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Purpose: To evaluate the performance of lesion volumetry in hepatic CT as a function of various

imaging acquisition parameters.

Methods: An anthropomorphic abdominal phantom with removable liver inserts was designed for

this study. Two liver inserts, each containing 19 synthetic lesions with varying diameter (6–40 mm),

shape, contrast (10–65 HU), and both homogenous and mixed-density were designed to have back-

ground and lesion CT values corresponding to arterial and portal-venous phase imaging, respectively.

The two phantoms were scanned using two commercial CT scanners (GE 750 HD and Siemens

Biograph mCT) across a set of imaging protocols (four slice thicknesses, three effective mAs, two

convolution kernels, two pitches). Two repeated scans were collected for each imaging protocol.

All scans were analyzed using a matched-filter estimator for volume estimation, resulting in 6080

volume measurements across all of the synthetic lesions in the two liver phantoms. A subset of portal

venous phase scans was also analyzed using a semi-automatic segmentation algorithm, resulting

in about 900 additional volume measurements. Lesions associated with large measurement error

(quantified by root mean square error) for most imaging protocols were considered not measurable

by the volume estimation tools and excluded for the statistical analyses. Imaging protocols were

grouped into distinct imaging conditions based on ANOVA analysis of factors for repeatability

testing. Statistical analyses, including overall linearity analysis, grouped bias analysis with standard

deviation evaluation, and repeatability analysis, were performed to assess the accuracy and precision

of the liver lesion volume biomarker.

Results: Lesions with lower contrast and size ≤10 mm were associated with higher measurement

error and were excluded from further analysis. Lesion size, contrast, imaging slice thickness, dose,

and scanner were found to be factors substantially influencing volume estimation. Twenty-four

distinct repeatable imaging conditions were determined as protocols for each scanner with a fixed

slice thickness and dose. For the matched-filter estimation approach, strong linearity was observed

for all imaging data for lesions ≥20 mm. For the Siemens scanner with 50 mAs effective dose at

0.6 mm slice thickness, grouped bias was about −10%. For all other repeatable imaging conditions

with both scanners, grouped biases were low (−3%–3%). There was a trend of increasing standard

deviation with decreasing dose. For each fixed dose, the standard deviations were similar among the

three larger slice thicknesses (1.25, 2.5, 5 mm for GE, 1.5, 3, 5 mm for Siemens). Repeatability

coefficients ranged from about 8% to 75% and showed similar trend to grouped standard deviation.

For the segmentation approach, the results led to similar conclusions for both lesion characteristic

factors and imaging factors but with increasing magnitude in all the error metrics assessed.

Conclusions: Results showed that liver lesion volumetry was strongly dependent on lesion size,

contrast, acquisition dose, and their interactions. The overall performances were similar for images

reconstructed with larger slice thicknesses, clinically used pitches, kernels, and doses. Conditions

that yielded repeatable measurements were identified and they agreed with the Quantitative Imaging

Biomarker Alliance’s (QIBA) profile requirements in general. The authors’ findings also suggest
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potential refinements to these guidelines for the tumor volume biomarker, especially for soft-tissue le-

sions. C 2016 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4967776]

Key words: quantitative imaging biomarker, liver lesion volumetry, computed tomography, phantom

study

1. INTRODUCTION

Quantitative imaging biomarkers (QIB) correlate with clinical

outcomes and can be used to improve patient care.1 More

focus has been placed on standardization and validation of

QIB through the collaboration of research, industry, and

clinical practice in groups such as the Quantitative Imaging

Biomarker Alliance (QIBA) of the Radiological Society of

North America and the Quantitative Imaging Network (QIN)

of the National Cancer Institute. These organizations seek to

streamline the incorporation and evaluation of QIB in clinical

trials, ultimately improving personalized precision medicine.

The size of a lesion is a useful biomarker for performing

diagnosis, determining tumor progression, and monitoring

response to treatment.2–4 The most commonly used standard

for characterization of lesion size is the Response Evaluation

Criteria In Solid Tumors (RECIST), which requires a 1D

measurement (diameter) of the tumor.5 In 2002, an initial

study found that evaluating treatment response by volumetric

measurement of liver lesions led to different results than

evaluating response using 1D or 2D measurement.6 Later, an

update to RECIST called for more validation, standardization,

and wide-spread availability of volumetric methods before the

adoption of these methods for routine use. Since then, there

have been studies of lesions in phantoms, in the lung, and in

the gastrointestinal tract that have demonstrated that volume

better discriminates changes in lesion size.7–10 For the liver,

a 2012 study by Chalian et al. concluded that measurement

of volumetric attenuation was reproducible in a study of 208

patients, and that it might be a better method of assessing

changes of tumors in response to therapy.11 However, factors

contributing to variability in measuring the volume remained

to be tested.

