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Construction labor productivity plays an important role in labor intensive 

projects. Therefore, increasing construction labor productivity is a vital task to 

decrease a project’s cost (time). The primary goal of this research is to investigate the 

feasibility of developing a comprehensive causal model that can predict construction 

labor productivity for various project’s situations, such as existence of “Adverse 

Weather,” “Changes,” “Working Overtime,” etc., while considering uncertainty. It is 

found that Bayesian Belief Networks (BBNs) is the best approach that can model 

causal relationships among different factors while considering uncertainty, 

simultaneously. 

Developing a BBNs model requires to extract its structure and, for each node 

in the network, set up a “Conditional Probability Table.” Extensive review of other 

scholars’ publications, regarding factors affecting construction labor productivity, 

allow us to extract cause-effect diagrams for each factor. These cause-effect networks 

are independent sub models that by applying various structures and parameters 

methodologies become a separate BBN. The final step of building the comprehensive 

model is to combine different sub models, which after 12 iterations and combining 



 
 

different sub models, the primary contribution of this research to the body of 

knowledge, which is developing the comprehensive model, is obtained. 

The model can do a variety of queries about the effects of a single variable, or 

a subset of variables, on a hypothesis variable. The findings from these queries is 

another contribution of this research.  In this research, the hypothesis variable is the 

probability of “High productivity.” Various sensitivity analyses on the hypothesis 

variable reveals that for different network’s instantiations, the effects of similar 

variables are not the same. Also, it shows that the “Adverse Management Systems” 

can decline the probability of “High productivity,” whenever a project is in its perfect 

conditions, more than 70%. However, when a project is in its worst conditions, it can 

increase the probability of “High productivity” for less than 10%. From the main 

variables, “Stacking of Trades” has similar effects on the hypothesis variable with 

less severity. This research has wonderful applicability for project managers, cost 

estimators, and schedulers in their decision making process regarding costs and time 

of projects.  
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Chapter 1 

Introduction 

 

This chapter defines productivity, and examines the significance of predicting 

construction labor productivity in the construction industry. It will also introduce 

research objectives, limitations, and describes the dissertation organization.  

 

1.1 Productivity Definitions 

The U.S. Bureau of Labor Statistics (BLS) defines productivity as output per 

hour of one resource. According to BLS, Labor Based Productivity (LBP) is defined 

as  (Bureau of Labor Statistics 2012): 

 
𝐿𝐵𝑃 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒 𝐴𝑑𝑑 𝑈𝑛𝑖𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑎𝑏𝑜𝑟𝑒𝑟𝑠 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑 × 𝐻𝑜𝑢𝑟𝑠 𝑊𝑜𝑟𝑘𝑒𝑑
 (1.1) 

Similarly, Equipment Based Productivity (EBP) is defined as:  

 
𝐸𝐵𝑃 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒 𝐴𝑑𝑑 𝑈𝑛𝑖𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑 × 𝐻𝑜𝑢𝑟𝑠 𝑊𝑜𝑟𝑘𝑒𝑑
 (1.2) 

Another definition for productivity is Total Factor Productivity (TFP) which is 

defined as:  

 
𝑇𝐹𝑃 =

𝑇𝑜𝑡𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡

𝐿𝑎𝑏𝑜𝑟 + 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 + 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐶𝑎𝑝𝑡𝑖𝑡𝑎𝑙
 (1.3) 

Or 
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𝑇𝐹𝑃 =

𝐷𝑜𝑙𝑙𝑎𝑟𝑠 𝑜𝑓 𝑂𝑢𝑡𝑝𝑢𝑡

𝐷𝑜𝑙𝑙𝑎𝑟𝑠 𝑜𝑓 𝐼𝑛𝑝𝑢𝑡
 (1.4) 

 

“The Baseline Productivity” and “Loss of Productivity” are two important 

terms in this research and defined as follows: 

“The Baseline Productivity” represents the best performance that a contractor 

can achieve on a particular project (Thomas and Završki 1999). “Loss of 

Productivity” is defined as the reduction in productivity caused by unanticipated 

conditions (Thomas and Završki 1999).  

 

1.2 Significance of Predicting Construction Labor Productivity 

Productivity plays an important role in predicting time and cost of a project’s 

activities. Predicting cost and time of activities in construction projects is an essential 

part of each scheduling program. The more accurate the prediction, the more probable 

the project success. Labor is one of the main resources that have direct effect on the 

time and cost of each activity, and labors’ cost is a function of its productivity. Many 

researchers have described why predicting labor productivity in an accurate manner is 

important in construction projects. Construction labor productivity plays key role in 

predicting time and cost of construction’s activities. 

Clark and Lorenzoni said, “Estimating or predicting the cost of labor for a 

given project is, like estimating piping costs, a difficult task that has frustrated both 

cost estimators and field supervisors. The cost of labor is determined by multiplying 

man-hours (sometimes called workhours) by the applicable wage rates (i.e., 
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multiplying quantities by unit costs). Establishing the workhours can be accomplished 

only after establishing or predicting the workhour rate (or productivity) that will be 

achieved on the project (an average of 15%, with a fairly wide range, depending on 

the type of project and location). Because this cost and the associated schedule are 

affected directly by labor productivity achieved, it is of vital importance to cost 

estimators and to the accuracy of their estimates that the correct labor productivity 

value be used in the estimate. Unfortunately, field labor productivity is the single 

greatest variable in any estimate and is extremely difficult to estimate. Often, 

estimators will not try to do more than use the simplest approach because they feel 

there is no real science to predicting labor productivity. As a result, many estimates of 

labor workhours are overrun in the field, often with a disastrous impact on the project. 

Not only does the final cost of the project exceed the appropriated amount but, 

because of the close relationship that exists between erection workhours and project 

schedule, more than likely, the completion date of the project is extended or delayed, 

with associated debits of not meeting the project objectives in the area of production 

and marketing” (1996).  

Radosavljević and Horner said, “Realistic project scheduling is one of the 

vital issues for successful completion of construction projects and this can only be 

achieved if schedules are based on realistic man-hour values. Yet, determination of 

realistic man-hour values has been a complicated issue due to the complex variability 

of construction labor productivity” (2002). 

Muqeem said, “During the project planning and scheduling, estimators mostly 

rely on the past project information, their personal judgment and their experience due 
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to the absence of adequate information about the production rates value, and the 

factors that influence the production rates of labor at site is the reason identified 

behind the declination of labor productivity. Thus, the construction projects are 

estimated using the inadequate information of the estimators which results in cost 

overruns and time overruns of projects (Song et al. 2008). Consequently, reliable and 

accurate estimation of projects is required to be done through use of modeling 

techniques to predict the production rates of a project” (2011). 

One of the main issues in construction claims is “lost productivity,” which is very 

common in the industry. Hanna and Sullivan stated, “Contractors and owners alike 

need the ability to quantitatively calculate the impacts of conditions affecting labor 

efficiency for use in management and claims negotiation and litigation” (2004). 

Therefore, measuring loss of productivity resulting from the impacts of other factors 

is important in claim resolution. 

In summary, construction labor productivity is an essential element of time 

and cost prediction of construction projects; therefore, predicting it accurately is 

important for planning and control of the activities and eventually of the project. 

Improved methods for predicting work hour requirements for construction activities 

will enable project managers to make more efficient use of a project’s resources.  

 

1.3 Challenges of Predicting Construction Labor Productivity  

According to Song and AbouRizk the current practice of estimating and 

scheduling relies on several sources to get productivity values, including an 



5 
 

estimator’s personal judgments, published productivity data, and historical project 

data (2008). Predicting productivity of construction activities due to the dynamic and 

stochastic nature of variables that affect construction labor productivity is a 

challenging task. In terms of labor intensive construction activities, the challenge of 

estimating and predicting construction labor productivity is more critical because 

there are multiple factors that affect productivity, and these factors affect each other 

stochastically. The quantitative impact of one factor on labor productivity for 

numerous factors has been investigated by different researchers, but in a construction 

site all factors may occur simultaneously. Since the goal is predicting labor 

productivity, it is necessary to consider the effects of all factors that have a possibility 

of happening. The need for a system that not only depicts cause-effect relationships 

among different factors, but also visualizes the stochastic interactions among factors 

and productivity is crucial for predicting construction labor productivity.  Also, there 

are situations where estimators use linguistic variables like “poor management skills” 

in their evaluation of productivity. In these situations, causal relationships among 

variables, randomness, and vagueness cause predicting construction labor 

productivity a challenging task.  

 

1.4 Objective    

The objective of this study is to develop a comprehensive model to predict 

construction labor productivity while considering the causal relationships and 

randomness that exist among variables. For achieving this purpose, a “Bayesian 

Belief Networks Model” for each variable that affects construction labor productivity 
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has been developed, then by combining these models with each other, the 

comprehensive causal model for predicting construction labor productivity is 

obtained. Additional objectives of this research are as follows: 

- Identify factors that affect construction labor productivity through an 

extensive literature review. 

-  Create a comprehensive map of cause-effect relationships among factors that 

affect labor productivity from literature and expert knowledge with a “mosaic 

approach.”  

- Provide a decision support system for construction managers and project 

managers to identify controllable variables that affect construction labor 

productivity and gain higher productivity by managing those variables in a 

better way. 

A comprehensive sensitivity analysis of the model is discussed to show the 

accuracy of the model and how the model can help project managers in their decision-

making process when uncertainty exists.   

 

1.5 Research Scope and Limitations 

In this research, the important factors that affect labor productivity have been 

investigated. The criterion for identifying these factors is the amount of literature that 

exists about a specific factor. For example, “work overtime” is considered as a main 

factor that affects productivity. There is extensive research about the effects of this 

factor on labor productivity. Numerous other factors that affect labor productivity 
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such as “sexual harassment” won’t be investigated in this research because the 

research in the construction industry is sparse about them, although there exists 

research about these factors in the industrial engineering domain.  

    

1.6 Dissertation Organization 

This dissertation consists of seven chapters. After this introductory chapter, a 

comprehensive literature reviews about factors that affect construction labor 

productivity, models and methodologies that have been applied to predict 

construction labor productivity from professional journals and texts is presented in 

chapter 2. Chapter 3 is a short introduction to “Probabilistic Graphical Modeling,” 

“Bayesian Networks,” and different types of “Bayesian Networks.” In this chapter 

essential concepts that are necessary to understand chapter 5, 6, and 7 are explained. 

In chapter 4, the structure of the network is extracted from other scholars’ 

publications and findings. Various methodologies that are employed to find the 

structure of each subnetworks are also discussed. In chapter 5, the network 

parameters are obtained. It means that for each node a “Conditional Probability 

Table” (CPT) is extracted. Various methodologies are used in this chapter to obtain 

the model CPTs and then by comparing the errors of each method with the actual 

base network, the best CPTs are chosen. In chapter 6, various approached are used to 

validate the model. In addition, in this chapter different sensitivity analyses are done 

to show how the model can be used is the decision-making process and which factors 

have the highest impact on labor productivity. In chapter 7 and 8, the dissertation is 

summarized and some areas that can be investigated in the future are discussed.  
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In the figure 1.1, the flowchart of the dissertation chapters with its major 

contents and logical structure are summarized.  
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Chapter 2 

Literature Review 

    

The field of research in construction labor productivity is complex and 

versatile in nature; therefore, different methods must be implemented to explore 

different perspectives for measuring or predicting construction labor productivity. 

Research in construction labor productivity has centered on the identification of 

factors that affect productivity, and quantifying the impact of such factors on 

productivity. As a result, various qualitative and quantitative factors have been 

discovered, and various methods for predicting construction labor productivity have 

been presented. The literature is divided in two parts. The first part describes methods 

and models that have been used for predicting construction labor productivity. The 

second part describes factors that affect construction labor productivity.  

 

2.1 Models for Predicting Construction Labor Productivity 

Panas and Pantouvakis have done comprehensive reviews of the construction 

labor productivity literature from 1999 to 2009. In that investigation, 89 papers were 

selected from top quality journals and the “qualitative content analysis technique” 

was implemented to investigate different methodologies that have been used in 

construction labor productivity research areas (2010). According to Panas and 

Pantouvakis, different methodologies that exist in construction labor productivity 

research area are (1) qualitative research methods, (2) quantitative research methods, 
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and (3) mixed method approaches, which is a combination of qualitative and 

quantitative approaches (2010). Furthermore, another classification of construction 

labor productivity is based on research focus of each study, which can be: (1) archival 

study, (2) empirical research and (3) simulation methodology. Archival studies are 

based on analysis of documentary data while empirical research refers to the creation 

of models based on observation regarding the responses of a system under 

investigation (Flood and Issa 2010). The aim of empirical research is development of 

mathematical models that represent abstraction of construction systems aiming at 

delineating the effects of a pre-selected set of variables or factors on construction 

productivity (Panas and Pantouvakis 2010). In the field of construction productivity, 

the application of quantitative research dominates (60.7%), followed by the 

application of mixed-method (29.2%), and the application of qualitative approaches 

(10.1%) (Panas and Pantouvakis 2010).  

Thomas et al. applied a generic analytical framework for modeling the impact 

of weather and material delivery method on construction productivity (1999).Ng et 

al., by objectively quantifying the negative effects of de-motivators developed a 

model to predict construction productivity (2004). Choy and Ruwanpura applied 

situation–based simulation models for predicting construction productivity (2006). 

They stated that to improve the performance of construction operation, they need to 

model the impact of different triggering situations that affect productivity. Hanna et 

al. applied stepwise regression model to estimate impact of changes on labor 

productivity in mechanical projects (1999a). The Hanna’s model input variables are 

the original estimated labor hours, impact classification, total estimated change hours, 
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number of change orders, and timing of changes. The result of this research showed 

that impacted projects have a larger decrease in labor productivity than un-impacted 

projects (1999a). In a similar research, Hanna et.al applied linear regression model to 

estimate loss of efficiency due to change orders based on number of independent 

variables in electrical construction (1999b). The independent variables used in this 

model was qualitative and quantitative criteria used to determine whether projects are 

impacted by changes, the estimate of  change hours for projects, and total number of 

years that the project manager had worked in the construction industry.  Fayek and 

Oduba applied the fuzzy expert system for predicting construction labor productivity 

(2005). They stated that using the fuzzy expert system, it is possible to effectively 

model industrial construction labor productivity, given the realistic constraints of 

subjective assessments, multiple contributing factors, and limited data sets (Fayek and 

Oduba, Predicting Industrial Construction Labor Productivity Using Fuzzy Expert 

Systems 2005). Graham and Smith gathered past productivity data regarding the 

concrete supply and onsite delivery and created a predictive model by applying Case-

Based Reasoning (CBR) principles (2004). Song and AbouRizk, using historical data, 

predicted construction productivity using techniques such as artificial neural network 

and discrete-event simulation (2008). Thomas and Zarvski by studying numerical 

project databases, which consist of labor productivity measurement of masonry, 

concrete formwork, and structural steel activities, conducted statistical analysis to 

calculate specific productivity metrics to identify the best and worst performing 

projects (1999). Zayed and Halpin applied regression technique for the estimating of 

pile construction productivity. In this study seven regression linear models have been 
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designed and validated to assess productivity (2005).  Tam et al. used artificial neural 

networks (ANNs) to predict excavator productivity. The results of their model show 

that ANN model is appropriate for mapping non-linear relationship between 

excavation activities and the performance of excavators (Tam, Tong and Tse 2002). 

Mosehli et al. by utilizing ANNs investigated the impact of change orders on 

construction productivity. In this research the field investigation has been carried out 

for 6-month period to gather required data (Moselhi, Assem and El-Rayes 2005). El-

Rayes and Mosehli created a database of climatic historical data and combined it with 

knowledge-based rules to create an expert system known a WEATHER, which could 

estimate the lost productivity due to rainfall on highway construction. The model was 

validated with actual data from contractors and public agencies (2001). Hanna et al. 

used statistical analysis techniques such as multiple regression, p-value tests, and 

analysis of variance to find the impacts of extended duration overtime on construction 

labor productivity (Hanna, Taylor and Sullivan 2005).  Zayed and Halpin applied 

artificial neural networks (ANNs) for assessing productivity in pile construction 

projects. In this research, three-layer, feed forward, and fully connected ANNs were 

trained with an architecture of seven input neurons, five output neurons, and different 

hidden layer neurons (2005). Huang et al. used the CYCLONE modeling 

methodology to estimate productivity of formwork operations (Huang, Chen and Sun 

2004).     
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2.2 Impact of Different Factors on Construction Labor Productivity 

Various factors affect construction labor productivity directly and indirectly. 

In this section, previous research about the most important factors are reviewed. 

Adverse weather conditions is probably one of the most commonly cited 

causes of construction labor productivity losses in the literature (Christian and 

Hachey 1995, Halligan, et al. 1994, Thomas, Riley and Sanvido 1999).  Clapp 

described how labor efficiency losses could occur when adverse weather conditions 

exist in construction sites (1966). National Electrical Contractors Association 

examined the effects of temperature and humidity on construction labor productivity 

(NECA 2004). Thomas et al. studied the impact of weather and material delivery 

methods on labor-intensive productivity for three steel erection projects by proposing 

a generic analytical framework that could be applied independently of the project 

actors. They have demonstrated that weather can account for as much as a 30% 

decline in productivity (Thomas, Riley and Sanvido 1999). Rojas and Aramvareekul 

did a survey and ranked adverse weather conditions as a productivity driver by 

placing it as the most important driver in the industry environment category (2003). 

Numerous articles exist in the literature about changes and change order 

factors. Ibbs defined changes as any variation to the original project scope. Change 

can be physical, such as adding more work, or less tangible, such as change in 

sequence of works. Also, it can be the responsibility of the owner, the contractor, the 

designer, or a third party (2005). Change orders have long been identified to have a 

negative impact on construction productivity, leading to a decline in labor efficiency 

and, in some cases, sizeable loss of man hours (Barrie and Paulson 1996, O. Moselhi 
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1998). Although change orders provide a mechanism for satisfying the owner’s 

construction needs throughout the project delivery process and responding effectively 

to errors and omissions in the design, construction methods, and contract documents, 

they frequently pose serious problems to owners and contractors, leading to cost 

overrun and costly disputes (Yitmen, et al. 2006).  Moselhi et al. have examined the 

impact of time of change orders on labor productivity. They also developed a neural 

network model to evaluate the effects of change order on labor productivity (Moselhi, 

Assem and El-Rayes 2005).  Ibbs has examined the likelihood, severity, and impact 

of change order on labor productivity (2012). Lee compiled a comprehensive review 

of the many published articles that measure how a change impacts productivity 

(2007). The Mechanical Contractors Association of America has published reports on 

discrete change factors and their impacts on productivity on the basis of member 

experiences (MCAA, Change Orders, Productivity, Overtime 2014). Other prominent 

papers that deal with change and its impact on labor productivity are by Leonard 

(1988), Ibbs (1997, 2005), Thomas (1995), and Hanna et al. (1999a, 1999b). 

Leonard’s thesis is one of earliest and most widely cited publications on the subject of 

quantitative impact of change (1988). Two key findings were that large amounts of 

change create large amounts of productivity loss, and change orders can cause 

productivity loss on both the change work and the base contract work. Thomas and 

Napolitan reviewed 522 days’ work on three different projects. This analysis showed 

that on many days (though fewer than half) it was possible to incorporate change 

orders into the project without hurting labor productivity. However, the average 

impact for all changes was a 30% loss of productivity, indicating that when the 
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impact is negative, it is substantial. The analysis concluded that the timing of a 

change was a key variable affecting productivity (1995). Ibbs has published curves 

that further substantiate that timing is crucial, sometimes doubling the consequences 

that change has on productivity (2005).  

Overstaffing (Overmanning) is another factor that has an impact on 

construction labor productivity. Hanna et al. defined Overstaffing as “an increase of 

the peak number of workers of the same trade over the actual average manpower used 

throughout the project” (Hanna, Chang and Lackney, et al. 2007). Given the fact that 

labor costs for labor intensive mechanical and sheet metal contractors typically range 

from 33 to 50% of the total construction cost, understanding how and how much 

Overstaffing affects labor productivity is crucial for a construction manager (Hanna, 

Chang and Lackney, et al. 2007). Waldron studied the relation between percent 

overstaffing and percent productivity losses (1968). O’Conner conducted a study on 

productivity loss resulting from overtime and Overstaffing. His study was based on 

data from the 1963 through 1968 project records of five fossil fuel power stations 

located in the Ohio Valley. For situations in which the number of workers on the site 

were 100, 200, and 300, loss of efficiency was calculated in percent of total hours 

worked. The study concluded that Overstaffing could result in a productivity loss of 

up to 30% (1969). The U.S. Army Corps of Engineers released a “Modification 

Impact Evaluation Guide” in 1979, introducing the effect of Overstaffing on labor 

productivity. Overstaffing was defined in terms of percent crew size above optimum 

in that report (Corps 1979). Borcherding and Sebastian defined overcrowding as 

“those conditions that inhibit an individual from performing as efficiently as possible 
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because of either the high density of workers working in that location or the inherent 

interferences caused by the physical components of the plant itself.” The study found 

that overcrowded working conditions appeared to affect productivity adversely 

(1980). Thomas and Jansma defined percent overmanned as the “planned peak 

manpower divided by the actual peak manpower.” They reported Overstaffing 

affected productivity loss up to 300% (1985). However, this report mistakenly 

analyzed the project size factor, instead of Overstaffing effects (Hanna, Chang and 

Lackney, et al. 2007). Hanna et al. examined the impact of Overstaffing on 

mechanical and sheet metal labor productivity. The results indicate a 0–41 percent 

loss of productivity, depending on the level of Overstaffing and the peak project 

manpower (Hanna, Chang and Lackney, et al. 2007). Lyneis and Ford stated that a 

larger workforce can increase congestion and brings problems related to 

communication, which can increase errors and decrease labor productivity (2007). 

Several researchers have investigated effects of overtime on construction 

labor productivity. Overtime is defined as “the hours worked beyond the typical 40 

hours scheduled per week” (Hanna, Taylor and Sullivan 2005). The Business 

Roundtable (BRT) published a paper to investigate effects of scheduled overtime on 

construction projects. The research examined the effect of overtime for a period of 12 

weeks on projects which operated on a basis of 50 hours per week and 60 hours per 

week. The overall conclusion of that research revealed a decline in construction labor 

productivity when extended overtime existed in a project (BRT 1974). As a schedule 

compression technique, overtime is often preferred because it can produce a higher 

rate of progress without the coordination problems that exist in shift work and the 
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additional craftsmen needed for Overstaffing. However, overtime introduces 

additional problems including: fatigue, low morale, a higher cost per unit, and a 

higher accident rate (Chang, et al. 2005). Some argue that scheduled overtime can be 

used without losing labor efficiency (CII 1988) , and others argue that when an 

overtime schedule is applied, labor efficiency automatically suffers (Thomas and 

Raynar 1997). Thomas believed that extended overtime, an overtime schedule that 

lasts longer than several weeks, has a negative effect on construction labor 

productivity, while Spot overtime, which is intermittent, has a minor negative relative 

effect to the job as a whole (1992). O'Connor described the experiences of Foster 

Wheeler in constructing five large fossil boilers in the Ohio Valley between 1963 and 

1968. The paper reported an average productivity decline of 7.9 percent per year 

during that period because of a variety of factors, including overtime, Overstaffing, 

and labor strikes (1969). 

Workforce management is another critical factor that has impacts on 

construction labor productivity. In a study by Thomas et al., the researchers found 

that on three bridge construction projects more than half of the inefficient work hours 

resulted from ineffective workforce management practices (Thomas, Horman and 

Minchin, et al. 2003). Thomas et al. also showed that symbiotic crew relationships are 

more difficult to manage than sequential relationships (Thomas, Horman and de 

Souza 2004). Also, Thomas and Horman described how construction labor 

productivity can be increased by applying fundamental principles of workforce 

management (2006). Rojas and Aramvareekul did a survey among owners, 

consultants, general contractors, electrical contractors, and mechanical contractors 
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regarding different factors that affect construction labor productivity. They found that 

management system and strategies -which includes management skills, scheduling, 

material and equipment management, and quality control- is the most important factor 

that can have highest impact on construction labor productivity (2003). 

Absenteeism is another factor that causes decline in labor productivity. 

Construction operations, especially in labor–intensive activities, depend on labor 

activity; therefore, absenteeism on a job site can damage project performance in 

different ways. Hinze et al. stated that absenteeism on a job site can impact project 

performance in many ways, including interrupting workflow and impeding 

productivity, and may result in serious revenue loss when the required schedule is not 

met (Hinze, Ugwa and Hubbard 1985). Hanna et al. examined electrical construction 

projects and found that productivity decreased by 24.4% when the absence rate on a 

job site was between 6 and 10%, whereas productivity increased by 3.8% when the 

absence rate was between 0 and 5% (Hanna, Menches, et al. 2005). Ahn et al. found 

that “construction workers who perceive salient social norms in their team are less 

likely to be absent from their job site.” Also, they suggested that investing in 

promoting social cohesion and creating positive prototype in teams can cause lower 

level of absenteeism in job site (Ahn, Lee and Stell 2014). They also found that “high 

social adaptation can work as a force to either increase or decrease workers’ absence 

rates,” or “when high social adaptation reinforces formal rules, this occurrence 

reduces the need for additional formal controls on worker behavior” (Ahn, Lee and 

Steel 2013). Absence rates larger than 6% are not uncommon in electrical 

construction projects (Hanna, Menches, et al. 2005).  Sichani et al. reported that the 
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worker absence rates in Canada’s construction sector were 8.6%, 9.3%, and 8.5% in 

2006, 2007, and 2008, respectively. It was also reported, in particular, that large 

industrial projects in Canada recently experienced productivity loss associated with 

absenteeism (Sichani, Lee and Fayek 2011).  

