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Determinations of Some polycrystalline ceramics’ strength properties and 

inelastic deformation mechanisms in the shocked state are critically important to the 

design and optimization of armor structures involving these materials. In this work, 

multiscale modeling and simulations have been carried out to study strength of the effects 

of polycrystalline microstructure, crystal anisotropy, porosity, and their interactions with 

microscopic deformation/damage mechanisms on the responses of several polycrystalline 

ceramics under shock compression and to extract their shock strengths from the wave 

profiles measured in the related plate impact shock wave experiments.  

With a mesoscopic computational model, the roles of intragranular microplasticity 

and deformation twinning, intergranular microdamage, and voids in the inelastic 

deformations and shock strengths of two polycrystalline phase aluminum oxides, 

Lucalox and AD995 have been examined. The results show that microplasticity by 

combined (primary) prismatic and (secondary) basal slips can well capture the 

characteristic features observed experimentally for shocked Lucalox. For AD995, the 

results show that porosity has a much more significant role than glassy grain boundaries 

in causing its lower shock strength than Lucalox. Its shock response can be well modeled 

by a combination of void-induced intense basal twinning and prismatic slip. The 



mesoscopic model has also been used to extract from the available experimental data the 

crystal elasticity and plasticity properties of aluminum oxynitride (AlON). 

 At the macroscopic level, a homogeneous continuum model, which combines 

nonlinear elasticity and pressure-dependent plasticity for effective strength description 

has been proposed. A procedure for determining the material parameters via matching the 

model simulations with the available shock wave profile measurements has been 

demonstrated for AlON and for a polycrystalline 6H silicon carbide (SiC-N). 

Finally, a new finite element piezoresistance model for interpreting the 

measurement of a manganin stress gauge has been developed and calibrated with the 

longitudinal gauge measurements obtained in the shock-compressed SiC-N. The 

calibrations for the gauge in both the longitudinal and lateral configurations have been 

obtained. This enables the determination of ceramic shock strength directly from the 

gauge measurements in the two configurations.  
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CHAPTER 1  

INTRODUCTION 

 

1.1  Background and Motivation 

 Over the past 20 years high performance ceramic materials developed to the point 

where they are able to replace metals in many applications, such as military armors, 

automobile defense, cutting tools, turbine blade coatings, fuel rods, space, and 

aeronautical industries. Compared with metals, ceramics have low densities and very 

high compressive strengths, superior hardness, corrosion and wear resistances, and high 

melting temperature. The unique combination of light weight and extremely high 

effective strength under shock compression has made some polycrystalline ceramics 

excellent candidates for advanced armor applications. These typical polycrystalline 

ceramics include two polycrystalline -phase aluminum oxides (-Al2O3), Lucalox 

(99.9% pure and dense) and AD995 (99.5% pure and 97% dense), polycrystalline 

aluminum oxynitride (AlON), and ploycrystalline silicon carbide (SiC). Compressive 

strengths of these ceramics are critically important to ceramic armor design. However, 

when shocked beyond the elastic limit, these materials lose tensile strength indicating 
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complex deformation/damage mechanisms in the inelastically shocked materials. 

Determinations of their strength properties and inelastic deformation mechanisms in the 

shocked state are also critically important to the design and optimization of armor 

structures involving these materials.  

Typically, the popular experimental techniques for measuring the dynamic 

strength response of ceramics under shock loading conditions are plate impact shock 

wave experiments (e.g., Gust and Royce, 1971; Kipp and Grady, 1989; Feng et al., 1998). 

In the previous researches, such experiment had been carried out to investigate the 

compressive strength response of these polycrystalline ceramics.  

The dynamic stress-wave response of polycrystalline -Al2O3 (Lucalox) was 

measured under the shock loading to about 16GPa by the plate impact experiment 

(Munson and Lawrence, 1979), in which it is shown that the Hugoniot elastic limit (HEL) 

of polycrystalline -Al2O3 is 9.1GPa. In the previous study in our group, the compressive 

strength of polycrystalline Al2O3 had been analyzed by Zhang (2005) by using a 100-

grain square polycrystal model, and the result showed that the simulated macroscopic 

compressive strength response compared well with the experimental measurement by 

considering material model of nonlinear elastic and crystal plasticity with slip systems of 

basal and pyramidal slips. However a question of the slip systems that are used in the 

study comes out because some researchers show that prismatic slip is more important and 

easily activated than pyramidal slip (Cadoz et al., 1984; Heuer et al., 1998). Thus a 

further analysis whether the compressive strength response of polycrystalline Al2O3 
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changes or not when pyramidal slip is replaced by prismatic slip is needed to carry out tp 

answer the question. 

Coors AD995, another type –phase aluminum oxides with 99.5% pure and 97% 

dense, is an armor material relatively cheap to produce. The dynamic strength response of 

polycrystalline AD995 has been obtained (Dandekar & Bartowski, 1993; Reinhart & 

Chhabildas, 2003). However, the measurement shows that it has a lower strength than 

Lucalox , 15-30% reduction in the Hugoniot elastic limit (HEL) and more significant 

reduction in the post-HEL strength (Dandekar & Bartowski, 1993; Reinhart & 

Chhabildas, 2003). It is not yet clear whether it is caused by glassy grain boundaries, or 

voids, or something else. To understand the causes of the reduction, it is necessary to 

examine the roles of microplasticity, glassy grain boundaries and voids in the inelastic 

deformations and the strength of polycrystalline AD995 and to develop an exact 

polycrystal model with voids for the analysis. 

Shock compression of AlON has been reported by Cazamias et al. (2001) to 15 

GPa, by Vaughan et al.(2001) to 21 GPa, by Sekine et al. (2003) from 61 to 180 GPa, and 

by Thornhill et al.(2006) from 5-89 GPa. These studies included the Hugoniot Elastic 

Limit (HEL), Hugoniot measurements to 180 GPa and phase transition, shear strength, 

and spall strength. In recent year, the plate impact experiments of AlON were performed 

by Thornill et al. (2006). The wave form profile of interface particle velocity has been 

measured and the compression stresses have been analyzed by jump condition method. 

However, the results of longitudinal stress and mean stress are conflicting. The strength 

of polycrystalline AlON is still not clear. In addition, what are the strength properties of 
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polycrystalline AlON to describe the material inelastic deformation? Hence, modeling 

and simulation of the strength of polycrystalline AlON is also necessary. 

Piezoresistance gauges have been used extensively in shock wave research, 

primarily for longitudinal stress measurement, since the early 1960s. Both experimental 

and analytical studies have been carried out to understand the electromechanical response 

of manganin gauge. In particular, the studies by Gupta and co-workers have provided a 

fairly complete phenomenological model for piezoresistance response and the 

methodologies to evaluate the model constants. Thus, the gauge resistance change can be 

calculated quite accurately if the mechanical state of the gauge is known and the model 

constants have been determined. However, the interest in using piezoresistance gauges in 

shock wave experiments is motivated by the reverse problem: determination of a 

particular stress component in the sample from the measured resistance change history ( 

Feng, Gupta and Wong, 1997). To calibrate the longitudinal gauge measurements 

obtained in the shock-compressed SiC-N,  it is necessary to develop a new finite element 

piezoresistance model for interpreting the measurement of a commercial manganin stress 

gauge embedded in a plate impact target. 

 In summary, polycrystalline ceramics are very important materials for advanced 

structural engineering purposes. The compressive strength response of ceramics is 

important for characterizing and modeling the material inelastic deformation at high 

stresses and high strain rates. The understanding of the compression strength and the 

study of strength properties and the mechanism of material inelastic deformation for 
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polycrystalline ceramics are still far from satisfactory. The specific outstanding scientific 

issues that motivate this dissertation research are as follows: 

(1) How do the polycrystalline microstructure and the different activated slip systems 

for general plastic deformation in ceramic crystals influence the strength of 

polycrystalline -Al2O3? 

(2) What is the difference between the inelastic deformation of shocked AD995 and 

that of shocked -Al2O3? What are the roles of microplasticity, glassy grain 

boundaries and voids in the inelastic deformation and strength of polycrystalline 

AD995? Which one is the dominant factor of the 15-30% reduction in the HEL 

and more signification reduction in the post-HEL strength? 

(3) What is the shock strength response of polycrystalline ALON?  What are the 

strength properties and the base of elastic constants for polycrystalline ALON? 

(4) What is a new finite element piezoresistance model for interpreting the 

measurement of a commercial manganin stress gauge embedded in a plate 

impact target? 

1.2  Objectives 

 The goal of this work is to gain good understanding of the strengths of 

polycrystalline ceramics and the inelastic deformation in these materials by investigating 

the compressive strengths of polycrystalline ceramics under shock compression. To 

address the above scientific issues, detailed analysis with physics-based material 
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modeling and topologically accurate numerical simulation is required. Accordingly, two 

sets of research objectives are identified. 

 The first set of objectives is aimed at the development of a computational 

modeling methodology that enables micromechanical analysis of polycrystalline ceramics 

with topologically accurate microstructural modeling: 

(1) To develop a microstructural model that simulates explicitly the microstructure of 

polycrystalline ceramics, and a meshing technique that generates microstructure- 

preserving numerical meshes to enable the use of numerical solutions such as the 

finite element (FE) method for detailed micromechanical analysis. 

(2) To develop material models and related numerical algorithms that can accurately 

and efficiently capture the nonlinear anisotropic crystal elasticity and in-grain 

crystal plasticity that may be encountered in the micromechanical analyses of 

interest. 

The second set of objectives is aimed at understanding of the micromechanisms 

governing the inelastic deformations of two ceramics, polycrystalline AD995 alumina 

and ALON under quasistatic uniaxial-strain compression:  

(1) To determine whether or not microplasticity by limited slip systems can induce 

significant macroscopic inelastic deformations of polycrystalline AD995 alumina 

under uniaxial-strain compression.  

(2) To examine the roles of porosity and weak boundary in the deformations, of 

polycrystalline AD995 alumina during shock compression. 
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(3) To develop a good understanding of the shock strength of ALON and determine 

the material properties and elastic constants of polycrystalline ALON.  

Finally, a new finite element piezoresistance model for interpreting the 

measurement of a commercial manganin stress gauge embedded in a plate impact target 

is developed and calibrated with the longitudinal gauge measurements obtained in the 

shock-compressed SiC-N. 

1.3  Technical Approaches and Significance 

Voronoi polycrystal is a widely used topologically accurate microstructure model 

for analyzing the micromechanical behavior of polycrystalline ceramics (Kumar et al., 

1996). In this work, an algorithm of developing Voronoi tessellation by Xue (2003) is 

adopted for the microstructural modeling. Two-dimensional (2-D) Voronoi cells with 

boundary layers and with or without porosity are constructed within a square plate. 

Three-dimensional (3-D) Voronoi cells without boundary layers are constructed within a 

cubic space. Voronoi cells with randomly assigned crystallographic orientations represent 

the aggregate of Voronoi polycrystal (Zhang et al., 2005).  

