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EMSS: New EM-type algorithms for the
Heckman selection model in R
by Kexuan Yang, Sang Kyu Lee, Jun Zhao and Hyoung-Moon Kim

Abstract When investigators observe non-random samples from populations, sample selectivity
problems may occur. The Heckman selection model is widely used to deal with selectivity problems.
Based on the EM algorithm, Zhao et al. (2020) developed three algorithms, namely, ECM, ECM(NR),
and ECME(NR), which also have the EM algorithm’s main advantages: stability and ease of imple-
mentation. This paper provides the implementation of these three new EM-type algorithms in the
package EMSS and illustrates the usage of the package on several simulated and real data examples.
The comparison between the maximum likelihood estimation method (MLE) and three new EM-type
algorithms in robustness issues is further discussed.

Introduction

The problem arising from the sampling mechanism where an investigator extracts a sample non-
randomly, and then this sample cannot represent the population is usually referred to as a sample
selection problem. Methods relying on a distributional assumption are widely used to deal with this
selection problem. A classical sample selection model under the assumption of bivariate normality is
introduced in Heckman (1974), and it is commonly called the Heckman selection model. Heckman
(1979) further developed two estimation procedures for the above Heckman selection model: the
maximum likelihood estimation method (MLE) and the two-step method.

The application of these two methods in the Heckman selection model is first described in the R
package sampleSelection by Toomet and Henningsen (2008). For the observations where outlying ones
are considered in the Heckman selection model, Zhelonkin et al. (2016) found that the unboundedness
of the influence functions in the two-step method leads to an arbitrary bias. Zhelonkin et al. (2016)
developed a robust two-stage method that performs more robustly than the two-step method, and the
ssmrob package is available for robust estimation and inference for the selection model.

Little and Rubin (2002, pp. 322-323) applied an EM algorithm, which is numerically stable and
easily implemented, to estimate the parameters of the Heckman selection model. However, it is limited
to the cases in which the two vectors of the observed characteristics in the Heckman selection model
are the same. Zhao et al. (2020) extended three new EM-type algorithms: expectation-conditional max-
imization (ECM), expectation-conditional maximization with Newton-Raphson method (ECM(NR)),
and Expectation/Conditional Maximization Either (ECME) to more general cases. They also have the
main advantages of the EM algorithm, namely stability and ease of implementation. However, section
6 in Zhao et al. (2020) suggests that the ECME algorithms require much more time than other two
EM-type algorithms in the same real data analysis. In addition, there is still no R package available
for these EM-type algorithms. Meng and Rubin (1993), Liu and Rubin (1994), and McLachlan and
Krishnan (2008) are helpful to understand the procedures of the ECM and ECME algorithms.

This study developed the ECME algorithm by first applying the Newton–Raphson method to
reduce the estimation time. Then, it is proposed to describe these new EM-type algorithms in R. In the
next section, the Heckman selection model is described in brief, followed by new algorithms, namely
ECM, ECM(NR), and ECME. Next, the usage of the EMSS package is presented through simulation
and real data examples. Then, the robustness issue is further discussed for the MLE method and the
new EM-type algorithms. Under the conditions where the robustness issue arises from the initial
values, the EMSS package is preferable to the sampleSelection. Because of the unreasonable results in
the MLE or the two-step method, the “NA" might occur in the standard errors in the sampleSelection.
However, the standard errors can be calculated effectively in the EMSS package in almost all cases.
Finally, we provide a summary of this study.

The EMSS package is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=EMSS and the GitHub at https://github.com/SangkyuStat/EMSS. R
code for the examples demonstrated herein has been provided as supplementary material. The
supplementary code has been tested with EMSS version 1.1.1, and results presented herein have been
produced with this version.
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Model and algorithms

Heckman selection model

Suppose that the regression model of the outcome variable of interest is

Yi1 = x⊤i β + ϵi, i = 1, . . . , N.