Stacking of trades is one the most important factors that affect labor 

productivity. Hanna and Sullivan defined stacking of trades as “the total number of 

craftsmen from all trades working in a given area” (2004). Mechanical Contractors 

Association of America (MCAA) defined stacking of trades as “operations that take 

place within physically limited space with other contractors” (MCAA 2011). Stacking 

of trades relates the number of different trades (pipefitters, electricians, etc.) within a 

measured work area to labor productivity. Stacking of trades causes operations to take 

place within physically limited space with other contractors which results in 

congestion of personnel, inability to locate tools conveniently, increased loss of tools, 

additional safety hazards, and increased visitors which causes optimum crew size 

cannot be utilized when stacking of trades exists (MCAA 2011). Riley and Sanvido 

specified 12 unique characteristics of construction activities-which includes layout 

area, unloading area, material path, staging area, personnel path, storage area, 

prefabrication area, work area, tool and equipment area, debris path, hazard area, and 

protected area - that require space and techniques to avoid congestion and stacking of 

trades between multiple trades through planning activities , material storage, 

definition of work flow between trades, and equipment management (1995). Smith 

reported losses of productivity due to congestion and stacking of trades. He reported 

that maximum productivity occurred when craftsmen had at least 320 ft2 (99 m2) per 
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person in an offshore work on oil drilling platforms (1987). Logcher and Collins 

studied the setting of floor tile on five projects in New York and Boston. They found 

that while more open area was allowed, the productivity was affected only slightly by 

changes in the floor area (1978). Horner and Talhouni stated that for obtaining 

maximum labor productivity, craftsmen need 250–300 ft2 (77–92 m2) per person 

(1993). McDonald and Zack stated that “To achieve a good productivity each 

member of crew must have sufficient working space to perform their work without 

being interfered with by other craftsmen. When more labor is assigned to work in a 

fixed amount of space it is probable that interference may occur, thus decreasing 

productivity. Additionally, when multiple trades are assigned to work in the same 

area, the probability of interferences rises and productivity may decline” (AACE 

International 2004). Thomas et al. investigated the effects of congested working area 

on labor productivity. They concluded that congestion can be very expensive and may 

cause up to 30% loss in labor productivity (Thomas, Riley and Sinha 2006). 

One of the major field factors that causes losses in construction labor 

productivity is beneficial occupancy. Hanna and Sullivan defined beneficial 

occupancy as the situation in which a contractor must work in close proximity to an 

owner’s production equipment or personnel. Therefore, contractors must adjust to 

environmental circumstances including extra safety precautions, concern regarding 

dust or noise, and the reduction or absence of a convenient material laydown area 

(Hanna and Sullivan 2004). MCAA quantified the effect of beneficial occupancy on 

construction labor productivity. The estimated productivity losses of this factor are 

15%, 25%, and 40% for minor, moderate, and severe conditions, respectively 
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(MCAA 2011). In a similar research, Ovararin investigated the effect of beneficial 

occupancy on loss of productivity in masonry construction. He found that the 

estimated productivity losses due to this factor are 7%, 14%, and 25% for minor, 

moderate, and severe conditions, respectively (2001). 

Joint occupancy is an important factor that causes decline in construction 

labor productivity. Joint occupancy occurs when work is scheduled utilizing the same 

facility or work area that must be shared or occupied by more than one craft, and not 

anticipated in the original bid or plan (MCAA 2011). According to the MCAA loss of 

labor productivity due to joint occupancy has been estimated 5%, 12%, and 20% for 

minor, average, and severe conditions, respectively (2011). Ovararin showed higher 

losses of productivity due to joint occupancy in comparison with MCAA. The 

average loss increases up to 14% when a facility is partly occupied and two or three 

trades are working in the same area. Even more severely, there is an average 

productivity loss of 25% when a facility is in full operation and masonry work is on 

limited shifts (2001). 

Shift work is one of the options that contractors usually use to accelerate a 

construction schedule. Although shift work is very effective at reducing project 

duration, it has disadvantages and one of them is loss of labor productivity. Also, shift 

work introduces other additional costs including additional administration, 

supervision, quality control, safety, and lighting, as well as shift differential (Hanna, 

Chang and Sullivan, et al. 2008). The cost of shift work to American industry was 

estimated in excess of $77 billion (Coburn 1997). Also, 84% of total cost of shift 

work is due to loss of labor productivity at work (Coburn 1997). Penkala described 
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some of common problems associate with shift work; the problems like little 

cooperation between shifts, inconsistent operating procedures across shifts, inefficient 

communication between crews, and absence of regular business hours for 

management (1997). Hung reported problems like harmful health conditions, high 

personnel turnover, absenteeism, resentment, poor job performance, and unfit mental 

and physical conditions, or other situations that translate to loss of productivity, 

quality, and even safety as results of shift work (1992). Waldron estimated the 

productivity loss due to shift work to be 10% (1968). Hanna stated that Safety may be 

negatively impacted during the second shift because of increased fatigue, a reduction 

of support groups, and potentially poor lighting conditions when working at night 

(2003). Costa found that shift workers generate more errors and accidents, and may 

have problems in maintaining proper relationships at the family and social levels 

(1996). Haneiko and Henry found that double shifting has an impact on productivity. 

They stated that double shifting caused a gradual initial decrease in the unit 

production rates, followed by a recovery period. They found this results in electric 

work during one year period (1991).  Not all researches concluded that shift work has 

negative effects on worker performance. Hildebrandt et al. found that shift work had 

better performance than day-time operation (Hilderbrandt, Rohmert and Rutenfranz 

1974). Cook by analyzing of data collected from 36 industries, such as electrical and 

general engineering, found that shift work has no significant effect on reductions in 

labor productivity (1954). Cook also stated that shift work greatly affects neither 

absenteeism nor safety (1954). Horner and Talhouni found that the competition 

between shifts might actually cause an increase in overall productivity (1993). Smith 
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based on his company experience stated that well-planned second shift with work 

completely separate from the first could have a productivity rate greater than the first 

shift (1987). He believed that shift work avoids congestion of trades, allows for the 

optimization of crew size, and improves motivation (1987). 

Morale and attitude is one of the factors that affect labor productivity in the 

construction industry. According to Merriam-Webster dictionary, morale is defined as 

“The confidence, enthusiasm, and discipline of a person or group with regard to the 

function or task at hand” or “A sense of common purpose with respect to a group” 

(Merriam-Webster n.d.). Warhoe stated that worker morale in the construction 

industry is an important aspect of maintaining good productivity and reducing error. 

He also stated that measuring worker morale is difficult (2012). Gould and Joyce 

stated that workers often take their morale cues from those that lead the projects; 

therefore, it is essential for project managers to be aware of project policies (2013). 

Ovararin stated that workers perform the construction job and they have direct control 

on productivity; therefore, worker morale can have a significant impact on 

productivity (2001). Warhoe stated that morale can be positively impacted through 

establishing a sense of achievement amongst construction workers by different 

methods such as providing safer working condition (2012). Lyneis and Ford stated 

that fatigue and rework can create a sense of ‘hopelessness’ that increases errors, 

reduce productivity and increase turnover (2007). 

Motivation in construction industry is an important phenomena to energize 

workers toward a specific goal. In construction industry, motivation has been defined 

as providing a drive to act to satisfy needs or desires and then stimulate and energize 
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workers with the aim of getting work done on time and within budget (Cox, Issa and 

Koblegard 2005). Bredillet et al. stated that motivation directly affects project success 

(Bredillet, Dwivedula and Ruiz 2009). Warhoe stated that appropriate motivation is 

what workers need to have in order to work at a normal and acceptable productivity 

rate (2012). Osterloh and Frey stated that two types of motivation exist, namely 

extrinsic and intrinsic. Extrinsic motivation occurs when managers can satisfy 

worker’s needs especially through monetary compensation, while intrinsic motivation 

is obtained through self-satisfaction. They also stated that obtaining high productivity 

rate is achievable through satisfactory and fulfilling incentives (2000). Mackenzie and 

Harris stated that extrinsic motivation is what primarily dominates workers minds 

(1984). The Business Roundtable established a set of actions that motivates 

construction workers and invents a specific program that can help managers to 

enhance on site construction labor productivity (BRT 1982). Borcherding and 

Oglesby investigated the effects of job satisfaction and motivation on labor 

productivity. They found well-planning and smooth work flows two important factors 

affecting job satisfaction and motivation (1974). Maloney and McFillen stated that 

contractors need to improve worker satisfaction to increase labor productivity (1986). 

Fatigue is one of the factors that is usually stated as a main cause of decline in 

labor productivity. Hallowel defined fatigue as exhaustion of mental and physical 

ability caused by over exertion (2010). Akhter et al. stated fatigue reduces workers’ 

capabilities to an extent that may impair their strength, speed, reaction time, 

coordination, decision making, or balance (2011). American Association of Cost 

Engineering International (AACE International) stated that fatigue can decrease 
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productivity through slowing down work, increasing the number of mistakes, 

accidents, and injuries (2004). Akerstedt stated that measuring fatigue is possible 

through objective measures such as reaction times or number of errors (1990). Amble 

did research about fatigue amongst workforce and he found that 38% of workers 

experience fatigue related problems. He also found that 10% of workers reported 

unproductive time and stated that fatigue reduced performance by interrupting their 

concentration and increasing the time needed to accomplish tasks (2007). Warhoe 

stated that fatigue negatively affects labor productivity on a construction project. He 

stated that fatigue not only decreases productivity, but also can lead to lapses in safety 

which could cause fatal accidents (2012).  

Previous factors are the most important factors that affect construction labor 

productivity, and most of the literature is about those factors. Other factors that affect 

construction labor productivity according to the literature are concurrent operations, 

errors and omissions, reassignment of manpower, late crew build-up, crew size 

inefficiency, site access , logistics , learning curve, ripple effect, confined space, 

hazardous work area , holidays, dilution of supervision , working in operating area , 

tools and equipment shortages, proximity to work, and alternating work schedules. 

Thomas and Napolitan stated that scheduling work out-of-sequence can produce loss 

of momentum because crews need to stop working on their present jobs and 

reorganize for the new work (1995). Thomas et al. investigated the effects of adverse 

material management on construction labor productivity (Thomas, Sanvido and 

Sanders 1989). Makulsawatudom and Emsley investigated the effects of 23 factors on 

the construction labor productivity in Thailand. They found that lack of material, 
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incomplete drawings, incompetent supervisors, lack of tools and equipment, labor 

absenteeism, poor communication, instruction time, poor site layout, inspection delay, 

and rework as the most important factors that affect construction labor productivity 

(2003). Abdul Kadir et al. surveyed the effects of 50 productivity factors on 

Malaysian residential projects and identified material shortages, change orders, 

incapability of site management, late issuance of construction drawings by consultant, 

and late or no payment to suppliers which causes stoppage of materials delivery to 

sites as the most important factors that causes loss of labor productivity (2005). 

Alinaitwe et al. ranked incompetent supervisors, lack of skills, rework, lack of 

tools/equipment, and poor construction methods as the most important causes of loss 

of labor productivity (Alinaitwe, Mwakali and Hansson 2007).  Enshassi et al. 

surveyed 45 factors affecting labor productivity on building projects in Gaza Strip. 

They found that the main factors negatively affecting labor productivity as follows: 

material shortage, lack of labor experience, lack of labor surveillance, 

misunderstandings between labor and superintendent, and drawings and specification 

alteration during execution (2007).  The impact of material management and delivery 

methods on construction productivity has been investigated by several researchers 

such as Thomas et al. (Thomas, Sanvido and Sanders 1989) , (Thomas, Riley and 

Sanvido 1999). Also, Horman and Thomas investigated the role of inventory buffers 

in construction labor performance. They found that some buffer helps achieve the 

best labor performance in the construction operations (2005). Lamm et al. stated that 

“there is an increasing and compelling evidence that providing a healthy and safe 

working environment has the potential to increase labor productivity.” On the other 
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hand, they found that efforts to increase productivity through occupational safety and 

health can have contradictory results (2006). Greef and Broek stated that research 

findings support the existence of an important link between a good working 

environment and the performance of a company (2004).  
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Chapter 3 

Introduction to Probabilistic Graph Modeling  

and Bayesian Networks  

 

This chapter is a brief introduction to Probabilistic Graphical Modeling 

(PGM) and Bayesian Belief Networks (BBNs). For deeper understanding of the 

capabilities of Bayesian Belief Networks and Probabilistic Graphical Models the 

author suggests “Modeling and Reasoning with Bayesian Networks” by Adnan 

Darwiche (2009), “Probabilistic Reasoning in Intelligent Systems” by Judea Pearl 

(1988), and “  Probabilistic Graphical Models Principles and Techniques” by Daphne 

Koller and Nir Friedman (2009). Most parts of this chapter are from the content of 

these books. 

 

3.1 Uncertainty 

Most tasks require a person or an automated system to reason, which is to take 

the available information and reach a conclusion, both about what might be true in the 

world and about how to act. For example, a doctor needs to take information about a 

patient – his/her symptoms, test results, personal characteristics (gender, weight) - 

and reach conclusions about what diseases he or she may have and what course of 

treatment to undertake. An inherent component of this kind of reasoning is a 

significant amount of uncertainty. Uncertainty defined as the lack of certainty, a state 

of having limited knowledge in which it is impossible to precisely describe existing 

state or future outcome (Hubbard 2014). Uncertainty is consequence of several 
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factors such as partial observation, which only some aspects of the world are 

observed, and noisy observation which includes some errors. To summarize, 

uncertainty arises because of limitation in our ability to observe the world, limitation 

in our ability to model it, and possibly even because of non-determinism (Hubbard 

2014). Therefore to model this kind of uncertain situation, we need to reason not just 

about what is possible, but also about what is probable.  

 

3.2 Probabilistic Graphical Models 

Koller and Friedman described Probabilistic Graphical Models (PGM) as a 

mechanism for exploiting structure in complex distributions to describe them 

compactly in a way that allows them to be constructed and utilized effectively (2009). 

Probabilistic graphical models use a graph-based representation as the basis for 

compactly encoding a complex distribution over a high-dimensional space (2009). 

Jordan (1998) described the PGM as follows: 

An integral part in the idea a graphical model is the notion of modularity -- a 

complex system is built by combining simpler parts. Probability theory provides 

the glue whereby the parts are combined, ensuring that the system as a whole is 

consistent, and providing ways to interface models to data. The graph theoretic 

side of graphical models provides both an intuitively appealing interface by which 

humans can model highly-interacting sets of variables as well as a data structure 

that lends itself naturally to the design of efficient general-purpose algorithms. 

Many of the classical multivariate probabilistic systems studied in fields such as 

statistics, systems engineering, information theory, pattern recognition and 
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statistical mechanics are special cases of the general graphical model formalism – 

examples include mixture models, factor analysis, hidden Markov models, 

Kalman filters and Ising models. The graphical model framework provides a way 

to view all of these systems as instances of a common underlying formalism. This 

view has many advantages -- in particular, specialized techniques that have been 

developed in one field can be transferred between research communities and 

exploited more widely. Moreover, the graphical model formalism provides a 

natural framework for the design of new systems. 

PGM has many advantages. It allows the distribution to be written down 

tractably, even in cases where explicit representation of the joint distribution is 

astronomically large. The type of representation provided by this framework is 

transparent, in that a human expert can understand and evaluate its semantics and 

properties. Also, the same structure allows the distribution to be used effectively for 

inference. In particular, computing posterior probability of some variables given 

evidence on others. We can construct these models not only with using human 

knowledge and expertise, but by learning from data. A model based on our past 

experiences can be constructed. Three components- representation, inference, and 

learning – are critical component in constructing an intelligent system. It is essential 

to be able to use this representation effectively to answer a broad range of questions 

that are of our own interest. We need to be able to acquire this distribution, 

combining expert knowledge and accumulated data. Probabilistic graphical models 

are one of the small handful of frameworks that support all three capabilities for a 

broad range of problems (Koller and Friedman 2009).  
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3.3 Bayesian Belief Networks 

Bayesian Belief Network (BBN) or shortly Bayesian Networks is one of the 

most effective and prevalent probabilistic graphical models which has been developed 

by Judea Pearl in Probabilistic Reasoning in Intelligent Systems in 1988. The goal is 

to represent a joint distribution 𝑃  over some set of random variables  𝑋 =

{𝑋1 , 𝑋2 , … , 𝑋𝑛 }. In the smallest case where these variables are binary-valued, a joint 

distribution requires the specification of  2𝑛 − 1 numbers (Koller and Friedman 

2009). Therefore, the explicit representation of the joint distribution in unmanageable 

from every perspective.  Computationally, it is very expensive to manipulate and 

generally too large to store in memory. Cognitively, it is impossible to acquire so 

many numbers from human experts; moreover, the numbers are very small and do not 

correspond to events that people can reasonably contemplate. These problems were 

the main barrier of probabilistic methods for expert systems until the development of 

PGM (Koller and Friedman 2009). Bayesian Networks (BNs) are graphical models 

for reasoning under uncertainty, where the nodes represent variables and arcs 

represent direct connections between them. These direct connections are often causal 

connections. Bayesian Networks model the quantitative strength of the connections 

between variables by conditional probability distributions of each node. BNs are 

Directed Acyclic Graph (DAG) models which means no directed cycle exist in the 

graph.  In the figure 3.1 a Directed Acyclic Graph (DAG) and in figure 3.2 a Directed 

Non-Acyclic Graph is shown.   
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Figure 3.1: Directed Acyclic Graph Figure 3.2: Directed Non-Acyclic Graph 

 

Consider the DAG in figure 3.3, where nodes represent propositional variables 

and edges in the graph represent “direct causal influences” among these variables. 

Given a causal structure, one would expect the dynamics of belief changes to satisfy 

some properties.  For example, we would expect our beliefs in C to be influenced by 

evidence on R. If we get a radio report that an earthquake took place in our 

neighborhood, our belief in the alarm triggering would probably increase, which 

would also increase our belief in receiving a call from our neighbor. However, we 

would not change this belief if we knew for sure that the alarm did not trigger (￢A: 

not A) (Pearl 1988). In this DAG, C is independent of R given A. 
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Earthquake?

Alarm?

Burglary?

Radio?

Call?

 

Figure 3.3: A DAG That Captures Independence among Five Propositional Variables 

 

    The previous example of independence is implied by a formal interpretation of 

DAG as set of conditional independence statements. To Phrase this interpretation 

formally, we need following notation. Given a variable V in a DAG G: 

 Parents (V) are the parents of V in DAG G, that is, the set of variables N with 

an edge from N to V. For example, the parents of variable A in Figure 3.3 are 

E and B. 

 Descendants (V) are the descendants of V in DAG G, that is, the set of 

variables N with a directed path from V to N (we also say that V is an 

ancestor of N in this case). For example, the descendants of variable B in 

Figure 3.3 are A and C. 

 Non- Descendants (V) are all variables in DAG G other than V, Parents (V), 

and Descendants (V). We will call these variables the non-descendants of V in 
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DAG G. For example, the non-descendants of variable B in Figure 3.3 are E 

and R. 

 

Given this notation, we will then formally interpret each DAG G as a compact 

representation of the following independence statements:  

 I (V, Parents (V), Non − Descendants (V)) for all variables V in DAG G (3.1) 

That is, every variable is conditionally independent of its non-descendent given its 

parents. This independence assumption is known as Markovian assumptions of DAG 

and denote by Markov (G). We can read the statement (3.1) as follows: Given the 

direct causes of a variable, our beliefs in that variable will no longer be influenced by 

any other variable except possibly by its effects (Darwiche 2009).  Following are all 

the statements represented by the DAG in Figure 3.3: 

I (C, A, {B, E, R}) 

I (R, E, {A, B, C}) 

                                        I (A, {B, E}, R) 

                             I (B, ∅, {E, R}) 

           I (E, ∅, B) 

The additional set of conditional probabilities that we need are as follows: for every 

variable X in DAG G and its parents U we need to provide the probability Pr(x|u) for 

every value x of variable X and every instantiation of parents U. For example, for the 

DAG in Figure 3.3 we need to provide the following conditional probabilities:  
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Pr(c|a), Pr(r|e), Pr(a|b, e), Pr(e), Pr(b) 

where a, b, c, e, and r are values of variables A, B, C, E, and R. For example, the 

conditional probabilities required for variable C:  

Table 3.1: Sample CPT of Variable C from the Network in Figure 3.1 

A C Pr(c|a) 

True True 0.8 

True False 0.2 

False True 0.001 

False False 0.999 

 

 

This table is known as a conditional probability table (CPT) for variable C. The set of 

CPTs, one for each variable, is called the network parameterization. While the 

directed acyclic graph over variables is called network structure (Darwiche 2009).     

 

3.3.1 Network Factorization 

 

Definition: Let G be a BN graph over the variables  𝑋1 , 𝑋2 , … , 𝑋𝑛  . We say 

that a distribution P over the same space factorizes according to G if P can be 

expressed as a product: 

 
𝑃(𝑋1 , 𝑋2 , … , 𝑋𝑛 ) =  ∏𝑃 (𝑋𝑖

𝑛

𝑖=1

| 𝑃𝑎𝑋𝑖

𝐺 ) (3.2) 

This equation is called the chain rule for Bayesian networks (Koller and Friedman 

2009). The individual factors 𝑃 (𝑋𝑖| 𝑃𝑎𝑋𝑖

𝐺 ) are called conditional probability 
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distributions (CPDs) or local probabilistic models.  According to factorization, formal 

definition of Bayesian networks is as follows: 

A Bayesian network is a pair  𝐵 = (𝐺, 𝑃) where 𝑃  factorizes over 𝐺 , and where 

𝑃 is specified as a set of CPDs associated with 𝐺’s nodes. 

 

3.3.2 D-Separation 

 

If 𝑿, 𝒀 and 𝒁 are three disjoint sets of variables, to test whether 𝑿 and 𝒀 are d-

separated by 𝒁 in DAG G, written 𝑑𝑠𝑒𝑝𝐺(𝑿, 𝒁, 𝒀), it is necessary to consider every 

path between a node in 𝑿 and a node in 𝒀 that is blocked by 𝒁 . Therefore, the 

definition of d-separation relies on the notion of blocking a path by a set of variables. 

Note that  𝑑𝑠𝑒𝑝𝐺(𝑿, 𝒁, 𝒀) implies 𝐼𝑝𝑟(𝑿, 𝒁, 𝒀) for every probability distribution Pr 

induced by G.  To understand the notion of blocking, we need first to describe types 

of connections in Bayesian networks. First type of connection between variables is 

serial connection. In Figure 3.4 a serial connection is shown. A has influence on B 

and B has influence on C. When there is evidence given about B, the communication 

between A and C is blocked or  𝑑𝑠𝑒𝑝𝐺(𝑨, 𝑩, 𝑪) . A sequential connection arises when 

𝑩 is a parent of one of its neighbors and a child of the other (Darwiche 2009).  

BA C

 

Figure 3.4: Sequential Connection 
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The second type of connection is divergent connection. In figure 3.5 a 

divergent connection is shown.  In this connection A is parent node and B and C are 

the child nodes. If evidence is given about A, then communication between child 

nodes is blocked.  

A

B C

 

  Figure 3.5: Divergent Connection 

  

The third type of connection is convergent connection. In figure 3.6 a 

convergent connection is shown. In this connection A and B are parent nodes and C is 

the child node. If no evidence is given about C, then communication between parent 

nodes is blocked.  

C

A B

 
Figure 3.6: Convergent Connection 

 

 

Based on the concept of d-separation we can identify an active trail in the 

network. If   𝑋1 ←⃗⃗⃗  𝑋2 ←⃗⃗⃗  𝑋3 ←⃗⃗⃗ … ←⃗⃗⃗ 𝑋𝑛  is a trail in 𝑮 and 𝒁 is a subset of observed 
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variables, the trail   𝑋1 ←⃗⃗⃗  𝑋2 ←⃗⃗⃗  𝑋3 ←⃗⃗⃗ … ←⃗⃗⃗ 𝑋𝑛  is active given 𝒁 if whenever we have 

a convergent connection (V-structure) 𝑋𝑖−1 → 𝑋𝑖 ← 𝑋𝑖+1 then 𝑋𝑖 or one of its 

descendants are in 𝒁 and no other node along the trail is in 𝒁 . Therefore, if 𝑿 and 𝒀 

are not d-separated given 𝒁, then 𝑿 and 𝒀 are dependent given 𝒁 in some distribution 

𝒁 that factorizes over the network. D-separation test is sound, this means we can 

safely use the d-separation test to derive independence statements about probability 

distributions induced by Bayesian networks (Koller and Friedman 2009).   

The final definition in this section is Markov blanket for a variable  𝑿 . A 

Markov blanket for 𝑿 is a set of variables that, when known, will render every other 

variable irrelevant to it. Therefore, if Pr is a distribution induced by DAG G, then a 

Markov blanket for variable 𝑿 with respect to distribution Pr can be constructed using 

its parents, children, and spouses in DAG G. Here variable 𝒀 is a spouse of 𝑿 if the 

two variables have a common child in DAG G. 

 

3.4 Reasoning with Bayesian Networks 

The construction of a Bayesian network consists of three major steps. First, 

identification of the set of relevant variables and their possible values. Next, building 

the network structure by connecting variables into a DAG. Finally, defining the 

conditional probability table or distribution (CPT or CPD) for each variable in the 

network. After constructing the Bayesian network we can execute several types of 

queries with respect to a Bayesian network. In this section, different kinds of queries 

are explained. Since Bayesian networks provide full representation of probability 
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distributions over their variables, they can be conditioned upon any subset of their 

variables, and therefore produce different kinds of reasoning. Diagnostic reasoning is 

reasoning from symptoms to causes occurs in the opposite direction to the network 

arcs. For example, consider a simple network with three variables known as shift 

work, weather and productivity. Shift work and weather have direct effect on 

productivity. In figure 3.7 network with related marginal distribution is shown. If we 

put a condition on productivity, for example, high, the network variables’ marginal 

distribution will change. In figure 3.8 this change in shown. This kind of reasoning 

which occurs in opposite direction of network is known as diagnostic reasoning. In 

order to understand this kind of reasoning we need to describe Bayes rule briefly. 