The FE mesh generation follows grain-wise meshing approach. For 2-D modeling 

with grain boundary layers,  a triangular FE mesh is laid out in the grain boundary layers 

by commercial software ABAQUS/CAE, bridging the neighboring grain core meshes 

consistently. The processes of voids generating are: (1) some random elements are 

selected to be deleted; (2) the total volume of these deleted element is calculated; (3) 

processes (1) and (2) are repeated until the total volume of the deleted elements is up to 
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the percentage of voids; (4) the remanding element numbers are re-arranged. FE 

generation for 3-D models is the following (Xue, 2003): First, a triangular element mesh 

is generated for all the grain faces globally based on the Voronoi-Delaunay duality 

principle (Sloan, 1993). Second, a grain-wise triangular surface mesh is laid out for each 

grain. Third, all of the grain-wise surface mesh is input into com mercial software 

HyperMesh, and the tetrahedral FE volume mesh is constructed. Finally, the volume 

mesh with nodes sharing consistency at grain faces is assembled. Such a mesh preserves 

the microstructure of polycrystalline ceramics and enables micromechanical analysis. 

Further, a multi-scale study on the statistical representation of polycrystal models is 

carried out to test the sufficient number of grains for 2-D and 3-D Voronoi polycrystal 

models.  

 The material modeling consists of nonlinear elasticity, crystal plasticity and grain 

boundary material model. Crystal elasticity considers general anisotropy and pressure-

dependent second-order nonlinearity. The rain boundary material is treated as glassy 

isotropic (Longy and Cagnoux, 1989), which has the same mechanical properties as the 

corresponding polycrystalline material, so that the elasticity for the grain boundary 

material is also nonlinear due to pressure. For the modeling of crystal plasticity, a simple 

model of rate-independence is adopted for the calculations without the consideration of 

incremental path. Since the to-be-studied ceramics are in hexagonal structure, hexagonal-

structured slip systems, basal and prismatic, may be considered for crystal slip. The 

modeling of crystal plasticity is extended to allow modeling and simulation of crystal slip 

and crystal deformation twinning. The grain boundary material is predicted by the 
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Drucker-Prager model with a pressure-saturated ceiling, and the flow-surface treatment is 

adopted based on the Johnson-Holmquist model (Johnson and Holmquist, 1994). The 

constitutive relation of the material assumes additive formulation of elastic and inelastic 

strains. The technique is by FE method in conjunction with user-defined code via 

ABAQUS user-program interface. The implementation of constitutive model is achieved 

by adopting a stress-based Newton-Raphson iteration (Zhang et al., 2005). 

Micromechanical analysis is carried out respectively for polycrystalline -Al2O3 

(Lucalox), AD995 and AlON under uniaxial-strain compression. Plate impact 

experimental simulations on AlON are carried out based on the published experimental 

results. For the analysis of polycrystalline -Al2O3, a solution technique by FE method 

with user subroutine with ABAQUS/standard is used based on a 600-grain 3-D Voronoi 

polycrystal model. Material modeling of nonlinear elasticity with crystal plasticity by 

basal slip and prismatic slip is employed. Steady-state macroscopic response of 

longitudinal, mean and lateral stresses versus applied longitudinal strain up to twice the 

HEL is predicted. Also, the influence of critical resolved shear stress (CRSS) for basal 

slip or prismatic slip is discussed. Microscopic analysis includes the distribution of 

longitudinal stress and the distribution of effective plastic strain. For the analysis of 

polycrystalline AD995, three types of 200-grain 2-D porous Voronoi polycrystal FE 

models with triangular, square and random shape voids are constructed and examined for 

their performance and mesh dependency for modeling and analysis of microplasticity-

driven void collapsing in AD995 under shock compression. Material modeling of 

nonlinear elasticity with crystal plasticity by basal slip, prismatic slip and twinning 
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deformation is employed. The roles of ground boundary and voids in the inelastic 

deformation and strength of AD995 are examined and the strength of polycrystalline 

AD995 is analyzed. Microscopic analysis includes the distribution of longitudinal stress 

and the distribution of effective plastic strain. For the analysis of AlON, 2-D plate impact 

experimental simulations on AlON are carried out with the axi-symmetric FE model. The 

material strength model considers a pressure–dependent material strength model that 

combines the Drucker-Prager plasticity with a limited strength cap and nonlinear bulk 

modulus. The results of wave profiles, optimized parameters for material strength model, 

and the shock strength response of AlON are obtained. In addition, a 3-D analysis of 600-

grain cubic VP-FE model that considers elasticity, nonlinear elasticity and crystal 

plasticity is carried out to determine the ambient elastic constants Cij of polycrystalline 

AlON and other parameters for the material model. 

It should be pointed out that there is available experimental measurements of 

material strength in shocked AD995 alumina (Dandekar & Bartowski, 1993), et al., 

1998), and hence the calculated results can be compared with experimental data. For 

AlON, however, there are no measured longitudinal stresses to compare with. Therefore, 

to study the dynamic behavior in shocked Al, material strength should be determined 

first of all. Material strength is determined by plate impact experimental simulations. In 

conjunction with the experimental simulated material strength, the base of ambient elastic 

constants Cij of polycrystalline AlON is estimated and microplasticity analysis with a 

600-grain 3-D Voronoi polycrystal model by ABAQUS/Standard is carried out.  



 11

 The method for measuring the longitudinal and lateral stress is suggested by 

experimental simulations on polycrystalline SiC-N. The gage used is a manganin pressure 

sensor, a special gage with manganin foil grid for measuring hydrostatic pressure and for 

shock wave studies. A new finite element piezoresistance model for interpreting the 

measurement of a commercial manganin stress gauge embedded in a plate impact target 

is developed. Experimental designs and simulations are performed. The deformation and 

resistance change of the gage are simulated. The methods can also be used to design the 

stress gauge measurement for the polycrystalline AlON.  

 The research for strengths of polycrystalline ceramics under shock compression is 

significant for the technical reasons that it is the first time simulations of material 

response using a topological accurate polycrystal model (Voronoi tessellations) is 

performed, crystal slip system interactions and twinning deformation are considered; and 

the nonlinear elastic and plastic anisotropy of the crystals are included. The 

computational methodology developed in this work is capable of being extended to 

micromechanical analysis of other polycrystalline materials. The results of the research 

have a major impact on the scientific understanding of the mechanisms governing the 

inelastic deformation, damage and failure in ceramics due to high strain rates, and are 

very useful for development and design of high strength ceramics for armor applications 

or applications involving other extreme conditions. 

 



 12

1.4  Organization of the Dissertation 

This dissertation has seven chapters. In Section 1.5, which is the last section of 

this chapter, a literature review is given. The part of the modeling methodology and the 

method of multi-scale analysis are presented in Chapter 2, in which construction of the 2-

D and 3-D Voronoi polycrystals and the related numerical mesh generations for 

microstructure modeling are described first. Derivations of the material models for 

nonlinear crystal elasticity, crystal plasticity and grain boundary are then presented. A 

multi-scale study to verify proper crystal number densities for the 2-D and 3-D 

polycrystal models is also included in the chapter. Chapter 3 presents the analysis for the 

strength of polycrystalline -Al2O3 (Lucalox) under shock compression. The 3-D 

microstructural modeling and solution technique by FE method with user-subroutine by 

ABAQUS/standard is presented along with the numerical simulations for the response of 

-Al2O3 undergoing basal-slip only and both basal and prismatic slip. Chapter 4 presents 

the analysis for the strength of polycrystalline AD995 under shock compression. First, a 

crystal plasticity model of polycrystalline AD995 that is extended from that of 

polycrystalline-Al2O3 to allow modeling and simulation of crystal slip and crystal 

deformation twinning is described. Second, the study of three types of porous polycrystal 

models is presented to examine their performance and voids collapsing. Third, 

examination of the roles of glass ground boundary and voids is presented. In the last part 

of Chapter 3, the compressive strength of polycrystalline AD995 with different critical 

resolved shear stress (CRSS) for slip systems is presented. In Chapter 5, the analysis for 

the strength of AlON under shock compression is presented. First 2-D analysis of the 
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strength on AlON by plate impact experimental simulations with a pressure–dependent 

material strength model that combines the Drucker-Prager plasticity with a limited 

strength cap is presented.  The determination of the ambient elastic constants Cij of 

polycrystalline AlON by using a 600-grain 3-D Voronoi polycrystal model is then 

presented. Preliminary microplasticity analysis is also included in this chapter. Chapter 6 

presents the development of a new finite element piezoresistance model for interpreting 

the measurement of a commercial manganin stress gauge embedded in a plate impact 

target and the calibrations for the gauge in both the longitudinal and lateral configurations 

This enables the determination of ceramic shock strength directly from the gauge 

measurements in the two configurations. . Finally, the main conclusions of this research 

are summarized in Chapter 7. 

 

1.5  Literature Review 

Ceramic materials are increasingly being used in the industry for commercial and 

military applications. An overview of ceramic applications is presented by the American 

Ceramic Society on their web site (2005). For example, ceramic materials are used in 

aerospace applications for thermal protection for rocket exhaust systems; ceramic tiles 

are used for insulation of space shuttles and engines; and coatings are embedded into the 

windshield glass of airplanes. Presently, ceramic materials are being tested for use in 

engine components. Benefits include better performance, lighter weight engines, and 

better fuel consumption. Ceramic materials are also used in medical applications for 

replacement of human body parts (tooth, hips, knees, shoulders, elbows, fingers, to 
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replace diseased heart valves). When used in implants, they stimulate bone growth and 

tissue formation; provide protection from immune system (Omonbude and Faraj, 2004).  

Advanced ceramic materials have been considered for armor applications in law 

enforcement, homeland security, and the military for over 30 years. But in recent years 

they have became an integral part of light and strong materials. Such properties of 

advanced ceramic materials as high strength, light weight, penetration resistance are 

important for civil and military applications. Ceramic materials provide significant 

resistance to penetration not only in solid, but also in fractured and powdered states. 

Therefore, it is important to study compressive strength of polycrystalline ceramics and 

to develop an exact microstructure model and material modeling to understand the 

mechanisms of inelastic under shock compression. The review includes the studies of 

compression strengths, microstructure polycrystal model and material modeling of 

polycrystalline ceramics. 

1.5.1  Compression Strengths of Ceramics  

Ceramics materials have proven to be good choices for many armor applications 

due to their high dynamic strength. Experimental techniques for measuring the 

compression strengths of ceramics under dynamics loading conditions have been studied 

for several decades. Gust and Royce (1971) used the HEL measurement to characterize 

the dynamic yield strengths of B4C, beryllium oxide (BeO), and Al2O3. The measured 

HEL was 15.4 for B4C and 8.2 GPa for BeO. For several different Al2O3 materials, the 

measured HEL ranged from 6.1 to 13.4 GPa, depending on the impurity content and 

material processing. Under one-dimensional strain conditions, Munson and Lawrence 
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(1979) measured the dynamic stress-wave response of polycrystalline -Al2O3. The 

measured HEL is 9.1 GPa. Kipp and Grady (1989) used shock compression data and 

hydrodynamic estimation to investigate the shock strengths of various ceramics including 

SiC, AlN, titanium diboride (TiB2), and zirconium dioxide (ZrO2). In their studies, 

elastic-plastic behavior was assumed for the response of ceramics deformed under shock 

wave compression. Dandekar and Bartkowski (1993) measured shock response of A 

D995 Alumina by plane shock wave experiments. The result of HEL is 6.71 GPa. Feng et 

al. (1998) determined the HEL of 6H SiC to be ~11.5 GPa under shock compression, 

and determined from the measured longitudinal and lateral stresses a value of ~4.5 GPa 

for the maximum shear stress of at the HEL. It was also found that the maximum shear 

stress increases with shock compression and reaches ~7 GPa at twice the HEL. More 

recently, Thornhill et al. (2005) measured the wave profiles of interface particle velocity 

by plate impact experiment on AlON, but the compression strength of polycrystalline 

AlON is still not clear. 