Due to selection mechanism,

Yi2 = w⊤
i γ + ηi, i = 1, . . . , N,

we observe only N1 out of N observations yi1 for which yi2 > 0 such that

ui = I(yi2 > 0).

xi ∈ Rp and wi ∈ Rq are observed characteristics. In addition, vectors β ∈ Rp, γ ∈ Rq are unknown
parameters. Assume that the error terms ϵi and ηi follow bivariate normality as in Heckman (1974),
that is, (

ϵi
ηi

)
i.i.d.∼ N2

[(
0
0

)
,
(

σ2 ρσ
ρσ 1

)]
,

where “i.i.d.” means independent and identically distributed, then (Yi1, Yi2) also follow bivariate
normal distribution.

EM-type algorithms

ECM and ECM(NR) algorithms

The ECM algorithm is discussed first. In the Heckman selection model, it is assumed that we observe
the first N1 out of N yi1 observations. The observed data are yobs = (y11, · · · , yN1,1)

⊤, and the missing
data are ymis = ((yN1+1,1, · · · , yN,1), y⊤

2 )⊤. Applying the invariance property of MLEs, the parameter
θ = {β, γ, σ, ρ} can be transformed to θ∗ = {β, γ, ψ∗, ρ∗} with ψ = σ2(1 − ρ2), ψ∗ = log(ψ), ρ∗ = ρσ
and

σ2 = exp(ψ∗) + (ρ∗)2 and ρ =
ρ∗√

exp(ψ∗) + (ρ∗)2
.

The complete data log-likelihood is

lc(θ∗|y) = −N log(2π)− N
2

log(ψ)− 1
2ψ

{
N

∑
i=1

(yi1 − x⊤i β)2

}

− 1
2

(
1 +

(ρ∗)2

ψ

){ N

∑
i=1

(yi2 − w⊤
i γ)2

}
+

ρ∗

ψ

{
N

∑
i=1

(yi1 − x⊤i β)(yi2 − w⊤
i γ)

}
.

The corresponding Q-function, which is the conditional expectation of the above complete-data log-
likelihood lc(θ∗|y) with respect to the conditional distribution of ymis given yobs at the k-th iteration,
is obtained as

Q
(

θ∗|θ̂∗(k)
)
= E

[
lc(θ∗|y)|θ̂

∗(k)]
= −N log(2π)− N

2
log(ψ)

− 1
2ψ

{
N1

∑
i=1

(yi1 − x⊤i β)2 +
N

∑
i=N1+1

(ν̂
(k)
1m − 2α̂

(k)
1mx⊤i β + β⊤xix

⊤
i β)

}

− 1
2

(
1 +

(ρ∗)2

ψ

){ N1

∑
i=1

(ν̂
(k)
2o − 2α̂

(k)
2o w⊤

i γ + γ⊤wiw
⊤
i γ)

+
N

∑
i=N1+1

(ν̂
(k)
2m − 2α̂

(k)
2mw⊤

i γ + γ⊤wiw
⊤
i γ)

}

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 308

+
ρ∗

ψ

{
N1

∑
i=1

(yi1α̂
(k)
2o − yi1w⊤

i γ − α̂
(k)
2o x⊤i β + β⊤xiw

⊤
i γ)

N

∑
i=N1+1

(α̂
(k)
12m − α̂

(k)
1mw⊤

i γ − α̂
(k)
2mx⊤i β + β⊤xiw

⊤
i γ)

}
,

where specific vectors are provided in the Appendix.

The ECM(NR) algorithm is developed based on the former ECM algorithm to accelerate the
convergence process. The only difference is ψ̂∗(k+1) in the CM-steps (Conditional Maximization-steps
) is first updated using the Newton–Raphson method, and ψ̂(k+1) is then obtained. The specific
expressions can be obtained in Zhao et al. (2020). For a better understanding of the ECM algorithm,
Meng and Rubin (1993) and McLachlan and Krishnan (2008) can be referred to.

ECME algorithm

In this section, the ECME algorithm is briefly introduced and further developed to save running time.
Liu and Rubin (1994) and McLachlan and Krishnan (2008) can be referred to in understanding the
ECME algorithm in detail.