Bayes rule is as follows:  

 
𝑃(𝐵|𝐴) =

𝑃(𝐴|𝐵)𝑃(𝐵)

𝑃(𝐴)
 (3.3) 

 

𝑃(𝐵) is prior probability of 𝐵  , which represents our belief about 𝐵 before observing 

any evidence. 𝑃(𝐴) represents the probability of  evidence 𝐴 that has been observed 

and 𝑃(𝐴|𝐵) is the conditional probability of seeing A if the event 𝐵 occurred and is 

known as likelihood function. 𝑃(𝐵|𝐴)  is the posterior probability of 𝐵 given 𝐴 and is 

the new estimate of probability distribution of random variable 𝐴 considering the 

evidence 𝐴 . In figure 3.8, the posterior probability distribution of shift work and 

weather random variable has been computed with regard to the evidence about the 

productivity random variable. 
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Figure 3.7: A Simple Network with Prior Marginal Distributions 

 

 

 
Figure 3.8: Diagnostic Reasoning in Network (Posterior Marginal Distributions) 

 

 

Another type of reasoning with Bayesian networks is predictive reasoning. 

This kind of reasoning is reasoning from new information about causes to new beliefs 

about effects. Predictive reasoning is on the direction of network arcs. For example, 

in figure 3.9, we put some evidence on shift work, our posterior distribution over 

productivity random variable has changed.  
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Figure 3.9: Predictive Reasoning in Bayesian Networks 

 

The third type of reasoning is intercausal reasoning, which involves 

reasoning about the mutual causes of a common effect. For example, in figure 3.10, 

we have some evidence about weather and productivity and show how our belief 

about shift work has changed. In this situation, evidence on weather increases the 

probability of working on shift 1, while these two random variables are independent. 

This situation is known as explaining away, that is, even though the two causes are 

initially independent, with knowledge of the effect, the presence of knowledge about 

one cause gives knowledge about the alternative cause.  

 

Figure 3.10: Intercausal Reasoning and Explaining Away 
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There are several types of queries with respect to Bayesian networks. The 

most probable explanation (MPE). The goal of MPE query is to identify the most 

probable instantiation of network variables given some evidence. Specifically, if  

𝑋1 , 𝑋2 , … , 𝑋𝑛  are all network variables and if e is the given evidence, the goal of 

MPE is to identify an instantiation   𝑥1 , 𝑥2 , … , 𝑥𝑛  for which the probability 

Pr (  𝑥1 , 𝑥2 , … , 𝑥𝑛 |𝑒) is maximal. Such an instantiation   𝑥1 , 𝑥2 , … , 𝑥𝑛  is called most 

probable explanation given evidence e. For example in our example network, if we 

have observed that productivity is high, the MPE correspond to this evidence is 

weather to be mild and working on shift 1. Note that the probability of happening this 

instantiation is 0.7567. In figure 11 MPE is shown.  

 

 

Figure 3.11: MPE of Network for Observing High Productivity 

 

MPE is a special case of a more general class of queries for finding the most 

probable instantiation of a subset of network variables. These kinds of queries is 
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known as Maximum a posteriori hypothesis (MAP). In MAP query if we choose all 

network variables it becomes an MPE query.  

 

 3.5 Types of Bayesian Networks 

In this section, different kinds of Bayesian networks are introduced briefly. 

Each kind of network has specific applications in some area such as classification, 

diagnosis and prediction. The most cited types of Bayesian networks are: Naïve 

Bayes, Dynamic Bayesian networks, object oriented Bayesian networks, Gaussian 

Bayesian networks, and Fuzzy Bayesian networks. All of these networks are subsets 

of general-type Bayesian networks which have additional restrictions either on their 

structure or parameters. Adding this kind of restriction can facilitate learning and 

reasoning with Bayesian networks in specific domains. In this section, the structure of 

these networks are introduced briefly with some of their applications.  

 

3.5.1 Naïve Bayesian Networks 

The structure of Naïve Bayes model (also known as Idiot Bayes model) is 

shown in figure 3.12 (Koller and Friedman 2009). In this network none of the 

variables are marginally independent. The naïve Bayes model assumes that instances 

fall into one of a number of mutually exclusive and exhaustive classes. Thus, we have 

a class variable C that takes one of the values in set  {𝑐1 , 𝑐2 , … , 𝑐𝑘} . The model also 

includes some number of features   𝑋1 , 𝑋2 , … , 𝑋𝑛  whose values are the children of 

parent node.  Naïve Bayes has been used as an effective classifier because it is easy to 
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construct it and the classification process is very efficient. In naïve Bayes model we 

have (Koller and Friedman 2009): 

  {𝑋𝑖 ⊥ 𝑋−𝑖 | C} for all 𝑖 , where   𝑋−𝑖 = {𝑋1 , 𝑋2 , … , 𝑋𝑛 } − {𝑋𝑖 } . 

Based on independence assumption between features the naïve Bayes model 

factorizes as follows: 

 
𝑃(𝐶, 𝑋1 , 𝑋2 , … , 𝑋𝑛 ) = 𝑃(𝐶)∏𝑃(

𝑛

𝑖=1

𝑋𝑖 |𝐶) (3.4) 

 

X2

C

... XnX1

 

Figure 3.12: Naïve Bayes Model 

  

3.5.2 Dynamic Bayesian Network (DBN) 

A Dynamic Bayesian Network is a Bayesian network for modeling time 

serious data. In a DBN, the state at time t is represented by a set of random 

variables  𝑋𝑡 = {𝑋1,𝑡 , 𝑋2,𝑡 , … , 𝑋𝑛,𝑡 }. The state t depends on its previous step. In 

figure 3.13 a simple DBN is shown. The network has two variables: 𝑋  and 𝑌 are 

network variables at different time slices. In a DBN we have a prior network which 

represents the prior probabilities for all of the network variables in time slice t=0 and 
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the transition network shows how probabilities for each variables in network in time 

slices𝑡 = 1,2, … , 𝑛 are related to the previous time slice (Koller and Friedman 2009). 

Therefore, the independence assumption for DBN is as follows: 

   {𝑋(𝑡+1)
 
⊥ 𝑋(0:(𝑡+1))| 𝑋(𝑡)} (3.5) 

This assumption says that variables 𝑋(𝑡+1) are independent of variables  𝑋(0:(𝑡−1)) 

(variables from time slice t=0 to t=t-1) given variables in time slice 𝑋(𝑡). Therefore, 

the joint probability distribution for this kind of networks is as follow (Koller and 

Friedman 2009): 

   𝑃(𝑋(0), 𝑋(1), … , 𝑋(𝑇)) = ∏ 𝑃(𝑇−1
𝑡=0 𝑋(𝑡+1)

 
| 𝑋(𝑡))                                                 (3.6) 

X1

Y1

X2 X3 X4

Y2
Y4Y3

X0

Y0

 

        Figure 3.13: A Simple Dynamic Bayesian Network 

 

 

3.5.3 Gaussian Bayesian Network (GBN) 

In the GBN model, the conditional distribution of a node given its parents is 

given by a Gaussian distribution with expectation that it is linear in the value of its 

parent nodes, and variance independent of its parent nodes. For example, consider the 

network in figure 3.12, node  𝑋 , has a normal distribution or rotationally 𝑋 ∼
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𝑁(𝜇𝑋 , 𝜎𝑋
2 )  ; therefore, the distribution of variable 𝑌 is as follows (Koller and 

Friedman 2009): 

 𝑌 ∼ 𝑁(𝜇𝑌 + 𝛼 𝑋 , 𝜎𝑌
2 ) (3.7) 

Where  𝜇𝑌 , 𝛼 and 𝜎𝑌
2  are constants. For node 𝑍 this pattern will repeat with constants  

𝜇𝑍 , 𝛽 and 𝜎𝑍
2 . 

In general, if node 𝑋 has parents   {𝑌1 , 𝑌2 , … , 𝑌𝑛 } then the probability density function 

of 𝑋 is as follows: 

 𝑋 ∼ 𝑁(𝜇𝑋 + ∑𝛼𝑖

𝑖

𝑦𝑖  , 𝜎𝑋
2 ) (3.8) 

Therefore, for obtaining the joint probability distribution of all variables we have to 

multiply the probability density functions of all variables and the results is a 

multivariate Gaussian distribution. These kinds of models can only model linear 

relations between continuous variables and do not allow discrete nodes to have 

continuous parents (Koller and Friedman 2009).    

X Y Z

 

Figure 3.14: Network with Gaussian Variables 

 

3.5.4 Object Oriented Bayesian Network (OOBN) 

Koller described the objective of OOBN and why we need OOBN. One of the 

challenge of Bayesian networks is to create and maintain very large models. OOBN 

allows complex domains to be described in terms of interrelated objects. OOBN in 
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addition to usual nodes has some instance nodes, which is a node representing an 

instance of another network. Instance nodes are similar to a subnet that connect with 

the remaining network through interfaces. The basic element in an OOBN is an object 

and the most basic object is a standard random variable. OOBN uses concepts of OO 

programming such as class, inheritance, interface and instantiation for developing the 

network (2009).   

 

3.5.5 Fuzzy Bayesian Network (FBN) 

This kind of network deals with vagueness and uncertainty simultaneously. 

FBN are BN with fuzzy variables. Fogelberg et al. developed the FBN and belief 

propagation in FBN (2008). Fuzzy sets are generalizations of set theory that were 

introduced by Zadeh in 1965 as a mathematical way to represent vagueness.  In fuzzy 

set theory the membership degree can be a value between 0 and 1 although in the 

classical set theory membership degree can be taken only as 0 or 1. Therefore, in 

fuzzy set theory we have the notion of “membership function” which represent the 

degree that a situation belongs to a specific set. For example, in figure 3.14, a 

trapezoidal fuzzy number  �̃� is shown. As shown in the figure, the membership 

degree of any 𝑥 value which is shown by 𝜇�̃�(𝑥) belongs to [0, 1] range. 
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 Figure 3.15: Trapezoidal Fuzzy Number 

 

The first thing in FBN that we need to know is Fuzzy probability distribution (FPD). 

FPD is a probability distribution that has a fuzzy state associated with it. For example 

if X is a FPD as follows: 

 𝑋 = [{ℎ𝑖𝑔ℎ0.6  , 𝑙𝑜𝑤0.4}0.7 , {ℎ𝑖𝑔ℎ0.4  , 𝑙𝑜𝑤0.6}0.3 ]   

This means that the probability distribution {ℎ𝑖𝑔ℎ0.6  , 𝑙𝑜𝑤0.4} has a fuzzy 

membership value of 0.7 and the probability distribution {ℎ𝑖𝑔ℎ0.4  , 𝑙𝑜𝑤0.6} has a 

fuzzy membership value of 0.3. Another interpretation of FPD {ℎ𝑖𝑔ℎ0.6  , 𝑙𝑜𝑤0.4}0.7 is 

as follows:  𝜇ℎ𝑖𝑔ℎ = 0.7  will be drawn as a sample from this FPD 60% of the time 

and  𝜇𝑙𝑜𝑤 = 0.7   will be drawn 40% of the time.  
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Chapter 4 

 Extracting Model Structure 

This chapter extracts the model structure. After identification of the model’s 

variables, the cause-effect relationships are extracted. The model is divided into 

several sub-models, then for each sub model based on research that has been done by 

other scholars and with various modeling techniques related to the model structure, 

the model structure is extracted. This chapter consists of two sections; in the first 

section, different “Structure-Related Techniques” are reviewed and in second section, 

structure of each sub-model, which is used to construct the model comprehensive 

structure, are extracted. 

 

4.1 Modeling Techniques Related to Structure 

There are five modeling techniques that are used to extract the model 

structure. These modeling techniques are parent divorcing, temporal transformation, 

undirected dependence link, bidirectional relations, and the representation of 

structural and functional uncertainty (Kjærulff and Madsen 2013).  

 

4.1.1 Parent Divorcing 

This modeling technique is useful for reducing the complexity of a model by 

adjusting the structure of the graph of a probabilistic network. When there are several 

cause variables such as 𝑋1 , 𝑋2 , … , 𝑋𝑛 that has effect on a single variable Y, as shown 

in figure 4.1, obtaining CPT of the effect variable becomes complex. In parent 
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divorcing technique, layers of intermediate variables are introduced between effect 

variable Y and its causes  𝑋1 , 𝑋2 , … , 𝑋𝑛 such that each intermediate variable I 

captures the impacts of its parents on the child variable (Kjærulff and Madsen 2013). 

For example, in figure 4.2 by introducing intermediate variable I and combining the 

effects of 𝑋1 and 𝑋2  onto I and then combining the effects of I and 𝑋3 , extracting a 

model CPT becomes easier. In figure 4.2 𝑋1 , 𝑋2 are divorced from the remaining 

parents of Y (Kjærulff and Madsen 2013).   

X1X1 X2X2 X3X3 XnXn......

YY

 

X1X1 X2X2 X3X3 XnXn......

II

YY

 

Figure 4.1: Several Cause Variables 

Affecting Effect Variable 

 

 

Figure 4.2: Applying Parent Divorcing 

Technique to 𝑋1 𝑎𝑛𝑑 𝑋2 

4.1.2 Temporal Transformation 

In this method, instead of combining causes pairwise, the influence of causes 

on the effect variable is taken into account one cause at a time in their causal or 

temporal order (Kjærulff and Madsen 2013).  In figure 4.3, a network with four cause 

variables 𝑋1 , 𝑋2 , 𝑋3 , 𝑋4 and one effect variable 𝑌 is shown. By using temporal 

transformation technique, the network shown in figure 4.4 is obtained. Note that in 

temporal transformation techniques, variable 𝑌1 and 𝑌2 have the same state space 
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as 𝑌. This method can be used as an alternative to parent divorcing approach 

(Kjærulff and Madsen 2013). 

 

X1X1 X2X2 X3X3 X4X4

YY

 

X2X2

X1X1 Y2Y2

X3X3

Y1Y1 YY

X4X4

 

Figure 4.3: Four Variables Affecting Effect 

Variable Y 

 

Figure 4.4: Applying Temporal 

Transformation Technique to 

 𝑋1 … 𝑋4 (from  Kjærulff & Madsen, 

2013) 

 

4.1.3 Structural Uncertainty 

This approach is useful when it is difficult to specify the dependence and 

independence in a DAG. If two variables 𝑋1 and 𝑋2 affect effect variable 𝑌, but not 

simultaneously, then there exist structural uncertainty in the model.  The proposed 

approach for solving structural uncertainty is to add a selector variable 𝑆  to the 

model and an intermediate variable with the same state space as 𝑋1 and  𝑋2 . 

Therefore, selector variable acts like OR gate in the model and select either 𝑋1 or 𝑋2. 

For example, in figure 4.5 we know that variables 𝑋1 and 𝑋2 affect 𝑌 but not 

simultaneously. According to the proposed approach, we can build the network 

shown in figure 4.6 to remove structural uncertainty (Kjærulff and Madsen 2013).   
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X1X1 X2X2

YY

? ?

 

X1X1 X2X2

PP

SS

YY

 

Figure 4.5: Structural Uncertainty in 

Model 

Figure 4.6: Removing Structural 

Uncertainty from Model 

 

 

4.1.4 Undirected Dependence Relation 

During building a BBN, it is possible that some variables have undirected 

relationship with each other. According to definition of DAG, this undirected relation 

between variables violates acyclic property of BBN.  The proposed approach for 

solving this situation is to introduce an auxiliary variable known as the constraint 

variable as the child of variables whose have undirected relation (Kjærulff and 

Madsen 2013). For example, in figure 4.7 variables  𝑋1 and 𝑋2  have undirected 

relation and in figure 4.8 by introducing constraint variable  𝐶 , the graph has been 

changed to DAG.  

X1X1 X2X2

 

X1X1 X2X2

CC

 

Figure 4.7: Undirected Relation between 

Two  Variables 

Figure 4.8: Solving Undirected Relation 

Problem by Introducing Common Child 
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4.1.5 Bidirectional Relations 

Bidirectional relation happens when there exist two variable that direction of 

causal relation among them is not certain. In figure 4.9 this kind of relation is shown. 

The proposed approach for solving this problem is by introducing a new variable that 

is parents of both 𝑋1 and 𝑋2. In figure 4.10 this is shown (Kjærulff and Madsen 

2013).  

X1X1 X2X2

?

?
 X1X1 X2X2

PP

 

Figure 4.9: Bidirectional Relation between 

Two  Variables 

 

 

Figure 4.10: Solving Bidirectional 

Relation Problem by Introducing 

Common Parent 

 

4.2 Extracting Sub Models’ Structure   

In this section, causal structure for different factors that affect construction 

labor productivity has been extracted from other researchers’ papers, publications, 

and reports. This section, as one of the most labor-intensive part of this dissertation, 

requires to go all over publications that exist related to a certain factor that affect 

construction labor productivity, and then extract cause-effect relationship between 

that specific factor, other factors, and construction labor productivity. In some 

situations, other scholars have said directly or have obtained the causal map between 

variables. There are several situations that we need to inference cause-effect 

relationships between factors from other scholars’ statements. This kind of 
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methodology for obtaining causal map between variables causes an increase in 

complexity of the cause-effect map which by using the methodologies that explained 

in previous section we can solve model’s complexity and ambiguity. Factors that 

have been investigated in this section are those that have the most number of 

publications related to them. List of factors that we have extracted their cause-effect 

structure are as follows: 

 Change    

 Overtime 

 Overstaffing 

 Shift Work 

 Stacking of Trades 

 Weather 

 Absenteeism and Turnover 

 Workforce Management 

 Fatigue 

 Morale and Attitude 

 Motivation 

 Rework 

 

4.2.1 Changes 

Ibbs and Allen defined changes as “addition, deletions, or other revisions 

within the general scope of a contract that cause an adjustment to the contract price or 

contract time” (1995).  Lee defined changes as “any action, incidence, or condition 
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that makes differences to an original plan or what the original plan is reasonably 

based on” (2007). Hanna et al. defined changes as “any event that results in a 

modification of the original scope, execution time, or cost of work, is inevitable on 

most construction projects due to the uniqueness of each project and the limited 

resources of time and money available for planning” (Hanna, Camlic, et al. 2002). 

Changes usually cause numerous disruption in the original sequence of work such as 

rework, increased waiting time, and many other things that may reduce labor 

productivity. Also, changes in most cases generate loss of momentum, reassignment 

of manpower to other tasks, learning curve effects, and ripple effects on other 

activities which cause loss of productivity (Leonard 1988, Borcherding and Alarcón 

1991). Our goal here is to extract the causal relationship between changes, factors that 

affect changes, and variables that changes affect productivity through them. Ovararin 

summarized the cause-effect relationship between changes and productivity factors 

(2001) . In the same way, Hanna and Russell identified factors affecting changes with 

their severity degree (2001). In figure 4.11 is the cause-effect diagram of changes 

according to these research is shown.  
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                   Figure 4.11: Cause –Effect Diagram of Factors Associated with Changes  

  Thomas and Napolitan investigated effects of changes and change orders on 

construction labor productivity and efficiency. They gathered a total of 522 workdays of 

data from three industrial projects constructed in the 1989-1992 time frame. They applied 

various analysis techniques such as data sorts and averages, analysis of variance tests, 

and multiple regression technique to the data sets. Finally, they concluded that the 

average effects of all changes was 30% loss of efficiency (1995). The most common 

effects of changes that cause loss of efficiency according to this study are lack of 

materials, lack of information, and performing works out-of-sequence (1995). These 

disruptions cause a decline in productivity in the range of 25-50%. According to this 

study we can extract the causal diagram of changes’ effects which is shown in figure 

4.12. 
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       Figure 4.12: Changes’ Causal Diagram Extracted from Thomas and Napolitan Study 

 

4.2.2 Schedule Acceleration 

According to Borcherding and Alarcon, schedule acceleration occurs when it 

is required to perform a work in a shorter time than what is included in contract or to 

accomplish a greater amount of work within the original schedule (1991). 

Schwartzkopf described the causes of schedule acceleration as follows: owner’s 

request, delay in design, additional work added to the original work through changes, 

and contractor’s actions (1995). Schedule acceleration can be accomplished through 

different methods such as overtime, Overstaffing, and shift work. In general, schedule 

acceleration can cause loss of efficiency in variety of ways such as lack of materials, 

tools, equipment, and inspection (Borcherding & Alarcón, 1991). In this section, the 

most popular types of schedule acceleration which are overtime, Overstaffing and 

shift work are investigated and causal relationship between them, other factors, and 

labor productivity is extracted from other scholars’ research.     
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4.2.2.1 Overtime 

Overtime is defined as the application of labor at a rate of more than eight-

hours a day, five-days a week (Hanna and Taylor 2004).  Thomas defined overtime as 

“overtime schedule that lasts longer than several weeks” (1992). In the same way, 

Thomas defined “Extended Overtime” as “a work schedule that extends over more 

than 40 hours of work per week. The schedule is planned in advance and lasts for at 

least three consecutive weeks, and typically longer” (1992)   Numerous researchers 

have investigated effects of overtime (extended overtime) on construction labor 

productivity and they have found that overtime not only is costly due to increased 

payment rate, but it also decreases construction labor productivity. Lee stated that 

physical fatigue is the main reason in productivity loss during overtime operation 

(2007). Also, he stated that fatigue de-motivates workers and it leads to increased 

error and poorer quality of work, which causes rework later (2007). Kossoris stated 

that working overtime causes an increase in absenteeism rate because workers need 

time off to take care of personal things (1944). Futhermore, overtime causes loss of 

productivity through inability to provide materials, tools, equipment, and information 

in a timely manner which causes workers to work without accurate information and 

lack of tools (Thomas and Raynar 1997). Lee, by evaluating all previous literature 

about overtime, extract the causal relationship among overtime and related factors 

and showed how overtime can cause loss of productivity. This network has 14 

variables and it can be used as a complete model that shows how overtime affect 

labor productivity (2007). The proposed network is shown in figure 4.13.  
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Kossoris did a research for Bureau of labor statistics (BLS) about the effects 

of overtime on labor productivity. Based on this research, which has been done 

during World War II, Kossoris investigated 78 industrial plants and he concluded that 

fatigue is the major limiting factor under working overtime schedule. He noted that 

fatigue causes an increase in absenteeism and work injuries which causes a decline in 

labor productivity (1944). Therefore, we can extract the causal diagram that shown in 

figure 4. 14 according to Kossoris findings.   

Based on MCAA, overtime decreases work output and efficiency through 

fatigue and poor mental attitude. MCAA defined three conditions known as minor, 

average and severe and provided some percentage about the effect of each situation 

on labor efficiency (2014). According to MCAA we can derive a causal network 

between overtime, fatigue, attitude and productivity. This causal network is shown in 

figure 4.15.  
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Figure 4.13: Causal Diagram between Overtime and Productivity (Source: (Lee 2007)) 
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Figure 4.14: Causal Diagram between Overtime and Productivity According to Kossoris 

Research 
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Overtime
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Figure 4. 15: Causal Diagram between Overtime and Productivity According to MCAA 

(2014) 

 

4.2.2.2 Overstaffing (Overmanning) 

Lee defined overstaffing or overmanning as “adding more workers to a jobsite 

than is optimum or typical for that type of work” (2007). Hanna et.al defined 

Overstaffing as an “increase of the peak number of workers of the same trade over the 

actual average manpower used throughout the project” (Hanna, Chang and Lackney, 

et al. 2007).  According to the US Army Corps of Engineers, optimum crew size is 

“the minimum number of workers that is required to perform a job within the 

allocated time frame” (Corps 1979). Also, they stated that “As more workers are 

added to the optimum crew, each worker will increase crew productivity less than the 

previously added worker. Carried to the extreme, adding more workers will 

contribute nothing to overall crew productivity” (Corps 1979).   

Hanna et.al stated that there exist two ways to increase the total number of 

workers for a task on a jobsite. First, by adding workers to an existing typical or 

optimum crew size which results in a bigger crew size. The second approach is 
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through increasing the number of crews. Increasing the number of workers within a 

crew is an easier way although the proportion of journeymen to workers becomes less 

than optimal (Hanna, Chang and Lackney, et al. 2007). On the other hand, 

Overstaffing through adding a new crew is possible when the task is big enough to 

accommodate multiple crews. Hanna et al. stated Overstaffing is a popular method for 

schedule acceleration and it doesn’t have numerous problems associated with 

overtime and shift work such as coordination problems realized within shift work and 

physical fatigue related with overtime and so on (Hanna, Chang and Lackney, et al. 

2007).  

Hanna et.al stated that although Overstaffing has some advantage over 

overtime and shift work, there exist some problems with Overstaffing. Overstaffing 

causes delusion of supervision and material and equipment shortage due to the 

increased number of workers which causes decline in labor productivity (Hanna, 

Chang and Lackney, et al. 2007). Base on this statement, we can extract the causal 

network related to Overstaffing and productivity. In figure 4.16 the causal diagram 

between Overstaffing and productivity based on this research is shown. 

Overmanning

Dilution of 

Supervision

Tools 

availability 

Labor 

Productivity 

Material 

Availability 

 

Figure 4.16: Causal Diagram between Overstaffing and Productivity (Hanna, Chang and 

Lackney, et al. 2007) 
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Gunduz investigated the negative impacts of Overstaffing on electrical and 

mechanical projects through quantitative approach.  He stated that although the most 

common response by contractors to an schedule acceleration is the implementation of 

Overstaffing due to several reasons such as higher rate of progress, it introduces 

additional problems including site congestion, stacking of trades, dilution of 

supervision, higher accident rate, and supply chain inefficiencies due to consuming 

materials and tools at a faster rate (Gunduz 2004). Based on this statement, we can 

extract the causal network shown in figure 4.17 between Overstaffing and labor 

productivity. 