Studies on the underlying micromechanisms of inelastic deformations of shocked 

ceramics are important for good understanding of compression strengths of ceramics, but 

the studies are limited and mostly speculative. Grady (1996, 1998) proposed that the 

cause for high HEL and high post-HEL strength in shocked ceramics is a strain-rate 

dependent brittle-to-ductile transition. Another theory suggested by Feng et al. (1998) 

emphasizes the high inertial confinement accompanying plane shock wave loading. 

Under high confining stresses, in-grain slipping in certain crystallographic systems may 
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become more favorable than shear cracking because the high confinement significantly 

increases the frictional resistance against the later process. 

1.5.2  Polycrystal Modeling of Ceramics 

To effectively carry out micromechanical analysis of polycrystalline materials, a 

good polycrystal microstructure modeling is essential to characterize the heterogeneity 

due to grain-to-grain topological variations and crystal anisotropy. Furthermore, the 

microstructure model should contain sufficient microstructual elements to represent 

statistically the macroscopic response of the material in bulk. 

A polycrystalline material may be globally isotropic and homogeneous but is 

typically anisotropic and heterogeneous. An important need is the proper modeling of the 

microscale anisotropy and heterogeneity, i.e., the spatial variation of the physical 

properties and geometrical characteristics. For instance, the physical property may be 

orientation-dependent and hence anisotropic with respect to loading. In particular, there 

exist elastic anisotropy (the elastic properties of a crystal are direction-dependent) and 

plastic anisotropy (slip system activation and the slip magnitude are direction-dependent). 

Thus, heterogeneity results from different crystallographic orientations at different 

locations. Similarly, heterogeneity also results from the variation of crystal geometry 

(shape and size) with position. The coupling of mechanical anisotropy and topological 

variation can exert a significant and complex influence on the microstructural stresses 

and also on microscale processes such as microcrack nucleation. Wu and Niu (1995) 

showed that crack nucleation in a two-dimensional (2-D) Voronoi model of 

polycrystalline ice was significantly affected by the elastic anisotropy and the 
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randomness in the geometrical microstructure. Teng and Lin (1995) showed that crystal 

elastic anisotropy has a significant effect on fatigue crack initiation in an intermetallic 

nickel-aluminum polycrystal comprised of regular hexagons. We conjecture that 

heterogeneity will also influence the deformation of ceramics under shock compression. 

For decades, people have modeled various microstructures, idealized or realistic, 

to investigate the micromechanics in polycrystals. A simple idealized microstructure is an 

aggregate of square or cubic grains. Baczmanski et al. (1994) used several thousand 

square grains for the prediction of residual stresses and texture development in plastically 

deformed steel. Hexagonal grains have also been used as idealized polycrystals, e.g., 

Evans (1978) examined the residual stresses at triple junctions due to thermal expansion 

anisotropy in a polycrystalline aggregate of planar hexagonal grains. Furthermore, Ortiz 

and Suresh (1993) showed that an accurate estimate of residual stresses required at least 

two hundred regular hexagonal grains, and the stress distributions were essentially 

Gaussian, when a set of random distortions was assigned to the grains. 

Idealized polycrystals, however, cannot characterize the shape and size variations 

of polycrystalline materials, and therefore realistic microstructures are needed for 

accurate micromechanical analysis. A Voronoi tessellation, which is a topologically 

accurate model of the microstructure of polycrystalline metals and ceramics (Kumar and 

Kurtz, 1994; Kumar et al., 1996), has been extensively used in the last two decades. Wu 

and Niu (1995) verified the Gaussian nature of the stress distributions due to elastic 

anisotropy in polycrystalline ice modeled by 2-D Voronoi tessellations. Using a similar 

model, Wu and He (1999) predicted the cracks resulted from the pile-ups of extrinsic 
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grain boundary dislocations around triple junctions in polycrystalline aluminum. Ghosh 

et al. (1997) developed a Voronoi cell finite element model for micromechanical analysis 

of ceramic-metal composites. Wu and Guo (2000) advanced a three-dimensional (3-D) 

Voronoi model to study the influence of elastic anisotropy of cubic and hexagonal 

metallic crystals on the stress intensity factors of intergranular cracks. 

1.5.3  Material Modeling of Ceramics  

Modeling of crystal plasticity for ductile materials has been well documented 

(e.g., Asaro, 1983; Nemat-Nasser and Okinaka, 1996; Anand and Kothari, 1996). Asaro 

(1983) considered strain-hardening of rate-dependent polycrystals in the development of 

large strain-continuum constitutive laws. Nemat-Nasser and Okinaka (1996) proposed an 

algorithm for analyzing the deformation of fcc single crystal, also assuming rate-

dependent slip. Anand and Kothari (1996), on the other hand, presented a computational 

procedure for determining the increments of shear on a unique set of active slip systems 

in a rate-independent theory. Moreover, Gupta (1977) examined the crystal anisotropy 

effect on intracrystalline plasticity in shocked lithium fluoride (LiF) single crystals. 

Microplastic strains in brittle polycrystalline solids prior to microfracture were studied by 

Sarfarazi (1989), based on the continuous activation of Frank-Read sources in the grains. 

Little work, however, has been done on the modeling of microplasticity in inherently 

strong solids. 

The Johnson-Cook plasticity model is known to be suitable for high strain rate 

deformation of most metals (e.g., Daridon et al., 2004; Buchar et al., 2004). It is actually 

a particular type of Mises plasticity model with analytical forms of the hardening law and 
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rate dependence, and is typically used in adiabatic transient dynamic simulations 

(ABAQUS manual, 2004). The Drucker-Prager model is more suitable for granular-like 

brittle materials, such as soils and ceramics. This type of material becomes stronger when 

pressure increases, and the compressive strength is greater than the tensile strength. The 

model can capture the frictional sliding behavior and allow inelastic shearing (ABAQUS 

manual, 2004). For instance, Kolari et al. (2002) described the yield stress state and 

material softening of solid ice after yielding with the Drucker-Prager model. Though the 

Drucker-Prager model in conjunction with shear failure model may predict well the 

inelastic behavior of ceramics during shock compression, the failure during unloading or 

recovery may be beyond its capability. Johnson and Holmquist (1994) advanced the 

modeling of glassy brittle materials by describing the strength in two smoothly varying 

functions for intact and fractured materials respectively. The fractured materials sustain 

much lower strength than intact materials. 

There is ample evidence that ceramics do slip under high confinement and/or high 

temperature. Bretheau et al. (1979) documented the plastic deformation of -Al2O3 single 

crystals (which are typically treated as hexagonal-structured material) by slip in the basal, 

prismatic and pyramidal systems at high temperatures T > 1025C. Heuer et al. (1971) 

observed non-basal slip in polycrystalline Al2O3 deformed at 1000C and 1400C under 

confinement. Castaing et al. (1981) deduced from optical observations prismatic slip in 

Al2O3 single crystals subjected to hydrostatic pressures of 0.5-1.5 GPa between 20C and 

950C. Generally speaking, the basal systems  0211}0001{  are the predominant slip 

systems for most hexagonal crystals. Non-basal glide requires a higher critical resolved 
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shear stress (CRSS). To our best knowledge, however, most of the observations were 

made when thermally activated dislocation motion plays a significant role, and it is not 

clear whether the reviewed results could be extended to the conditions for shock 

compression, where shock-induced temperature is typically below 1025C. Also, 

determining critical resolved shear stress for a certain slip system is difficult. 

1.5.4  Description of Some Polycrystalline Ceramics  

Polycrystalline ceramics of two polycrystalline -phase aluminum oxides (-

Al2O3), Lucalox (99.9% pure and dense) and AD995 (99.5% pure and 97% dense), 

polycrystalline aluminum oxynitride (AlON), and ploycrystalline silicon carbide (SiC). 

are considered in this research. The unique combination of strong and transparent has 

made these materials excellent candidates for armors. Both physical properties and 

crystal structures of these materials are simply described.  The most commonly used -

Al2O3 is the polycrystalline –phase Alumina (Lucalox) with a high purity of 99.9%. -

Al2O3 is typically treated as hexagonal-structured material. The ambient density of -

Al2O3 is 3.986 g/cm3, and its HEL measured by Munson and Lawrence (1979) is ~ 9 GPa. 

Polycrystalline -Al2O3 has many uses in high-pressure science. It is used in diamond 

anvil cells as manometer; as a window material in shock physics; and in armor 

applications. Polycrystalline AD995 is another type of polycrystalline –phase Alumina 

alumina and is formed by Al2O3 powder (99.5%) with a small amount of aluminosilicate 

glass (0.5%) as a stabilizing agent. The crystal structure of the AD995 is identical to that 

of -Al2O3. The ambient density is 3.89 g/cm3 due to a small amount of porosity in the 
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ceramics and the addition of lower density glass. The HEL is 7.0 – 7.9 GPa, significantly 

less than -Al2O3.  Polycrystalline AD995 has uses in armor application. AlON is a 

polycrystalline ceramic material formed from a solid solution of Al2O3 and AlN 

(McMcauley, 2002). In this form, the crystal structure is a nitrogen-stabilized cubic 

spinel with an ambient density of 3.67 g/cm3. The HEL is reported to be 10 – 12 GPa. 

Because of its high strength and manufacturability of this material into many custom 

shapes, it is used in armor application as a window material.  
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CHAPTER 2  

MODELING METHODOLOGY  

 

2.1  Introduction 

Voronoi tessellation was first introduced by Dirichlet and Voronoi (Okabe et al., 

1992), who presented the tessellation in 2-D and 3-D space. Polycrystal model based on 

the Voronoi tessellation has been suggested as a topologically accurate model to the 

microstructure of polycrystalline ceramics and metals (Kumar and Kurtz, 1994; Kumar et 

al., 1996). The Voronoi polycrystal has the characteristics of all nuclei of grains appear 

simultaneously at random positions and each grain grows at the same rate in all directions. 

In the previous studies of our group (Xue, 2003; Zhang, 2005), using the method of 

Voronoi tessellation, a computational modeling methodology for micromechanical 

analysis of polycrystalline ceramics has been developed. It consists of a microstructural 

model based on the 2-D or 3-D Voronoi tessellation, and material models for 

compression-dependent nonlinear elasticity and crystal plasticity as well as for 

intergranular shear damage under compression. In this chapter, the modeling 

methodology is reviewed, and at the same time, the development of 2-D 200-grain square 

polycrystal model with grain boundary layers and 3-D 600-grain cubic polycrystal model 
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are described, and then the new model tests of multiscale modeling technique are 

presented in detail.   