The uncertainties of the volume measurement process must

be understood before QIB can be fully utilized. Estimation

error depends on a number of factors including acquisition

and reconstruction parameters, lesion characteristics, and

estimation methods.12–14 Imaging of in vivo lesions can only

be performed for a limited range of acquisition factors due

to CT radiation dose concerns for the patients. Zhao et al.

studied the effects of slice thickness and reconstruction

algorithm on tumor measurements from repeat CT scans,

including the volume for lung, liver, and lymph node diseases

in patients.15,16 The use of phantoms allows for a wider

range of factors to be systematically explored. Li et al.

investigated many of these factors (lesion size, shape; scan

exposure, slice thickness) using an anthropomorphic lung

phantom and applied statistical analyses to the volume of

the nodules.17 However, the estimation of liver lesion volume

differs from the estimation of lung nodule volume due to

much lower lesion-to-background contrast and higher noise

levels. Furthermore, liver lesion contrast varies depending

on the timing of the image acquisition with respect to the

intravenous contrast agent injection (arterial phase ∼35 s

after injection, portal-venous phase ∼75 s after injection).

Investigation of volumetric estimation uncertainties for liver

lesions may provide new insight into the design of studies

examining volumetry of other types of soft tissue lesions and

soft tissue lesions in general.

In this work, we investigated the influence of numerous

factors in CT volumetry of liver lesions through a well-

controlled phantom study. We applied statistical analyses to

over 6000 measurements of lesion volume to determine the

interaction of various imaging factors and the reliability of

the QIB estimation. The phantom design, imaging protocol,

volume estimators, and statistical methods are described in

Sec. 2. In Sec. 3, the results are presented, followed by a

discussion in Sec. 4, and conclusion in Sec. 5.

2. MATERIALS AND METHODS

2.A. Phantom design

An anthropomorphic abdominal phantom with a removable

liver insert was designed by the research team and custom

manufactured by QRM (Moehrendorf, Germany). Two inserts

containing 19 lesions each were made to simulate arterial and

portal-venous phase imaging of the liver. For the arterial phase,

the liver parenchyma was nominally uniform at 80 HU, with

CT values ranging between 60 and 120 HU for the various

synthetic liver lesions. For the portal-venous phase, the CT

value for the liver parenchyma was 110 HU, and the lesion CT

values ranged between 45 and 100 HU. Table I contains a list

of the synthetic lesion properties of the inserts. Eight lesion

sizes (6, 8, 10, 20, 23, 30, 34, 40 mm diameter) and three

shapes (spherical, ellipsoidal, and lobulated), both solid and

mixed density, were included in the liver inserts. The lesion-to-

background contrast (absolute value of HU difference between

lesion and surrounding parenchyma) ranged from 10 to 40 HU

for the arterial phase and 10–65 HU for the portal-venous

phase, where contrast is defined as the absolute difference

between the background and the lesion. A previous study has

shown that a minimum of 10 HU is required to observe the

lesion.18 Figure 1 shows the schematic of the phantom. The

reference standard volume for the lesion was provided by

QRM and was measured prior to final insertion with the liver

inserts.

2.B. Imaging protocols

Imaging protocols utilized in this study are given in

Table II. The phantom was imaged at the Columbia University

Medical Physics, Vol. 43, No. 12, December 2016

http://dx.doi.org/10.1118/1.4967776
http://dx.doi.org/10.1118/1.4967776
http://dx.doi.org/10.1118/1.4967776
http://dx.doi.org/10.1118/1.4967776
http://dx.doi.org/10.1118/1.4967776
http://dx.doi.org/10.1118/1.4967776
http://dx.doi.org/10.1118/1.4967776
http://dx.doi.org/10.1118/1.4967776


6610 Li et al.: Volumetry of low-contrast liver lesions with CT 6610

T I. A table of lesion characteristics including nominal lesion density and contrast values for the arterial and

portal venous phase liver inserts at 120 kVp. The nominal radiodensity of liver parenchyma is 80 HU for the

arterial phase and 110 HU for the portal venous phase insert at 120 kVp. Lesions 5–6 and 11–12 refer to mixed

density objects with specified outer/inner properties.

Lesion index Lesion density (HU) Contrast (HU)

Arterial Venous Diameter (mm) Shape Arterial Venous Arterial Venous

1 20 34 Lobulated 60 45 20 65

2 21 34 Lobulated 120 75 40 35

3 22 30 Ellipsoid 60 45 20 65

4 23 30 Ellipsoid 120 75 40 35

5 24 30/20 Spherical/spherical 100/45 90/45 20 20

6 25 30/20 Spherical/spherical 90/120 100/60 10 10

7 26 23 Lobulated 60 45 20 65

8 27 23 Lobulated 120 75 40 35

9 28 20 Ellipsoid 60 45 20 65

10 29 20 Ellipsoid 120 75 40 35

11 30 20/10 Spherical/spherical 100/45 90/45 20 20

12 31 20/10 Spherical/spherical 90/120 100/60 10 10

13 32 40 Ellipsoid 90 100 10 10

14 33 10 Spherical 60 75 20 35

15 34 10 Spherical 90 90 10 20

16 35 8 Spherical 60 75 20 35

17 36 8 Spherical 90 90 10 20

18 37 6 Spherical 60 75 20 35

19 38 6 Spherical 90 90 10 20

Medical Center with two 64-slice multi-detector helical CT

scanners: GE 750HD (GE Healthcare, Chicago, IL, US)

and Siemens Biograph mCT (Siemens Healthcare, Erlangen,

Germany). The data were acquired at 120 kVp and at

three dose levels of approximately 3.8, 7.6, and 19 mGy

corresponding to 50, 100, and 250 effective tube current time

product (mAs), respectively. Effective mAs is defined as (total

mAs)/pitch for the scan. There are small differences between

the acquired pitch and associated slice thicknesses between

the two CT systems as the available setting of these two

imaging parameters is different for these two CT scanners.