Assume that the complete data is (z, yobs, u), where z = (z1, · · · , zN1 )
⊤ is missing data, yobs =

(y11, · · · , yN1,1)
⊤, and u = (u1, · · · , uN)⊤. The related parameters θ = {β, γ, σ, ρ} are transformed to

θ∗ = {β, γ, ψ∗, ρ∗} like those in ECM algorithm. The complete data log-likelihood function can be
written as

lc(θ∗; z, yobs, u) = −1
2

N

∑
i=1

ui log(2πψ)−
N

∑
i=1

ui

(
yi1 − x⊤i β − ρσzi

)2

2ψ

− 1
2

N

∑
i=1

ui log(2π)− 1
2

N

∑
i=1

uiz2
i +

N

∑
i=1

(1 − ui) log
(

Φ(−w⊤
i γ)

)
,

and the following is the Q-function (which is the conditional expectation of the complete-data log-
likelihood lc(θ∗; z, yobs, u) with respect to the conditional distribution of z given yobs and u) calculated
at the k-th iteration of the E-step:

Q(θ∗|θ̂∗(k)) = E
[
lc(θ∗|z, yobs, u)|θ̂∗(k)

]
= −1

2

N

∑
i=1

ui log(2πψ)

− 1
2ψ

N

∑
i=1

{
ui(yi1 − x⊤i β)2 − 2ui(yi1 − x⊤i β)ρ∗α̂

(k)
i + ui(ρ

∗)2δ̂
(k)
i

}
− 1

2

N

∑
i=1

ui log(2π)− 1
2

N

∑
i=1

ui δ̂
(k)
i +

N

∑
i=1

(1 − ui) log(Φ(−w⊤
i γ)),

where

α̂
(k)
i = E[Zi|θ̂∗

(k)
, yi1, Ui = 1] and

δ̂
(k)
i = E[Z2

i |θ̂
∗(k) , yi1, Ui = 1],

with the conditional distribution

Zi|θ̂∗
(k)

, yi1, Ui = 1 ∼ TN(−w⊤
i γ̂(k) ,∞)

(
ρ̂(k)

σ̂(k)

(
yi1 − x⊤i β̂

(k)
)

, 1 − ρ̂2(k)
)

,

where the stochastic representation of the density function for yi1|ui = 1 is considered. The ECME
algorithm is time-consuming because calculating γ̂(k+1) requires a significant amount of time. The
Newton-Raphson method is applied to reduce the computing time. In the CM-step, the γ̂(k) is updated
by

γ̂(k+1) = γ̂(k) −
[

∂2

∂γ∂γ⊤ log L
(

θ∗|θ̂∗(k)
)]−1

∂

∂γ
log L

(
θ∗|θ̂∗(k)

)
,
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where

∂

∂γ
log L

(
θ∗|θ̂∗(k)

)
=

N

∑
i=1

ui
ϕ(A)

Φ(A)

σ̂(k+1)√
exp

(
ψ̂∗(k+1)

)wi +
N

∑
i=1

(ui − 1)
ϕ
(
−w⊤

i γ(k+1)
)

Φ
(
−w⊤

i γ(k+1)
)wi,

and

∂2 log L
(

θ∗|θ̂∗(k)
)

∂γ∂γ⊤ = −
N

∑
i=1

uiσ̂
(k+1)2

exp
(

ψ̂∗(k+1)
) [A

ϕ(A)

Φ(A)
+

(
ϕ(A)

Φ(A)

)2
]

wiw
⊤
i

+
N

∑
i=1

(1 − ui)

w⊤
i γϕ

(
−w⊤

i γ(k+1)
)

Φ
(
−w⊤

i γ(k+1)
) −

 ϕ
(
−w⊤

i γ(k+1)
)

Φ
(
−w⊤

i γ(k+1)
)
2wiw

⊤
i ,

with

A =
σ̂(k+1)w⊤

i γ̂(k) + ρ̂(k+1)
(

yi1 − x⊤i β̂
(k+1)

)
√

exp
(

ψ̂∗(k+1)
) .

Implementation in EMSS

The package EMSS is constructed to describe the three EM-type algorithms. In EMSS, the main func-
tion for the estimation of the Heckman selection model is EMSS. A formula for the response equation
whose argument is response and a formula for the selection equation with argument selection are
required. With the default estimation method ECM (“ECM"), the user can also choose the method
“ECMnr" for the ECM(NR) method or “EMCE" for the ECME method. The argument initial.param can
be used to set the initial values. If the initial values are not provided by the user, EMSS conducts
the estimation of the consistent initial values offered by the two-step method through the package
sampleSelection.