Voronoi polycrystal model constructions and numerical mesh generation for 

polycrystal analysis are described in Section 2.2. For 2-D modeling, the grain-wise 

geometry of a 2-D Voronoi polycrystal can be imported into the commercial FE software 

ABAQUS/CAE (ABAQUS manual, 2007), which can generate triangular elements 

sharing nodal consistency at the grain boundaries. For 3-D modeling, the grain-wise 

meshing technique by Xue (2003) is adopted. In this meshing technique, the Voronoi-

Delaunay duality principle is used to construct a triangular-element grain surface mesh. 

The grain surface mesh is then imported into the commercial mesh code HyperMesh 

(HyperMesh manual, 2007) to generate a tetrahedron-element volume mesh that shares 

the nodes on grain surfaces with the grain surface mesh. 

The material modeling for computational investigation of the micromechanisms 

governing the inelastic deformation of polycrystalline ceramics under high confining 

stresses and/or high strain rates is presented in Section 2.3. Under highly confined 

uniaxial-strain compression, the elastic response of a ceramic may be noticeably 

nonlinear even at its elastic limit. It suggests that the elastic nonlinearity of 

polycrystalline ceramics depends predominantly on volume compression or pressure 

(Bassett et al., 1993; Feng et al., 1998; Yuan et al., 2001). A simple nonlinear elasticity 

model is used to describe the volume-compression dependent stiffening. The nonlinear 

elasticity model is described in section 2.3.1. 
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 A crystal plasticity model for the hexagonal symmetry is considered for 

analyzing microplasticity in ceramics during shock compression. There are three types of 

possible slip systems for hexagonal crystals: basal, prismatic and pyramidal (Bretheau et 

al., 1979; Heuer et al., 1971). The basal slip is predominant because it has the lowest 

activation threshold. The crystallographic orientations of the three types of slip are 

depicted in Figure 2.1 (Zhang, 2005). The crystal plasticity modeling is presented in 

Section 2.3.2.  

It is assumed that microdamage only occurs at grain boundaries in the forms of 

intergranular shear damage under compression. Grain boundaries are treated as glassy 

second phase. The ground boundary material may be modeled as an isotropic solid. The 

flow stress is assumed to be governed by a pressure-dependent “plasticity” law using the 

Johnson-Holmquist (JH-2) model (Johnson and Holmquist, 1994). The JH-2 model is 

described in Section 2.3.3. 

2-D and 3-D Voronoi polycrystal models are verified by the simulations of a plate 

impact experiment using multiscale modeling technique, in which a Voronoi polycrystal 

is embedded in a homogeneous matrix. The details of the model structures, material 

parameters and boundaries conditions used in the simulations are presented in Section 2.4 

along with the numerical results. 
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Figure 2.1: Slip systems for (a) basal, (b) prismatic and (c) pyramidal Slips 
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2.2  Polycrystal Modeling  

Closed-space Voronoi tessellation (e.g., Kumar et al., 1992; Xue, 2003) is one of 

algorithms for structural constructions of the 2-D and 3-D Voronoi polycrystals. Because 

it is convenient for micromechanical analysis, the principles of closed-space Voronoi 

tessellation is adopted. In particular, the algorithms developed by Xue (2003) for 

constructing square (2-D) and cubic (3-D) Voronoi polycrystal models are employed.  

Details of the algorithm for constructing a 3-D Voronoi polycrystal in a unit cube 

are reviewed in Appendix A-1. The algorithm for constructing square (2-D) Voronoi 

polycrystal model is similar to that for the 3-D model. The difference is that all planes 

degenerate to lines and that each vertex is obtained from line intersection. When the FE 

method is used for numerical solution, the model is termed as the Voronoi polycrystal-

finite element (VP-FE) model. For creating grain boundaries in a 2-D Voronoi 

polycrystal, each Voronoi cell is contracted by moving each of its edges the same small 

distance towards its centroid.  

According the algorithms for constructing 3-D Voronoi polycrystal and 2-D 

Voronoi polycrystal, a 2-D 200-grain square polycrystal model and a 3-D 600-grain cubic 

polycrystal model are developed, shown in Figure 2.2 and Figure 2.3, respectively.  For a 

2-D polycrystal model, grain boundaries with uniform thickness are constructed by 

contracting crystal cells, shown in Figure 2.2 (zoom in view).  The Thickness is 

considered as 1% of the side length of the square. 
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Grain boundaries 

Figure 2.2: 200-grain square polycrystal model with grain boundaries. 

Figure 2.3: 3-D 600-grain cubic polycrystal model.  
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For a 2-D polycrystal model, microstructure-preserving triangular numerical mesh 

can be generated by the commercial FE software ABAQUS/CAE as described earlier 

(Section 2.1). The 2-D polycrystal model is implemented into ABAQUS/CAE and gets 

meshes. Figure 2.4 shows an example of mesh for a 2-D 200-grain square model. In the 

same way, microstructure-preserving numerical mesh for grain boundary layers can also 

be generated by ABAQUS/CAE. Figure 2.5 shows the zoom-in views of square VP-FE 

models with two different methods of meshing, one layer (a) and three layers (b) of grain 

boundary elements, respectively. It is found that the two method of meshing for layers of 

Figure 2.4: A 200-grain square Voronoi polycrystal model with a microstructure-

preserving triangular numerical mesh.  
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grain boundary elements are not important to affect the analysis (Zhang, 2005). So only 

one layer elements of grain boundary is considered in this study. 

For a 3-D polycrystal model, currently, there is no commercial code capable of 

generating microstructure-preserving numerical mesh. The grain-wise meshing technique 

has been developed by Xue (2003). The procedure is as follows: 

1.    Input the geometric data of the 3-D Voronoi polycrystal model to be meshed in 

terms of grain-wise sequenced faces, vertices and edges. 

2.    Select a characteristic length s as the nominal element edge length. 

3.    Deposit nodes on all of the grain vertices and then on all of the grain edges with a 

spacing as close to s as possible. The deposition is executed globally so that there 

(a) (b) 

Figure 2.5: Zoom-in views of square VP-FE models with grain boundary layers: 

(a) one layer, and (b) three layers of grain boundary elements. 
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is only one node arrangement on each grain edge (which is shared by three 

neighboring grains). 

4.    For each grain face, add an imaginary polygon, which is a concentric contraction 

from the polygon occupied by the edges of grain face. The amount of contraction 

is determined by making the largest distance between the edges of inner and outer 

polygons equal to s. If the inner polygon is large enough to contain a further 

contracted imaginary polygon, it will be added following the same principle and 

so forth until there is no room for a new round of contraction. 

5.    Deposit nodes on all inner polygon vertices and on all inner polygon edges with a 

spacing as close to s as possible. The deposition is also executed globally so that 

there is only one node arrangement on each grain face (which is shared by two 

neighboring grains). 

6.    For each grain face, apply the Delaunay triangulation to obtain a unique triangle-

element face mesh including the nodes on the grain edges. 

7.    Assemble the entire surface mesh for each grain. In this process, each grain face 

mesh is used twice as there are two grains sharing the grain face. The connectivity 

table for the grain surface mesh is determined to enforce that the sequence of 

three nodes of each triangular element is counterclockwise with respect to the 

outward normal of the grain face, on which the element is located. 

8.    For each triangle-element grain surface mesh, use the HyperMesh code 

(HyperMesh manual, 2006) to construct a tetrahedron-element volume mesh 
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whose nodes on the grain faces are forced to coincide with the nodes of the grain 

surface mesh. The available uniform element size option is selected and grain-to-

grain automatic batch processing is used in this process. 

9.    Assemble the grain-wise volume elements, remove the redundancies on the grain 

faces, edges and vertices, and construct the global connectivity table that enforces 

the counterclockwise sequence to the four nodes of every tetrahedral element. The 

result is a tetrahedron-element numerical mesh that preserves the microstructure 

of 3-D Voronoi polycrystal model. 

A structural model constructed in such a way will be referred to as a 3-D VP-FE 

model for the rest of the dissertation. Figure 2.6 shows an example of mesh for a 600-

grain cubic VP-FE model.  

Figure  2.6:  A 3-D 600-grain cubic polycrystal model with mesh.  
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2.3  Material Modeling 

2.3.1  Nonlinear Crystal Elasticity Model 

Assuming the additive formulation of elastic and plastic strain rates, the rate 

constitutive equation with respect to the current local crystallographic axes may be 

described as 

 ωWεεCσ  :)(:  p ,    i, j, k, l = 1, 2, 3 (2.3) 

where the superimposed dot denotes the material time derivative, σ  is the 

symmetric Cauchy stress tensor, C is the fourth order tangent elasticity tensor of the 

deformed material with respect to the current crystallographic base, W is the fourth order 

tensor that specifies the stress rate transformation under time-dependent rigid rotations, ε  

and ω  are respectively the symmetric and asymmetric parts of the velocity gradient, and 

pε  is the plastic strain rate. 

The elastic response of a ceramic compressed uniaxially to its Hugoniot elastic 

limit (HEL) may be noticeably nonlinear. Typically, the information available for the 

nonlinear elastic response of ceramics is the pressure vs. volume compression of their 

polycrystalline powders or bulk materials (e.g., Bassett et al., 1993; Feng et al., 1998). It 

has been observed that the effect of volume compression is relatively strong on the elastic 

dilatation while weak on the elastic distortion. Accordingly, we may consider volume-

compression dependent corrections only for the dilatational components of the tangent 

elastic constants, i.e.,  
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  00
0 /)(1 VVVACC iijjiijj  ,  (2.4a) 

  0
ijijijij CC  , i  j  (2.4b) 

 and  0iiijC , i  j  (2.4c) 

where i, j = 1, 2, 3 (no sum on i or j), the superscript “0” denotes the properties in the 

undeformed initial state, A is the correction parameter, and V0 and V are respectively the 

initial and current specific volumes. Note that Eq. (2.4c) states no coupling between the 

dilatation and distortion modes, which is the case for crystals with the hexagonal 

structure. Unless otherwise specified, this simple nonlinear elasticity model is used to 

describe the volume-compression dependent stiffening. 