For the GE system, we acquired pitch factors of 1.375 and

0.983; for the Siemens system we acquired pitch factors

of 1.35 and 1.0. The mAs was adjusted for each pitch to

reach the three pre-set effective mAs. CT acquisitions for

the Siemens image data acquired at a pitch of 1.0 were

collected for only a single dose of 250 effective mAs. The

GE image data were reconstructed at slice thicknesses of

5.0, 2.5, 1.25, and 0.625 mm and the Siemens data were

reconstructed at 5.0, 3.0, 1.5, and 0.6 mm. Filtered back-

projection (FBP) reconstructions were used with two different

kernels from each vendor’s scanner: GE, Standard and Soft

and for Siemens, correspondingly, B30f and B20f. For each

liver insert (arterial, portal-venous), data from two repeated

scans were collected. Figure 2 shows four example images

corresponding to plane A-A and B-B from Fig. 1 for both

the arterial and the portal venous phase with lesion indexes

labeled.

In total, we collected 320 image series (i.e., GE: 48 imaging

protocols ×2 repeats ×2 phantoms; Siemens: 32 imaging

protocols ×2 repeats ×2 phantoms) and 34.4 GB image data.

All of the acquired image data are ready to be submitted

to the quantitative imaging data warehouse (QIDW), the

RSNA/QIBA designated data warehouse.

F. 1. Layout of the anthropomorphic abdominal phantom and liver inserts with fixed built-in lesions. The arterial and portal venous phase liver inserts had the

same lesion layout.

Medical Physics, Vol. 43, No. 12, December 2016
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T II. CT imaging protocols for the anthropomorphic liver phantom. Two repeated scans were acquired for each imaging acquisition condition.

Acquisition parameters Reconstruction parameters

Scanner kVp Eff. mAs Pitch Collimation Slice thickness Overlap Recon algorithm Convolution kernel

GE 750HD 120 50 1.375 64 × 0.625 5 0% FBP Standard

100 0.983 2.5 Soft

250 1.25

0.625

Siemens mCT 120 50 1.35 64 × 0.6 5 0% FBP B30f

100 1.0a (32 × 0.6 detector width) 3.0 B20f

250 1.5

0.6

aOnly one effective mAs (250) was acquired for pitch 1.0.

2.C. Volume estimation

Two noncommercial volume estimation tools were used.

The first was a model-based matched-filter (MF) volume

estimator.19 It is unsupervised (i.e., no human corrections

were applied) and assumes prior knowledge of the general

location (a seed point) and the shape for each lesion. For

mixed density lesions, volume measurements were made for

the entire object. More details on the matched-filter method

can be found in the Appendix. The second algorithm is

based on a marker-controlled watershed segmentation (SEG)

approach developed for segmentation of hypo-intense liver

lesions.13 It required manual selection of a region-of-interest

inside the lesion on one image to initiate the segmentation.

F. 2. Example CT slices of the abdominal phantom containing either the arterial [(a) and (b)] or portal venous [(c) and (d)] phase liver insert (250 effective

mAs, slice thickness 2.5 mm, GE 750HD). Note that some small lesions in (b) are not visible at this window level.

Medical Physics, Vol. 43, No. 12, December 2016
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The algorithm then automatically found lesion boundaries on

all image series containing the 3D lesion. For the segmentation

approach, a radiologist also reviewed every segmentation and

made modifications using a noncommercial editing tool when

necessary.

The matched-filter estimator was applied to all 320 image

series, resulting in 6080 volume measurements (320×38 le-

sions). The segmentation estimator was applied on a subset

of data: portal-venous insert lesions, 250 mAs with GE

and 250 mAs with Siemens at pitch 1.0, resulting in 912

measurements.

2.D. Statistical analysis methods

2.D.1. Analyses on matched-filter results

Prior to analyses, all data were log-transformed (natural

log) to reduce the heteroscedastic nature that was observed

in our volumetric measurements (variance of the measure-

ments increased substantially with larger lesions without

this transformation). We applied N-way ANOVA with two-

way interaction for factor analysis on all measurements,

using lesion size, lesion contrast, effective mAs (dose), slice

thickness, convolution kernel, and scanner as factors. We used

type II sums of squares for ANOVA analysis. Lesion shape

was not included since it was highly correlated with lesion

size (small lesions are all spherical, see Table I). For slice

thickness, 0.6 and 0.625 mm, 1.25 and 1.5 mm, and 2.5 and

3 mm were treated as the same category, respectively. For

a convolution kernel, standard and B30f and soft and B20f

were treaded as the same category, respectively. Based on the

ANOVA results, statistically significant imaging parameters

were considered major parameters. The others were referred

to as minor parameters. Measurements were then pooled for

root mean square error (RMSE) evaluation if they were from

imaging protocols with the same major parameters, where the

error was defined as the volume error (difference between

the volume measurement and the reference standard). Lesions

that were associated with high RMSE were visually inspected

to determine if they were not measurable or likely to be

disqualified in practice for the estimation task. Those lesions

were then excluded for the rest of the analyses.

