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1. Introduction 

Surfaces of thin liquid films are morphologically unstable 
under the competing action of surface tension and disper-
sive van der Waals force between films and substrates [1]. 
In recent years, this phenomenon has attracted consider-
able attention due to its fundamental importance in under-
standing the mechanisms of surface pattern development 
and relevant modulation during dewetting of thin liquid 
and polymer films [2–12]. So far, most studies in this field 
have focused on the forces mentioned above and assumed 
that other possible instability-driving forces are negligi-
ble. New experimental and theoretical investigations have 
indicated that charged surfactants [13], external electric 
field [14–18], surface elasticity, and thermal field [19–24] 
may play a vital role in these surface phenomena. Among 
these, external electric field has been proposed for use in 
electrostatic lithography and surface pattern development 
due to the high sensitivity of thin liquid films to electro-
static forces [15, 16]. It is expected that external electric 
field may lead to substantial reduction of the characteristic 
wavelengths of instabilities, thus overcoming the funda-
mental technological barrier to the production of increas-
ingly small features such as the ones needed for integrated 
circuits [15]. In the latter investigations, the linear per-
turbation analysis of the electrically induced microstruc-
ture formation and pattern modulation in thin dielectric 
films indicated that a universal relation exists between the  

pattern wavelength and applied electric field such that 

 (1)

where λ0 = ε0εp(εp – 1)U2/γ  is a characteristic length cor-
responding to the relative strength of the electrostatic and 
Laplace pressure, E0 = U/λ0 is a constant measuring the 
strength of electric field, and ε0, εp, U, and γ are the di-
electric constant of vacuum, relative dielectric constant 
of the film, applied external voltage, and surface tension, 
respectively. 

Clearly, relation (1) does not hold for conductive films 
such as conductive liquid and polymer films since there are 
no electric fields inside the conductive films. In this case, 
the negative Laplace pressure acting on the film surface is 
determined according to the Maxwell stress tensor on the 
charged surface [25]. Therefore, in this paper, we consider 
the effect of surface charges on the surface instability of 
thin conductive liquid films. Based on linear perturbation 
of electrohydrodynamics of a thin liquid film, a novel char-
acteristic relation is derived for determining the wave num-
ber of the fastest growing mode as a function of surface 
tension, dispersive van der Waals force, and electrostatic 
tractions exerted by the film surface charges. Two natural 
length scales of the microsystem are introduced to account 
for the coupling effects on the dewetting pattern develop-
ment. The relevant characteristic curves are plotted under 
conditions of various film thickness and surface charges. 
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2. Problem formulation and solution procedure 

Hereafter, we consider the electrohydrodynamic instabil-
ity of a thin conductive liquid film of thickness h0 on a flat 
conductive substrate, as shown in Figure 1. Similar to the 
parallel-plate capacitor, another flat conductive plate par-
allel to the substrate is introduced at a distance H (H  h) 
to induce a uniform far electric field E0 = U/(ε0H). The sur-
face charge density of unperturbed flat film is determined 
as σ0 =E0/(4π). The thin liquid film may lose its surface sta-
bility under the combined action of surface tension, van 
der Waals forces, and electrostatic surface force. The over-
all pressure at the film surface with small perturbation may 
be expressed as 

 (2)

where p0 is the atmospheric pressure; the second term is 
the Laplace pressure, stemming from the surface tension, 
γ is the surface tension of the conductive film; the third 
term is the disjoining pressure at the film surface, i.e., pv 
= A/(6πh3) with A being the Hamaker constant describing 
van der Waals interaction of the film with the substrate; 
and the last term is the negative electrostatic pressure. For 
unperturbed surface, the potential above the film surface 
may be expressed as φ = –4πσ0z with z the vertical coordi-
nate beginning from the flat film surface. For film surface 
with small perturbation 

h = h0 + δ cos(kx) exp(t/τ),                         (3)

with δ the perturbation amplitude, k is the wave num-
ber and τ is the growth time scale, the potential above the 
film may be expressed as φ = –4πσ0z + φ1 [25]. Here φ1 is 
a small correction, which satisfies the equation Δφ1 = 0 
and vanishes for z ® ¥, which can be further expressed 
as φ1 = 4πσ0δ cos(kx)exp(–kz + t/τ). On the film surface it-
self, the electrostatic potential must be a constant zero due 
to grounding as shown in Figure 1; thus the corresponding 
φ1 may be expressed as 