Overmanning

Dilution of 

Supervision
Injuries 

Labor 

Productivity 

Material 

Availability 
Congestion 

Stacking of 

Trades

 

Figure 4.17: Causal Network between Overstaffing and Productivity (Gunduz 2004) 

Lee stated that “congestion and dilution of supervision are the reasons most 

commonly blamed for productivity losses when a project is overmanned” (2007). 

Also, he proposed a causal network about how Overstaffing affects labor 

productivity. The proposed causal diagram by Lee is shown in figure 4.18. For the 

justification of his proposed causal network, he stated that: 
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Congestion does not occur automatically whenever there is Overstaffing. 

Rather, it is a function of the number of workers in a limited work space. The 

problem related to ‘coordination, supervision, and management’ indicated the 

importance of management’s role in reducing the negative impact of 

Overstaffing. As the number of workers increase, supervisors and supporting 

/coordinating activities should increase proportionally. Decrease in learning 

curve effects should be expected since more workers performing the same 

amount of work means reduced repetitious per worker, thus limiting the 

learning curve effect.   

 

Figure 4.18: Effects of Overstaffing on Productivity (Source: (Lee 2007)) 

By adding causes of Overstaffing, which actually are causes of schedule 

acceleration, we can create a complete causal network for Overstaffing. According to 

Hanna et.al causes of Overstaffing are late start work, delays from weather or prior 

work crew, changes or added works necessary to complete the project, and poor 
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management (Hanna, Chang and Lackney, et al. 2007). Therefore, we can extract the 

causal network shown in figure 4.19 between Overstaffing and factors that affect 

Overstaffing.  

Adverse Weather 

Overmanning 

Delays Management Changes

 

Figure 4.19: Causes of Overstaffing 

 

4.2.2.3 Shift Work 

Hanna and Sullivan defined shift work as “The hours worked by a second 

group of craftsmen whose work on a project is performed after the first, or primary, 

workforce of the same trade has retired for the day” (2004). They also stated that 

reasons that managers sometimes prefer to use shift work instead of overtime and 

Overstaffing is that “shift work can produce a higher rate of progress without the 

immediate fatigue problems of overtime and the congestion problems of Overstaffing. 

In addition, premium payment to a second shift is substantially lower than that of 

overtime.” (2004). They believed that shift work for short period of time can increase 

labor productivity, but if contractors use shift work for long time, it can decrease 

labor productivity up to 15% (2004) . 
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MCAA (2011)  has identified problems and factors that are related to shift 

work which cause loss in labor productivity. The factors are as follows: 

1. Additional needs in comparison with day shifts. For example, additional 

lighting is needed during the second or the third shift. Also, additional heating 

may be required during the second shift. 

2. Inefficiency in the transition from the first shift to the second shift. In 

comparison with overtime, it takes time for the second shift to go through the 

learning curve. 

3. Tools and equipment may not be on appropriate places when the second shift 

starts working. 

4. Night shift usually result in work force fatigue more than daytime shift. 

5. Supervisory problems: shift work causes dilution in supervision because the 

company’s supervisors have to spread over several shifts. 

6. Inefficiency due to shorter work hours: usually the second shift is shorter than 

the first shift, but the amount of time workers spend in starting, stopping, 

eating and drinking is constant which causes greater portion of work lost in 

comparison with the daytime shift. Also, being idle in this shift occurs more 

than during the first shift. 

7. Psychological aspects of worker: when only one trade is working, they may 

not be motivated enough to finish the task. Also, in the second shift, there is 

an increased consumption of alcohol before coming to work by shift workers.  

8. Absenteeism is usually higher in the second shift in comparison with the first 

shift. 
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9. Morale and attitudes in the second shift are poorer than the first shift.  

10. During bodily adjustment period, which usually takes between 1-2 months, a 

considerable amount of loss of productivity occurs.  

Based on this MCAA bulletin, then we can extract a causal network for effects of 

shift work on construction labor productivity. This causal network is shown in figure 

4.20.  

Shift Work

Morale and 

Attitude 
Fatigue 

Labor 

Productivity 

Motivation 
Dilution of 

Supervision 
Idle Communication 

 

Figure 4.20: Causal Network of Effects of Shift Work on Productivity According to 

MCAA (2011) 

Hanna et al. after investigating literature about how shift work causes loss of 

labor productivity, proposed a causal network that is shown in figure 4.21.  According 

to this model, numerous factors stimulate contractors to use shift work. These factors 

are mandated acceleration, delay, changes, unavailability of labor and equipment, and 

project conditions. Also, shift work has effects on factors like accident rate or safety, 

coordination and communication which can be causes of loss of labor productivity 

(Hanna, Chang and Sullivan, et al. 2008). They also provide a productivity multiplier 

for shift work which is very useful for extracting model’s CPT. According to this 
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table, when shift work is less than 5%, productivity can increase up to 6%. For the 

range of 6-18%, productivity loss is between 0-10%. When shift work is between 20-

50%, the loss of productivity is between 10-18% (Hanna, Chang and Sullivan, et al. 

2008). They also suggest numerous ways such as “overlapping management,” 

“selection of work assigned to a second shift,” “being selective on the work assigned 

to a second shift,” “avoid congestion,” “sufficient amount of artificial lighting,” and 

“material requirements” to reduce the effects of shift work on labor productivity. 

However, Lee stated that shift work can have an increase in labor productivity for 

areas with high temperatures (2007). 

 

Figure 4. 21: Schematic Structure of Shift Work (Hanna, Chang and Sullivan, et al. 2008) 
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4.2.3 Stacking of Trades 

Based on MCAA manual about factors affecting labor productivity, stacking 

of trades is “operations that take place within physically limited space with other 

contractors. Results in congestion of personnel, inability to locate tools conveniently, 

increased loss of tools, additional safety hazards and increased visitors. Optimum 

crew size cannot be utilized” (2011). This manual shows that labor productivity 

decreases by 10, 20, or 30 % when stacking of trades is minor, average, or severe, 

respectively. Based on MCAA manual, we can extract the causal network that is 

shown in figure 4.22 for stacking of trades.  
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Labor 

Productivity 

Tools 

Availability 
Congestion

 

Figure 4.22: The Causal Network of Stacking of Trades Based on MCAA (2011) 

 

Hanna et al. investigated the effects of stacking of trades in electrical works. 

In that report, they mentioned that “stacking of trades relates a number of different 

trades (pipefitters, electricians, etc) within a measured work area to labor 

productivity” (Hanna, Russell and Emerson 2002). Stacking of trades differs from 

Overstaffing. As mentioned in previous section, Overstaffing is related to changes in 

size of a specific crew, while stacking of trades is an increase in the number of trades 

in a specific work area.  Another definition that is useful during investigation of 
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stacking of trades is “site density.”  Site density is defined as work area divided by 

the number of people in the measured work area (Hanna, Russell and Emerson 2002). 

Work area in this definition based on the authors description is “the total amount of 

project area minus the area for storage areas, crane areas and area taken by owner’s 

equipment or facilities” (Hanna, Russell and Emerson 2002). According to the 

definition of stacking of trades, the components of stacking of trades are the number 

of trades within a work area and the size of the work area. Therefore, for evaluating 

the effects of stacking of trades on labor productivity, researchers mostly 

concentrated on these component and obtained numerous results that relates the labor 

productivity to site density and stacking of trades. Research about the causal 

relationship between stacking of trades, other factors, and labor productivity is scarce. 

One of the most prominent research is this area is “Stacking of Trades for Electrical 

Contractors” by Hanna et al (2002).  If we assume that the findings of these research 

is valid for other areas of construction industry, such as commercial, mechanical and 

so on, then we can extract some causal relationship between stacking of trades, other 

factors, and labor productivity. The results of this research are divided into two parts. 

The first part describes the causes of stacking of trades and the second part describes 

what consequences stacking of trades has on other factors, and how it affects labor 

productivity. 

For investigating causes of stacking of trades, the authors developed a 

qualitative survey among members of the National Electrical Contractors Association 

(NECA) and asked them to rank seven possible causes of stacking of trades on a 
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construction site. These seven indicators are as follows (Hanna, Russell and Emerson 

2002): 

 Rework 

 scope changes 

 change orders 

 project acceleration 

 complexity of work 

 poor planning (Management) 

 delay in preceding activity (Delay) 

 These factors have a severity degrees effect on stacking of trades.  The severity 

degrees of different factors based on this research is shown in table 4.1.   

Table 4.1: Average Scores of Causes of Stacking of Trades (source: Hanna et al. (2002))      

Causes of Stacking of 

Trades 

Average Score (1=Very important, 5=Not 

Significant) 

Project acceleration 1.13 

Project delay 1.52 

Change orders 1.84 

Poor Planning 1.87 

Change in scope of work 2.03 

Complexity of work 1.87 

Rework 2.97 
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In a similar way, the authors did a survey about the effects of stacking of trades which 

causes contractors to experience loss in labor productivity. Based on this report, 

respondents identified several factors which are consequence of stacking of trades 

and which cause a decline in construction labor productivity. These factors are as 

follows (Hanna, Russell and Emerson 2002): 

 Performing work in confined space (Working in restricted area) 

 Additional resources are needed, such as tools, equipment, and manpower 

 Performing work out-of-sequence or disruption in work sequence 

 An increases in the amount of overtime to finish the same amount of work 

 An increase in the supervision or dilution of supervision 

 An increase in idle and waiting time  

 An increase in material handling  

 An increase in the amount of rework 

We can extract the causal network shown in figure 4.23 for stacking of trades 

according to these research results.    
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Figure 4.23: Causal Network of Stacking of Trades According to Hanna et al. (2002) 

 

Ovararin investigated the effects of congestion on labor productivity in 

masonry construction. Congestion refers to situations that causes physically limited 

space due to stacking of trades or Overstaffing (2001). The US Army of Corps of 

Engineers stated that congestion in one of the problems that is a consequence of 

project acceleration and it causes many problems such as change in optimum crew 

size, difficulty in material handling, more hazards, which ultimately causes a decrease 

in labor productivity (Corps 1979). If we combine these statement with each other, 

we can extract a causal network for factors such as project acceleration, Overstaffing, 

stacking of trades, safety, material management and handling, and labor productivity.  

The causal network for these statements is shown in figure 4.24.    
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Figure 4.24: The Causal Network Extracted from Corps (1979) and Ovararin (2001) for 

Stacking of Trades 

 

4.2.4 Weather (Adverse Weather Conditions) 

It is the responsibility of contractors to work in unfavorable weather. Adverse 

weather, which is categorized as one of the external factors that affects labor 

productivity, causes loss of efficiency. Weather has direct and indirect effects on 

labor productivity. Direct effects means it affects workers’ physical conditions and 

mobility, while indirect influences on labor productivity is through numerous factors 

such as lack of material, absenteeism , fatigue, and so on (Thomas and Ellis 2009). 

Most researchers evaluate the direct effect of adverse weather on labor productivity; 



76 
 

however, in this research we need both direct and indirect effects of adverse weather 

on construction labor productivity. In this section, first the results of different 

research about direct effect(s) of adverse weather on labor productivity is 

summarized, then we investigate the indirect effects of weather on labor productivity. 

After that, by combing direct and indirect effects, extract the causal network between 

weather, other factors, and labor productivity. 

Lee explained reasons of productivity loss due to cold and hot weather. Cold 

weather needs protections which takes time to put on and off. Also, cumbersome 

protective cloths cause less mobility. Cold weather also causes some threats to human 

health such as hypothermia, depression, heart attacks, colds, and flu which cause loss 

of dexterity (2007). Hot weather, as an instance of adverse weather, needs frequent 

cool-off and it usually causes exhaustion, difficulty in breathing, dizziness, and 

sunstroke (Lee 2007).  There exist several quantitative studies that have evaluated the 

direct impact of weather on labor productivity such as El-Rayes and Moselhi (2001), 

Thomas and Yiakoumis (1987) (1987), Clapp (1966), NECA (2004)(1974; 2004), and 

many other scholars.  

Clapp determined the effects of adverse weather conditions on labor 

productivity in five housing projects in the United Kingdom (1966). He summarized 

the effects of adverse weather conditions on labor productivity. He stated that adverse 

weather causes loss of labor productivity through the temporarily prevention of 

craftsmen from working, reduction of working hours, and repeated work resulting 

from damages. This is one of the few research that explains the indirect effects of 

adverse weather on labor productivity. Lee stated that the adverse weather can cause 
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loss of efficiency through loss of momentum or learning curve (2007). If we combine 

these statements, we can extract the causal relationship between adverse weather 

conditions, other factors, and labor productivity. This causal network is shown in 

figure 4.25.    
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Figure 4.25: The Causal Network Extracted from Clapp (1966) and Lee (2007) 

 

Wittrock investigated the effects of cold weather on labor productivity in road 

building projects in Sweden (1967). He finally concluded that optimal productivity is 

achievable at +5oC in Sweden. The construction projects that he investigated 

experienced 26 percent loss of productivity at temperature of (+30oC) and 10 percent 

loss of productivity at a temperature of (-10oC) (Wittrock 1967). He also stated that 

the amount of loss depends on severity of bad weather in the winter and the types of 

operation that is going to be done (Indoor or outdoor operation) (Wittrock 1967). 

Grimm and Wagner investigated the effect of weather and humidity on labor 

productivity.  In a 9 month period, temperature and humidity were measured in a 

masonry project and they found that whenever temperature and humidity deviated 

from 75oF and 60%, loss of efficiency occurs (Grimm and Wagner 1974). Thomas 
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and Ellis summarize the effects of adverse weather on labor productivity for the 

purpose of mitigating the effects of adverse weather on labor productivity. According 

to this study, the adverse weather can cause loss of efficiency not only directly, but 

also through various indirect ways. The most obvious ways that weather can affects 

productivity indirectly is through material delivery and availability, fatigue, rework, 

absenteeism and site access (2009). Therefore, we can extract the causal relationships 

between adverse weather, other factors, and labor productivity according to Thomas 

and Ellis which is shown in figure 4.26.  
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Figure 4.26: The Causal Network Extracted from Thomas and Ellis (2009)  for Adverse 

Weather 

 

Ovararin categorized weather as one of the external factors that affect labor 

productivity. In this research, the author proposes a general cause and effect 

relationship between external factors and labor productivity (2001). External factors 

in this research consists of weather, economy, and project location. In figure 4.27 the 

causal network extracted from this research is shown. 
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Figure 4.27: The Causal Network Extracted from Ovararin (2001) for External Factors 

Including Weather 

 

4.2.5 Absenteeism and Turnover 

The Merriam-Webster dictionary defines absenteeism as “a tendency to be 

away from work or school without a good reason or the practice or habit of being 

absent from work or school,” and turnover is defined as “the rate at which people 

leave a place, company, etc., and are replaced by others” (Merriam-Webster 2015).  

Hinze et al. investigated the effects of absenteeism in construction industry and they 

found that team cohesiveness and management have direct effects on absenteeism. 

They stated that “absenteeism is lower in work units that have strong team spirit or 

when the group is cohesive,” and “when management stresses its displeasure of 

worker absenteeism.” They also stated that distance that workers must travel to a job 

site also has some negative effects on absenteeism. They believed that management 

has a central role in controlling absenteeism and can reduce absenteeism by 

monitoring workforce and working conditions. There are other factors that the authors 

specified that have some effects on absenteeism, like age and crew cohesion, but they 

http://www.merriam-webster.com/dictionary/absenteeism
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stated that these factors are controllable by managers (Hinze, Ugwa and Hubbard 

1985). The causal network that is shown in figure 4.28 is extracted based on this 

research. Note that in this research we do not investigate involuntary absenteeism, in 

which workers have little control over being absent.  

Labor 

Productivity 

Site Conditions Management
Team 

cohesiveness 

Absenteeism

 

Figure 4.28: The Causal Network of Absenteeism Based on Hinze et al. (1985) 

 

Kim and Philips investigated the determinants of quits and dismissals on 

industrial construction projects and they found that labor-market conditions, 

remuneration, personal and worksite characteristics all affected the probability of a 

worker to quit or be fired before a reduction in force (2012). In this research, labor-

market conditions consist of monthly unemployment rate and monthly percentage 

change in construction employment, which we can categorize them as an external 

factor. Remuneration consist of straight-time weekly earnings, overtime weekly 

earnings, and travel-based weekly subsistence incentive. They categorized worksite 

characteristics as crew size and Overstaffing. The results show that crew size has no 

effect on the probability of being fired, but as crew sizes shrink, workers anticipate 

reduction in force (RIF) and some quitting happens. They also found that overmanned 
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crews experienced more quitting and absenteeism. Overall, we can construct a causal 

network based on this research which is shown in figure 4.29. They provide a useful 

table about the probability of quitting or firing in different situations which we will 

use from these results in chapter 5 (Kim and Philips 2012). The mentioned table is 

shown in figure 4.30. 
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Figure 4.29: The Causal Network of Absenteeism and Turnover Based on Kim and 

Philips (2012) 
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Figure 4.30: Effects of Different Variables on Turnover (Source: Kim and Philips (2012) 

 

One of the first publication about absenteeism and turnover is Business 

Roundtable (BRT) report (Absenteeism and Turnover 1982). Based on this report, 

workers mentioned relationship between workers and boss, overtime available 

somewhere else, unsafe working conditions, excessive rework, and commute time to 

the site as the main reasons of absenteeism and quitting work (Absenteeism and 

Turnover 1982). In this report, job dissatisfaction has been identified as a strong 

factor that affects absenteeism and turnover. We can extract the causal network that is 

shown in figure 4.31 for absenteeism and turnover based on this research.     
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Figure 4.31: The Causal Network of Absenteeism and Turnover Based on BRT Report 

 

The most comprehensive investigation of the effects of absenteeism and 

turnover on labor productivity has been done by Hanna. Hanna investigated the 

effects of absenteeism and turnover on labor productivity for electrical contractors 

(2005). In this report, the author found the following factors as the main causes of 

absenteeism and turnover (A. Hanna 2005): 

 Personal and family illness 

 Injury 

 Incentive programs 

 Drug and alcohol 

 Lack of responsibility 

 Worker experience 

 Distance to work 

 Poor planning on the job site 

 Safer site elsewhere 

 Recognition 
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 Inadequate tools and equipment 
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Figure 4. 32: The Causal Network of Absenteeism Based on Hanna (2005) 

 

 

4.2.6 Management (Workforce, material, and equipment management) 

Workforce management is one of the most important factors that affects labor 

productivity. Halligan et al. did a comprehensive research about the effects of 

workforce management on construction labor productivity (Halligan, et al. 1994). 

They showed graphically how productivity loss occurs in construction, which kinds 

of factors exist in this process, and how crews are influenced by those factors. Then, 

they explained how crew management can mitigate, eliminate, initiate, or exacerbate 

any particular loss of labor productivity (Halligan, et al. 1994). According to the 

proposed model, workforce management plays a central role in construction labor 

productivity. In this model, the authors found that the consequences of management’s 

actions can be an increase in workload, crowding of workers, stacking of trades, out-

of-sequence-work, rework, and dilution of supervision. Crews’ responses to these 



85 
 

actions are fatigue, low motivation, slowed pace of work, turnover, idle time, and 

poor quality. We can extract a causal relationship according to this research. This 

causal relationship is shown in figure 4.33. Based on this model, we can see that 

workforce management, if not the most important, is one the most important factors 

that affects construction labor productivity. Managers with proper planning, training, 

proper responses to other events, and proper coordination can eliminate or decrease 

the negative effects of different factors that affect labor productivity.  
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Figure 4.33: The Causal Network of Workforce Management Based on Halligan et 

al. (1994) 

 

Thomas et al. stated that workforce management strategies can improve labor 

utilization which lead to better labor performance (Thomas, Horman and Minchin, et 
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al. 2003). They concluded that improving workflow and labor flow can increase labor 

productivity. In this research, workflow encompasses the material, information, and 

equipment resources to complete tasks. Labor flow means reliable and timely 

availability of labors. According to this research, managements have direct effects on 

material, information, equipment, and labor flow. Further, the authors investigated the 

loss of efficiency due to these factors, and they found that the most significant cause 

of loss of labor productivity relates to labor flow. Also, they stated that 58% of total 

inefficient workhours are related to ineffective labor flow. Overall, we can extract a 

simple causal relationship based on this research which is shown in figure 4.34. 

  

Labor Flow

Material 

Management

Management

Equipment 

Management

Workforce 

Management

Labor 

Productivity

 

Figure 4.34: The Causal Network of Workforce Management 

Based on Thomas et al. (2003) 

 

Ovararin investigated the effects of site management on construction labor 

productivity. He stated that poor site management can significantly impact 
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productivity because construction crews need resources to perform work in an 

efficient way. The author proposed a cause-effect diagram among the factors related 

with site management. According to this research, site management can affect 

equipment and material availability, material handling in the construction site, site 

maintenance, construction methods, and hazardous conditions. These factors can in 

turn affect idle time, labor morale, material flow, labor rhythm, interruption, limited 

space, and increasing waiting time (2001). Based on this research, we can extract a 

causal relationship between site management and productivity, which is mostly 

similar to Halligan et al. This causal relationship is shown in figure 4.35.  
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Figure 4.35: The Causal Network of Workforce Management 

Based on Ovararin (2001) 
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There exist other research that also investigated the effects of management on 

labor productivity. For example, the papers that investigated the effects of foremen on 

labor productivity. The causal relationship that we can extract from these papers is 

somehow a subset of Halligan et al. and Ovararin’s network, so we skip the 

investigation of those papers and related causal network in this section.  

 

4.2.7 Fatigue 

Hallowell categorized “fatigue” as “cognitive fatigue” and “localized 

muscular fatigue” (2010). Based on this research “cognitive fatigue is the lassitude of 

thought and decision processes” and “localized muscular fatigue is the reduction in 

peak tension of a specific muscle group due to prolonged or excessive use” 

(Hallowell 2010). In this study, Hallowell did a comprehensive literature review 

about the causes of fatigue; its immediate and long-term effects of it. In the figure 

4.36, this comprehensive causal map is shown. 
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Figure 4.36: The Cause-Effect Diagram of Fatigue (Source: Hallowell (2010)) 

 

 

In this research, slips is defined as “unintended erroneous actions that results from 

mental distractions in familiar work environments” and lapses is defined as 

“unintended erroneous actions result from temporary memory failure” (Hallowell 

2010).     

Lerman et al. investigated the causes of fatigue in the workplace. They 

identified the following factors as causes of fatigue (Lerman, et al. 2012).  

 Sleep deprivation ( Fatigue is related to duration of sleep)  

 Circadian variability (Fatigue is related to timing of sleep) 
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 Time awake (Various shift work schedules can affect both the duration and 

timing of sleep)  

 Health factors (sleep disorders, medications) 

 Environmental issues (light, noise) 

 Workload 

They stated that fatigue can have several safety-related consequences such as a 

reduction in reaction time, poor judgment and decision-making ability, loss of 

awareness, etc. (Lerman, et al. 2012). The authors proposed a list of actions that can 

mitigate fatigue. These actions are fatigue management policy, a fatigue reporting 

system for employees, sleep disorder management, balancing workload, etc. (Lerman, 

et al. 2012). Based on this research, the causal network in the figure 4.37 is extracted. 

O’Neill and Panuwatwanich investigated the impact of fatigue on labor 

productivity in dam construction projects (2013). Their survey results show that most 

workers in the projects that they investigated suffered from fatigue. They found that 

heat, repetitive tasks, and lack of sleep as the main causes of fatigue in the crew 

(O’Neill and Panuwatwanich 2013). They also stated that a “higher level of fatigue is 

associated with lower productivity” (O’Neill and Panuwatwanich 2013). The causal 

network in the figure 4.38 is extracted from this research. 
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Figure 4.37: The Causal Network of Fatigue Based on Lerman et al. (2012) 
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Figure 4.38: The Causal Network of Fatigue Based on O’Neill and Panuwatwanich 

(2013) 
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4.2.8 Morale and Attitude 

Hull and Azumi investigated effects of different factors on labor morale and 

productivity in Japanese factories (1988). They stated that employee-oriented 

management, worker participation in the decision-making process, and the worker-

boss relationship affects morale. Also, they believed that whenever the workers’ 

autonomy declines, it causes a decrease in their morale. The causal network in figure 

4.39 is extracted based on this research.   
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Figure 4.39: The Causal Network of Morale Based on Hull and Azumi (1988) 

 

Weakliem and Frenkel defined morale as “a general orientation that may 

influence intentions and ultimately behavior” (2006). They provided a set of 

circumstances which cause low morale and a set of paths in which low morale causes 

loss in labor productivity. The set of factors that affects morale based on the authors 

are as follows (Weakliem and Frenkel 2006): 
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 Organization’s general approach to management: If an organization creates a 

sense that workers and management are part of the same team, then workers 

will have a higher level of morale (Sense of commitment). 

 Existence or history of poor labor relationship is a cause of lower morale 

among laborers. 

 Autonomy has a direct effect on workers’ morale. The authors stated that 

“The effect of morale on productivity can be expected to increase with degree 

of autonomy” (Weakliem and Frenkel 2006). 

 Unionization affects morale. They believed that “Unionization may enhance 

autonomy by giving workers protection against dismissal and other forms of 

discipline” (Weakliem and Frenkel 2006). 

 Workers’ skill increases workers’ autonomy. 

 Size of project (organization) affects morale. They stated that “Large 

workplaces tend to have a more bureaucratic organization, with standardized 

systems of measurement, reward, and punishment. To the extent that such 

systems are effective, workers will have less autonomy in larger workplaces” 

(Weakliem and Frenkel 2006).   