Same ANOVA analysis was applied again on the measure-

ments of the remaining data. Since two ANOVA analyses were

applied on an overlapping dataset, p-value was set to 0.025

according to Bonferroni correction. Significant factors were

identified and ranked according to eta-squared, which was

calculated as the ratio of the between-group sum of squares

to the total sum of squares.17 Distinct repeatable imaging

conditions were also determined based on the ANOVA results.

Imaging protocols that only differed in minor parameters were

grouped to define a repeatable imaging condition.

Statistical analyses were done based on the metrology

recommendations outlined by the QIBA metrology working

group, which included the analysis of linearity, bias with

standard deviation, and repeatability.20–22 Overall linearity

was assessed by linear regression. Regression slope and

intercept with 95% confidence interval (CI) were reported.

Grouped bias with standard deviation was reported for each

repeatable imaging condition. Repeatability was evaluated as

repeatability coefficient for each repeatable imaging condition,

with lower value indicating better repeatability.

For a repeatable imaging condition, let yi jk be the volume

measurement for each lesion i = 1,2,. . .n, each combination

of minor parameters within the repeatable imaging condition

j = 1,2,. . .m, and each repeated measurement k = 1,2. Let xi

be the reference standard volume. The mean measurement for

the ith lesion in log domain is then

µi =
1

2m



j,k

ln yi jk

and the error compared to the reference standard is

ei jk = ln yi jk− lnxi.

Grouped bias for the repeatable imaging condition was

calculated as

B =
1

2nm



i, j,k

ei jk,

and standard deviation as

σe =



1

2nm−1



i,k, j

�
ei jk−B

�2
.

The repeatability coefficient (RC) was defined as 2.77 σw,

where the within-subject variance σ
2
w

was calculated as the

mean over all lesions of the variance over all combinations of

minor parameters and repeated measurements,

σ
2
w
=

1

n



i

*.
,

1

2m−1



k, j

�
ln yi jk− µi

�2+/
-
.

All the results in log units were converted to and reported in

percentage in the base unit of measurement.17 More details for

each performance metric used as part of this analysis can be

found in previous work.17,20

2.D.2. Analysis on segmentation results

The same metrics described above for the matched-filter

results were also used to evaluate the segmentation results.

3. RESULTS

3.A. MF results

3.A.1. Determine lesions to exclude and imaging
protocols to pool

Applying N-way ANOVA with two-way interaction (six

factors: dose, kernel, slice thickness, scanner, size, and

contrast) to all MF volume measurements, we identified the

following statistically significant factors: size, size × slice

thickness, size× dose, size× contrast, dose, slice thickness,

(p < 0.025, interacting factors indicated by ×). Based on those

results, further analysis was conducted across dose and slice

thickness, whereas kernel and scanner were pooled together.

For each of those imaging conditions, RMSEs were evaluated

Medical Physics, Vol. 43, No. 12, December 2016
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F. 3. RMSEs for all lesions across mAs (each row) and slice thickness (each column). Each dot represents the lesion with corresponding size and contrast

(overlapped dots are slightly shifted) with color reflecting the RMSE magnitude. Lesions ≤10 mm are shown within the dotted-box in the first plot.

for each of the 38 lesions. Figure 3 summarizes the RMSE

results. Clearly, the lesions ≤10 mm (lesions 14–19, 33–38)

were associated with large errors for most of the imaging

protocols. For these lesions, there were 1920 measurements,

and among those, 338 measurements were on the limits of

the MF search range (see the Appendix). Therefore, we

considered these lesions as not reliably measurable for our

MF algorithm. Visual inspection of the images also confirmed

the difficulty in detecting these lesions or identifying the

boundary of the lesions (Fig. 4). These small (≤10 mm) lesions

were all excluded, although the 10 mm lesion with +35 HU

contrast (index 33) yielded low RMSE for one or two imaging

conditions with 250 effective mAs. For the rest of the large

lesions (≥20 mm), only 30 out of 4160 were on the limits

of the MF search range, which were mostly associated with

F. 4. Center slice images from example lesions. Lesions 34, 36, and 18

were ≤10 mm and were excluded as described in Sec. 3.A.1. Lesions 28 and

8 were ≥20 mm and were included, but degraded image quality is noticeable

over reduced dose. The example images are from a GE dataset with 1.25 mm

slice thickness and standard reconstruction kernel.

the lowest dose and the thinnest slice thickness protocols and

involved small or low contrast lesions. For the purpose of

keeping data more balanced, those cases were not excluded.

Applying the same ANOVA analysis on large lesions, slice

thickness, size×dose, size, size× contrast, size× slice thick-

ness, dose× slice thickness, contrast× dose, slice thickness

× scanner, contrast× scanner, dose, and dose× scanner were

found statistically significant. Eta-squared was calculated for

each factor and scaled so that summation of the adjusted

eta-squared was 100%. The adjusted eta-squared for all the

significant factors and the others combined is shown in Fig. 5.