The result of EMSS is a list of class ‘EMSS’, and several methods for the objects of this class are also
provided by the package EMSS. Command print prints the estimation results. Command summary
calculates and prints the summarized results. coef extracts the estimated coefficients, and vcov extracts
the variance-covariance matrix. confint can be used to calculate the confidence intervals of all the
parameters by applying the following equation.[

ˆpara + Zα × stdrr ˆpara + Z1−α × stdrr
]

,

where ˆpara is the estimated value of a parameter, stdrr is the corresponding standard error value, and
Zα and Z1−α are the quantile values of standard normal distribution at α and 1 − α, respectively, with
α = (1 − level)/2, where “level" is the confidence level. The default confidence level (level) is 0.95
(95%), and it can be changed to any value between 0 and 1.

Using EMSS

This section illustrates the usage of EMSS using a simulation example and application to a real data set.
An example using random numbers is given first, with exclusion restriction where the two observed
characters X and W are not the same.

set.seed(0)
library( mvtnorm )
N<-1000
errps<-rmvnorm(N,c(0,0),matrix(c(1,0.5,0.5,1),2,2) )
w<-runif(N)
y2<-w+errps[,1]>0
x<-runif(N)
y1<-(x+errps[,2])*(w>0)

The package mvtnorm is used to create bivariate normal disturbances with a correlation of 0.5. The
observed character for selection, w, is generated by uniform distribution, and the selection outcome
y2 is then generated using the probit generating process. Through a similar process, the explanatory
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variable x and the outcome variable of interest y1 are generated. Note that the two observed characters,
w and x, are independent and thus fulfill the exclusion restriction. Hence, the parameters β and γ
are set equally as (0, 1)⊤ and must be estimated. The estimated results in the ECM algorithm are as
follows.

summary(EMSS(response=y1~x,selection=y2~w))

Call:
EMSS(response = y1 ~ x, selection = y2 ~ w)

Q-Value: -2637.487

Response equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) -0.2904 0.1258 -2.309 2.096e-02 *
x 1.2319 0.1311 9.398 5.548e-21 ***

Selection equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) 0.1010 0.07628 1.324 1.855e-01
w 0.7569 0.13243 5.716 1.093e-08 ***
---

Sigma:
Estimate Std. Error Z Value Pr(>|Z|)

sigma 1.124 0.07167 15.69 1.797e-55 ***

Rho:
Estimate Std. Error Z Value Pr(>|Z|)

rho 0.6858 0.1214 5.65 1.603e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated results for the parameters are reasonably precise.

The following real data example is an example in Cameron and Trivedi (2009, Section 16.6.5, p. 546)
regarding ambulatory expenditures from the 2001 Medical Expenditure Panel Survey. The data consist
of 3328 observations with 526 corresponding to zero expenditures and is available in MEPS2001 of the R
package ssmrob. To estimate an individual’s medical expenditures, the outcome (response) variable of
interest, log ambulatory expenditures (lnambx), is modeled by individual’s age (age), gender (female),
education attainment in years (educ), ethnicity (blhisp), number of chronic diseases (totchr), and
insurance status (ins). The selection variable, ambulatory expenditures, which is described by dambexp
is modeled by all the former regressors and the income variable (income). The model is estimated
using the ECM(NR) method.

library(ssmrob)
data(MEPS2001))
outcomeEq<-lnambx ~ age+female+educ+blhisp+totchr+ins
selectEq<-dambexp ~ age+female+educ+blhisp+totchr+ins+income
summary(EMSS(response=outcomeEq, selection=selectEq,

data=MEPS2001,method="ECMnr"))

Call:
EMSS(response = outcomeEq, selection = selectEq, data = MEPS2001,
method = "ECMnr")

Q-Value: -10213.94

Response equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) 5.04406 0.22813 22.111 2.493e-108 ***
age 0.21197 0.02301 9.213 3.160e-20 ***
femaleTRUE 0.34814 0.06011 5.791 6.984e-09 ***
educ 0.01872 0.01055 1.774 7.599e-02 .
blhispTRUE -0.21857 0.05967 -3.663 2.492e-04 ***
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totchr 0.53992 0.03933 13.727 6.996e-43 ***
insTRUE -0.02999 0.05109 -0.587 5.572e-01