 Workers orientation toward authority has effects on morale. They stated that 

“If workers have a strong general sense of obligation to follow orders, their 

work effort will be less dependent on morale” (Weakliem and Frenkel 2006). 



94 
 

In the same way, the authors provided a set of paths in which high morale 

causes an increase in the labor productivity and vice versa. These paths are as 

follows: (Weakliem and Frenkel 2006): 

 High morale causes workers to put in more effort to finish a job; therefore, it 

increases productivity. 

 High morale increases job satisfaction and it causes workers to feel more 

determined to carry out a job. 

 High morale causes the organization to work more smoothly; therefore, it 

increases productivity. 

   High morale causes workers to give good advice to their co-workers and 

managers which causes a decrease in rework, errors, and mistakes. 

  

 Based on this research, the causal network that is shown in figure 4.40 is 

extracted.  The causal diagram that is possible to extract from other scholars’ research 

such as Wahroe (2012), Ovararin (2001), and Lyneis and Ford (2007) is similar or a 

subset of the network in figure 4.40. Therefore, it is not necessary to investigate those 

papers further. 

 



95 
 

Labor 

Productivity 

Worker-Boss 

Relationship

Management 

Style

Morale

Workers 

Autonomy

Workers 

Relationship

Project Size Workers’ skills

Workers’ 

Manner

Errors and 

Mistakes
Job Satisfaction Work flow Rework

 

Figure 4.40: The Causal Network of Morale Based on Weakliem and Frenkel 

(2006)  

 

4.2.9 Motivation 

Motivation is a major factor that affects construction labor productivity and 

many other variables. It has been investigated by numerous researchers in 

construction industry over the past three decades. Motivation is defined as “the 

condition of being eager to act or work” or “a force or influence that causes someone 

to do something” (Merriam-Webster 2015).  

Maloney investigated causes of motivation in the construction industry 

(1986). He identified the following factors as causes that increase motivation (W. F. 

Maloney 1986):    

 More job autonomy 
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 Feeling of accomplishment 

 Increasing payment to workers (Benefits) 

 Increasing job security 

 Management style 

 Workers relationship 

 Recognition 

 Supervision 

 Incentives 

 Experienced meaningfulness 

 Knowledge of results experienced by workers 

Maloney defined the “Experienced meaningfulness” as “the worker must see 

the work as something that counts within his own set of values” (1986). Also, the 

“Knowledge of results” is defined as “the availability of information from the job 

itself that allows the worker to judge his level of performance” (W. F. Maloney 

1986). Based on this research, the causal network that is shown in figure 4.41 is 

extracted. 

Ng et al. investigated prominent demotivates and their effects on construction 

labor productivity (S. T. Ng, et al. 2004). Based on the authors the following factors 

cause loss in labor productivity because of lack of motivation: 

 Unsatisfactory work environment 
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 Poor interpersonal relationship 

 Poor work attitude 

 Rework 

 Overcrowded work area (Overstaffing) 

 Crew interfacing (Stacking of Trades) 

 Poor tools availability 

 Inspection delays 

They stated that rework causes workers to feel little sense of accomplishment, 

an overcrowded work area causes workers to feel frustrated, crew interfacing causes 

lack of communication which causes workers to feel demotivated, and inspection 

delay causes workers to become dissatisfied. Based on this research, the causal 

network that is shown in figure 4.42 is extracted.   

Motivation

ManagementAutonomy
Job Security

Labor 

Productivity

Workers 

RelationshipIncentives

Experienced 

Meaningfulness

Knowledge of 

Results

 

Figure 4.41: The Causal Network of Motivation Based on Maloney (1986) 
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Figure 4.42: The Causal Network of Motivation Based on Ng et al. (2004) 

 

 

4.2.10 Rework 

Love and Edwards defined rework as “the unnecessary effort of redoing a 

process or activity that is incorrectly implemented the first time” (2004). They 

investigated rework in Australian industry and provided a comprehensive causal 

network for rework. Based on this research, three main categories of causes of rework 

are project characteristics, organizational management practices, and project 

management practices. Each category consists of several other factors which causes 

rework directly or indirectly. Also, they found that rework causes lower morale level, 

dilution of supervision, conflict between different crews and even subcontractors, 

absenteeism, and fatigue. They proposed a comprehensive causal network which is 

shown in figure 4.43.   

 



     
 

 
 

9
9

 

 

Figure 4.43: The Proposed Causal Network for Rework by Love and Edwards (2004) (Source : Love and Edwards (2004)) 
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Fayek et al. investigated the causes of rework in the Canadian construction 

industry. They identified five major areas as the main causes of rework in the 

construction industry. These five major causes of rework are: (1) human resource 

capability,(2) leadership and communication, (3) engineering and design review, (4) 

scheduling and planning , and (5) material and equipment supply (2004).  They also 

represented their causal model in a fishbone network which is shown in figure 4.44. 

 

Figure 4.44: The Proposed Causal Network for Rework by Fayek et al. (2004)            

(Source: Fayek et al. (2004)) 

 

The authors provided a reasoning behind each cause and why it causes rework 

in the construction industry. For example, for engineering and design review, they 

stated that poor document control, errors and omission, changes in design (especially 

late changes), and changes in scope can disrupt information flow and decision-

making process which cause rework (Fayek, Dissanayake and Campero 2004). 
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Errors and mistakes have been identified as one of the main causes of rework 

in the construction industry. Shimbun identified several major causes of errors and 

mistakes as follows (1989): 

 Forgetfulness errors ( workers lose their concentration) 

 Errors due to misunderstanding 

 Errors occurred by untrained workers 

 Ignoring rules by individuals 

 Errors because of lack of standards 

 Intentional errors occur when workers make mistakes on purpose 

Josephson et al. investigated the causes of rework in Swedish industry. They 

found that costs of rework for the projects that they investigated were 4.4% of the 

construction values and the time needed to correct errors (rework time) was 7.1% of 

the total work time (Josephson, Larsson and Li 2002). They found several factors as 

the causes of rework. They graphically showed causes of rework and their 

contributions to the overall rework costs. The figure 4.45 is from this research which 

shows the major causes of rework with their relative importance. 
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Figure 4. 45: The Proposed Causal Network for Rework by Josephson et al. 

(2002)(Source: Josephson et al. (2002)) 
 

 

 

4.2.11 Other Factors  

There exist numerous factors in the model that in chapter 2 and this chapter do 

not define.  For clarity of the model, the definition of these factors are as follows: 

Dilution of Supervision: “Applies to both basic contract and proposed change. 

Supervision must be diverted to (a) analyze and plan change, (b) stop and re plan 

affected work, (c) take-off, order and expedite material and equipment, (d) 

incorporate change in schedule, (e) instruct foreman and journeyman, (f) supervise 

work in progress, and (g) revise punch lists, testing and start-up requirements” 

(MCAA 2011). 
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Learning Curve: “Period of orientation in order to become familiar with changed 

condition. If new men are added to project, effects more severe as they learn tool 

locations, work procedure, etc.” (MCAA 2011).  

Logistic (Tools and Material Availability): “Insufficient or poor material handling, 

owner-furnished material, procurement practices, or a lack of controls can cause 

procurement or delivery problems, as well as other issues. This then prevents, delays, 

or disrupts the normal material workflow to a work area, warehouse, or laydown yard. 

This can also be a result from the additional replacement or substitution of material 

due to contract changes, defects, or delays at the work site” (MCAA 2011). 

Availability of skilled labor (Labor Market): “To be productive, a contractor must 

have sufficient skilled labor in the field. To the extent that skilled labor is unavailable 

and a contractor is required to construct a project with less skilled labor it is probable 

that productivity will be impacted” (AACE International 2004). 

Defective Specification: “When drawings or specifications are erroneous, ambiguous, 

unclear, etc., productivity is likely to decline because crews in the field are uncertain 

as to what needs to be done. As a consequence, crews may slow down or pace their 

work, or have to stop all together while they wait for clear instruction” (AACE 

International 2004). 

Out of sequence work: “When work does not proceed in a logical, orderly fashion 

productivity is likely to be negatively impacted as crews are moved around the site 

haphazardly, for example” (AACE International 2004). 
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Incentives: “something that encourages a person to do something or to work harder” 

(Merriam-Webster). There are two types of incentives: extrinsic incentives and 

intrinsic incentives and both of them have can increase motivation. 

 Personal/Physical Characteristics: Physical characteristics include age, health 

situation, and other physical appearances that can be seen with naked eye. Personal 

characteristics include behaviors that people possess such as intelligence, preciseness, 

obedience, laziness and so on. These characteristics can affect the work and 

productivity (Hallowell 2010). 

Project Size: There are different approaches that are used to categorize projects based 

on size. Effort hours is one of the most well-known ones. Based on this approach 

whenever the effort hours that is required to complete a project is between a certain 

ranges, then that range specifies the project size. 
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Chapter 5 

 Extracting Model Parameters  

This chapter extracts the model parameters. It means that for each variable a 

“Conditional Probability Table” or CPT is obtained.  In the first section, different 

methodologies regarding model’s parameters identification are discussed. These 

methodologies help to extract the model’s parameters. In the second section, the 

methodology for obtaining CPTs of variables are discussed. For this purpose, the 

procedure for “Changes” sub model is discussed thoroughly and all “Changes” sub 

model’s CPTs are shown in this chapter. In the next step, the procedure for combining 

different sub models are explained. Similarly, the procedure for combining 

“Changes” and “Overtime” sub models is discussed thoroughly and their CPTs after 

combination are shown in this chapter. We continue this procedure for all sub models 

and by adding each sub model to what we obtained before that, we extract our final 

model’s CPTs.  Since there are several CPTs, it is not possible to put all CPTs in this 

chapter; therefore, they are shown in appendix B. 

 

5.1 Modeling Techniques Related to CPTs 

There exist six modeling techniques related to model’s CPTs. These modeling 

techniques are measurement errors, expert opinions, node absorption, setting a value 

by intervention, and independence of causal influence (Kjærulff and Madsen 2013).  

Since we use these approaches for obtaining CPTs, we briefly introduce these 

methodology in this section.    
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5.1.1 Measurement Errors (Uncertainty) 

This approach is useful whenever there are either uncertainty in measurement 

or noisy observation. Kjærulff and Madsen proposed a modeling technique to capture 

this uncertainty. An algorithm for implementation of measurement uncertainty 

technique based on Kjærulff and Madsen is as follows (2013): 

1. Define variable “Value” as the actual value of phenomenon that is needed to 

be measured. 

2. Create two variables “Observed” and “Accuracy” which represent the 

observed value and the accuracy with which observations are made. Put these 

two variable as the parents of the “Value.”  

3. Define the prior probability of “Accuracy” in such a way that it encodes 

relative frequency.   

4. Define CPT of  P(Observation | Accuracy, Value) in such a way that it 

encodes relative frequency. 

 

5.1.2 Expert Opinions 

When model’s parameters elicitation is based on experts’ opinions, it is usual 

that experts have different opinions about the CPT of a variable. In this situation, by 

adding a conditioning or auxiliary variable as the parent of the desired variable we 

can select among the opinions of different experts (Kjærulff and Madsen 2013). The 

procedure to implement this methodology is as follows (Kjærulff and Madsen 2013):  
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1. Let P(X| par(X)) be the CPT obtained from a group of experts. Then create a 

variable “Expert” with one state for each expert as the parent of desired 

variable. 

2. Define prior probability distribution of “Expert” is such a way that it encodes 

the reliability of experts. 

3. Define P(X| par(X),Experts) such that it encodes assessment of  P(X| par(X)) 

given by the corresponding expert. 

 

5.1.3 Node Absorption 

Node absorption is the process of eliminating a variable from a model.  The 

procedure for eliminating a variable from the model is known as “Arc Reversals.” If 

efficiency of a PGM is of high priority, it may be useful to eliminate variables from 

the model that neither observed nor are target variables (Kjærulff and Madsen 2013). 

Since we don’t use node absorption approach, we are skipping the explanation of this 

algorithm. 

 

5.1.4 Set Value by Intervention 

This approach is used extensively in this research for obtaining sub model’s 

CPTs and combining sub models to each other. Set by intervention is an active action 

that force a variable to be in a certain state (Kjærulff and Madsen 2013).  The 

proposed algorithm to implement this approach is as follows (Kjærulff and Madsen 

2013): 
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1. Let X  be a variable that we want to set by intervention. Then create a random 

variable I  with 𝑑𝑜𝑚𝑎𝑖𝑛 (𝐼) = 𝑑𝑜𝑚𝑎𝑖𝑛(𝑋) ∪ {𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛}.  

2. Set I as the parent of X and define prior CPT of  I  such that it encodes the 

relative frequency of  setting each state of  X and no intervention. 

3. Define 𝑃(𝑋|𝑝𝑎𝑟(𝑋), 𝐼). 

 

5.1.5 Independence of Causal Influence 

In this approach, the parent variable of a common child are considered 

independent. It means that parent variables are causally independent and the model 

acts like Noisy-OR model (Kjærulff and Madsen 2013). In this kind of modeling, 

each cause variable has a no impact state on the effect variable which is useful for 

combining the effects of all cause variables. Since this model acts like Noisy-OR 

model, each cause variable is a Boolean variable, which means variable with two 

states, and its causal impact is independence of other variables (Kjærulff and Madsen 

2013).  The algorithm for implementing this approach is as follows (Kjærulff and 

Madsen 2013): 

1. Let {𝐶1, … , 𝐶𝑛} be the set of causes of effect variable 𝐸. Note that the impact 

of  𝐶1, … , 𝐶𝑛 on 𝐸 can be modeled with Noisy-OR model which means  

C1, … , Cn  are Boolean variables. 

2. For each variable 𝐶𝑖 define a variable 𝐸𝑖 as the child of it and parent of effect 

variable 𝐸. Then for each 𝐶𝑖 define CPT of  𝑃(𝐸𝑖|𝐶𝑖) such that 𝑃(𝐸𝑖 =
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𝑡𝑟𝑢𝑒|𝐶𝑖 = 𝑡𝑟𝑢𝑒) is probability of  𝐸 = 𝑡𝑟𝑢𝑒 given  𝐶𝑖 = 𝑡𝑟𝑢𝑒  and 

𝑃(𝐸𝑖 = 𝑓𝑎𝑙𝑠𝑒|𝐶𝑖 = 𝑓𝑎𝑙𝑠𝑒) = 1 

3. Define CPT of  𝑃(𝐸|𝐸1, … , 𝐸𝑛) as disjunction. 

 

5.2 Extracting Sub Model’s CPTs- Change Sub Model Example    

In this section, the procedure for obtaining model’s CPTs are discussed. We 

first obtain sub models’ CPTs, then by combining sub models with each other, the 

comprehensive cause-effect model with related CPTs are obtained. Once we have 

finalized the structure of the network, the next step is to obtain the network’s CPTs. 

This procedure for change sub model is explained thoroughly here with 

corresponding CPTs.  This procedure is repeated several times to extract CPTs of 

other sub models, which we skip explanation of all of them and only in appendix B, 

the model’s final CPTs are documented.  

Based on chapter 4, the “changes” has the cause-effect diagram that is shown 

in figure 5.1.  Our goal is to obtain (extract) CPTs of the network based on data, 

statistics, and other scholars and experts opinions. The network is splitted into two 

networks, the first network is from changes to labor productivity, and the second 

network is from causes of changes to changes. These sub networks are shown in 

figures 5.2 and 5.3.    



110 
 

 

Work Sequence
Information 

Availability

Material 

Availability

Labor 

Productivity

Differing Site 

Condition
Management

Incomplete 

Design

Adverse 

Weather

Owner-

Furnished 

Equipment

Defective 

Specification

Changes

 

Figure 5.1: The Change Sub Model’s Structure 
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Figure 5.2: The Sub Network from Changes to Labor Productivity 
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Figure 5.3: The Sub Network from Causes to Changes 

  

In the section 5.2.1 the procedure for extracting CPTs of the network in the 

figure 5.2 is explained and in section 5.2.2 the procedure for obtaining CPTs of the 

network in the figure 5.3 is explained. 
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5.2.1 The Procedure for Extracting CPTs of the Network in Figure 5.2   

The procedure for obtaining CPTs of the sub network shown in figure 5.2 is as 

follows: 

Based on MCAA research we know that changes has following effects on labor 

productivity (2011):    

Table 5. 1: Effects of Changes on Labor Productivity (Source MCAA (2011) 

Thomas and Napolitan found the average effect of all changes on labor productivity 

about 30% loss of productivity. Also, a regression analysis showed a 25-50% loss of 

efficiency depending on the type of disruption (1995). There exist several similar 

statements about the quantitative effect of changes on labor productivity. Our focus is on 

MCAA and Thomas and Napolitan statement about loss of labor productivity because of 

changes. We know that changes affect productivity. Therefore, the causal network that is 

shown in figure 5.4 is an obvious cause-effect network.     

Factor 
Percent of Loss Per Factor 

Minor Average Severe 

 

Ripple: Changes in other trades’ work 

affecting our work such as alteration of our 

schedule. A solution is to request, at first job 

meeting, that all change notices/ bulletins be 

send to our contract manager     

10% 15% 20% 
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Changes

Labor 

Productivity

 

Figure 5.4: The Base Network 

 

Changes have four states: high, medium, low, and no change. In minor, 

average, and high states, productivity loss is 10, 15, and 20%, respectively. In the “no 

change” state, productivity loss is 0%. If productivity is high when it is between 0.9-

1, medium when it is between 0.8-0.9, and low when it is below 0.8 (Typically since 

loss of productivity in severe situation is usually around 30%, we consider it between 

0.7-0.8). For calculating expected value of productivity, we can consider the average 

of each boundary as an indicator of that boundary, except for no change situation that 

we consider high productivity as 1. Therefore, in our model and calculation, when we 

need calculation, productivity high means 0.95 (except for no change), medium 

means 0.85, and low means 0.75. So, we have to setup CPTs of the network in such a 

way that they map minor or low change to 5% loss of productivity or productivity 

equals to 95%, medium changes to 15% loss of productivity or productivity equals to 

85%, high changes to 25% loss of productivity or productivity equals to 75%, and 

probability of high productivity be 100% in the “no change” state. The goal of adding 

“no change” state is to combine different sub models with each other and we will use 

this state extensively in the coming sections of this chapter. Therefore, if we construct 

the CPT shown in figure 5.5 for changes node, then expected values of productivity 
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for different states of changes can be computed. Note that, in this dissertation we use 

SamIam (Sensitivity Analysis, Modeling, Inference, and More) package for modeling 

purposes. 

 

              Figure 5.5: The Conditional Probability Table of Productivity of the Network 

in Figure 5.4 

 

The marginal distribution of different states is shown in the figure 5.6. 

 
   

      Figure 5.6: Marginal Distribution of the Network in Figure 5.4 for Different 

Situations 

   

Then we can calculate expected value of productivity for different situations. Note 

that this calculation is a kind of verification that CPT of productivity is correct or 

errors are negligible. 
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E[productivity| Changes = High] =  0.05 × 0.95 + 0.05 × 0.85 + 0.90 × 0.75 =  0.765 

E[productivity| Changes = Medium] =  0.10 × 0.95 + 0.8 × 0.85 + 0.10 × 0.75 =  0.85 

E[productivity| Changes = Low] =  0.90 × 0.95 + 0.05 × 0.85 + 0.05 × 0.75 =  0.935 

For “no change” state, probability of high productivity is 100% which means that we 

don’t have productivity loss for this state. In the next step, we add one variable to the 

base network. For this purpose, we add work sequence which has four states. The 

resulting network is shown in figure 5.7. 

Changes

Work Sequence

Labor 

Productivity

 

Figure 5.7: Adding Work Sequence to Base Network 

 

The goal is to adjust CPT of work sequence and productivity in such a way 

that it has the least deviation in comparison with the original network (Network of the 

figure 5.4). For achieving this goal, the CPTs that are shown in figures 5.8 and 5.9 are 

set up for the “Work sequence” and “productivity.” Then, for checking the 

correctness of these CPTs, the marginal distribution of network 5.7 for different 

scenarios are shown in figure 5.10. 
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Figure 5.8: CPT of the “Work Sequence” 

 

 

Figure 5.9: CPT of “Productivity” 

 

    

Figure 5.10: Marginal Distribution of Network 5.7 for Different States 
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The comparison of figure 5.10 with 5.6 shows that with the CPTs that are 

shown in figures 5.8 and 5.9, the same input maps to the same output. It means that 

regardless of the intermediate variable that exists between changes and productivity, 

the same state of the “changes” variable maps to the same state of the “productivity” 

variable, which proves that our CPTs are accurate. The same procedure is applied for 

the “information availability” and the “material availability” variables too. Since 

combining the effects of these three variables needs large CPT (table with 

192=4*4*4*3 entries), it is not practical to extract CPT directly. Here the techniques 

that have been explained in section 4.1 and 5.1 are very helpful for extracting CPTs 

and refining the model’s structure. The “parent divorcing” technique is used to 

combine the effects of “work sequence” and “information availability.” A sequence 

of networks that is required to build the network that is shown in figure 5.2, is shown 

in figure 5.11.       

 

 

(a) (b) 

Figure 5.11: The Sequence of Networks Used to Build the Network of Figure 5.2 
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                                                           (c) 

 Figure 5.11: The Sequence of Networks Used to Build the Network of Figure 5.2 

(Continuation) 

 

The network that is shown in figure 5.11(a), combines the effects of “work 

sequence” and “information availability” on construction labor productivity. For 

obtaining CPT of productivity in this network, “OR gate,” “weighted average,” or 

“combined” method can be used. Comparing these methods with each other, the one 

that has the least deviance from the base network is chosen.  

In the “OR gate” method, the worst condition of the two states is selected. For 

example, when “information availability” is in “Bad” state and “Work sequence” is in 

“Excellent” state, the state of “information availability” is selected because it has the 

worst state. The CPT of productivity based on this approach is shown in figure 5.12. 
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Figure 5.12: The CPT of Productivity figure 5.11(a)’s Network Based on “OR gate” 

Method 

In the “weighted average” method, it is assumed that “Information 

Availability” and “Work sequence” have the same weight or importance. Therefore, 

for different combination of “Information Availability” and “Work sequence,” the 

effect matrices of the variables are added to each other. For example, when 

“Information availability” is in “Bad” state and “Work Sequence” is in “Excellent” 

state, the calculation is as follows:  

1

2
× [

0.05
. 0.05
0.9

] +
1

2
× [

1
0
0
] = [

0.525
0.025
0.45

] 

The CPT of productivity based on this approach is shown in figure 5.13.    

In the “combined” method, The CPT of productivity based on this approach is 

shown in figure 5.14.      
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Figure 5.13: The CPT of Productivity of Figure 5.11(a)’s Network Based on  “weighted 

average” Method 

 

 

Figure 5.14: The CPT of Productivity of Figure 5.11(a)’s Network Based on “combined” 

Method 

For selecting the best approach, it is necessary to compare these approaches 

with the base model and see which one has the least deviance. For this purpose, we 

first check four boundary states, it means that we use the “set by intervention” 

approach to check which approach is the best one. If we can’t distinguish the best 

approach with this method, it is necessary to calculate the expected value of 
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productivity for a wide range of combination of “changes” states and compare the 

expected value of productivity for these combinations. In the figure 5.15, this 

comparison for boundary states is shown.    

We can easily understand from figure 5.15 that for all four different states of 

the “changes” variable, the marginal distribution of the “productivity” variable for 

different approaches of obtaining the CPT of productivity is the same. There exist 

situations that we can easily distinguish between different approaches; however, for 

this specific sub model, we need to investigate more to choose the best approach. For 

this purpose, ten combination of changes’ probability are selected randomly and we 

run the model to see marginal probability distribution of productivity for different 

approaches. Then, the expected value of productivity for each approach is calculated 

and compared with each other. In the table 5.2, these 10 cases are shown.      

Table 5.2: Ten cases That Are Used for Model Checking 

Case Number 
1 2 3 4 5 6 7 8 9 10 

Changes 

High 10 10 20 30 50 60 30 80 60 20 

Medium 10 20 20 30 30 30 60 10 20 60 

Low 10 20 30 20 10 10 0 10 10 10 

No Change 70 50 30 20 10 0 10 0 10 10 

 

 

In the tables 5.3, 5.4, 5.5, and 5.6 the marginal distribution and expected values of 

productivity for the base network, “OR gate,”” weighted average,” and “combined” 

methods are shown, respectively.  
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The Marginal Distribution of the Base Network for Different Situations 

   
 

The Marginal Distribution Based on “OR gate”  for Different Situations 

Figure 5.15: Comparison of the Marginal Distribution of Base Network and Network in Figure 5.11(a) for Different Methods of 

Obtaining Productivity’s CPT 
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The Marginal Distribution Based on “weighted average”  for Different Situations  

    

The Marginal Distribution Based on “combined” method for Different Situations  

Figure 5.15: Comparison of the Marginal Distribution of Base Network and Network in Figure 5.11(a) for Different Methods of 

Obtaining Productivity’s CPT (Continuation) 
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Table 5.3: The Marginal and Expected Values of Productivity of the Base Network 

Case Number 
1 2 3 4 5 6 7 8 9 10 

Productivity 

High 80.5 70.5 60 42.5 24.5 15 17.5 14 24 26 

Medium 9 17.5 18.5 26.5 27 27.5 49.5 12.5 19.5 49.5 

Low 10.5 12 21.5 31 48.5 57.5 33 73.5 56.5 24.5 

Expected Value 

of Productivity 
92 90.85 88.85 86.15 82.6 80.75 83.45 79.05 81.75 85.15 

 

 

 

 

Table 5.4: The Marginal and Expected Values of Productivity of the Figure 5.11(a) 

Based on  “OR gate” Method 

Case Number 
1 2 3 4 5 6 7 8 9 10 

Productivity 

High 65.15 50.75 37.9 20.65 9.55 6.6 8.35 6 9.1 11.5 

Medium 15.3 27.75 25.55 29.55 20.7 16.25 40.95 7.25 13.95 49.95 

Low 19.55 21.5 36.55 49.8 69.75 77.15 50.7 86.75 76.95 38.55 

Expected Value 

of Productivity 
89.56 87.93 85.14 82.09 78.98 77.95 80.77 76.93 78.22 82.30 

 

Table 5.5: The Marginal and Expected Values of Productivity of the Figure 5.11(a) 

Based on “weighted average” Method 

Case Number 
1 2 3 4 5 6 7 8 9 10 

Productivity 

High 80.5 70.5 60 42.5 24.5 15 17.5 14 24 26 

Medium 9 17.5 18.5 26.5 27 27 49.5 12.5 19.5 49.5 

Low 10.5 12 21.5 31 48.5 57.5 33 73.5 56.5 24.5 

Expected Value 

of Productivity 92 90.85 88.85 86.15 82.6 80.33 83.45 79.05 81.75 85.15 
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Table 5.6: The Marginal and Expected Values of Productivity of the Figure 5.11(a) 

Based on  “combined” Method 

Case Number 
1 2 3 4 5 6 7 8 9 10 

Productivity 

High 72.95 63.95 49 31.25 14.75 9 13.75 6.8 12.6 21.8 

Medium 8.6 16.25 15.8 20.05 16 14 36.15 6.5 10.8 40.6 

Low 18.45 19.8 35.2 48.7 69.25 77 50.1 86.7 76.8 37.6 

Expected Value 

of Productivity 90.45 89.42 86.38 83.26 79.55 78.2 81.37 77.01 78.75 83.42 

 

By plotting these numbers and comparison of these scenarios with each other, 

we can understand these methods effects in a better way. In the figure 5.16, this plot 

is shown. From the figure, several facts about different methods can be understood. 