Slice thickness turned out to be the most dominant factor

since some low contrast lesions had large errors with thin

slice thickness. Finally, 24 distinct imaging conditions were

defined for repeatability testing based imaging protocols with

F. 5. Adjusted eta-squared in percentage for all significant factors and the

others combined for the MF volume estimator.

Medical Physics, Vol. 43, No. 12, December 2016
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F. 6. Scatter plot for the reference standard and measurements (in log domain) for (a) GE and (b) Siemens scanner. Blue/red lines in plot (a)/(b) correspond to

the regression lines for GE and Siemens data, respectively, which aligned well with the diagonal (green-dotted) line. Note that a small random offset was added

to the x-coordinate of each point (reference standard) to avoid over-plotting of the data points.

the same slice thickness, dose, and scanner (4 slice thicknesses

×3 doses×2 scanners).

3.A.2. Linearity

Scatter plot of the data (measurements versus reference

standard) and the linear regression lines is given in Fig. 6. Note

that separate analyses were conducted for each scanner since

the interaction between scanner and slice thickness, contrast,

and dose was found to be of significant factors by ANOVA.

For GE, the slope and intercept of the regression line were

0.989 (95% CI [0.984, 0.994]) and 0.099 (95% CI [0.055

0.144]), respectively. For Siemens, the slope and intercept

of the regression line were 0.995 (95% CI [0.989, 1.002])

and 0.038 (95% CI [−0.020 0.097]), respectively. For both

scanners, the regression lines were close to the diagonal,

indicating good linear relationship between measurements

and reference standard, and on average results in low biased

estimates.

3.A.3. Grouped bias analysis

Table III summarized biases and standard deviations for

all large lesions with each repeatable imaging condition. We

observed overall low biases (within −3.04% to 2.30%) except

for the Siemens, 0.6 mm, 50 eff. mAs imaging condition, for

which bias was about −10%. There was a trend of increasing

standard deviation with decreasing dose. For each fixed dose,

the standard deviations were similar among the three larger

slice thicknesses (1.25, 2.5, 5 mm for GE, 1.5, 3, 5 mm for

Siemens). Standard deviations were highest for the smallest

slice thickness and decreasing dose, indicating a possible

benefit of larger slice thickness for this low-contrast task to

reduce noise through data averaging.

3.A.4. Repeatability

Similar to bias and variance analysis, we evaluated the

repeatability coefficients for each repeatable imaging condi-

tion. Results are shown in Fig. 7. The performances between

the two scanners were comparable for imaging conditions

associated with lower noise (higher mAs and larger slice

thicknesses). Slice thickness influenced the repeatability but

there was no clear pattern. With 250 mAs, repeatability

coefficients for all slice thicknesses were similar for GE

and repeatability coefficients for slice thicknesses larger or

equal to 1.5 mm were similar for Siemens. As far as dose

was concerned, there was a general decreasing trend in

the repeatability coefficient (i.e., better repeatability) with

increasing dose.

T III. Biases ± standard deviations (in %) for measurements imaged with the three doses coupled with the

four slice thicknesses for each scanner.

GE Siemens

0.625 (mm) 1.25 (mm) 2.5 (mm) 5 (mm) 0.6 (mm) 1.5 (mm) 3 (mm) 5 (mm)

250 eff. mAs −0.42 −0.53 0.50 0.88 −1.16 −0.11 0.51 1.39

±4.57 ±4.42 ±4.27 ±6.08 ±8.22 ±3.74 ±3.73 ±4.03

100 eff. mAs −2.39 −0.67 0.51 2.13 −3.04 0.13 1.07 1.81

±11.80 ±5.85 ±5.42 ±6.82 ±14.82 ±6.77 6.09 ±6.53

50 eff. mAs −2.09 −1.84 0.39 2.30 −9.67 −0.34 0.47 1.47

±16.56 ±13.55 ±9.96 ±9.80 ±25.91 ±7.28 ±9.21 ±10.74
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F. 7. Plots of repeatability coefficients (in %). The 95% CI are indicated

by error bars.

3.B. SEG results

In this section, measurements obtained by the semi-

automatic segmentation algorithm are analyzed.

The segmentation algorithm (without human correction)

failed to segment most small lesions (≤10 mm). When that

happened, the radiologist manually segmented the lesion. The

segmentation also failed for a number of thin slice thickness

scans and among those, there were two cases where the

radiologist (M.Z.) could not detect any lesion. The radiologist

also reported that when he measured the lesions from images

acquired on the Siemens scanner at first, he had little or

no knowledge about the lesion characteristics, whereas he

was much more aware of the lesion characteristics when

segmenting the lesion from the GE images at a later time.

In particular, for the mixed-density lesions (lesion 24, 25, 30,

31), he was more certain that those lesions had a low contrast

ring outside of the inner sphere. Therefore, we observed very

inconsistent measurements for those lesions across the two

scanners. Especially for lesion 25 and 31, where the outer

shell of the lesions had a contrast of 10 HU, the radiologist’s

performance was substantially improved for the GE scan data

segmented at a later time. As such, the mixed-density lesions

were excluded from analysis.