Selection equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) -0.676054 0.194029 -3.484 4.934e-04 ***
age 0.087936 0.027421 3.207 1.342e-03 **
femaleTRUE 0.662665 0.060938 10.874 1.528e-27 ***
educ 0.061948 0.012029 5.150 2.609e-07 ***
blhispTRUE -0.363938 0.061873 -5.882 4.054e-09 ***
totchr 0.796951 0.071131 11.204 3.895e-29 ***
insTRUE 0.170137 0.062871 2.706 6.807e-03 **
income 0.002708 0.001317 2.056 3.975e-02 *
---

Sigma:
Estimate Std. Error Z Value Pr(>|Z|)

sigma 1.271 0.01838 69.16 0 ***

Rho:
Estimate Std. Error Z Value Pr(>|Z|)

rho -0.1306 0.1471 -0.888 0.3746
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

All coefficients and standard errors are completely identical to the results reported in Cameron and
Trivedi (2009, Section 16.6.5, p. 546).

The confidence interval of this example can be calculated using the following codes.

confint(EMSS(response=outcomeEq, selection=selectEq,
data=MEPS2001,method="ECMnr"))

To compare the computing times of the original ECME algorithm and the developed one for which
the Newton-Raphson method is applied, the real data example in Section 6, Zhao et al. (2020), is
analyzed again. The developed ECME algorithm is used as follows.

library(sampleSelection)
data(Mroz87)
selectEq <- lfp ~ age + I(age^2)+ faminc + kids5 + educ
outcomeEq <- wage ~ exper + I(exper^2) + educ + city
EMSS(response = outcomeEq, selection = selectEq, data = Mroz87,

method = "ECME")

The results are similar to those of the ECM and ECM(NR) algorithm in table 8 of Zhao et al. (2020),
which are slightly better than those in the original ECME algorithm.

The EMSS package and R codes were executed on a computer with an Intel(R) Core (TM) i7-4790M
CPU at 3.60 GHz, running MS-Windows 10. The ECME algorithm developed herein takes 22.67 s while
the original one takes 14.63 min. The computing time of the ECME algorithm is thus significantly
reduced than before.

Robustness issues

Zhao et al. (2020) concluded that a robustness issue arises from the initial values in the MLE method
but not in the three EM-type algorithms. Here, we aim to discuss this robustness issue further. For the
simulated example in Section Using EMSS, the MLE method is also applied to estimate the data set
using the command selection() in R package sampleSelection (Henningsen et al., 2019). The initial
values are found to influence the estimated values of parameters in the MLE method. For example, if
the initial value of σ is set to 5, that of ρ is set to 0.8, and those of other parameters are set to 0s, the
results of the MLE method are given as follows.

summary(selection(y2~w,y1~x,start=c(rep(0,4), 5,0.8) ),method="ml")

--------------------------------------------
Tobit 2 model (sample selection model)
Maximum Likelihood estimation
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Newton-Raphson maximization, 3 iterations
Return code 3: Last step could not find a value above the current.
Boundary of parameter space?
Consider switching to a more robust optimization method temporarily.
Log-Likelihood: -2214.037
1000 observations (318 censored and 682 observed)
6 free parameters (df = 994)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.05991 0.03482 1.721 0.0856 .
w 0.03362 0.05204 0.646 0.5185
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02336 0.05811 -0.402 0.688
x -0.01041 0.22132 -0.047 0.963
Error terms:

Estimate Std. Error t value Pr(>|t|)
sigma 5.0000 NA NA NA
rho 0.9652 NA NA NA
--------------------------------------------
Warning messages:
1: In sqrt(diag(vc)) : NaNs produced
2: In sqrt(diag(vc)) : NaNs produced
3: In sqrt(diag(vcov(object, part = "full"))) : NaNs produced

The p-values of the estimated parameters (except σ and ρ) suggest that the estimated results are not
significant. The occurrence of “NA" resulting from the variance-covariance matrix further implies
that the estimated results in the MLE method are not reasonable. The previous section, Using EMSS,
presents the results from the ECM algorithm where the initial values are set by default based on
the results from the two-step method. With the different initial value sets in this section, the ECM,
ECM(NR), and ECME algorithms perform stably, and their results are the same as the ones of the
ECM algorithm shown in the Using EMSS section to eight decimal places. If the simulated annealing
maximizer is applied to select the initial values for the MLE methods, the estimated results are similar
to those in the three EM-type algorithms.