2.3.2  Crystal Plasticity Model 

The constitutive model for crystal plasticity uses a rate formulation and takes into 

consideration dislocation motions on multiple slip systems. The rate of plastic strain with 

respect to crystal axis is calculated by 

 



n

p

1

)()(



  Pε , (2.5) 

With  )(
2

1 )()()()()(  mnnmP  ,  (2.6) 

where )(P  is the Schmid direction tensor, )(m  and )(n  are respectively the unit vector 

of slipping direction and that normal to the slip plane of the -slip system, and )(  is the 



 34

rate of plastic shear strain of the system, which is determined by the following simple 

power law (Zhang et al., 2005): 

 
k

g )()()(
0

)( /)sgn(      for )()(  g . (2.7) 

Here 0  is the reference shear rate, k is the rate sensitivity parameter, )(  is the shear 

stress resolved on the -slip system, i.e., 

 σP :)()(   , (2.8) 

and )(g , which measures the system strain hardening, uses the initial critical resolved 

shear stress (CRSS) c  as the starting value and evolves as: 
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  , (2.9) 

where h  are the slip-plane hardening moduli. For hexagonal-structured crystals, basal, 

prismatic and pyramidal slips are the three types of plausible slip systems. Assume no 

coupling between different types of slip systems, the components of h  are (Hutchinson, 

1976): 

   
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 , (2.10a) 

if  and  are the same type of slip systems. Otherwise, 

 0h . (2.10b) 
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In Eq. (2.10a), 0h  is the initial hardening rate, s  is the maximum value of critical 

resolved shear stress, q is a constant in the range of [1, 1.4],   is the Kronecker delta, 

and  is a measure of the cumulative plastic shear strain calculated by summing the 

contributions from all n slip systems, i.e., 

 



n

d
1

)(



 . (2.11) 

It should be pointed out that the values for s  and c  are different for different 

types of slip systems. 

A stress-based Newton-Raphson algorithm has been developed to solve the above 

nonlinear constitutive equations iteratively (Zhang, et al., 2005). The solution procedure 

and iteration scheme are described in Appendix A-2 by Equations 2.12 ~ 2.31. The 

iterative solution scheme is implemented in ABAQUS/Explicit through User-defined 

subroutine - VUMAT  

2.3.3  Grain Boundary Material Model 

Some polycrystalline ceramics have glassy grain boundaries, e.g., 10% of 

intergranular glassy phase was observed in the -Al2O3 studied by Longy and Cagnoux 

(1989). It is therefore reasonable to treat these grain boundaries as secondary material 

phase. As a reasonable approximation, the grain boundary material may be modeled as an 

isotropic solid having the same elastic response as that of the corresponding 

polycrystalline ceramic. The constitutive relation of the material can be described by the 

following rate equation: 



 36

 ωWεεCσ  :)(:  p , (2.32) 

where C  is the tangent elasticity tensor of the material. Its two independent components, 

the Lamé constant  and shear modulus , may have volume-compression dependence 

similar to that considered in the nonlinear crystal elasticity model (Section 2.3.1), i.e., 

 ]/)(1[ 00
0 VVVB   ,  (2.33a) 

 0  ,  (2.33b) 

where B is the nonlinearity correction parameter. The values of 0  and 0  (where 

superscript “0” denotes the properties of initial undeformed material) are taken to be 

those of the corresponding polycrystalline material under the ambient conditions and B is 

determined by matching the bulk modulus-volume compression relation of the 

corresponding polycrystalline material (either experimental measurements, e.g., Yuan et 

al., 2001 or results of polycrystal simulations). This approach ensures the consistency 

with the nonlinear crystal elasticity described earlier (Section 2.3.1). 

The rate of “plastic strain” in Eq. (2.32) is physically the rate of inelastic strain in 

the grain boundary material due to intergranular shear damage. The flow stress is 

assumed to be governed by a pressure-dependent “plasticity” law, which adopts a flow-

surface treatment of the Johnson-Holmquist (JH-2) model (Johnson and Holmquist, 1994) 

as depicted in Figure 2.7. The curve (Fs and Fc) is the flow surface for the initially intact 

material under monotonic loading, which has a pressure-dependent strength portion that 

follows the Drucker-Prager plasticity theory (Loret and Prevost, 1986) (Fs) and a limiting 

strength portion that is pressure-independent (Fc). This treatment is motivated by the 
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experimental observation that the macroscopic material strength of shocked ceramics 

increases with compression and saturates when shock stress approaches 2HEL (e.g., 

Feng et al., 1998).  

The flow surfaces in Figure 2.7 may be mathematically described by the 

following functions: 

 0tan)( 02  ppJFs , (2.34a) 

 002  qJFc , (2.34b) 

where 3/iip   is the equivalent pressure stress with summation on i, ij  are the 

components of the Cauchy stress, 2/2 ijij SSJ   is the second invariant of the deviatoric 

stress tensor with summations on both i and j and ijijij pS   , 0q  is the strength limit, 

 is the friction angle of Fs, and 0p  represents the cohesion of intact material. Note that 

q0

p0 p 

 

2J

Fs 

Fc 

F1

Figure 2.7: Schematic of flow-surface treatment for grain boundary material.  
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for the smoothness of flow surfaces, the transition between Fs and Fc follows the circular 

curve: 

     0)1( 01
2

1

2

0121  qppqJF   (2.35a) 

with   0101 cot)2/tan( pqp   , (2.35b) 

where, 01q  is the radii of two transition curves. 

The constitutive equation of the Drucker-Prager model can be solved with 

arbitrary degree of non-associativity (Loret and Prevost, 1986). The outward normal of Fs 

can be computed from Eq. (2.34a) as 
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The components of the rate of plastic strain may be determined according to the 

following flow rule: 

 s
ij

p
ij P  , (2.37a) 

with ij

klkl

ij
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ij S
SS

P
2

1
tan

3

1
  , (2.37b) 

where  is a positive scalar;   0 is the dilatation angle. If   , the flow rule is non-

associative. When   = , s
ij

s
ij QP   and the flow rule becomes associative.  
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It is reasonable to assume that  and 0p  in Eq. (2.34a) are constants, implying 

that no deformation-induced strengthening is expected. Therefore, time differentiation of 

Eq. (2.34a) yields the following consistency condition: 

 0 ij
s
ijs QF  .  (2.38) 

Combining Eqs. (2.32), (2.37a) and (2.38) gives  as 
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The algorithms for solving the constitutive equations on the other portions of the 

flow surfaces follow the same procedure. 

The extent of in-grain plastic strain and that of inelastic grain boundary strain are 

measured using the effective plastic strain at the integration point of each numerical 

element, which is defined as 

 
t p

ij
p

ij
p dt

0 3

2   . (2.40) 

User-defined subroutine (VUMAT) which consists of three subroutines: one 

(VUMAT_MAT1) for crystal plasticity, one (VUMAT_MAT2) for bi-crystal boundaries, 

and the other (VUMAT_MAT3) for triple-crystal junctions, is implemented in 

ABAQUS/Explicit. 
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2.4  Modeling Tests  

In the previous work by  Zhang (2005), an analysis based on a 100 - grain square 

Voronoi polycrystal model at mesoscale with grain boundary of macroscopically 

homogeneous material was developed and applied to study the microplasticity in 

uniaxially compressed polycrystalline aluminum oxide and the resulting effective 

material strength ( Zhang, 2005). However, the statistic analysis of longitudinal stress 

response is not good since there are stress concentrations of crystals around the square. 

The number of crystals in the inner of square is not enough for the analysis. Hence 200- 

grains of 2-D model and 600 grains of 3-D model are considered for the analysis. So the 

results of the model parameters obtained in the previous study need be verified if they are 

suitable to the new polycrystal model for the dynamic finite element analysis. Although 

polycrystal modeling, which accounts for crystal anisotropies and grain-to-grain 

topological variations and permits implementation of crystal plasticity models of interest, 

may be used to analyze mesoscopically heterogeneous inelastic deformation via 

transgranular slip or twinning in some grains under shock compression, the size 

affordable is too small to run wave propagation simulations needed to extract material 

properties from plate impact experiment. To address this issue, a multiscale modeling 

technique is developed, in which a Voronoi polycrystal is embedded in a homogeneous 

matrix of the size proper for simulating the experiment. Using the multiscale modeling, it 

not only can solve the problem that some crystals have so rigid when the loading of 

pressure or displacement is applied directly on the polycrystal model, but the most 

important is that the loading of multiscale model, simulated from the experiment, is 
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realistic. The multiscale modeling technique is applied to analyze the inelastic 

deformation and effective strength of polycrystalline Al2O3 under shock compression 

using the plate impact data from the work of Munson and Lawrence (Munson and 

Lawrence, 1979). The details are described as follows. 

2.4.1   Multiscale Modeling and Analysis 

Multiscale modeling. Figure 2.8 shows a schematic illustration of the multiscale 

modeling technique as used for the analysis. The technique is a two-step approach. In the 

first step, a wave propagation simulation approach, which is similar to those commonly 

used for dynamic finite element analysis of plate impact experiment, is used to verify or 

optimize the parameters of macroscopic homogeneous material model by matching the 

computed wave profile of velocity between buffer and window with the experimental 

measurement data. The configuration for plate impact experimental simulation is shown 

in Figure 2.8 (a). Thicknesses of aluminum impactor and target disks are 5.04 mm and 

6.35 mm respectively. A fused-silica buffer is 3.25 mm thick and a fused-silica window 

is 25.4 mm thick. 

In the second step, mesoscopic analysis of Vonoroi polycrystal approach is used 

to verify or optimize the parameters of polycrystal material model. The configuration of a 

heterogeneous sub-domain for mesoscopic analysis is shown in Figure 2.8 (c). The center 

is a 200 grain Vonoroi polycrystal and the rest is treated as a homogeneous material. The 

heterogeneous sub-domain has the same size and boundary nodal as a homogeneous sub-

domain (containing only the homogeneous material), shown in Figure 2.8 (b), which is 

taken 9 unit elements from the center of the target. The sample is in the center of the 
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homogeneous sub-domain where the simulation results of stress-strain curves are plotted. 

To verify or optimize the parameters of polycrystal material model, the triaxial stress-

strain curves volume-averaged over the center portion of the Vonoroi polycrystal 

approach is close to those computed at the sample of plate impact simulation. 

The details of analysis for multiscale modeling are described as follows. First, the 

finite element model of plate impact simulation is implemented into ABQUS/Explicit. 

Figure 2.8 (b) shows an example of the representative mesh. The target, buffer and 

window are assembled by ABAQUS/Tie. The impactor and the target are contacted by 

using ABAQUS/ Surface- to-Surface contact (Explicit). The impactor has an initial 

velocity V0 = 760 m/s.  

The material model for non-linear elastic fused-silica is described by the 

following constitutive equations (Feng and Gupta,1996 ). 

The mean stress response  

 )(130100375139077.367 432 kbarPH   , (2.41) 

where   )1( 0  VV is the volume compression. 0V  and V  are the current and initial 

specific volumes, respectively. 

The shear modulus, expressed using two linear functions of   

 076.0)(11992.306   forkbarG , (2.42 a) 

and 12.0076.0))(076.0(4.668076.215   forkbarG . (2.42 b) 
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The macroscopic material model for alumina uses the mean stress response 

predicted by elastic polycrystal simulation and material strength model that combined the 

Drucker-Prager plasticity with a prescribed limited strength, described in section 2.3.3, 

1 

Place where the   
simulation results 
are plotted 

Impactor Target Buffer    Fused Silica window  

V0 
VISAR

2mm
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Figure 2.8:  Schematic illustration of multiscale modeling: (a) Configuration for plate 

impact simulation; (b) Homogeneous Sub-domain (9 elements for plate impact 

simulation) and sample at macroscopic scale; (c) Voronoi Polycrystal (sample at 

mesoscale) for sub-domain central region. 