Linearity of segmentation results is shown in Fig. 8. In

Figs. 8(a) and 8(b), all measurements for homogenous lesions

were included. Again, small lesions were associated with

large errors. Figures 8(c) and 8(d) show the results with

large homogenous lesions only. The slopes were significantly

F. 8. Scatter plot for the reference standard and measurements (in log domain) for [(a) and (b)] all segmentation results [(c) and (d)] homogenous large lesions

for GE and Siemens, respectively. Dotted and solid lines correspond to the diagonal line, regression lines for GE or Siemens data, respectively.

Medical Physics, Vol. 43, No. 12, December 2016



6616 Li et al.: Volumetry of low-contrast liver lesions with CT 6616

T IV. Biases ± standard deviations (in %) for measurements of large homogenous lesions across the four

slice thicknesses for each scanner.

Scanner GE Siemens

Slice thickness (mm) 0.625 1.25 2.5 5 0.6 1.5 3 5

Biases 12.49 4.88 1.61 9.86 2.08 −2.71 −0.43 11.34

±stdev ±12.01 ±6.29 ±7.85 ±9.97 ±15.40 ±7.80 ±8.05 ±6.34

different from 1 and the intercepts significantly different from

0 (p < 0.05) for the segmentation-based estimates.

For homogenous large lesions, we ended up with 430

measurements. We evaluated the grouped biases and standard

deviations, and the repeatability coefficients for each scanner

with each slice thickness. The results are reported in Tables IV

and V. For bias and standard deviation, the middle range slice

thicknesses (1.25, 1.5, 2.5, 3 mm) yielded relatively better

results than the others. Unlike for the matched-filter approach,

the pattern for repeatability coefficients with different slice

thicknesses was different from what was observed for the

grouped standard deviation. For instance, for Siemens with a

0.6 mm slice thickness reconstruction, the standard deviation

was the highest among all slice thicknesses, but it also

yielded the best repeatability. A close inspection of the

measurements for each lesion (Fig. 9) showed that there

was large between-subject variability (i.e., biases for some

lesions were substantially different than others). Thus, the

grouped standard deviation was large. However, within-

subject variability was small so that the measurements were

quite repeatable. Recall that according to linearity analysis, the

slope was not particularly close to 1 so it was not surprising

to see large between-subject variability.

4. DISCUSSION

In this study, we examined the volumetry of liver lesions

with CT, using images of an anthropomorphic liver phantom

acquired with various imaging protocols. Volume measure-

ments for lesions of multiple sizes and contrasts were extracted

using two estimation tools. The two estimation tools were

selected such that the matched-filter method could serve as

a performance bound whereas the semi-automatic approach

with a radiologist correction would better represent expected

results in clinical practice. In this section, we will discuss

the main findings of this study and their connection to QIBA’s

current CT Tumor Volume Change Profile on measuring tumor

volume and volume change.23

For both estimation approaches, we found that the perfor-

mance of lesion volume estimation was strongly dependent on

lesion size, lesion-to-background contrast, acquisition dose,

and their interactions. Due to the high noise levels associated

with abdominal scans, liver lesions that were less or equal to

10 mm in diameter were found to be too difficult to estimate,

even at clinically realistic dose levels. For lesions of size

20 mm or larger, the performance depended on the lesion

contrast, size, and CT dose. Higher contrast, larger size, and

higher dose yielded more accurate and precise measurements.

The semi-automated segmentation approach also failed often

for small lesions and thin slice scans. The radiologist reported

that the scans from lower doses were too noisy to work

with, meaning that only the 250 effective mAs dataset was

measured for the semi-automated approach. As such, lower

dose degraded the estimation performance for segmentation

approach too.

The main claim of QIBA’s CT Tumor Volume Change

Profile states that “a measured increase in mass volume of

30% or more indicates that a true increase has occurred with

95% confidence,” which was based on the clinical performance

target. For that performance target to be achieved, the tumor

is required to be measurable and the longest in-plane diameter

is between 10 and 100 mm. The lesion contrast has not been

explicitly addressed in the profile, but lesions with very low

T V. Repeatability coefficients (in %) for measurements of large homogenous lesions across the four slice

thicknesses for each scanner: (a) GE, (b) Siemens.

(a)

Scanner GE

Slice thickness (mm) 0.625 1.25 2.5 5

Repeatability coefficient (%) 12.25 7.58 20.74 20.83

95% CI [10.35,15.03] [6.42,17.42] [17.42,25.65] [17.49,25.75]

(b)

Scanner Siemens

Slice thickness (mm) 0.6 1.5 3 5

Repeatability coefficient (%) 7.47 11.00 13.13 9.16

95% CI [5.86,10.30] [8.60,15.27] [10.25,18.29] [7.17,12.66]

Medical Physics, Vol. 43, No. 12, December 2016



6617 Li et al.: Volumetry of low-contrast liver lesions with CT 6617

F. 9. Boxplot for differences between measurement and reference standard

(in log) for each lesion. Data are from Siemens scans with 0.6 mm slice

reconstruction and 250 effective mAs.

contrast probably would fail the qualitative “measurability”

criteria in the QIBA Profile so the Profile would likely not

be applicable to these lesions. Our results suggested that

it is likely important to consider at least the lesion’s size

and contrast in determining which lesions are appropriately

measurable within the QIBA Profile. Lesion contrast was

found to be much less important for lung nodules because

the contrast between a lung nodule and the background lung

parenchyma is typically much larger than that found between

a liver lesion and the liver background. The importance of

both size and contrast could potentially be used to make the

QIBA definition of “measurable” more systematic to apply.