These facts are as follows:  

1. The “weighted average” method has the least amount of errors. 

2.  The “OR gate” has the highest amount errors. 

3.  The “combined” method is between “weighted average” and “OR gate” in 

term of errors. 

4. Although “OR gate” has the highest level of errors, in the worst case it has 

less than 5% of errors. This level of error (errors between 0-5%) is acceptable 

for this kind of probabilistic prediction. 

 



125 
 

 

 

Figure 5.16: The Comparison of Different Approaches 

In the next step, by adding an intermediate variable with the same state space 

as its parents, the network that is shown in figure 5.11(b) is built. In the last step, the 

“material availability” is added to the 5.11(b) network to build 5.11(c) network. Then, 

the previous process similar to previous is repeated to choose the appropriate 

approach among the three different methods to combine the effects of “Intermediate 

variable” and “material availability” on the “Productivity” with three approaches.  For 

comparing the performance of the networks, the same previous process repeat again. 

In figure 5.17, the comparison of these models with the “base network” for boundary 

states is shown.    
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The Marginal Distribution of the Base Network for Different Situations 

              

  
 

The Marginal Distribution Based on “OR gate”  method for Different Situations  

 

Figure 5.17: The Comparison of the Marginal Distribution of Base Network and Network in Figure 5.11(c) for Different Methods of Obtaining 

Productivity’s CPT 
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The Marginal Distribution Based on “Weighted average” method for Different Situations 

 

 

 

 
 

The Marginal Distribution Based on “combined” method for Different Situations 

Figure 5.17: The Comparison of the Marginal Distribution of Base Network and Network in Figure 5.11(c) for Different Methods of Obtaining Productivity’s 

CPT (Continuation) 
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From these marginal distribution for different states of the “changes,” the 

following facts can be understood: 

1. Whenever the “changes” is in the “High” state, the “OR gate” and 

“Combined” methods have better performance than “weighted average” 

method. However, the difference between all three methods is negligible.   

2. In the “no change” state, all three methods are the same. 

3. In the “medium” state, the “OR gate” and “weighted average” have better 

performance than the “combined” method.  

 

 The same cases as shown in the table 5.1 are used to investigate more 

deeply these three approaches and select the best one. We ignore putting all related 

tables here and just show the diagram in the figure 5.18.  

 

 
Figure 5.18 The Comparison of Different Approaches for the Network in Figure 

5.11(c) 

 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

P
ro

d
u
ct

iv
it

y
 E

x
p

ec
te

d
 V

al
u
e

Case Number

Base Network

OR gate

Weighted

average

Combined

method



129 
 

 

It is obvious from figure 5.18 that the “weighted average” has the best 

performance and, except for one case, the errors of the other two methods are also 

negligible. The marginal values of productivity for these cases and for the “weighted 

average” method is shown in table 5.7. Note that the comparison of table 5.7 and 

table 5.3 shows that marginal distribution of the “base network” and the network in 

figure 5.11(c) are very close to each other.      

 Table 5.7: The Marginal and Expected Values of Productivity of Figure 

5.11(c) Based on “Weighted average” Method 

Case Number 
1 2 3 4 5 6 7 8 9 10 

Productivity 

High 80.75 70.5 59.95 43.8 26.95 17.75 21.4 16.35 26.25 29.05 

Medium 8.5 16.25 17.75 24.75 25.5 26.25 44.25 13.75 19.25 44.25 

Low 10.75 13.05 22.3 31.45 47.55 56 34.35 69.9 54.5 26.7 

Expected 

Value of 

Productivity 

92 90.575 88.765 86.235 82.94 81.175 83.705 79.645 82.175 85.235 

 

For the completeness, all the CPTs of the network in the figure 5.11(c), except 

“changes,” are showed here. Note that the CPT of the “change” will be obtained in 

the next section.  

 

Figure 5.19: CPT of “Work sequence” 
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Figure 5.20: CPT of “Information Availability” 

 

 

Figure 5.21: CPT of “Material Availability” 

 

 

Figure 5.22: CPT of “Intermediate Variable” 
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Figure 5.23: CPT of “Productivity” 

 

5.2.2 The Procedure for Extracting CPTs of the Network in Figure 5.3   

The “Changes” variable in the network that is shown in figure 5.3 has six 

parents. Each parent variable in this network has four states; therefore, for extracting 

CPT of the “changes,” we need to build a table with 47 = 16384 entries. Extracting 

this table directly is impossible and causes numerous problems in inference 

algorithms behind BBN.  We use the “Temporal Transformation” and “Parent 

Divorcing” approaches to modify the structure of the network and extract the CPTs of 

the network in an easier way. Also, the “Independence of Causal Influence” and “Set 

value by Intervention” are used to help us extract the network’s CPTs.  In the first 

step, it is necessary to understand the effects of these variables individually on the 

“Changes” variable. Hanna and Russel investigated the severity degree of different 

factors that influence changes (change order) (2001). Based on this research, the 

following statements can be concluded (Hanna and Russell 2001): 

 Differing site conditions has “severe” effects on changes. 

 Adverse weather conditions has “mild” effects on changes 



132 
 

 

 Incomplete design has “severe” effects on labor productivity. 

 Adverse team management has “severe” effects on changes. 

 Owner-furnished equipment has mild (medium) impact on changes. 

 Defective specification has “severe” effects on changes. 

Based on these statements, for variables that have “severe” effects such as “Differing 

Site Conditions,” we can set up the CPT that is shown in the figure 5.24. 

 

                  Figure 5.24: CPT of the “ Change” When the “Differing Site Condition” Is 

Its Parent 

 

In this CPT, we have to put 1 instead of 0.9 and 0 instead of 0.05, but since 1 

is reserved for “Not observed” state, we use 0.9 and distribute 0.1 between the other 

two states.  If we replace the above CPT with the CPT that is shown in the figure 

5.25, the overall difference in the model is negligible. We continue the model 

construction with the CPT that is shown in the figure 5.24 and use 1 for other 

purposes such as combining the cause variables effects. 
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Figure 5.25: Another Option of the CPT of the “ Change” When the “Differing Site 

Condition” Is Its Parent 

For variables that have “mild” effects on the “change,” we decrease the 

impact level by one in the CPT of the “change” and then by using the same logic as 

explained above, we can extract the CPT of those variables. For example, the CPT of 

the “changes” under the effects of the “Adverse Weather” variable is shown in the 

figure 5.26. 

 

Figure 5.26: CPT of the “ Change” When the “Adverse Weather” Is Its 

Parent 

 

In the next step, the effects of different variables using “Temporal 

Transformation” approach should be combined. We start with variables that have 
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“severe” effects on “changes,” then, at the end, we add the effects of variables with 

“mild” effects. For the variable with “severe” effects on “changes”, the best approach 

for combining their effects on “changes” is “combined” approach. The reason for 

selecting “combined” approach is that whenever a variable with “severe” effects on 

the “change” is in its worst state, other variable(s) state(s) cannot prevent the state of 

the “change” from being “high.”  For building the network that is shown in figure 5.3, 

we need to build a sequence of networks. This sequence of networks is shown in the 

figure 5.27. 

 

 

 

(a) (b) 

Figure 5.27: The Sequence of Networks Used to Build the Network of Figure 5.3 
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(c) (d) 

  

  

(e) 

Figure 5.27: The Sequence of Networks Used to Build the Network of Figure 5.3 

(Continuation) 

 



136 
 

 

Note that for combining the effects of  variable that have “severe” effects on 

changes, the “Temporal Transformation” method is used to combine the effects of 

them, as shown in figure 5.27(a), (b), and (c).  For combining the effects of “Adverse 

Weather” and “Owner-Furnished Equipment,” because these variables have “mild” 

effects on “changes” then the “weighted average” method is a better way to combine 

the effects of these variables. Also, for the purpose of showing the effects of “severe” 

situations of multiple factors, instead of 0.9 in that state, higher values such as 0.925, 

0.95 or 0.975 are used, although this slight variation does not affect the model. With 

respect to this discussion, CPTs of the network that is shown in the figure 5.27(e) are 

obtained.  For the completeness, all CPTs of the network in the figure 5.27(e) are 

shown here. Note that it is not necessary to obtain root variables CPTs and they can 

be observed.  

 

Figure 5.28: CPT of “Intermediate Variable 1” 
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Figure 5.29: CPT of “Intermediate Variable 2” 

 

 

Figure 5.30: CPT of “Intermediate Variable 3” 

 

 

Figure 5.31: CPT of “Intermediate Variable 4” 
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Figure 5.32: CPT of “Changes” (I variable is Intermediate variable) 

 

5.3 Combining Sub Models’ Structures and CPTs 

After building each sub model’s network with its relevant CPTs, these sub 

models should be combined to each other to build the comprehensive causal network. 

For this purpose, by combining the “changes” and “overtime” sub models and then 

adding the other sub models to this network, the comprehensive causal model is 

constructed. For constructing the causal network of “overtime,” a sequence of 

networks are necessary to build. These networks are shown in figure 5.33. We can 

read variables’ name from figure 5.33 (10).  
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(1) (2) (3) (4) (5) 

 

  
(6) (7) 

 

Figure 5.33: The Sequence of Networks That Are Used to Build the “Overtime” Causal Network 
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(8)  (9) 

Figure 5.33: The Sequence of Networks That Are Used to Build the “Overtime” Causal Network (Continuation) 
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(10) 

Figure 5.33: The Sequence of Networks That Are Used to Build the “Overtime” Causal Network (Continuation) 
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In the first iteration for building the comprehensive model, the network in the 

figure 5.27 (e) and the one in the figure 5.33 (10) must be combined. The combined 

network is shown in the figure 5.37. There exist three nodes that their CPTs need 

some modifications. These nodes are “Information Availability,” “Tools/Material 

Availability” and “Productivity.” For combining these two variable, both “combined” 

and “weighted average” methods are used. The results of both approach for most 

combinations of “changes” and “overtime” probability distributions are the same. 

Since in the worst situation of the “changes” or “overtime,” the state of the other 

variable is irrelevant, it is better to use the “combined” approach. To make sure the 

model works correctly, setting the “change” and “overtime” to “No change” and “No 

Overtime” states, the probability of high “productivity” should be 100%. This fact is 

shown in figure 5.38.  For obtaining CPT of “productivity,” the “weighted average” 

method is used. Two edges come into “productivity,” one from the “I Variable 3” and 

one from “Work Sequence.” There are seven edges the come out from “Overtime” 

and “Changes,” out of this, six of them merges into “I Variable 3” and one of them 

goes into “Work Sequence.”   By assuming equal weight for each edge, “I Variable 

3” weight is  
6

7
   and “Work Sequence” is  

1

7
.    New CPTs of “Information 

Availability,” “Tools/Material Availability” and “Productivity” are shown in figures 

5.34, 5.35, and 5.36 respectively. In the figures 5.37 and 5.38 the structure of 

combined network and its marginal distribution when change and overtime are in “no 

change” and “no overtime” are shown respectively. 
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Figure 5.34: CPT of “Information Availability” 

 

 

 

Figure 5.35: CPT of “Tools/Material Availability” 

 
 

 

Figure 5.36: CPT of “Productivity” 
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Figure 5.37: Combination of the “Changes” and “Overtime” Networks 
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Figure 5.38: Setting “Overtime” and “Changes” into Perfect State and Observing no Productivity Loss as a Model Combination 

Approach Verification 
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5.4 The Comprehensive Model 

The comprehensive model consists of 99 nodes and 166 edges. It has 16 root 

variables, 81 internal variables, and two leaf nodes. The network information is 

represented in the appendix A and B. In the appendix A, each node’s parent(s) and 

child or children are represented. In the appendix B, each node’s CPT is represented 

and in the appendix C a snapshot of the model with its marginal distribution are 

represented. 
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Chapter 6 

 Model Validation and Sensitivity Analysis 

According to Lucko and Rojas “validation of the research methodology and 

its results is a fundamental element of the process of scholarly endeavor” (2010). 

Several approaches are used to validate the model then by applying sensitivity 

analysis, the effects of different variables on labor productivity are investigated in 

depth. The results can be used as a decision support system for project managers to 

increase their projects’ productivity.      

 

6.1 Model Validation 

For validating the model, three approaches are used. These are “Root Nodes 

Boundary Conditions Validation,” “Internal Nodes Boundary Condition Validation” 

and “Face Validation.”  “Root Nodes Boundary Conditions Validation” and “Internal 

Nodes Boundary Condition Validation” use the concept of testing the model under 

extreme conditions. According to this concept, the model should be correct whenever 

the inputs are in their possible maxima and minima (Lucko and Rojas 2010). The 

“Face Validation” approach use the idea of validating the model by the experts or 

industry practitioner. Lucko and Rojas stated that “face validity requires the 

“approval” of no researchers regarding the validity of a study” (2010).   
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6.1.1 Root Nodes Boundary Conditions Validation 

In this method for validating the model, the root nodes are set into their 

extreme conditions and the probability of productivity should be within the expected 

boundary. When all of the 16 root variables are in their perfect conditions, for 

example adverse weather is in the “Not_Observed” state and workers experience is in 

the “Excellent” state, it is expected that the probability of high productivity should be 

100%. This verification is shown in the figure 6.1. Similarly, when all the root nodes 

are in their worst conditions, based on what we have defined in chapter 5, it is 

expected that the probability of low productivity be 90%, medium productivity be 5 

%, and high productivity be 5%. By setting these variables in the worst conditions, it 

can be seen that the probability of high productivity is 89.21%, medium productivity 

is 5.35% and low productivity is 5.44 %. The comparison of the model’s outcome and 

what it is expected to be shows that the model’s error is negligible for these extreme 

conditions. This verification is shown in figure 6.2.  
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Figure 6.1: Model Verification through Root Nodes’ Perfect Conditions
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Figure 6.2: Model Verification through Root Nodes’ Worst Conditions
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6.1.2 Main Nodes Validation 

The model is a combination of 12 sub models. It means that when these 12 

main variables are set to their perfect or worst conditions, the model should have the 

same results as an individual sub model. In the first step, by setting these variables in 

their perfect conditions, it is expected that the probability of “High productivity” will 

be 100%. This validation is shown in figure 6.3.By applying the same procedure, it is 

expected that whenever the model’s main variables are in their worst condition, the 

probability of “Low productivity” will be 90%, medium be 5%, and high be 5%.  This 

verification is shown in figure 6.4. The model’s error for these two boundary 

conditions are zero percent.  

When the model’s main variables are in their “Low” or Good” state, it is 

expected that the probability of “High productivity” be 90%, medium be 5%, and low 

be 5%. By setting the model’s main variables into this state, it can be seen from figure 

6.5 that the probability of “High productivity” is 88.28%, medium is 5.57%, and low 

is 6.14%. In the same way, when the main variables are in their “Medium” state it is 

expected that probability of medium productivity be 90% and high and low 

productivity be 5% respectively. Setting the model’s main variables into medium 

state, it can be seen from the figure 6.6 that the probability of high productivity is 

5.57%, medium is 88.24%, and low is 6.14%. The error of the model is also 

negligible in these states.  

This validation, along with root nodes validation, guarantee that all the queries 

that can be done with this model are in the expected range and probability of 

producing abnormal results is low.   
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 Figure 6.3: Model Verification through Main Nodes’ Perfect Conditions 
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Figure 6.4: Model Validation through Main Nodes’ Worst Conditions
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 Figure 6.5: Model Validation through Main Nodes’ Low Conditions 
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 Figure 6.6: Model Validation through Main Nodes’ Medium Conditions 
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6.1.3 Face Validation 

Lucko and Rojas stated that “arguably the strongest way to establish face 

validity is the involvement of domain experts, also known as subject matter experts, 

before (a priori), during, after (a posteriori), or throughout the research.” For the face 

validation of the model, the “Kiewit Corporation” is selected. The reasons behind this 

selection is that “Kiewit Corporation” is one the fortune 500 companies and also it is 

one of the best in the construction industry. “Kiewit Corporation” headquarter is 

located in the Omaha which allows to access operation manager, project managers, 

and preconstruction experts of the company. For the purpose of face validation, 

interviews with operation manager and preconstruction experts were conducted. After 

explaining the model for experts of the company, questions about the situations of 

different completed projects were asked and experts also determined level of 

productivity for those specific projects before entering the data to the model. The 

opinions of experts for different projects were entered to the model and the result 

compared with actual level of productivity. The projects in this validation range from 

residential to industrial projects. For example, one of the interesting validation was 

with the project manager of “University of Nebraska Omaha Mammel Hall.” This 

project was one the most successful projects of the company with high level of labor 

productivity which the model confirmed it. Table 6.1 shows the validation through 

root variables and tables 6.2 shows the validation through main variables. From the 

tables 6.1 and 6.2, it can be seen that the model can predict level of construction labor 

productivity in an acceptable range. For the purpose of being confidential, the 

projects are named A, B, C, D, E, and F. 
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Table 6.1: Face Validation through Root Variables 

 
 

Root Variables 
(1= Adverse  Management Systems, 2= Adverse Weather, 3= Defective Specification, 4= Differing Site Condition, 5= 

Excessive Workload, 6= Incentives, 7= Incomplete Design, 8= Labor Market,9= Management  Request, 10= Owner-

Furnished Equipment, 11= Personal/Physical Characteristics, 12= Project Size, 13= Repetitive Task(Work), 14= Team 

Cohesiveness, 15= Work Complexity, 16= Workers Experience) and (B= Bad, H=High, M=Medium, L=Low, N=Not 

Observed, E=Excellent, L=Large, VL=Very Large, S=Small, G=Good) 

Model Prediction 

of Productivity 

Actual 

Productivity 

Projects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16   

Project 

A 
M H H H H M M B H N M VL H M H M 

P(High)=6.09 

P(Medium)=14.88 

P(Low)=79.03 

Low 

Project 

B 
N N N N L G N E M N G L H G L H 

P(High)=83.92 

P(Medium)=7.96 

P(Low)=8.12 

High 

Project 

C 
H L H M N B H B N N B S H M L M 

P(High)=13.12 

P(Medium)=9.16 

P(Low)=77.71 

Low 

Project 

D 
N N N N N E N E M N E M H E L H 

P(High)=86.24 

P(Medium)=6.56 

P(Low)=7.20 

High 

Project  

E 
M L M L L M M M M N M L M G L H 

P(High)=32.34 

P(Medium)=45.16 

P(Low)=22.05 

Overall 

Medium  

Project 

 F 
M H L H N E L G H N G L H G L H 

P(High)=13.55 

P(Medium)=13.81 

P(Low)=72.65 

Low 
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Table 6.2: Face Validation through Main Variables 

 
 Main Variables 

(1= Adverse  Management Systems, 2= Adverse Weather, 3= Absenteeism,4= Changes, 5= Fatigue, 6= Morale and 

Attitude,7= Motivation, 8= Overmanning, 9= Overtime, 10= Rework, 11= Shift Work, 12= Stacking of Trades) and (B= 

Bad, H=High, M=Medium, L=Low, N=Not Observed, E=Excellent, L=Large, VL=Very Large, S=Small, G=Good) 

Model Prediction 

of Productivity 

Actual 

Productivity 

Projects 1 2 3 4 5 6 7 8 9 10 11 12   

Project 

A 
M H M H H L M M H M M H 

P(High)=5.29 

P(Medium)=15.54 

P(Low)=79.17 

Low 

Project 

B 
N N L L L G G L M L M L 

P(High)=84.55 

P(Medium)=9.76 

P(Low)=5.69 

High 

Project 

C 
H L H H H L L L M H M M 

P(High)=11.09 

P(Medium)=20.20 

P(Low)=68.71 

Low 

Project 

D 
N N L L L G E L M L M L 

P(High)=84.96 

P(Medium)=9.55 

P(Low)=5.49 

High 

Project  

E 
M L L M L M M L M M M M 

P(High)=30.92 

P(Medium)=62.93 

P(Low)=6.14 

Overall 

Medium  

Project 

 F 
M H M H M M M M H H H M 

P(High)=5.00 

P(Medium)=24.66 

P(Low)=70.37 

Low 
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6.2 Model Sensitivity Analysis 

The goal of building probabilistic networks is to support and solve problems 

of belief update and decision making under uncertainty (Kjærulff and Madsen 2013). 

The problem of belief update is investigated thoroughly in this chapter. The posterior 

probability of productivity under different belief updates of other variables is of 

interest in this chapter. The evidence set can be a single or a group of evidence that 

impact the hypothesis variable (here productivity).  

Evidence sensitivity analysis can give answers to the following questions 

(Kjærulff and Madsen 2013): 

 What are the maximum and minimum beliefs produced by observing a 

variable? 

 Which evidence acts in favor or against of a hypothesis? 

 Which set of evidence has the highest effects on hypothesis variable? 

For the purpose of answering these questions, various sensitivity analyses are 

used to investigate the model in depth and answer the questions of how different 

variables alone, and in the group, affect labor productivity. In the section 6.2.1, 

effects of single variables on labor productivity is investigated and in the section 6.2.2 

the behavior of productivity under the effects of different subsets of variables is 

evaluated.  
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6.2.1 Effects of Single Variables on Perfect Condition 

One of the questions that sensitivity analysis should answer is “What are the 

maximum and minimum beliefs produced by observing a variable?” (Kjærulff and 

Madsen 2013). For the purpose of answering this question, two kinds of sensitivity 

analysis are investigated. The first sensitivity analysis (SA) is “Root Variables 

Sensitivity Analysis.” In this SA, after setting all root variables in their perfect states, 

by changing a single variable state from its perfect state to the other states, the 

probability of “High Productivity” is measured. In the figure 6.7, the effects of 

different root variables on the probability of “High Productivity” is shown. Each 

variable has four states, for example, the variable “Excessive Workload” has the 

following four states: “High,” “Medium,” “Low,” and “Not- Observed.” But, a 

variable like “Incentive” has these four states: Bad, Medium, Good, and Excellent. 

Therefore, for variables like “Incentives,” “Excellent” is equivalent to “Not-

Observed,” “Good” is equivalent to “Low,” and “Bad” is equivalent to “High”. By 

looking at figure 6.7, the following facts can be seen: 

 There are several root factors that their effects on labor productivity are 

similar to each other and cause at most 10% decline in the probability of 

“High Productivity.” Also, the effects of variables in this group on labor 

productivity is a linear function of variables’ states. This group consists of  

“Incentives,” “Workers Experience,” “ Team Cohesiveness,” “Repetitive 

Task (Work),” “ Excessive Workload,” “ Owner Furnished Equipment,” “ 

Personal/Physical Characteristics,” and “ Project Size.” For future 

references, these variables are named “Group A.”   
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 There are two variables, “Work Complexity” and “Management Request 

for Overtime/Shift Work,” that have minor effects on the probability of 

“High Productivity” whenever they are in “Not_Observed,” “Low,” and 

“Medium” states. In the “High” state, these variables have “severe” effects 

on the probability of “High Productivity” and it decreases to less than 

70%. Some explanation for this occurrence is that shift work and overtime 

up to some extent are tolerable, but when they exceed a threshold, they 

become detrimental. For future references, these two variables are named 

“Group B.” 

 “Adverse Weather,” “Defective Specification,” “Differing Site 

Conditions,” and “Incomplete Design” are the variables that have “severe” 

effects on the probability of “High Productivity.” These variables are not 

linear functions of their inputs. “Defective Specification,” “Differing Site 

Conditions,” and “Incomplete Design” have similar behavior in terms of 

their effects on labor productivity. In the worst case, these variables can 

decline the probability of “High Productivity” to 45%, individually. For 

future references, these variables are named “Group C.”   

 “Adverse Management Systems” effects on labor productivity is severe. 