Sample 
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(Zhang, 2005). The parameters of 0  = 140.70 GPa, 0  = 160.03 GPa, B = 5.06, p0 = -

0.8 GPa,  = 32.64, q0 = 4.34 GPa and  = 1.5 are used for the calculation. A computed 

wave profile of the velocity between buffer and window is plotted to compare well with 

the experimental measurement data by adjusting these parameters. The displacement 

histories of the homogeneous sub-domain boundary nodes (The nodes of 1 to 12 in 

Figure 2.8 (b)) are recorded and used as the dynamic boundary conditions in the 

mesoscopic analysis of heterogeneous sub-domain. The stress-strain curve of sample is 

plotted. The details of results are described in Section 2.4.2.  

Second, the 2-D and 3-D mesoscopic analyses of heterogeneous sub-domain are 

carried out by using ABAQUS/Explicit (2-D) and Standard (3-D). For 2-D analysis, a 

plate of heterogeneous sub-domain is constructed with a very small thickness and meshed. 

Figure 2.9 (a) shows the mesh and boundary conditions. A coarser mesh is generated in 

all around homogeneous parts and the mesh size decreases towards the center region of 

heterogeneous sub-domain which is polycrystal crystal overlaid with a very fine, grain-

wise constructed, microstructure-preserving mesh. The displacement histories of the 

boundary nodes obtained from plate impact simulation are used as dynamic boundary 

conditions in x and y direction. The displacements of surface nodes in z-direction are 

prevented. Figure 2.9 (b) shows the zoom of polycrystal mesh and coupling between 

polycrystal and the rest homogeneous parts which share the same nodes in four lateral 

surfaces. For 3-D analysis, a cube of heterogeneous sub-domain with the center of a 600 

grain 3-D polycrystal crystal model and all around homogeneous parts are constructed 

and meshed. Figure 2.10 shows the FE model with mesh. A much coarser mesh is created 
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in all around homogeneous parts and the mesh size decreases towards the center region of 

heterogeneous sub-domain which is a 3-D polycrystal crystal overlaid with a very fine, 

grain-wise constructed, microstructure-preserving mesh. The boundaries of nodes of four 

lateral surfaces are applied in x and y positions as the same displacement levels which are 

obtained by the result histories through 2-D analysis with different levels of impact 

velocities. Also in z-direction the displacements of the surface nodes are prevented. 3-D 

polycrystal model is coupled with the all-round homogeneous parts by sharing the nodes 

of six outside surfaces.  

z x 

y 

Displacement in z-
direction is prevented 

The displacement 
loads in x,y-direction 

Polycrystal crystal mesh and 
coupling 

(a) (b) 

Figure 2.9: The 2-D FE model of heterogeneous sub-domain: (a) mesh and 

boundaries, and (b) zoom of polycrystal crystal mesh and coupling. 



 46

 

 

Material modeling. The mesosopic polycrystal analysis takes into account the 

material models of nonlinear crystal elasticity, crystal microplasticity by basal and 

prismatic slips, and the strength model of macroscopic material (see section 2.3).  

Nonlinear elasticity. A ceramic can display noticeable stiffening in elastic bulk 

response when the material is deformed under uniaxal-strain compression. An accurate 

description requires at least a second-order formulation. Anisotropic elastic response of a 

single crystal can be represented by a finite-strain formulation (Horn and Gupta, 1989), in 

which the Cauchy stress ij  is defined as a function of Green strain G
ij  and second- and 

third-order isentropic elastic constants, ijklC  and ijklmnC , i.e., 

(a) (b) (c) 

Figure 2.10: The 3-D FE model of heterogeneous sub-domain: (a) mesh of the two left 

sides and coupling, (b) 3-D polycrystal crystal mesh, and (c) mesh of the right side. 
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where jiij XxF  /  is the deformation gradient with ix  and iX  denoting the current 

and initial configurations respectively. FdetJ  is the Jacobian for the transformation 

between the two coordinate systems. The Green strain is defined by 
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where ij  is the Kronecker delta. 

Al2O3 single crystal with trigonal symmetry has 6 independent second-order 

elastic constants and 14 independent third-order ones. The experimental measurement for 

these constants is given by Hankey and Schuele (1970), as shown in Table 2.1.  

Crystal plasticity. The model parameters for crystal plasticity are based on the 

assumption of rate-independent and non-hardening microplasticity (Zhang et al., 2005). 

A value of 110-3 s-1 is used for 0 , the selection of which is free for a very large k. To 

model a non-hardening plasticity, the saturated shearing stress s  in Eq. (2.10a) is 

assumed 0.2% greater than the critical resolved shearing stress (CRSS) c , and the initial 

hardening parameter 0h  is given a value of 1.0 GPa. Hence, hardening moduli h  

approach zero rapidly with increasing . Consequently, the latent hardening parameter q 

becomes insignificant and is given a value of 1.  
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Table 2.1: Independent second- and third-order elastic constants for Al2O3 with trigonal 

symmetry. 

Second-order elastic 

constants (GPa) 
Third-order elastic constants (GPa) 

C1111 496.8 C111111 -3870.0 C113323 -131.0 

C1122 163.6 C111122 -1090.0 C112323 -302.0 

C1133 110.9 C111133 -963.0 C111313 -1160.0 

C1123 -23.5 C111123 55.0 C222222 -4520.0 

C3333 498.1 C112233 -289.0 C333333 -3340.0 

C2323 147.4 C112223 -39.0 C332323 -1090.0 

  C113333 -922.0 C232323 -19.0 

 

The inelastic deformation and effective strength model of polycrystalline Al2O3 

under shock compression are analyzed, and the 2-D and 3-D polycrystal models as well 

as the material models are verified. The results are presented in Section 2.4.2. 

 

2.4.2   Results of Multiscale Modeling Analysis 

Plate impact simulation.  In comparison with the experimental measurement 

data (Munson and Lawrence, 1979), the computed particle velocity profile between 

buffer and window is plotted in Figure 2.11. The computed data compare well with the 
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experimental measurement data. The parameters of homogeneous material model are 

verified so that they can be used in the dynamic analysis. 
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Figure 2.11: Compared the computed wave profile of velocity for plate impact

simulation with experimental measurement data. 
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Mesoscopic analysis The results of 2-D and 3-D mesoscopic polycrystal analysis 

of the mean stress response, the macroscopic longitudinal stress and lateral stress 

compared with those of sample for plate impact simulation are predicted and shown in 

Figure 2.12. The results are based on basal slip and prismatic slip with cb 2.7 GPa and 

cp 3.3 GPa. The following three significant points can be made. First, the longitudinal 
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Figure 2.12: Compared the longitudinal stress, mean stress and lateral stress 

response of 2-D and 3-D mesoscopic polycrystal analysis with those of sample for 

plate impact simulation.  



 51

stresses based on mesoscopic analysis compare very well with that of plate impact 

simulation above Hugoniot elastic limit (HEL), which is 9.1 GPa. Second, mean stress, 

the longitudinal and lateral stress based on mesoscopic analysis compare closely with 

those computed in plate impact simulation. The longitudinal displays a little stiffer and 

the lateral stress displays a little softer beyond the HEL. Third, the results of 2-D and 3-D 

mesoscopic analysis have the same prediction of longitudinal and mean stress. It can 

observe that the stresses response can be well characterized by the parameters of crystal 

elastic and plastic model as well as macroscopic homogeneous material model.  

The contour plots of the effective plastic strain (see Eq. 2.40) fields of 2-D 

mesoscopic polycrystal crystal analysis at four stress states: (a) ,39.8 GPax   (b) 

,43.9 GPax   (c) ,65.12 GPax   and (d) GPax 08.16 are shown in Figure 2.13. 

The same intensity scale is used for different stress states. The calculated HEL is about 

9.1 GPa. From the plot for 8.39 GPa (a) shock stress, which is the predicted HEL, the 

material is seen to have very small plastic strains (0.1 to 0.2%) in a few isolated crystals 

(due to pre-HEL microplasticity). In the plot at little above HEL 9.43 GPa (b), there 

exists a small amount of slipped crystals, but the intensity of plastic strain is still small. 

The evolution of microplasticity from (b) to (c) is rapid. At stress state 12.65 GPa (c), 

more crystals are deformed with increased intensity of plastic strain with basal slip. The 

plastic deformation is clearly heterogeneous displaying a nonuniform distribution of 

plastically deformed grains and large variations in p . The plot for 16.08 GPa shock 

stress (d) shows a p  field that is much greater in intensity due to the activation of 

prismatic slip but the similar in the morphology of plastic region as that shown in (c). In 
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other words, intragranular microplasticity is greatly intensified but with little initiation of 

new slip sites and a fraction of the crystals remains elastic, giving rise to a significantly 

stronger heterogeneity. Also the contour plots of the effective plastic strain fields in x- 

Figure 2.13: Contour plots of effective plastic strain field in polycrystalline alumina 

of 2-D mesoscopic polycrystal analysis at four different stress states: (a) x = 8.39 

GPa, (b) x = 9.42 GPa, (c) x = 12.65 GPa, and (d ) x = 16.08 GPa. 

p

(a) x = 8.39 GPa (b) x = 9.42 GPa 

(c) x = 12.65 GPa (d) x = 16.08 GPa x  

y  
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cut plane of 3-D mesoscopic polycrystal analysis at three stress states: (a) ,49.8 GPax   

(b) ,80.12 GPax   and (c) GPax 18.16
 
are shown in Figure 2.14. 

 

p

Figure 2.14: Contour plots of effective plastic strain field in polycrystalline alumina 

in x-cut plane of 3-D mesoscopic polycrystal analysis at three different stress states: 

(a) x = 8.49 GPa, (b) x = 12.80 GPa, and (c) x = 16.18 GPa. 

(a) x = 8.49 GPa (b) x = 12.80 GPa 

(c) x = 16.18 GPa x  

y  

x - cut plane 
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Figure 2.15 shows the statistical distributions of normalized longitudinal stress 

calculated by mesoscopic polycrystal finite element method using 2-D plate model (a, b) 

and 3-D model (c, d). Compressions under two macroscopic longitudinal stresses are 
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Figure 2.15: Statistical distribution of normalized longitudinal stress calculated by 

mesoscopic polycrystal analysis using finite element method using 2-D plate model 

(a, b) and 3-D cube model (c, d). 
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considered: 12 GPa (12.65 GPa for Figure (a) and 12.80 GPa for Figure (c)), which is 

right above the HEL; and 16 GPa (16.08 GPa for Figure (b) and 16.18 GPa for Figure 

(d)). Mean value  and standard deviation  of Gaussian curves are also shown in the 

figures to present the stress variations. The Gaussian fits superimposed on the histograms 

show that all the distributions are essentially Gaussian, and the distributions for 3-D 

model (c, d) fit Gaussian best. Both distributions are apparently Gaussian-like with good 

matches between the statistical data and their best Gaussian fit (the lines). The results 

suggest that a good statistical representation can be achieved with the 200-grain square-

plate or 600-grain cubic VP-FE models. Therefore, a 200-grain square (2-D) Voronoi 

polycrystal model is used in all the 2-D micromechanical analyses presented in the rest of 

the dissertation, and each 3-D micromechanical analysis presented in the rest of this 

dissertation employs a 600-grain cubic model. 