In addition to lesion characteristics, imaging parameters

more or less influence the image quality and impact the perfor-

mance of the volume estimation. However, the “best” imaging

conditions are task-based and are not easy to standardize,

since changes in each parameter to gain certain benefits

often lead to some sacrifice in other aspects. For instance,

increasing dose reduces image noise but poses additional

patient risks, increasing slice thickness reduces image noise

but leads to lower spatial resolution along the z-axis, changes

in reconstruction kernel are associated with trade-off between

image noise and spatial resolution, to name a few. To achieve

the clinical performance target in QIBA’s claim, the Profile

also has requirements on the imaging protocols in addition to

lesion characteristics. They included but are not limit to the

following: (1) the standard deviation for the central region

of a uniform 20 cm cylindrical water phantom should be

no greater than 18 HU; (2) the reconstruction kernel shall

be consistent (for scans of different time points to measure

change); and (3) slice thickness shall be set to less than or

equal to 1.5 mm. We evaluated the pixel standard deviation

and the results are shown in Fig. 10. We found that, in general,

the imaging conditions resulting in poor repeatability (large

repeatability coefficient) (Fig. 7) corresponded to those with

pixel noise higher than 18 HU. Regarding the reconstruction

kernel, no impact on measurements was found for either

volume estimation method, although different kernels led to

quite different noise levels. In comparison to the standard/B30f

kernel (GE/Siemens), the small noise reduction provided by

the soft/B20f kernel (GE/Siemens) is accompanied by a small

sacrifice in spatial resolution. These two competing effects

appear to basically offset each other resulting in no appreciable

change in the overall performance of the volume estimation.

F. 10. Noise measurements of a water phantom for imaging protocols

used in this study (pitch 1.0 for GE and 0.98 for Siemens were almost the

same). H, M, and L on x-axis correspond to eff. mAs of 250, 100, and 50,

respectively. The diameter of the water phantom is 21.6 cm and a region of

interest of 400 mm2 was used for standard deviation evaluation. The dashed

line corresponds to 18 HU.

In this work, we chose the standard (B30f) and soft (B20f)

kernels as they are commonly used in clinical practice for

abdominal studies. Our results suggested that the standard

(B30f) and soft (B20f) kernel could be used interchangeably.

Finally, for slice thickness, our data suggest a less restrictive

requirement than that of the QIBA’s Profile, which could be

appropriate when sizing liver lesions. In particular, at 250

effective mAs, slice thicknesses of 0.625, 1.25, and 2.5 mm

for GE and slice thicknesses of 1.5, 3, and 5 mm for Siemens

yielded similar performances in terms of overall bias, variance,

and repeatability for the matched-filter estimation approach.

For segmentation results, slice thickness of 2.5 mm for GE and

3 mm for Siemens also yielded similar or better performance

compared to those from smaller slice thicknesses scans. With

5 mm slice thickness, the repeatability coefficients for both

scanners were below 30%, which is the clinical target of

QIBA’s CT Tumor Volume Change Profile. One reason that

large slice thicknesses produced relatively small error in this

study is that the lesions qualified for measuring were 20 mm

or larger, which is typical for liver lesions in clinical practice.

In addition, images with larger slice thickness produced less

noisy scans, which was found to be especially important for

low-contrast lesions in the liver. In current clinical practice,

protocols for abdominal CT scanning are typically thicker than

1.5 mm due to the high noise presented and the clinical interest

in relatively large lesions in the liver. While this might change

in the future with better imaging techniques, at the current
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T VI. Matched-filter results parallel to Table V: repeatability coefficients (in %) for measurements of large

homogenous lesions imaged with the two scanners coupled with the four slice thicknesses.

Scanner GE Siemens

Slice thickness (mm) 0.625 1.25 2.5 5 0.6 1.5 3 5

Repeatability coefficient 7.68 5.50 4.82 5.73 4.99 4.84 6.27 5.31

stage, to perform lesion volume estimation in the abdomen

area with reasonable dose, the QIBA’s CT Tumor Volume

Change Profile might need to relax the requirement on the

slice thickness.