To avoid the occasion of the robustness issue in the MLE method, the former scenario is regenerated
1000 times with the degree of censoring corresponding to approximately 30%. Considering the same
initial value set as the former, the boxplots in Figures 1 and 2 suggest that the three EM-type algorithms
perform similarly and even much better than the MLE algorithm.

In Cameron and Trivedi (2005), the data set RanHIE, which is available in package sampleSelection,
based on the “RAND Health Insurance Experiment” is used to analyze how the patient’s use of health
services is affected by the types of randomly assigned health insurance. An example based on the
analysis in Cameron and Trivedi (2005, p. 553) is provided to further discuss this situation.

The outcome variable y1 is lnmeddol, which measures the log of an individual’s medical expenses,
and the selection variable y2 is binexp, which indicates whether the medical expenses are positive.
The observed character X consists of the log of the coinsurance rate plus 1 (logc=log(coins+1)), the
dummy for the individual deductible plan (idp), the log of participation incentive payment (lpi), the
number of chronic diseases (disea), the log of family size (lfam), education of household head in years
(educdec), age of individual in years (xage), quadratic polynomial in the age of individual in years,
and a dummy variable for female individuals (female). The observed character W consists of logc,
physical limitations (phslm), disea, quadratic polynomial in disea, lfam, educdec, xage, and female.
A partial sample where the study year (year) is equal to 2 and the education information is given is
selected for the estimation with sample size N = 5, 574.

Fix the initial values of all parameters except σ and ρ at 0 and consider three different initial
values sets for σ and ρ. If the initial values of σ range from 0.1 to 0.65, then the estimated values of all
parameters in the MLE method are the corresponding initial values regardless of the initial values of ρ.
The estimated results in the ECM algorithm are stable as follows.

data(RandHIE)
subsample<-RandHIE$year==2&!is.na(RandHIE$educdec)
outcomeEq<-lnmeddol~logc+physlm+disea+I(disea^2)+lfam+educdec+xage+female
selectEq<-binexp~logc+idp+lpi+disea+lfam+educdec+xage+I(xage^2)+female
summary(EMSS(response=outcomeEq,selection=selectEq,

initial.para=c(rep(0,19),0.2,0.5), data=RandHIE[subsample,]))
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Figure 1: Boxplots of the bias in the estimation for the 1000 regeneration of the simulated example in
the section Using EMSS.
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Figure 2: Boxplots of the MSE in the estimation for the 1000 regeneration of the simulated example in
the section Using EMSS.
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Call:
EMSS(response = outcomeEq, selection = selectEq,
data = RandHIE[subsample, ])

Q-Value: -16195.75

Response equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) 2.4841461 0.168714 14.7240 4.523e-49 ***
logc -0.1199851 0.011946 -10.0440 9.762e-24 ***
physlm 0.2952680 0.068552 4.3072 1.653e-05 ***
disea 0.0415756 0.008574 4.8490 1.241e-06 ***
I(disea^2) -0.0001355 0.000250 -0.5421 5.878e-01
lfam -0.1828111 0.048101 -3.8006 1.443e-04 ***
educdec 0.0350172 0.008674 4.0368 5.418e-05 ***
xage 0.0203750 0.001588 12.8310 1.100e-37 ***
female 0.3123718 0.048632 6.4231 1.335e-10 ***

Selection equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) -0.0807292 1.240e-01 -0.651 5.150e-01
logc -0.1138537 1.078e-02 -10.562 4.470e-26 ***
idp -0.0632783 3.994e-02 -1.584 1.131e-01
lpi 0.0320468 7.301e-03 4.389 1.136e-05 ***
disea 0.0283038 3.329e-03 8.503 1.841e-17 ***
lfam -0.0666747 3.799e-02 -1.755 7.922e-02 .
educdec 0.0516196 6.923e-03 7.456 8.928e-14 ***
xage -0.0051879 4.066e-03 -1.276 2.020e-01
I(xage^2) 0.0001979 6.907e-05 2.865 4.164e-03 **
female 0.2098103 3.829e-02 5.479 4.281e-08 ***
---