Numerical simulations using the microstructure and material models have been 

carried out to investigate the inelastic deformations and compression strengths of 

polycrystalline ceramics under shock compression. The continue study of polycrystalline 

-Al2O3 (Lucalox) with microstructural model with different slip systems is presented 

and the results are discussed in Chapter 3. The results of the strength analysis of 

polycrystalline AD995 are presented and discussed in Chapter 4. The results of strength 

analysis of polycrystalline AlON are presented and discussed in Chapter 5. 
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CHAPTER 3  

SHOCK STRENGTH OF DENSE POLYCRYSTALLINE 

–PHASE ALUMINUM OXIDES (LUCALOX) 

 

3.1  Introduction 

Among the tested aluminas, the most commonly used is Lucalox, a commercially 

available polycrystalline -phase aluminum oxides (-Al2O3) with a high purity of 99.9% 

and full density. For decades, its longitudinal response under shock wave compression 

was measured by several researchers (e.g., Longy and Cagnoux, 1989; Munson and 

Lawrence, 1979; Murray, et al., 1996), and its HEL measured by Munson and Lawrence 

(1979) is ~9 GPa. However, longitudinal measurements alone cannot determine the 

material strength, nor further identify the underlying micromechanisms. The material 

strength and the inelastic deformation mechanism of polycrystalline -Al2O3 have been 

studied in the previous work in our group by Zhang (2005) by using a 100-grain square 

polycrystal model. In the previous work, polycrystal modeling methodology and 

technique with finite element analysis have been developed for polycrystalline -Al2O3, 

and the result shows that the simulated macroscopic compressive strength response 
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compare well with the experimental measurement by considering material model of 

nonlinear elastic and crystal plasticity with slip systems of basal and pyramidal slips 

(prismatic slip is not considered). However there is an issue of interest: what is the effect 

of prismatic slip because some researchers have showed that prismatic slip is more 

important and easily activated than pyramidal slip (Cadoz et al., 1984; Heuer et al., 1998)? 

Considering basal and prismatic slips for polycrystalline a-Al2O3 under shock stresses is 

significantly higher than its HEL. Hence, a further analysis of compressive strength of 

polycrystalline -Al2O3 by considering basal and prismatic slip is needed to solve the 

issue. 

To investigate the effect of prismatic slip, the analysis of compressive strength of 

polycrystalline -Al2O3 is continued.  200-grain crystal square FE model are employed in 

this analysis. The material model considers nonlinear elasticity, crystal plasticity and 

effective strength model that are used in the previous work (Zhang, 2005). Model 

parameters are also obtained. Both basal slip and prismatic slip are considered. The FE 

model and the material model are implemented into ABAQUS/Explicit code with User-

material Subroutine for FE analysis. A 3-D microstructure modeling by finite element 

method is presented in section 3.2. The material model and parameters are presented in 

section 3.3. Microplasticity analysis and results are presented in section 3.4. Section 3.5 

summarizes the key findings of the study presented in this chapter. 
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3.2  3-D Modeling by Finite Element Method 

The modeling methodology consists of three components: (1) a realistic 3-D 

model of polycrystalline microstructure, (2) a material model including compression-

dependent elastic stiffening and crystal plasticity, and (3) a solution algorithm to 

implement the microstructure and material model into the commercial FE code the 

ABAQUS/Standard for numerical analysis. 

Microstructural modeling. The polycrystalline microstructure is modeled using a 

cubic (3-D) VP-FE model with 600 grains, as shown in Figure 3.1. Since the loading 

condition is uniaxial-strain compression, uniform pressure is applied on the front surface 

Figure 3.1: 3-D polycrystal, microstructure-preserving FE mesh, and boundaries

conditions.  

Normal displacements of 
the nodes on four lateral 
and back surfaces are 
prevented. 

Uniform pressures 
on the front surfaces. 

x z

 y 
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of the polycrystal, while the back surface is fixed normally and the transverse 

displacements are prevented at the four lateral surfaces. Each Voronoi cell is assigned a 

random crystallographic orientation to represent crystal properties of the modeled 

material 

Nonlinear elasticity. A ceramic can display noticeable stiffening in elastic bulk 

response when the material is deformed under uniaxal-strain compression. An accurate 

description requires at least a second-order formulation. Anisotropic elastic response of a 

single crystal can be represented by a finite-strain formulation (Horn and Gupta, 1989), 

as described by Eqs. (2.43-2.44) in Section 2.4.1. -Al2O3 single crystal with trigonal 

symmetry has 6 independent second-order elastic constants and 14 independent third-

order ones. The experimental measurement for these constants is given by Hankey and 

Schuele (1970), as shown in Table 2.1. 

Crystal plasticity model (see section 2.3.2). The selection of constitutive 

parameters for crystal plasticity is based on the assumptions of rate-independent non-

hardening plasticity. Zhang et al. (2005) have carried out a series of FE simulations and a 

parametric study and found that model simulations with the following parameters 

provides the best overall match to the experimental data. That results in a very large k in 

Eq. (2.7), which forces a negligibly small variation of with . A value of 110-3 s-1 is 

used for 0 , the selection of which is free for a very large k. To model a non-hardening 

plasticity, the saturated shearing stress s  in Eq. (2.10a) is assumed 0.2% greater than the 

critical resolved shearing stress (CRSS) c , and the initial hardening parameter 0h  is 



 60

given a value of 1.0 GPa. Hence, hardening moduli h  approach zero rapidly with 

increasing . Consequently, the latent hardening parameter q becomes insignificant and is 

given a value of 1.  Two slip conditions are considered in the numerical simulations: (1) 

prismatic slip   02110110 only with the CRSS cp  2.7 GPa and (2) both primary 

prismatic slip  02110110  and second basal slip   02110001  with CRSS’s of cp 2.7 

GPa and cb 3.3 GPa. Figures 2.1 represent the slip planes and slip directions for the 

basal, prismatic and pyramidal systems, respectively. 

3.3  Microplasticity Analysis and Results  

Numerical simulations for mean stress response, the macroscopic longitudinal 

stress and lateral stress of polycrystalline -Al2O3 deformed under uniaxial-strain 

compression are carried out based on a 200-grain 2-D Voronoi polycrystal model. The 

microstructural model and material model are implemented into ABAQUS/Explicit code 

for FE analysis. Mean stress response, the macroscopic longitudinal stress and lateral 

stress based on prismatic slip only and both basal slip and prismatic slip conditions are 

predicted and the results are shown in Figure 3.2. Mean stress response (solid line) and 

experimental longitudinal stress data (Munson and Lawrence, 1979, as scattered dots) are 

shown in the figure for comparison. The results of considering both basal slip and 

pyramidal slip conditions are also shown for comparisons (Zhang, 2005). The following 

fifth significant points can be made. First, the calculations predict the same mean stress 

response as the experimental data. Second, the calculations by prismatic slip alone with 

cp 2.7 GPa are the same those by basal slip with cb 2.7 GPa, which can capture the 
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transition to the softer response at HEL, and the calculated value for HEL is 9 GPa, 

which agrees well with the experimental measurement of 9.1 GPa (Munson and 

Lawrence, 1979) Third, the longitudinal stress calculations based on prismatic slip alone 

compare well with the experimental data up to a compressive longitudinal strain of 0.029, 

the corresponding longitudinal stress at which is ~ 13 GPa, about 1.4  HEL. In addition, 

the longitudinal stress response displays a stiffening behavior and the lateral stress 
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Figure 3.2: Macroscopic longitudinal, mean and lateral stress response of 

polycrystalline -Al2O3. 
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response displays a softening behavior beyond the HEL. Fourth, the activations of second 

basal slip make the longitudinal stress response softer and lateral stress response stiffer. 

Model predictions compare better with experimental data than those predicted by basal 

slip or prismatic slip alone. This suggests that only one slip alone may not be sufficient 

for explaining the inelastic behavior of alumina, especially beyond 1.4 times the HEL. 

Fifth, beyond 2  HEL, model predictions based on both primary prismatic and second 

basal slip are the same as those of both primary basal and second prismatic slip. It can be 

said that the influence of prismatic slip on shocked alumina has the same as basal slip, In 

fact, the macroscopic response of shocked alumina is well captured by model simulations 

using both primary prismatic cp 2.7 GPa and second basal slip and cb 3.3 GPa up to 

a longitudinal of 20 GPa or about 2.2 times the HEL. 

Figure 3.3 (a) - (c) plot the statistical distribution of longitudinal stress for the 

same stress states at 13.98 GPa by considering different slip systems: (1) Prismatic slip 

only and cp  2.7 GPa; and (2) Primary prismatic slip cp 2.7 GPa and second basal 

slip with cb 3.3 GPa; The volume- averaged stress response can be viewed as an 

accurate representation for the macroscopic response of the material.  It can be observed 

that the longitudinal stress distributions are Gaussian-like, and combined prismatic slip 

and basal slip cause less heterogeneity than prismatic slip only.  
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Figure 3.3: Statistical distributions of longitudinal stress in polycrystalline α–Al2O3 at

x =13.98 GPa by considering different slip systems: (a) Prismatic slip only, and (b)

prismatic+ basal slips. 



 64

3.4  Summary 

In this chapter, the compression strength of polycrystalline -Al2O3 under 

dynamic loading has been studied computationally using the 3-D 600-grain plate VP-FE 

model, and the effect of different slip systems are investigated.  The material model 

considers nonlinear anisotropic and crystal elasticity. The material model parameters are 

used from the previous work.  The slip systems consider basal only, both basal and 

prismatic slip, and both basal and pyramidal slip. The microstructure and material models 

have been implemented into ABAQUS/Explicit for finite element analysis.  

Numerical results for the analysis of polycrystalline -Al2O3 show that: (1) The 

calculations by prismatic slip alone are the same those by basal slip alone. Microplasticity 

by prismatic slip only alone is adequate only near the HEL but underestimates post-HEL 

softening; (2) The model predictions by prismatic (primary) and basal (second) slips and 

those predicted by basal (primary) and pyramidal (second) slip compare better with 

experimental data than those predicted by prismatic or basal slip alone; They compare 

well with experimental data up to a longitudinal of 20 GPa or about 2.2 times the HEL.  
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CHAPTER 4  

SHOCK STRENGTH OF 3% POROUS POLYCRYSTALLINE 

PHASE ALUMINUM OXIDES (AD995) 

 

4.1  Introduction 

Polycrystalline AD995, another phase aluminum oxide ceramic, is one of the 

most widely used and studied advanced ceramic materials used for impact protection. It is 

composed of 99.5% polycrystalline alumina with a small amount of aluminosilicate glass 

(0.5%) and has 97% density due to 3% porosity in the ceramic. As an alternative to pure 

and dense polycrystalline -Al2O3, polycrystalline AD995 has a relative abundance and 

low-cost material resource that is advantageous for commercial applications. The HEL of 

AD995 has been measured by some researchers (eg., Dandeka and Bartowski, 1993; 

Reinhart and Chhabildas, 2003), and the measured value varies from 6.7 to 7.9 GPa. 

