near the Γ − H line and are degenerate

on the AHL plane. When Anderson disorder is introduced, the locations where the

surfaces are either degenerate or close to touching strongly interact as indicated by the

large spectral weight appearing in these regions. This effect is most dramatic around
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the Γ-centered cylinder in Fig. 6.7(b) and over the entire AHL plane in Fig. 6.7(d).

Overall, the rapid increase in the Gd resistivity can be viewed as resulting from the

strong interaction between the hole and electron Fermi surfaces activated by Anderson

(or phonon) disorder. When ∆And is increased to values consistent with the linear

region in Fig. 6.6, the broadening overwhelms the interaction effects and an incoherent

spectral weight spans the Brillouin zone, consistent with the observation that the

linear behavior is a saturation effect due to strong disorder. These observations also

provide an explanation for why the enhancement in Fe is modest compared to Gd;

the Fermi surface of Fe does not have separate sheets that can interact and the

paramagnetic state alone corresponds to strong disorder, such that with DLM only

the spectral function already has incoherent weight throughout the Brillouin zone.

The band broadening (normalized by the initial broadening in the DLM state)

in the Gd spectral function, which is proportional to the inverse scattering rate,

is modest when the broadening rates of different bands are compared. The most

significant differences when comparing broadening rates between two band crossings

with similar Fermi velocities are the electron Fermi surface crossings along the M−K

line and the Γ − K line, which differ by 22%. The typical variation of broadening

rates when comparing most band crossings is between 5− 10%. This will contribute

to the deviations observed in the resistivity calculations, but cannot account for the

full enhancement of Gd.

Finally, the spectral function of Gd appears to resolve a discrepancy between

theory and experiment regarding the shape of the paramagnetic Fermi surface. The

calculated non-magnetic Gd hole Fermi surface has a cylindrical trunk and “arms”

at the top and bottom of the Brillouin zone [58]. Since the non-magnetic electronic

structure is very similar to DLM calculation, the paramagnetic and non-magnetic

Fermi surfaces should agree, which is the case for our calculations. However, the
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angle-resolved photoemission spectroscopy (ARPES) investigation of Gd by Döbrich

et. al. [194] at 300 K measured a paramagnetic hole Fermi surface without arms in

the AHL plane. Comparing the spectral function in Figs. 6.7(e) & 6.7(f) shows that

Anderson disorder will lead to incoherent spectral weight close to the AHL plane, save

for a cylindrical region near the A point. Therefore phonon disorder, as suggested

by the spectral function, may obscure the arm features and as a result the ARPES

measurements would only detect the outline of the dark blue cylindrical shape in

Fig. 6.7(f). The ARPES data for the ΓMLA plane of paramagnetic Gd also has a

dark gray region outside of the cylindrical trunk, the shape of which is consistent

with the spectral function in Fig. 6.7(f).

6.5 Conclusions

We studied the dependence of the resistivity of randomly spin-disordered α-Fe, γ-Fe,

and Gd as a function of the mean-square displacement ∆2
ph of the atomic positions.

We found that including phonon disorder with spin disorder leads to a non-linear

dependence of the resistivity for smaller displacements, transitioning into a linear

dependence at larger displacements which, when fitted, leads to an apparent SDR

larger than the bare SDR. The enhancement is moderate for both phases of Fe and

substantial for Gd, which suggests that previous underestimations of the SDR of

Gd compared with experiment are due to the neglect of phonons. The same qual-

itative behavior in the resistivity of Gd is also observed when Anderson disorder is

substituted in for phonon disorder, both for spin-disordered magnetic potentials and

non-magnetic potentials, indicating that the deviations are electronic in origin and

the linear behavior is a saturation effect brought on by strong disorder. The rapid

increase of the resistivity in Gd can be traced to an interaction between the hole and
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electron Fermi surfaces of Gd activated by disorder wherever the surfaces intersect or

nearly touch. This suggests that large discrepancies between the apparent and bare

SDRs may be expected in magnetic metals where the Fermi surface is still reasonably

well-defined in the spin-disordered (DLM) state and has multiple Fermi sheets that

touch, or nearly touch, in the Brillouin zone.
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[169] S. Garzon, I. Žutić, and R. A. Webb, Phys. Rev. Lett. 94, 176601 (2005).

[170] L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991).
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