Sigma:
Estimate Std. Error Z Value Pr(>|Z|)

sigma 1.604 0.02888 55.56 0 ***

Rho:
Estimate Std. Error Z Value Pr(>|Z|)

rho 0.745 0.0323 23.07 9.724e-118 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the second initial value set, the initial value of ρ is 0.5, and that of σ is within [0.66, 7.9]. The
three new EM-type algorithms perform similarly to the ECM algorithm in the first initial value set.
The estimated results in the MLE method are stable like those in the ECM algorithm.

In the third initial value set, the initial values of σ are larger than 7.9, and the three new EM-type
algorithms still perform stably, similar to the former. However, the estimated values of each parameter
in the MLE method are not stable. For example,

summary(selection(selectEq,outcomeEq,start=c(rep(0,19),8.8,0.5),
data=RandHIE[subsample,],method="ml" ))

--------------------------------------------
Tobit 2 model (sample selection model)
Maximum Likelihood estimation
Newton-Raphson maximization, 3 iterations
Return code 3: Last step could not find a value above the current.
Boundary of parameter space?
Consider switching to a more robust optimization method temporarily.
Log-Likelihood: -15707.81
5574 observations (1293 censored and 4281 observed)
21 free parameters (df = 5553)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.155e-03 1.029e-01 0.021 0.9833
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logc 5.082e-03 8.366e-03 0.607 0.5436
idp 1.106e-03 2.536e-02 0.044 0.9652
lpi 6.242e-04 4.436e-03 0.141 0.8881
disea -4.776e-03 2.504e-03 -1.907 0.0565 .
lfam 4.923e-03 3.258e-02 0.151 0.8799
educdec -1.921e-03 5.710e-03 -0.336 0.7366
xage -2.601e-03 2.440e-03 -1.066 0.2866
I(xage^2) -1.355e-05 3.918e-05 -0.346 0.7294
female -2.802e-03 3.258e-02 -0.086 0.9315
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0056280 0.8243005 -0.007 0.99455
logc -0.0120012 0.0616586 -0.195 0.84568
physlm 0.0001365 0.2694167 0.001 0.99960
disea -0.0359361 0.0349727 -1.028 0.30421
I(disea^2) 0.0001022 0.0009454 0.108 0.91390
lfam -0.0086017 0.2567682 -0.033 0.97328
educdec -0.0622248 0.0449205 -1.385 0.16604
xage -0.0286630 0.0081770 -3.505 0.00046 ***
female -0.0023083 0.2580752 -0.009 0.99286
Error terms:

Estimate Std. Error t value Pr(>|t|)
sigma 8.8015 NA NA NA
rho 0.9186 NA NA NA
--------------------------------------------
Warning messages:
1: In sqrt(diag(vc)) : NaNs produced
2: In sqrt(diag(vc)) : NaNs produced
3: In sqrt(diag(vcov(object, part = "full"))) : NaNs produced

The warning messages, the p-value of each parameter, and the “NA" in the standard errors of parame-
ters σ, and ρ suggest that the estimated results of the MLE method are not reasonable.

By summarizing the above three initial value sets with setting the initial values of σ at {0.1, 0.3, . . . , 10},
Figure 3 presents the histograms of the estimated coefficients for the variables physlm, female, and
the estimated values of the parameter σ in all four algorithms. The histograms illustrate that the
horizontal axis value in the three EM-type algorithms are the same all the time, which further suggests
that three EM-type algorithms do not affect by the initial values, and they perform similarly. However,
the histograms of the MLE method imply that the MLE method is not stable.

This suggests that the three EM-type algorithms are more robust than the MLE method. However,
the computing times of the above three examples using the ECME algorithm are relatively longer than
those of ECM and ECM(NR). It is found that the computing time of the ECME algorithm is affected by
the sample size. For instance, under different sample sizes, Table 1 presents the running time of the
ECM, ECM(NR), and ECME algorithms for the simulated example shown in the section using EMSS
with 10-times regeneration. As the sample size increases, the ECME algorithm costs much more time
than the ECM and ECM(NR) algorithms.