Finally, in this study, two estimation approaches were

applied, one based on a matched-filter approach that was

designed as a low-bias estimator and thus produced a

bound on performance, and a segmentation-based method

which better represented the performance expected in clinical

practice. Results from matched-filter were indeed much

better compared to segmentation results in terms of line-

arity, accuracy, and precision. For example, repeatability

coefficients for the same dataset were smaller for matched-

filter (Table VI versus Table V). The purpose here is not

to compare the estimators but to investigate the source

of variations and build a framework for protocol stan-

dardization and algorithm performance evaluation. More

informed estimators such as the matched-filter method can

be used to identify and test sources of variation from the

imaging systems and measurement tools. Also, they could

be used as part of an initial systematic test to determine

if certain lesions are measurable since those deemed not

measurable are expected to have a substantial degradation

in volume estimation performance. Our segmentation results,

on the other hand, may more closely approximate volume

estimation tools currently available for use and also can

incorporate an important additional source of variation coming

from the clinician directly interacting with the segmentation

tool.

There are limitations to our study. First, there was a size gap

between 10 and 20 mm. We included lesions that were most

clinically relevant in the liver (size 20 mm and larger) and the

sub-centimeter lesions to investigate the limit of lesion size

that could be reliably estimated. Our previous studies in the

lung indicated that 10 mm lesions could be reliably estimated,

unfortunately, it was not the case for low contrast liver

lesions in this study. Supplemental studies with lesions within

10–20 mm size range should be performed. Second, while the

x-ray spectrum is a key factor that impacts lesion contrast,

which may lead to different estimation performance, kVp was

fixed in our study. The 120 kVp setting was selected because it

was thought to be most appropriate based on the physical size

of the liver phantom and the fact that the reference lesion and

parenchyma CT values given by the phantom manufacturer

were based on 120 kVp. Clinically, different kVps are selected

based on patient sizes. Since the effect of patient size is not

within the scope of our study, we did not vary kVp. Adding fat

rings to allow investigation of kVp is a potential addition to a

future study. Third, FBP reconstruction was the only method

evaluated in this study. As there is a strong need to investigate

the impact iterative reconstruction algorithm’s on estimation,

we are now conducting a study focusing on how iterative

reconstruction impacts liver-lesion volume estimation. Fourth,

only one radiologist did the manual correction to the semi-

automatic segmentation. For that one reader, the reading order

was not randomized. Thus the statistical power of the results

for that approach was reduced. We plan to perform more

analyses once we collect more segmentation results (better

controlled readings, more radiologists).

5. CONCLUSION

In this work, we evaluate the performance of liver lesion

volumetry in hepatic CT with various imaging parameters.

Our results show that liver lesion volumetry is strongly

dependent on lesion size and contrast, acquisition dose, and

their interactions. The overall performances were similar for

images reconstructed with larger slice thicknesses, clinically

used pitches, kernels, and doses. Conditions that yielded

repeatable measurements were identified and they agreed with

the QIBA’s Profile requirement in general. Our findings also

suggest potential refinements to these guidelines for the tumor

volume biomarker, in particular the guidelines may be tailoring

to different types of lesions, especially for soft-tissue lesions.

However, any such tailored refinements need to be weighed

against the simplicity of a single approach for all types of

lesions.
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T VII. Template variables for volume estimation. Initial estimates are determined prior to matching: centroid

from manual estimation, background and lesion density from regions on the edge and center (respectively) of the

volume of interest. The half-pixel offsets in x, y are created by repositioning the object prior to CT simulation,

and the quarter-pixel offsets in z are created by decimating a high-resolution template.

Variable Values Step size

Centroid pixel offset Initial estimate ± 3 pixels 0.5 pixels in x, y; 0.25 in z

Background density Initial estimate ± 30 HU 1 HU

Lesion density Initial estimate ± 20 HU 1 HU

Lesion size 80%–120% of ground truth diameter mm 1% of ground truth diameter mm

APPENDIX: MATCHED-FILTER
ESTIMATOR IMPLEMENTATION

The volumes of the lesions were estimated using a modi-

fication of the matched-filter-based method of Gavrielides

et al.19 For each data acquisition, and for each target lesion, the

method minimizes the difference between the lesion volume

of interest and a collection of simulated 3D templates. These

templates were generated by a model of the CT imaging

system mapping from the object shape to the sinogram, and

by filtered back-projection mapping from the sinogram to the

image.24 The templates vary in centroid-position, density, and

size, as shown in Table VII.

For each target lesion, there are over 5.6× 108 (13 x

location × 13 y location × 25 z location × 61 background

density × 41 lesion density × 41 diameter) possible config-

urations of the template (for mixed density lesions, there

is an additional density and size variable leading to over

2.3×1010 configurations; note that sizes for both inner and

entire objects are estimated but only the measurements for the

entire objects are used in the analysis), and determining the

optimal template from an exhaustive search is computationally

prohibitive. Instead, we use a coordinate descent method

known as Powell’s conjugate direction.25 The objective

function is minimized for each variable in sequence, followed

by a minimization in the conjugate direction based on the

net change. This process is iterated until convergence to a

minimizing template. To account for noise in the image—

which can lead to local minima—we begin the matched-

filtering of each volume of interest with ten random initial

conditions, run Powell’s method on each, and then choose the

final template with the minimal cost function. Depending on

the properties of the target data, we find that Powell’s method

requires between 2 and 7 iterations to converge. In total, at

most 9.8×104 configurations are examined for each volume

of interest using the iterative coordinate descent, several orders

of magnitude lower than the exhaustive search.
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