This factor can decline the probability of “High Productivity” to less than 

25%, individually. The effects of “Adverse Management Systems” on 

labor productivity is much more severe than other variables in groups A, 

B, and C. For future references, “Adverse Management Systems” is 

named as “Group D.” 
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In the next step, the effects of different main internal variables on productivity 

is investigated. In the figure 6.8, the effects of different main internal variables on the 

probability of “High Productivity” is shown. By looking at figure 6.8, the following 

facts can be concluded: 

 All variable have similar effects whenever their states change from 

“Not_Observed” to “Low” or “Excellent” to “Good.” In this state change, 

the probability of “High productivity” only declines less than 5%. Also, 

The behavior of these variables whenever their states change from “low” 

to “Medium” and “Medium” to “High” are different from each other. 

 “Motivation” and “Morale and Attitude” have the least detrimental effects 

on the probability of “High Productivity.” In the worst case, these 

variables cause the probability of “High Productivity” to decrease up to 

5%. For future reference, these two variables are named as “Group A1.” 

 “Shift Work” up to the “Medium” state has insignificant effects on the 

probability of “High Productivity.” From the “Not_Observed” state to the 

“Medium” state, it causes around 5% decline in the probability of “High 

Productivity” while from the “Medium” state to “High” state it causes a 

20% decline in the probability of “High Productivity.” For future 

references, “Shift Work” is named as “Group B1.” 

 “Overtime” effects on labor productivity is similar to “Shift Work” but 

with a higher severity degree. From the “Not_Observed” state to the 

“Medium” state, it causes around a 10% decline in the probability of 

“High Productivity” while from the “Medium” state to “High” state it 
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causes a 50% decline in the probability of “High Productivity.” For future 

references, “Overtime” is named as “Group C1.” 

 There are a group of factors that their effects on labor productivity are 

similar to each other. “Absenteeism,” “Rework,” “Fatigue,” 

“Overstaffing,” and “Changes” have similar effects on labor productivity. 

From the “low” state to the “High” state, these variable effects on labor 

productivity is a linear function of their inputs and in the worst case they 

cause between a 25% to 35% decline in the probability of “High 

Productivity.” For future references, these variables are named as “Group 

D1.” 

 “Stacking of Trades” has the most severe effects on labor productivity. 

Even one state change causes a considerable decline in the probability of 

“High Productivity.” In the worst case, it causes about a 55% decline in 

the probability of “High Productivity.” The effects of “Stacking of 

Trades” on the labor productivity is similar to variables in the group C. 

For future references, “Stacking of Trades” is named as “Group E1.” 

The effects of different root and internal variables on the probability of “High 

Productivity” are shown in the figure 6.9 and figure 6.10. Figure 6.9 shows that the 

effects of different root factors on productivity are almost the same and they can 

increase at most 5% the probability of “High Productivity.” This shows that whenever 

a project’s overall situation is bad, by improving one factor it is not probable to 

achieve “High productivity.”   
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Figure 6.10 shows the effects of different internal main variables on the 

hypothesis variable. It is obvious from the figure that in the best case these variables 

can increase the probability of “High Productivity” about 5% whenever a project is in 

its worst conditions. In this figure, for several variables like “Changes,” 

“Overstaffing,” and “Shift Work” whenever state changes from “Low” to “Not_ 

Observed” the probability of “High Productivity” declines to zero. It means that for 

whenever these internal variables is in their worst conditions, it is not possible one 

variable be in its excellent situation. 

The investigation of different variables effects on labor productivity reveals 

interesting facts about each variable.  The next section investigates the effects of a 

group of variables on labor productivity. This investigation shows how these 

variables affect labor productivity whenever they affect productivity concurrently. 
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Figure 6.7: Effects of Different Root Variables on the Probability of “High Productivity” Whenever Everything is in its Perfect 

Condition 
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   Figure 6.8: Effects of Different Main Internal Variables on the Probability of “High Productivity” Whenever Everything is in 

its Perfect Condition  
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Figure 6.9: Effects of Different Root Variables on the Probability of “High Productivity” Whenever Everything is in its Worst 

Condition 
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Figure 6.10: Effects of Different Main Internal Variables on the Probability of “High Productivity” Whenever Everything is in its 

Worst Condition 
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6.2.2 Impact of Evidence Subsets 

According to Kjærulff and Madsen’s investigations, the impact of different 

subsets of the evidence 𝜀 on each state of a hypothesis variable is a useful part of SE 

(2013). This helps to determine which subsets of evidence have the most impact on a 

hypothesis variable and how their combinations work. For investigating the impact of 

each subset, a Normalized Likelihood (NL) is obtained. Then, comparing different 

NL among different subsets allows the behavior of different subsets to be 

investigated. Kjærulff and Madsen defined NL as: 

    

 
𝑁𝐿 =

𝑝(𝑥|𝜀′)

𝑝(𝑥)
 (6.1) 

where 𝜀′  is a subset of  evidence set or 𝜀′ ⊆  𝜀 and 𝑥 is any state of hypothesis 

variable (2013). 

In the next section, the effects of different subsets of root variables and main 

internal variables on the hypothesis variable, the probability of “High Productivity,” 

are investigated. For this purpose, the investigations reveal how different subsets 

affect the probability of “High productivity.” The normalized likelihood helps to do 

this comparison. The comparisons reveal numerous results. This investigation can be 

done in two ways. These are how different subsets of evidence can increase the 

probability of “High Productivity,” and vice versa. Also, the effects of these subsets 

for different network instantiations are also investigated which shows the behavior of 

a subset is network parameter dependent. 
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6.2.2.1 Root Variables Subsets Effects on Productivity 

This section investigates the effects of subsets of size three on the probability 

of “High Productivity.” Table 6.3 shows the effects of different subsets of size three 

of the variables in the group A on the probability of “High Productivity.” From this 

table the following facts can be concluded: 

 Whenever three variables are combined to each other, their cumulative 

effects on labor productivity is not equivalent to the sum of their 

individual variable effect. The sum of individual variable effects is slightly 

higher or lower than the effects of their combination. For example, by 

setting “Incentives,” “Workers Experience,” and “Team Cohesiveness” 

individually to their perfect condition, the probability of “High 

Productivity” changes from 17.14% to 17.60%, 18.72%, and 17.95%, 

respectively. By adding the amount of each individual increase to 17.14, 

the sum of individual increases becomes 19.99% which is slightly lower 

than 20.07%. It is higher for the subset 7 from the table 6.3.     

 “Workers Experience,” “Personal/ Physical Characteristics,” and “Owner-

Furnished Equipment” have the highest impact on productivity, 

individually. But, it is not the case for their combination. There exist 

subsets that the sum of the impact of their individual variables are less 

than case number 5, but the combination of their effects is higher than case 

5. 

 If a project manager wants to increase the probability of “High 

Productivity” with variables in this group, this table gives enough insight 
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to the project manager to make decision. It can be seen that subsets that 

have “Incentives” as an element causes more increase in the probability of 

“High Productivity.”  Therefore, the best choice for a project manager can 

be subset number 4, and subset number 7 is the least effective decision 

that can be made. 

The next reasonable question that may arise is “Are these subsets behaves the 

same for different root variables’ CPTs?” To answer this question, by setting all root 

variable to their worst state, with changing the state of each variable in each subset, 

the posterior probability of “High Productivity” is obtained. Table 6.4 shows this 

results. The comparison between NL of the table 6.3 and 6.4 reveals the following 

facts: 

 For different subsets, the NL is not constant for different network 

instantiations. The average NL of subsets in the table 6.3 is 1.15 while the 

average NL of subsets in the table 6.4 is 1.47. On average, the effects of 

each subset on the probability of “High productivity” is higher whenever 

the network instantiation results in the lower probability of “High 

Productivity.” 

 Except for subsets number 4 and 7, which are the most effective and the 

least effective subsets, the order of importance of other subsets also are 

not constant. For example, while the subset 1 and 2 has the same effect on 

the probability of “High Productivity” in the network with instantiation 

shown in the appendix B, by setting the root variable to the worst case, the 

effects of these subsets are no longer similar. 
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 The nonlinearity behavior of different subsets causes the decisions of a 

project manager about how to increase productivity, depends on the 

situations of other factors. For each situation, a set of best actions exist, 

and by focusing on them, it is more probable to increase productivity. 

 The above findings show that the problems of selecting the best action is a 

hard problem. It means that for a specific situation, the exhaustive search 

among all combinations of variables should be done. From the algorithmic 

point of view, this exhaustive search is a factorial running time algorithm 

which needs too much time to be solved. 

 The above discussion conclude that it is sometimes necessary to develop a 

heuristic to solve the decision making problems regarding the selection of 

the best approach to increase productivity. 
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Table 6.3: Effects of Subsets of Size Three of Variables in Group A on the Probability of “High Productivity” 

 

 

Number 
Evidence 

Prior and Posterior Probability of "High" 
Productivity 

Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High" | E) P(Productivity="High") NL 

1 Incentives Workers Experience 
Team 

Cohesiveness 
20.07 17.14 1.17 

2 Incentives Workers Experience Repetitive Task 20.1 17.14 1.17 

3 Incentives Workers Experience 
Excessive 
Workload 

19.89 17.14 1.16 

4 Incentives Workers Experience 
Personal/  
Physical 

Characteristics 
20.45 17.14 1.19 

5 
Workers 

Experience 
Personal/  Physical 

Characteristics 
Owner-Furnished 

Equipment 
19.91 17.14 1.16 

6 
Team 

Cohesiveness 
Repetitive Task 

Excessive 
Workload 

19.4 17.14 1.13 

7 
Owner-

Furnished 
Equipment 

Repetitive Task 
Excessive 
Workload 

18.5 17.14 1.08 

8 
Owner-

Furnished 
Equipment 

Team Cohesiveness 
Workers 

Experience 
19.56 17.14 1.14 
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Table 6.4: Effects of Subsets of Size Three of Variables in Group A on the Probability of “High Productivity” with another Network 

Instantiation 

Number 

Evidence 
Prior and Posterior Probability of "High" 

Productivity 
Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High" |E) P(Productivity="High") NL 

1 Incentives Workers Experience  Team Cohesiveness 8.97 5.44 1.65 

2 Incentives Workers Experience  Repetitive Task 8.08 5.44 1.49 

3 Incentives Workers Experience  
Excessive 
Workload 

8.08 5.44 1.49 

4 Incentives Workers Experience  
Personal/  Physical 

Characteristics 
9.06 5.44 1.67 

5 
Workers 

Experience  
Personal/  Physical 

Characteristics 
Owner-Furnished 

Equipment 
8.32 5.44 1.53 

6 
Team 

Cohesiveness 
Repetitive Task 

Excessive 
Workload 

7.19 5.44 1.32 

7 
Owner-

Furnished 
Equipment 

Repetitive Task 
Excessive 
Workload 

5.87 5.44 1.08 

8 
Owner-

Furnished 
Equipment 

Team Cohesiveness 
Workers 

Experience  
8.28 5.44 1.52 
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The procedure explained for the “Group A” variables is also repeatable for 

other groups’ variables and their combinations. The factors in the “Group B” have 

different behaviors on the probability of “High Productivity” than the factors in 

“Group A,” whenever they combine with each other. In the table 6.5, the effects of 

different combinations of factors from “Groups A” and “Group B” with the network 

instantiation that is documented in appendix B is shown. Table 6.6 shows the effects 

of the same subsets with another network instantiation. In this instantiation, the prior 

probability of “High Productivity” is related to the worst case scenario for all root 

variables and the posterior probability is obtained by setting a subset of variables in 

their perfect state. The comparison of the numbers in table 6.5 and 6.6 with each other 

and with the numbers from the tables 6.3 and 6.4, reveals the following facts about 

the network: 

 The average NL of the subsets in the 6.5 is 1.23 while in the table 6.6 it is 

1.21. This shows that the effects of different subsets in the table 6.5 is 

more effective whenever the project’s overall situation is better. This is in 

contrast with tables 6.3 and 6.4.  In the table 6.3 the average NL of the 

subsets is 1.15 while in the table 6.4, it is 1.47. This shows that the 

combination of variables in “Group A” is more effective whenever the 

project status is worse.  

 The average increase in the probability of “High productivity” for table 

6.6 is calculated from the following formula : 

∑ 𝑃(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = "𝐻igh" |𝐸) − 𝑃(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = "High")8
1

8
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This average is 1.12% for table 6.6. The comparison between this number 

and the effects of variables in “Group B” on the perfect conditions shows 

that whenever the probability of “High Productivity” is low, improving 

two or three factors related to groups A and B can increase the probability 

of “High Productivity” slightly; however, whenever the project situation is 

perfect, as shown in the figure 6.7, the state change of any of  variables in 

“Group B” can decline the probability of “High Productivity” more than 

30% which is at least 25 times higher than the previous increase. 

Tables 6.7 and 6.8 show the effects of different subsets of “Group C” 

variables for two different network instantiations. Although the average NL for table 

6.8 is higher than table 6.7 (1.67 vs 1.43), the range of NL for table 6.7 is much lower 

than table 6.8. It means that the effects of different subsets of variables in group C is 

more consistent whenever the probability of “High Productivity” is higher.   

In the tables 6.9, effects of different subsets of “Adverse Management 

Systems” and two variables from group A is shown. Similarly, in the table 6.10, 

effects of different subsets of “Adverse Management Systems” with variables in 

group B and C is shown. It can be seen that “Adverse Management Systems” 

individually can increase the probability of “High Productivity” about 10%, while it 

can decline it more than 75%, and whenever “Adverse Management Systems” 

combines with two variables from group B and C it can decline more than 80%. This 

shows that whenever in a project “Management system” is not ideal, it is not probable 

to achieve “High Productivity.” 
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In the figure 6.11, the comparison of different combinations is shown 

graphically. It is clear from the figure, that how the “Adverse Management Systems” 

in combination with the variables from group B and C is important for achieving or 

losing productivity. 
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Table 6.5: Effects of Subsets of Size Three of Variables in Group B and One Variable in Group A on the Probability of “High 

Productivity” 

Number 
Evidence Prior and Posterior Probability of "High" Productivity 

Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High" | E) P(Productivity="High") NL 

1 
Management 

Request 
Work 

Complexity 
_ 20.34 17.14 1.19 

2 
Management 

Request 
Work 

Complexity 
Incentives 20.84 17.14 1.22 

3 
Management 

Request 
Work 

Complexity 
Workers Experience 22.05 17.14 1.29 

4 
Management 

Request 
Work 

Complexity 
Excessive Workload 20.99 17.14 1.22 

5 
Management 

Request 
Work 

Complexity 
Personal/  Physical 

Characteristics 
21.55 17.14 1.26 

6 
Management 

Request 
Work 

Complexity 
Team Cohesiveness 21.19 17.14 1.24 

7 
Management 

Request 
Work 

Complexity 
Owner-Furnished 

Equipment 
20.32 17.14 1.19 

8 
Management 

Request 
Work 

Complexity 
Repetitive Task 21.2 17.14 1.24 
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Table 6.6: Effects of Subsets of Size Three of Variables in Group B and One Variable in Group A on the Probability of “High 

Productivity” with another Network Instantiation 

Number 
Evidence Prior and Posterior Probability of "High" Productivity 

Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High" |E) P(Productivity="High") NL 

1 
Management 

Request  
Work 

Complexity 
_ 5.91 5.44 1.09 

2 
Management 

Request  
Work 

Complexity 
Incentives 6.56 5.44 1.21 

3 
Management 

Request  
Work 

Complexity 
Workers Experience 7.58 5.44 1.39 

4 
Management 

Request  
Work 

Complexity 
Excessive Workload 6.14 5.44 1.13 

5 
Management 

Request  
Work 

Complexity 
Personal/  Physical 

Characteristics 
7.05 5.44 1.30 

6 
Management 

Request  
Work 

Complexity 
Team Cohesiveness 7.18 5.44 1.32 

7 
Management 

Request  
Work 

Complexity 
Owner-Furnished 

Equipment 
5.92 5.44 1.09 

8 
Management 

Request  
Work 

Complexity 
Repetitive Task 6.14 5.44 1.13 
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Table 6.7: Effects of Subsets of Size Three of Variables in Group C on the Probability of “High Productivity” 

Number 
Evidence Prior and Posterior Probability of "High" Productivity 

Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High" |E) P(Productivity="High") NL 

1 Adverse Weather 
Defective 

Specification 
Differing Site 

Conditions 
24.94 17.14 1.46 

2 Adverse Weather 
Defective 

Specification 
Incomplete 

Design 
24.94 17.14 1.46 

3 Differing Site Conditions 
Incomplete 

Design 
Adverse 
Weather 

24.89 17.14 1.45 

4 Differing Site Conditions 
Incomplete 

Design 
Defective 

Specification 
21.66 17.14 1.26 

5 Adverse Weather 
Defective 

Specification 
Work 

Complexity 
25.26 17.14 1.47 

6 Adverse Weather 
Defective 

Specification 
Management 

Request 
26.48 17.14 1.54 

7 Differing Site Conditions 
Defective 

Specification 
Management 

Request 
21.34 17.14 1.25 

8 Work Complexity 
Management 

Request 
Adverse 
Weather 

26.96 17.14 1.57 
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Table 6.8: Effects of Subsets of Size Three of Variables in Group C on the Probability of “High Productivity” with another Network 

Instantiation 

Number 
Evidence 

Prior and Posterior Probability of "High" 
Productivity 

Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High" |E) P(Productivity="High") NL 

1 Adverse Weather 
Defective 

Specification 
Differing Site 

Conditions 
8.69 5.44 1.60 

2 Adverse Weather 
Defective 

Specification 
Incomplete 

Design 
8.69 5.44 1.60 

3 
Differing Site 

Conditions 
Incomplete 

Design 
Adverse Weather 8.69 5.44 1.60 

4 
Differing Site 

Conditions 
Incomplete 

Design 
Defective 

Specification 
5.44 5.44 1.00 

5 Adverse Weather 
Defective 

Specification 
Work Complexity 9.73 5.44 1.79 

6 Adverse Weather 
Defective 

Specification 
Management 

Request 
10.21 5.44 1.88 

7 
Differing Site 

Conditions 
Defective 

Specification 
Management 

Request 
5.65 5.44 1.04 

8 Work Complexity 
Management 

Request 
Adverse Weather 15.73 5.44 2.89 
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Table 6.9: Effects of Subsets of Size Three of “Adverse Management Systems” and Two Variable from Group A on the Probability of 

“High Productivity” 

Number 
Evidence 

Prior and Posterior Probability of "High" 
Productivity 

Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High" |E) P(Productivity="High") NL 

1 
Adverse 

Management 
Systems 

_ _ 25.98 17.14 1.52 

2 
Adverse 

Management 
Systems 

Incentives 
Workers 

Experience 
28.38 17.14 1.66 

3 
Adverse 

Management 
Systems 

Incentives 
Team 

Cohesiveness 
27.37 17.14 1.60 

4 
Adverse 

Management 
Systems 

Project Size 
Personal/  
Physical 

Characteristics 
27.72 17.14 1.62 

5 
Adverse 

Management 
Systems 

Personal/  
Physical 

Characteristics 

Workers 
Experience 

29.23 17.14 1.71 

6 
Adverse 

Management 
Systems 

Repetitive Task 
Excessive 
Workload 

27.78 17.14 1.62 

7 
Adverse 

Management 
Systems 

Personal/  
Physical 

Characteristics 
Incentives 27.85 17.14 1.62 

8 
Adverse 

Management 
Systems 

Owner-Furnished 
Equipment 

Excessive 
Workload 

26.73 17.14 1.56 
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Table 6.10:  Effects of Subsets of Size Three of “Adverse Management Systems” and Two Variable from Group B and C on the 

Probability of “High Productivity” 

Number Evidence Prior and Posterior Probability of "High" 
Productivity 

Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High"| E) P(Productivity="High") NL 

1 Adverse 
Management 

Systems 

Management 
Request 

Work 
Complexity 

31.9 17.14 1.86 

2 Adverse 
Management 

Systems 

Management 
Request 

Adverse 
Weather 

37.52 17.14 2.19 

3 Adverse 
Management 

Systems 

Work Complexity Adverse 
Weather 

35.75 17.14 2.09 

4 Adverse 
Management 

Systems 

Defective 
Specification 

Differing Site 
Conditions 

31.85 17.14 1.86 

5 Adverse 
Management 

Systems 

Differing Site 
Conditions 

Incomplete 
Design 

31.74 17.14 1.85 

6 Adverse 
Management 

Systems 

Defective 
Specification 

Adverse 
Weather 

35.54 17.14 2.07 

7 Adverse 
Management 

Systems 

Incomplete Design Adverse 
Weather 

35.16 17.14 2.05 

8 Adverse 
Management 

Systems 

Differing Site 
Conditions 

Adverse 
Weather 

35.16 17.14 2.05 

 

 



 
 

 
 

1
84

 

 

Figure 6.11: Effects of Combination of Different Variables on the Probability of “High Productivity” 
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6.2.2.2 Main Variables Subsets Effects on Productivity 

This section investigates the effects of different subsets of the main internal 

variables on the hypothesis variable. Table 6.11 shows the effects of size two and 

three subsets of variables in the groups A1, B1, and C1 with the network 

instantiations that is documented in the appendix B on the hypothesis variable. The 

average NL for this table is 2.45 which is higher than all the subsets of size three of 

root variables. The reasons for this higher NL value is the following: 

 Each internal variable is the effect’s node or child of several root variables 

which means each main internal variable represents the effects of one or 

more root variables on the hypothesis variable. This causes the internal 

variables to have higher effects on the hypothesis variable. 

   Since the internal variables are closer to the hypothesis variable (there 

exists a shorter path), by setting an internal variables to a specific state, its 

effects dampens in the network less than the root variables.  

  Table 6.12 shows the effects of the same subsets with another network 

instantiations on the hypothesis variables. Note that with this network instantiations it 

is not possible to set “Shift Work” to its “Not_Observed” state. Therefore, for 

investigating the effects of each subset, the “Shift Work” is set to “Low.” The average 

NL for this table is 2.20 which is a bit lower than table 6.11. This also shows that 

whenever the overall situations of a project is better, improving the state of the 

internal variables is more effective to increase the probability of “High Productivity.” 
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Another finding from these tables is that while “Motivation” and “Morale and 

Attitude” have the least detrimental effects on the hypothesis variable, whenever a 

project is in its excellent situation, but combined together their effects on the 

hypothesis variable, whenever a project is in its worst conditions, has a high positive 

impacts. Furthermore, the order of NL in the tables 6.11 and 6.12 are not the same 

and it is also proof that deciding about the best set of actions depends on a project’s 

situation. 

The effects of different subsets of variables in the “Group D1”shows that in 

the worst case conditions improving the states of three variables is impossible and the 

network doesn’t provide any solution except for one case. Table 6.13 shows this fact 

and the only possible combination of variables in this group that can improve worst 

case condition situations are “Absenteeism,” “Rework,” and “Fatigue.” However, 

whenever a project’s conditions improves a bit, the effects of the subsets of size 3 of 

the variables in this group on the hypothesis variable is considerable. Table 6.14 

shows the effects of subsets with size three on the hypothesis variable with network 

instantiations that is documented in appendix B. 
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Table 6.11: Effects of Subsets of Sizes Two and Three of Variables in Groups A1, B1, and C1 on the Probability of “High 

Productivity” 

Number 

Evidence 
Prior and Posterior Probability of "High" 

Productivity 
Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High"| E) P(Productivity="High") NL 

1 Motivation 
Morale and 

Attitude 
_ 29.07 17.14 1.70 

2 Motivation Shift Work _ 41.48 17.14 2.42 

3 
Morale and 

Attitude 
Shift Work _ 38.36 17.14 2.24 

4 Motivation Overtime _ 40.58 17.14 2.37 

5 Shift Work Overtime _ 43.39 17.14 2.53 

6 Motivation 
Morale and 

Attitude 
Shift 
Work 

43.41 17.14 2.53 

7 Motivation 
Morale and 

Attitude 
Overtime 44.73 17.14 2.61 

8 
Morale and 

Attitude 
Shift Work Overtime 47.11 17.14 2.75 

9 Motivation Shift Work Overtime 49.4 17.14 2.88 
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Table 6.12: Effects of Subsets of Sizes Two and Three of Variables in Groups A1, B1, and C1 on the Probability of “High 

Productivity” with another Network Instantiation 

Number 

Evidence Prior and Posterior Probability of "High" Productivity 
Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High" | E) P(Productivity="High") NL 

1 Motivation 
Morale and 

Attitude 
_ 12.86 5 2.57 

2 Motivation Shift Work _ 10.7 5 2.14 

3 
Morale and 

Attitude 
Shift Work _ 10.7 5 2.14 

  Motivation Overtime _ 8.93 5 1.79 

4 Shift Work Overtime _ 6.77 5 1.35 

5 Motivation 
Morale and 

Attitude 
Shift 
Work 

14.63 5 2.93 

6 Motivation 
Morale and 

Attitude 
Overtime 12.86 5 2.57 

7 
Morale and 

Attitude 
Shift Work Overtime 10.7 5 2.14 

8 Motivation Shift Work Overtime 10.7 5 2.14 
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Table 6.13: Effects of Subsets of Size Three of Variables in Groups D1 on the Probability of “High Productivity” in Worst Case 

Network Instantiations 

Number 

Evidence Prior and Posterior Probability of "High" Productivity 
Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High" | E) P(Productivity="High") NL 

1 Absenteeism Rework Fatigue 25.62 5 5.12 

2 Absenteeism Rework Overstaffing ? 5 ? 

3 Absenteeism Rework Changes ? 5 ? 

4 Rework Fatigue Overstaffing ? 5 ? 

5 Rework Fatigue Changes ? 5 ? 

6 Fatigue Overstaffing Changes ? 5 ? 

7 Fatigue Overstaffing Absenteeism ? 5 ? 

8 Overstaffing Changes Absenteeism ? 5 ? 

9 Overstaffing Changes Rework ? 5 ? 
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Table 6.14: Effects of Subsets of Size Three of Variables in Groups D1 on the Probability of “High Productivity” with Network 

Instantiations Documented in Appendix B 

Number 

Evidence 
Prior and Posterior Probability of "High" 

Productivity 
Normalized 
Likelihood 

E1 E2 E3 P(Productivity="High" | E) P(Productivity="High") NL 

1 Absenteeism Rework Fatigue 48.92 17.14 2.85 

2 Absenteeism Rework Overstaffing 46.98 17.14 2.74 

3 Absenteeism Rework Changes 66.39 17.14 3.87 

4 Rework Fatigue Overstaffing 52.96 17.14 3.09 

5 Rework Fatigue Changes 74.52 17.14 4.35 

6 Fatigue Overstaffing Changes 69.94 17.14 4.08 

7 Fatigue Overstaffing Absenteeism 45.55 17.14 2.66 

8 Overstaffing Changes Absenteeism 58.38 17.14 3.41 

9 Overstaffing Changes Rework 61.39 17.14 3.58 
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6.2.3 Single and Multiple Parameter Suggestions 

Single and multiple parameter (CPT) changes is another kind of sensitivity 

analysis that the model can do. This part of sensitivity analysis can be done by the 

SAMIAM toolbox and there is no need for additional computation. Figure 6.12 shows 

single parameter suggestions for the current network CPT, whenever a constraint is 

set for a variable. In this figure, the current probability of “High Shift Work” is 

0.7701 and it is desired to decrease it to less than 0.7. The SAMIAM suggests six 

single parameter changes in several CPTs. Figure 6.13 shows multiple parameters 

suggestions which shows there exist six multiple parameters suggestions for different 

CPTs.   