Sample sizes n 200 300 500 800 1000

ECM 2.5415 3.1542 4.4769 6.1861 7.8049
ECM(NR) 2.5232 3.0921 4.4393 6.0212 7.6943
ECME 7.7486 16.9576 26.7005 119.0904 159.1983

Table 1: Running time (seconds) of the simulated example in the section Using EMSS with 10-times
regeneration.

If the sample size of the former RandHIE data example decreases to 1, 000 randomly with the same
outcome and selection models, MLE presents results similar to the three EM-type algorithms only
when the initial values of σ ranges from 0.71 to 7.0 (the values may change since the sample size is
randomly reduced to 1, 000). The three EM-type algorithms still present stable results that are similar
to each other. Furthermore, the EMCE algorithm takes a similar computing time with the ECM and
ECM(NR). So it will be better to use ECM or ECM(NR) algorithms for the large-size samples.

To achieve more robust estimation, the simulated annealing maximizer for 10,000 iterations is
applied to offer better initial values for the MLE method. Note that the selected value for “parscale" in
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Figure 3: Some estimated values in the four algorithms for the RanHIE data.
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SANN is 0.001, which was satisfactory for this data set. The estimated results of the parameters are
the same as those in the MLE method in the second initial value set. The calculated log-likelihood
value is -10331.12, which is greater than -15707.81 in the third initial value set.

Discussion

The ECME algorithm is developed through the application of the Newton-Raphson method to reduce
the computing time. The implementation of three new EM-type algorithms, namely ECM, ECM(NR),
and ECME, are described in package EMSS. The application of the package EMSS is conducted using
simulated and real data sets. The examples for which initial values are considered in detail further
confirm that the three new EM-type algorithms are more robust than the MLE method. The EMSS
package is preferable to the sampleSelection when the robustness issue arising from the initial values
is involved. The standard errors might not be calculated appropriately in the MLE or the two-step
method in the sampleSelection because of the unreasonable results, but they can always be calculated
effectively using the EMSS package.
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Appendix

Some vectors in the Q-function of ECM and ECM(NR) algorithms at the k-th iteration are presented
herewith. For missing yi1,

i) α̂
(k)
1m = E(Yi1|Yi2 ≤ 0) = µ̂

(k)
i1 − ρ̂∗

(k)
λ(−µ̂

(k)
i2 ), where µ̂

(k)
i1 = x⊤i β̂

(k)
and µ̂

(k)
i2 = w⊤

i γ̂(k);

ii) α̂
(k)
2m = E(Yi2|Yi2 ≤ 0) = µ̂

(k)
i2 − λ(−µ̂

(k)
i2 );

iii) ν̂
(k)
1m = E(Y2

i1|Yi2 ≤ 0) = µ̂
2(k)
i1 + σ̂2(k) − ρ̂∗

(k)
λ(−µ̂

(k)
i2 )(2µ̂

(k)
i1 − ρ̂∗

(k)
µ̂
(k)
i2 );

iv) ν̂
(k)
2m = E(Y2

i2|Yi2 ≤ 0) = 1 + µ̂
2(k)
i2 − µ̂

(k)
i2 λ(−µ̂

(k)
i2 );

v) α̂
(k)
12m = E(Yi1Yi2|Yi2 ≤ 0) = µ̂

(k)
i1 (µ̂

(k)
i2 − λ(−µ̂

(k)
i2 )) + ρ̂∗

(k),

and for observed yi1,

vi) α̂
(k)
2o = E(Yi2|Yi1, Yi2 > 0) = µ̂

(k)
i2.1 +

√
1 − ρ̂2(k) λ

 µ̂
(k)
i2.1√

1 − ρ̂2(k)

;

ν̂
(k)
2o = E(Y2

i2|Yi1, Yi2 > 0) = 1 − ρ̂2(k) + µ̂
2(k)
i2.1 + µ̂

(k)
i2.1

√
1 − ρ̂2(k)λ

 µ̂
(k)
i2.1√

1 − ρ̂2(k)

 , where µ̂
(k)
i2.1 =

w⊤
i γ(k) +

ρ̂(k)

σ̂(k)
(yi1 − x⊤i β(k)).
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