φ1 = 4πσ0δ cos(kx) exp(t/τ)  for z =0.                 (4)

The first order extension of the negative electrostatic sur-
face pressure can be determined such that 

 (5) 

Furthermore, the modulation of h gives rise to a lateral 
pressure gradient inside the film, inducing a Poiseuille flow 
j as 

 (6)

where η is the kinematic viscosity of the liquid film. A con-
tinuity equation enforces the mass conservation of the in-
compressible flow: 

 (7)

With the aid of (6), equation (7) reduces to 

 (8)

Substitution of (2) into (8) yields 

 (9)

where the higher order term (∂h/∂x)2 is neglected. Now, 
consider the evolution of the film surface near h0. Under 
small surface perturbation (3), the negative electrostatic 
surface pressure can be approximated using relation (5), 
thus equation (9) may be recast near h = h0 such that 

(10) 

where ξ is the film surface perturbation such that ξ = h –h0. 
Considering relation (3), one obtains the growth rate of the 
mode with wave number k as 

 (11) 

from which the nontrivial wave number, kmax, with the fast-
est growth rate can be determined immediately as 

 (12)

or 

 (13)

Therefore, the undulated dewetting pattern will evolve 
with a clearly visible characteristic wavelength of 2π/kmax. 
For zero voltage, the classic result for spinodal dewetting is 
obtained as kmax = [A/(2πγ)]½/h0

2. Under the condition that 
electrostatic surface forces dominate the dewetting, kmax 
=E0

2/(4πγ) is independent of the film thickness. For dielec-
tric films as those studied elsewhere [14,16], the wave num-
ber is closely relevant to the film thickness. 

Now let us further consider the interplay of the electric 
and van der Waals forces in more detail. There are two nat-
ural length scales in the system. One is the well-known pa-
rameter a = [|A|/(2πγ)]½, which is of the order of one nano-
meter and appears in the theory of spinodal dewetting by 
van der Waals force [26]. The other, b = 4πγ/E0

2, is directly 
linked to the relative strength of the surface tension and 
electrostatic surface forces. Substitution of the above two 

Figure 1. The system under consideration: a conductive liquid 
film on a solid conductor.
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length parameters a and b into (12) yields the characteristic 
relation: kmax = (1 + [1 + 4a2b2/h0

4)]½/2b. Furthermore, here 
we introduce two dimensionless parameters, Q = a/b and ξ 
= h0/a, to describe the microsystem; thus the dimensionless 
wave number can be expressed as 

(14)

Figure 2 shows the variation of the dimensionless wave 
number versus the dimensionless film thickness . and the 
system parameter Q. It is clearly observed that electrostatic 
field increases the wave number of the fast growing mode 
at fixed film thickness. Each characteristic curve in Figure 2 
splits the region into two portions, the upper stable portion 
and the lower instable portion. As an example, consider a 
thin film system with the typical Hamaker constant A of the 
order of 10–20 J [26], surface tension γ about 0.03 N m-1 and 
film thickness of 0.1 µm. In the absence of the electric field, 
the instability wavelength with the fastest growth rate for 
such a film is estimated as 273 µm. By introducing a typi-
cal weak electrostatic field E0 = 0.2 Vmm-1, the wavelength 
with the fastest growth rate is modified as 56.7 µm. Clearly, 
external electric field significantly reduces the characteristic 
wavelength in surface pattern development of thin conduc-
tive films. From relations (12) and (13), the wavelength of 
the dewetting pattern with the fastest growth rate will de-
crease dramatically with the decrease in the film thickness 
h0 and the increase of electrostatic filed E. This indicates a 
potential application in electrostatic lithography since the 
electrostatic field is capable of overcoming the limits of la-
ser wavelength in manufacturing increasingly small fea-
tures for integrated circuits under microns. 

3. Conclusions 

A simple electrohydrodynamic model has been presented 
for the description of surface instability and relevant sur-
face pattern modulation in a charged thin conductive film. 
The model indicates that electrostatic surface force causes 
reduction of the surface pattern wavelength. The model is 
expected to be useful in understanding a number of phe-
nomena observed in microelectromechanical systems in-
volving charged thin soft films. The present results can be 
used for controlled surface pattern modulation in a spi-
nodal dewetting scenario via amplification of surface waves 
of selected modes. 
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Figure 2. Dimensionless wave number of the fast growing 
mode versus the dimensionless film thickness and parameter 
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