This kind of sensitivity analysis is useful whenever the CPTs are chosen 

randomly or they are not accurate. These suggestions in parameters changes may not 

make sense in several situations. Therefore, these kind of sensitivity analysis won’t be 

investigated any further.     
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Figure 6.12: Single Parameter Suggestions for Changes 

 

 

 
Figure 6.13: Multiple Parameter Suggestions for Changes 
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Chapter 7 

 Conclusions and Recommendations 

This chapter summarizes the results from the previous chapters regarding the 

comprehensive causal model for predicting construction labor productivity. 

Uncertainty in the construction industry is a common phenomenon. There are 

uncertainties in all aspects of the industry such as cost engineering, scheduling, and 

quality control. Researchers and industrial practitioners have tried to decrease the 

level of uncertainty and risk by employing various methodologies with their decision 

making processes. Construction labor productivity is one of the main factors that play 

an important role in the project’s cost and time. Predicting or estimating construction 

labor productivity is a part of any cost estimation or scheduling program. Predicting 

construction labor productivity is a vital task in the construction industry. The 

multitude of factors that affect construction labor productivity, the cause-effect 

relationships among those factors and labor productivity, and inherent uncertainty 

make these predictions tough. Despite all the research that has been done, the 

problems remained unsolved due to of lack of a comprehensive model that can 

represent causal effects among factors, along with the uncertainty that exists. The 

primary goal of this dissertation is to investigate the feasibility of developing such a 

model that can predict construction labor productivity while considering causal 

relationships among variables and inherent uncertainty in the construction industry. 

After reviewing different approaches, the probabilistic graphical modeling and one of 

its categories, known as Bayesian Belief Networks was selected. 
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7.1 Findings and Contributions    

The primary goal of this dissertation was to develop a comprehensive causal 

network to support project managers in making decisions in labor productivity, with 

the presence of uncertainty. The major findings can be categorized as follows: 

a. Feasibility 

After extensive literature review, 12 main variables that affect construction 

labor productivity were selected. For each of those factors, several cause-effect 

diagrams were extracted from other researchers’ publications. Applying different 

structure techniques such as “Parent divorcing,” “Temporal transformation” and 

“Bidirectional relations,” along with parameters approaches such as “Set value by 

intervention,” “Weighted Average” and “Combined Method,” were used to obtain 

CPTs. The 12 sub models were then combined into a comprehensive causal map that 

can predict construction labor productivity. At the end of chapter 5, it is shown that it 

is feasible to develop such a complex model. The final network has around 100 nodes 

and more than 150 edges. Since the model is so complex, all inference can be done by 

this model is through approximate algorithms such as “Loopy belief propagation” 

while an exact algorithm such as “Recursive conditioning” cannot solve the problem 

of belief update in the network.  

 

b. Applicability 

 This probabilistic graphical model has several applications in the 

construction industry. The diversity of factors along with causal relationships allows 
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project managers to understand how a certain action can increase or decrease the 

probability of different states of productivity. This understanding can help project 

managers regarding their decisions about time and cost. This model can help project 

managers and legislators in the claim management and resolution area. It will help 

contractors to negotiate in a better way regarding loss of labor productivity claims. 

The model helps mangers to understand their flaws which cause lose labor 

productivity. This model is a comprehensive causal map with numerous factors, but it 

is also possible to use it for a specific scenario where a limited number of factors play 

major roles by using the “Set value by intervention” approach or just use different sub 

models separately. 

        

c. Contributions 

This dissertation contributes to the body of knowledge in the several ways:  

 It applies one of the modern techniques in the area of machine learning to 

solve a complex problem in the construction industry. It opens avenues 

for other areas of the construction industry such as safety, quality, etc. to 

use this powerful technique to solve complicated cause-effect problems 

that are inherently uncertain. 

 There is a large body of research in construction labor productivity that 

investigates the effects of different factors on construction labor 

productivity. This dissertation investigates various publications from 

journal papers and technical reports from four decades to extract the 
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causal relationships for different variables. This comprehensive review of 

the main factors provides a basis to develop the comprehensive model. At 

the present time, there is not a model in the area of construction labor 

productivity that considers the causal relationships among more than 40 

factors for predicting construction labor productivity. The model in this 

dissertation can predict productivity while considering both causal 

relationships and uncertainty for numerous factors.  

 Another contribution of this dissertation is the way that are developed 

CPTs from literature review. Using the concept of “Base Network” and 

adding one variable at a time to the model along with an iterative process 

allows to extract the model’s parameters. Although the concept of 

“Weighted Average” method is a common sense and numerous 

researchers used this approach in their research in the area of probabilistic 

graph modeling, using the concept of “Combined Method” for extracting 

CPTs is innovative.  

 Chapter 6 provides various contributions to the body of knowledge which 

are significant for the decision making process. Various sensitivity 

analyses reveal several facts about the behavior of different root and main 

factors, individually. The similarity among the behavior of some factors 

gives the opportunity to categorize different factors in different groups 

and investigate their effects in terms of their groups. 

 “Adverse Management System” has the most destructive effects on the 

probability of “High productivity.” This factor can reduce the probability 
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of “High productivity” more than 70% whenever the project is in its 

perfect state. Whenever the project is in its worst condition, improving 

this factor individually can only increase the probability of “High 

productivity” to 10% or less. 

 One of the factors that has strange effects on the probability of “High 

productivity” is “Stacking of Trades.” This factor can decrease the 

probability of “high productivity” up to 55%, whenever the project is in 

its perfect situation.  

 There are a group of root factors that have effects on labor productivity 

and are similar to each other and can cause at most 10% decline in the 

probability of “High Productivity.” 

 “Work Complexity” and “Management Request for Overtime/Shift 

Work” have similar behavior and they have minor effects on the 

hypothesis variable whenever they are in the “Not observed,” “Low” and 

“Medium” states while they have “Severe” effects on the hypothesis 

variable whenever they are in the “High” state.     

 Whenever variables are combined to each other, their cumulative effects 

on labor productivity is not equivalent to the sum of their individual 

variable effect. The sum of individual variable effects is slightly higher or 

lower than the effects of their combination.  
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 The effects of a specific subset of variables on the hypothesis variable for 

different network’s instantiations is not constant and it depends the 

project situation and state of other factors.  

 Effects of different subsets of variables in different groups reveal the fact 

that for finding the best action, it is necessary to do exhaustive search. 

The behavior of different subsets have network instantiation dependency, 

which makes the problem of decision making a complicated and time 

consuming process. 

 The nonlinearity and chaotic behavior of the model shows that why the 

construction industry has a complex environment in terms of predicting 

and decision making. This model provides some guidelines for project 

managers to decide the best actions whenever they are in different 

situations. 

 

7.2 Research Limitations 

This research has several limitations. Model limitations are mostly related to 

the model’s structure and parameter. Some of the limitations are listed as follows: 

 This research only investigates the factors that have the most literature 

available about them. This limits the research from having various factors 

that may have severe effects on labor productivity, but because of the lack 

of scholarly research they have been ignored. For example, “sexual 

harassment” obviously has some effects on labor productivity, but 
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because of the lack of publications about it in the construction industry it 

has been ignored. It is possible to add some nodes among different 

variables in the model through common sense, but those edges also have 

been ignored for the same reason. 

 The second limitation of this research is that it only considers discrete 

probability distribution for nodes’ CPTs. However, almost all variables 

can have continuous probability distribution as their CPTs. 

 The biggest hypothesis of this dissertation is that it assumes that all 

publications from different areas of the construction industry with 

different time frames are valid sources and they are applicable for any 

other kind of projects. 

 

7.3 Research Recommendations 

For overcoming the research limitation, a list of ways are recommended here. 

These are as follows: 

 Using continuous CPTs for this research was doable if other commercial 

software packages like “AgenaRisk” are used. However, acquisition of 

those commercial packages is costly. Finding the continuous CPT for 

each node is possible by fitting the best curve for the discrete CPT. 

 For modifying and enhancing the structure of the network, it is necessary 

to do research in the areas that lack scholarly publications. This 

improvement takes time and it needs its own resources. 
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Chapter 8 

Future Research 

This chapter investigates future ways of expanding research. Since 

probabilistic graphical modeling techniques is new in the construction industry 

research, the potential of applying it to solve various problems is high. The following 

areas are potential future research related to this dissertation: 

i.  It is possible to apply BBN to solve other problems in the construction industry. 

Whenever cause-effect relationships along with uncertainty exist among 

some variables, BBN is a powerful approach to address those problems. 

Predicting site safety, construction equipment productivity, quality of 

works, claim investigations, and cost estimation are examples that can 

utilize BBN. 

ii. There are various BBN types. The applicability of different types of BBN such as 

“Dynamic BBN” for the construction industry problems need more 

investigation. 

iii. “Fuzzy Bayesian Network” is one of the BBN types that it valuable to do 

research about how to apply it in the area of labor productivity. Many factors 

that affect construction labor productivity are linguistic variables, Fuzzy BBN 

is an appropriate way to investigate this kind of vagueness. 

iv. One of the potential research area is to investigate the effect(s) of a certain action 

on the project schedule. It is necessary to combine BBN with the project’s 

schedule. Since the activity time is inherently uncertain, it means that in future 

research, it is possible to combine BBN with “Stochastic Activity Network” 
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and find the effect(s) of a specific action on different project’s activities 

throughout the project’s life span. This Combination is useful for predicting 

“Alternative Future” in the construction projects. This prediction can give 

managers the ability to see different futures and set up different strategies to 

overcome different problems throughout the project’s life span with lower 

cost. 

v. The network structure has been obtained through extensive review of other 

scholars, and network parameters through a proposed approach. It is possible 

to extract the structure and parameters of the network through “Learning 

BBN.” In one potential future study, it is possible that a researcher(s) gather 

data for a specific project and use a learning method, to extract the structure 

and parameters of the network. This approach can be used for different sub 

models with a limited number of factors, individually. 

vi. Another potential future research is developing a web-based decision support 

system for construction project managers for predicting construction labor 

productivity. In this research, project managers enter the project status 

regarding different factors and they will see the probability distribution of 

productivity, instantly. It is also feasible to develop a mobile application to do 

this. 

vii. Other approaches in the area of probabilistic graphical modeling also have the 

capability to solve some complicated problems in the construction industry. 

“Markov Chains” is one of the approaches that has an exceptional capability 

to handle uncertainty. In the future, researchers can utilize this approach to 
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investigate about the “steady state” of some specific actions in the area of 

construction productivity.   

viii. Validating this research results can also be a potential for future research. Since, 

the model has been validated with a limited number of actual construction 

projects, it is possible to investigate the usefulness and preciseness of this 

model in more details in the future.   
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Appendix A  

Model Structure 

 

In this section, for each node, its parent(s) and child (children) are represented 

in the tables A.1 to A.3. The root nodes are represented in table A.1, the internal 

nodes are represented in table A.2, and the leaf nodes are represented in table A.3. 

Table A.1: Root Nodes Information 

Node Name Parent(s) Child(Children) 

Adverse Management 

Systems 

_ 
Overstaffing, Delays, INV2, 

INV9, INV10, INV16, INV18, 

INV49, INV53   

Adverse Weather _ 
Delays, Tools/Material 

Availability, INV12, INV13, 

INV22, INV33, INV51 

Defective Specification 
_ INV50 

Differing Site 

Condition 

_ INV46 

Excessive Workload 
_ INV35 

Incentives 
_ INV15, INV18, INV53 

Incomplete Design 
_ INV46 

Labor Market 
_ INV15 

Management  Request 
_ Shift Work, Overtime 

Owner-Furnished 

Equipment 

_ INV51 

Personal/Physical 

Characteristics 

_ Absenteeism, INV8,  INV37 

Project Size 
_ Workers Autonomy 

Repetitive Task(Work) 
_ INV37 
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Table A.1: Root Nodes Information (Continuation) 

Node Name Parent(s) Child(Children) 

Team 

Cohesiveness/Workers 

Relationship 

_ INV9, INV17 

Work Complexity 
_ INV4 

Workers Experience 
_ Workers Autonomy, INV14, 

INV35 

 

Table A.2: Internal Nodes Information 

Node Name Parent(s) Child(Children) 

Absenteeism 

Personal/Physical 

Characteristics. 

INV7 

Lost Hours 

Accident & Injuries 
Fatigue, 

Overstaffing 

Lost Hours, INV22 

Bad Information 

Availability 
Changes, Overtime 

Guessing Work, INV29 

Being Idle 
Work Sequence 

,INV13 

INV42 

Changes INV49, INV51 

Work Sequence, Bad Information 

Availability, Guessing Work, 

INV1, INV31, INV47  

Communication Shift Work, Rework INV43 

Congestion 
Overstaffing, 

Stacking of Trades 
INV44 

Delays 

Adverse Weather, 

Adverse 

Management 

Systems 

INV1, INV47 

Dilution of Supervision 
Stacking of Trades, 

INV21 
INV41 

Disruption in Learning 

Curve 

Overstaffing, 

Tools/Material 

Availability 

INV44 

Errors & Mistakes 
Fatigue, Morale and 

Attitude 
INV5 
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Table A.2: Internal Nodes Information (Continuation) 

Node Name Parent(s) Child(Children) 

Fatigue INV33, INV36 

Accident & Injuries, Errors 

& Mistakes, Poor Quality, 

Work Slow Down, INV34 

Guessing Work 

Changes, Bad 

Information 

Availability 

INV23 

INV1 Changes, Delays 
Shift Work, INV2 

INV2 
Adverse Management 

Systems, INV1 

Stacking of Trades 

INV3 INV48, INV22 
Productivity 

INV4 
Overstaffing, Work 

Complexity 
Stacking of Trades 

INV5 
Errors & Mistakes, 

Poor Quality 
INV23 

INV6 INV15, INV9 INV7 

INV7 INV25, INV6 Absenteeism 

INV8 

Personal/Physical 

Characteristics, 

INV10 

Morale and Attitude 

INV9 

Team 

Cohesiveness/Workers 

Relationship, Adverse  

Management Systems 

INV6 

INV10 
Shift Work, Adverse 

Management Systems 
INV8 

INV11 Overstaffing, Rework INV38 

INV12 
Adverse Weather, 

INV23 
INV16 

INV13 
Adverse Weather, 

INV24 
Being Idle 

INV14 

Workers Experience, 

Tools/Material 

Availability 

Rework 

INV15 
Labor Market, 

Incentives 
INV6 

INV16 
Adverse  Management 

Systems, INV12 
Rework 
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Table A.2: Internal Nodes Information (Continuation) 

Node Name Parent(s) Child(Children) 

INV17 

Workers Autonomy, 

Team 

Cohesiveness/Workers 

Relationship 

Morale and Attitude, 

INV32 

INV18 
Adverse  Management 

Systems, Incentives 

INV19 

INV19 
Stacking of Trades, 

INV18 

INV32 

INV20 Job Satisfaction, INV34 
Motivation 

INV21 Shift Work, Overstaffing 
Dilution of Supervision 

INV22 
Adverse Weather, 

Accident & Injuries 
INV25 

INV23 Guessing Work, INV5 INV12 

INV24 
Stacking of Trades, 

INV27 
INV13 

INV25 INV22, INV26 INV7 

INV26 Overtime, Overstaffing INV25 

INV27 Shift Work, INV29 INV24 

INV28 Overstaffing, INV31 
Tools/Material Availability, 

INV29 

INV29 
Bad Information 

Availability, INV28 
INV27 

INV30 Shift Work, Overtime INV33 

INV31 Changes, Overtime INV28 

INV32 INV17, INV19 Motivation 

INV33 Adverse Weather, INV30 Fatigue 

INV34 Fatigue, INV38 INV20 

INV35 
Excessive Workload, 

Workers Experience 
INV36 

INV36 INV35, INV37 Fatigue 

INV37 

Personal/Physical 

Characteristics, Repetitive 

Task(Work) 

INV36 

INV38 Shift Work, INV11 INV34 

INV39 
Lost Hours, Work Slow 

Down 
INV45 

INV40 
Morale and Attitude, 

Motivation 
INV43 
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Table A.2: Internal Nodes Information (Continuation) 

Node Name Parent(s) Child(Children) 

INV41 

Dilution of 

Supervision, Stacking 

of Trades 

INV48 

INV42 Being Idle, Rework 
INV45 

INV43 
Communication, 

INV40 

Productivity 

INV44 

Congestion, 

Disruption in Learning 

Curve 

INV48 

INV45 INV39, INV42 INV52 

INV46 

Differing Site 

Condition, Incomplete 

Design 

INV50 

INV47 Changes, Delays Overstaffing 

INV48 INV41, INV44 INV3 

INV49 
Adverse  Management 

Systems, INV50 
Changes 

INV50 
Defective 

Specification, INV46 
INV49 

INV51 

Adverse Weather, 

Owner-Furnished 

Equipment 

Changes 

INV52 
Work Sequence, 

INV45 
INV3 

INV53 
Adverse  Management 

Systems, Incentives 
Job Satisfaction 

INV54 
Morale and Attitude, 

Workers Autonomy 
Job Satisfaction 

Job Satisfaction INV53, INV54 INV20 

Lost Hours 
Absenteeism, 

Accident & Injuries 
INV39 

Motivation INV20, INV32 INV40 

Overstaffing 
Adverse  Management 

Systems, INV47 

Accident & Injuries, Congestion, 

Disruption in Learning Curve, 

INV4, INV11, INV21, INV26, 

INV28 

Poor Quality 
Fatigue, Work 

Sequence 
INV5 

 



226 
 

  

Table A.2: Internal Nodes Information (Continuation) 

Node Name Parent(s) Child(Children) 

Rework INV14, INV17 
Communication, Constraint 

Variable, INV11, INV42 

Shift Work Management  Request 
Communication, INV10, INV21, 

INV27, INV30, INV38 

Stacking of Trades INV2, INV4 

Congestion, Constraint Variable, 

Overtime, Dilution of 

Supervision, Work Sequence, 

INV19, INV24, INV41 

Tools/Material 

Availability 

Adverse Weather, 

INV28 

Disruption in Learning Curve, 

INV14 

Workers Autonomy 
Project Size, Workers 

Experience 
INV17, INV54 

Work Sequence 
Changes, Stacking of 

Trades 

Poor Quality, Work Slow Down, 

Being Idle, INV52 

Work Slow Down 
Fatigue, Work 

Sequence 
INV39 

 

 

Table A.3: Leaf Nodes Information 

Node Name Parent(s) Child(Children) 

Constraint Variable 
Rework, Stacking of 

Trades 
 

Productivity INV3, INV43  
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Appendix B  

Model CPTs 

 

The following list of figures relates to the model CPTs. Figure B.1 to B.16 are 

related to the root variables. Figures B.17 to B.97 are related to the internal variables, 

and Figures B.98 to B.99 are related to the leaf variables. 
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B.1 Root Variables 

Root Variables CPTs can be anything. They can be observed or have a specific distribution. In this section, root variables’ 

CPTs are shown.  

  

Figure B.1: Adverse Management Systems CPT  

 

 

Figure B.2: Adverse Weather CPT 

 

 
 

Figure B.3: Defective Specification CPT Figure B.4: Differing Site Condition CPT 
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Figure B. 5: Excessive Workload CPT 

 

 

Figure B.6: Incentives CPT 

 

 
 

Figure B.7: Incomplete Design CPT Figure B.8: Labor Market CPT 
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 Figure B.9: Management  Request CPT 

 
 

Figure B.10: Owner-Furnished Equipment CPT 

 

  

Figure B.11: Personal/Physical Characteristics CPT 

 

Figure B.12: Project Size CPT 
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Figure B.13: Repetitive Task (Work) CPT 

 

 

Figure B.14: Team Cohesiveness/Workers Relationship CPT 

 

  

Figure B.15: Work Complexity CPT 

 

Figure B.16: Workers Experience CPT 
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B.2 Internal Variables 

In this section the internal variables CPTs are represented. In these CPTs “Not_Obs” means “Not_Observed.”  

 

Figure B.17: Absenteeism CPT 
 

 

Figure B.18: Accident & Injuries CPT 
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Figure B.19: Bad Information Availability CPT 
 

 

Figure B.20: Being Idle CPT 
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Figure B.21: Changes CPT 
 

 

Figure B.22: Communication CPT 
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Figure B.23: Congestion CPT 
 

 

Figure B.24: Delays CPT 
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Figure B.25: Dilution of Supervision CPT 
 

 

 Figure B.26: Disruption in Learning Curve CPT 
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Figure B.27: Errors & Mistakes CPT 
 

 

Figure B.28: Fatigue CPT 
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Figure B.29: Guessing Work CPT 
 

 

Figure B.30: INV1 CPT 
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Figure B.31: INV2 CPT 
 

 

Figure B.32: INV3 CPT 
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Figure B.33: INV4 CPT 
 

 

Figure B.34: INV5 CPT 
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Figure B.35: INV6 CPT 
 

 

Figure B.36: INV7 CPT 
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Figure B.37: INV8 CPT 
 

 

Figure B.38: INV9 CPT 
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Figure B.39: INV10 CPT 
 

 

Figure B.40: INV11 CPT 
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Figure B.41: INV12 CPT 
 

 

 

Figure B.42: INV13 CPT 
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Figure B.43: INV14 CPT 
 

 

 

Figure B.44: INV15 CPT 
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Figure B.45: INV16  CPT 
 

 

Figure B.46: INV17  CPT 
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Figure B.47: INV18 CPT 
 

 

Figure B.48: INV19 CPT 
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Figure B.49: INV20 CPT 
 

 

Figure B.50: INV21 CPT 
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Figure B.51: INV22 CPT 
 

 

Figure B.52: INV23 CPT 
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Figure B.53: INV24 CPT 
 

 

Figure B.54: INV25 CPT 
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Figure B.55: INV26 CPT 
 

 

Figure B.56: INV27 CPT 
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Figure B.57: INV28 CPT 
 

 

Figure B.58: INV29 CPT 
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Figure B.59: INV30 CPT 
 

 

Figure B.60: INV31 CPT 
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Figure B.61: INV32 CPT 
 

 

Figure B.62: INV33 CPT 
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Figure B.63: INV34 CPT 
 

 

Figure B.64: INV35 CPT 
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Figure B.65: INV36 CPT 
 

 

Figure B.66: INV37 CPT 
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Figure B.67: INV38 CPT 
 

 

Figure B.68: INV39 CPT 
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Figure B.69: INV40 CPT 
 

 

Figure B.70: INV41 CPT 
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Figure B.71: INV42 CPT 
 

 

Figure B.72: INV43 CPT 
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Figure B.73: INV44 CPT 
 

 

Figure B.74: INV45 CPT 
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Figure B.75: INV46 CPT 
 

 

Figure B.76: INV47 CPT 
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Figure B.77: INV48 CPT 

 

 

Figure B.78: INV49 CPT 
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Figure B.79: INV50 CPT 

 

 

Figure B.80: INV51 CPT 
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Figure B.81: INV52 CPT 

 

 

Figure B.82: INV53 CPT 
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Figure B.83: INV54 CPT 

 

 

Figure B.84: Job Satisfaction CPT 
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Figure B.85: Lost Hours CPT 

 

 

Figure B.86: Morale and Attitude CPT 
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Figure B.87: Motivation CPT 

 

 

Figure B.88: Overmanning CPT 
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Figure B.89: Overtime CPT 

 

 

Figure B.90: Poor Quality CPT 
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Figure B.91: Rework CPT 

 

 

Figure B.92: Shift Work CPT 
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Figure B.93: Stacking of Trades CPT 

 

 

Figure B.94: Tools/Material Availability CPT 
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Figure B.95: Workers Autonomy CPT 

 

 

Figure B.96: Work Sequence CPT 
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Figure B.97: Work Slow Down CPT 

 

B.3 Leaf Variables 

 The model has two leaf variables. 
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Figure B.98: Constraint Variable CPT 

 

 

Figure B.99: Productivity CPT 
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Appendix C  

Model Snapshots 

 

In this section a snapshot of the model is shown in the figure C.1 and a snapshot of 

the model marginal distribution is shown in figure C.2.   

FIGURE C.1: MODEL SNAPSHOT ................................................................................................... 279 

FIGURE C.2: MODEL'S MARGINAL DISTRIBUTION ........................................................................ 280 
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Figure C.1: Model Snapshot 
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Figure C.2: Model's Marginal Distribution 
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