However, compared with pure and dense -Al2O3, which has extremely high effective 

shock strength, AD995 has 15-30% reduction in the Hugoniot elastic limit (HEL) and 

more signification reduction in the post-HEL strength (Dandekar & Bartowski, 1993; 

Reinhart & Chhabildas, 2003). It is not yet clear whether this is caused by glassy grain 

boundaries, voids or something else. To examine compressive strength of polycrystal 
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AD995 alumina under dynamic loading and understand its inelastic deformation behavior, 

numerical studies using Voronoi polycrystal modeling in conjunction with finite element 

analysis are carried out. Modeling and analysis of strength of polycrystalline AD995 

Alumina under dynamic loading are presented in this chapter. 

 The material model considers nonlinear anisotropic crystal elasticity, crystal 

plasticity and deformation twinning, which is presented in Section 4.2. Crystal plasticity 

model that is extending to allow modeling and simulation of crystal slip and crystal 

deformation twinning is described in this section. The constructions of 2-D porous VP-

FE models and the study of their performances are presented in Section 4.3. Three types 

of 2-D porous VP-FE models with triangular, square and random-shape voids are 

examined in this section.  The studies to examine the roles of glassy grain boundaries and 

voids are presented in Section 4.4.1 and 4.4.2. The grain boundary are treated as a glassy 

second phase to examine the effects of weaker grain boundary and AD995 is 

approximated as pure alumina with 1~3% porosities to investigate the role of voids. 

Microplasticity analysis and results of strength of polycrystalline AD995 under shock 

compression are presented in section 4.4.3. To compare well with the experimental 

measurement, numerical simulations for strength response of shocked AD995 by using 

combined deformation twinning and crystal slip with lower threshold are carried out. 

Section 4.5 summarizes the key finding of the computational studies presented in this 

chapter. 
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4.2  Material Modeling and Parameters 

Like pure and dense -Al2O3, the material modeling of AD995 also consists of 

nonlinear anisotropic crystal elasticity, crystal plasticity and grain boundary model, 

which are presented in chapter 2. The parameters of material modeling are approximated 

as those of pure and dense -Al2O3. The selections of material modeling parameters are 

presented as the followings.  

Nonlinear crystal elasticity. AD995 has the same parameters as pure and dense 

-Al2O3. The model parameters for the nonlinear crystal elasticity include 6 independent 

second-order elastic constants and 14 independent third-order ones, as shown in Table 2.1. 

Crystal plasticity.  The selection of constitutive parameters for crystal plasticity 

model is based on the assumptions of rate-independent non-hardening plasticity, and 

same values are selected as those used for pure and dense Al2O3 [see Section 3.3]. We 

use the selected parameters and consider two slip systems and a deformation twinning in 

the numerical simulations. The microplasticity model of basal twinning and slip systems 

are: (1) prismatic (primary)   02110001  and basal slip (second)   02110001  with the 

CRSS’s of cp 2.7 GPa and cb 3.3 GPa; (2) basal twinning   01100001 and 

prismatic slip with CRSS’s of cbtw 2.7 GPa and cp 3.3 GPa. Figures 2.1(a) and (b) 

represent the slip planes and slip directions for the basal and prismatic systems, 

respectively. In order to describe more accurate finite shear strains, a deformation 

twinning system is considered with the two slip systems since deformation twinning is an 

important deformation mode of AD995 (A. He et al., 2002). The deformation twinning is 
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assumed as basal twinning   01100001 . The relevant system for basal twinning is 

shown in Figure 4.1.  

  

Crystal plasticity model is extended to allow modeling and simulation of crystal 

slip and crystal deformation twinning. The associated equations for slip and twinning 

systems are described in below. The rate of plastic strain with respect to crystal axis is 

calculated by: (1) For active slip system with inactive twinning, 

 



sln

p
sl
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  Pε .  (4.1) 

where p
slε is the rate of plastic strain for slip system, sln is the total number of slip system,  

)(aP is the Schmid direction tensor of  slip system, and )(a is the rate of plastic shear 

strain of the  slip system. The calculations of )(aP and )(a as well as relative variables 

have been described in Chapter 2 [see Eq.(2.2)~Eq.(2.5)].   

(2) For active slip system with active twinning, 
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Figure 4.1:  Basal twinning 
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where p
twε is the rate of plastic strain for twin system, twn is the total number of twin 

system,  )(P is the Schmid direction tensor of  twin system, which is calculated by 
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here )(m  and )(n  are respectively the unit vector of twinning direction and that normal 

to the twin plane of the  twin system, )(f denotes the evolution of the deformation 

twinning volume fraction and is calculated by  
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where 0  is the reference shear rate and set as 0.001s-1, k is the rate sensitivity parameter 

and assumed to be the same as slip deformation, tw is the constant shear strain associated 

with twinning and equal to 0.635 ( Pirouz and Lawort et al., 1994), )(  is the shear stress 

resolved on the  twinning system, i.e., 

 σP :)()(   , (4.5) 

and )(g , which measures the system strain hardening, uses the initial critical resolved 

shear stress (CRSS) ctw  as the starting value and evolves as: 
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where )( ftw
 denotes the equivalent shear rate of the  twinning system, and twh  is the 

twinning-plane hardening moduli. Assume no coupling between different types of twin 

systems, and no coupling between twin systems and slip systems. The value of  twh  is 

(Hutchinson, 1976): 

 
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here 0h  is the initial hardening rate and the same as value of slip system, stw  is the 

maximum value of critical resolved shear stress and assumed 0.2% greater than the 

critical resolved shearing stress (CRSS) ctw , which is considered roughly to be equal to 

that of basal slip ( Tymiak & Gerberich, 2007), and  tw  is a measure of the cumulative 

plastic shear strain calculated by summing the contributions from all ntw twin systems, i.e., 

we define  tw  at the time t by 
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and )(f is the volume fraction of the  twin system. The twin fraction )(f  at time t is 

calculated by 
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And the total rate of plastic strain pε  is the sum by Eq. (4.1) and Eq.(4.2) 
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Grain boundary model.  The pressure-dependent strength model to describe the 

inelastic deformation in grain boundaries of AD995 (see Figure 2.7) are used. The 

parameters are the same as those of pure and dense -Al2O3: 
0  = 140.70 GPa, 0  = 

160.03 GPa, B = 5.06, p0 = -0.8 GPa,  = 32.64, q0 = 4.34 GPa and  = 1.5.  

In addition, in order to examine the effects of weaker grain boundaries on the 

effective strength of AD995 under shock compression, the grain boundaries are treated as 

a glassy second phase with 50% weaker elastic response and 90% weaker in strength. All 

the material models are implemented into ABAQUS/Explicit code by User Subroutines 

with VUMAT. 

 

4.3  Porous Polycrystal Model of AD995 

In light of the fact that the dynamic compression data available for ceramics are 

mainly from plane wave experiments, we consider a representative material cell subjected 

to macroscopically uniaxial-strain, dynamic compression. The resulting stress states are 

triaxial with transverse symmetry only at the macroscopic level. To simplify the problem, 

however, we adopt a 2-D approximation, which neglects microstructural variation in one 

lateral direction. The microstructure model for this study of AD995 is 2-D Voronoi 

polycrystal model with 3% voids. The model construction includes two parts: polycrystal 

part and void part. A 2-D 200-grain square-plate microstructure polycrystal model is used 

as the polycrystal part for AD995. The polycrystal part with finite elements in the study 

and boundary conditions are shown in Figure 4.2(a). The computational domain is a 
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square plate with uniform thickness. Uniform and symmetric displacement histories 

giving rise to the desired dynamic compression loading sequence are applied on the two 

boundaries normal to the y-axis. The four lateral boundaries are prohibited for normal 

displacements, resulting in zero total strain through the thickness and in the x direction 

macroscopically. The polycrystalline microstructure is constructed by applying the 2-D 

Voronoi tessellation to the computational domain and assigning to each Voronoi cell a 

randomly selected crystallographic orientation. To implement the grain boundary 

modeling, we apply a small in-plane contraction to each Voronoi crystal (see Section 2.2). 

The resulting intergranular space is filled with the grain boundary material as shown in 

Figure 4.2(b). The in-plane grain contraction ratio to create the grain boundaries is 1% 

and the grain boundaries are meshed in one layer.  Results of a series of calculations 

using the models with various thicker grain boundaries up to 10% area ratio and mesh of  

one or three layers (Figure 2.5) indicate that such variations in grain-boundary structural 

modeling cause little difference in the computed macroscopic response and microscopic 

behavior. Also shown in Figure 4.2, the computational domain is overlaid with a 

specially designed mesh of triangular prism elements, in which the crystals are meshed 

grain-wise and the neighboring grain core meshes are bridged consistently with the 

elements in the grain boundary. Such a mesh preserves the polycrystalline microstructure 

and enables numerical analysis by the FE method. 

The applied dynamic compression (compressive pressure) has a rise time of 

approximately 5s and obtains the maximum pressure, 20 GPa. The loading history is 

shown in Figure 4.3. 
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Normal displacements of the 
nodes on four lateral surfaces 
are prevented. 

Uniform compression 
(both sides) 

x 

y 

z

Grain boundary material 
(one layer) 

(a) (b) 

Figure 4.2: Polycrystal model configurations and boundary conditions: (a) polycrystal 

model with grain boundary layer, microstructure-preserving FE mesh, applied boundary 

conditions, and (b) grain boundary material. 

Compressive 
pressure 

t 

Figure 4.3:  The loading history 
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The next step is to generate the void part on the basis of the polycrystal part. The 

key objective is to develop an effective void model for the polycrystal simulation of 

AD995. In order to obtain this objective, three porous polycrystal models with voids of 

different shapes such as triangular, square and random-shaped voids are developed and 

void model studies to examine for their performances and mesh dependencies for 

modeling and analysis of microplasticity-driven void collapsing in AD995 under shock 

compression are carried out to find the best porous polycrystal model for the simulations.  

The technical details of constructing voids and the results of void modeling studies are 

shown as the follows.  

4.3.1  The Constructions of Voids 

The 200-grain square polycrystal models with triangular, square and random-

shaped voids in x-y plane are shown in Figure 4.4. The processes for constructing 

triangular, square and random-shaped voids are described.  

First, a porous polycrystal model with triangular voids is developed because 

triangular voids are easy and convenient to be generated. Triangular voids are generated 

by deleting some elements from the polycrystal part. A triangular void is a single element 

which is randomly selected as a void according the condition (72% in grain, 25% in grain 

boundaries, and 3% at triple junctions), and the total volume of these selected elements is 

up to 3% of the total volume of whole polycrystal part. Figure 4.4 (a) shows a sample of 

the porous polycrystal model with triangular voids and a zoom view.  The void modeling 

study of porous polycrystal model with triangular voids shows that this model is not an 
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effective model for the simulations (see Section 4.3.2), so other void models need be 

developed.  

Second a porous polycrystal model with square voids is generated by constructing 

square holes in random locations and orientations of polycrystal part. The square voids 

are generated first and then the porous model is meshed. Each square void can be viewed 

as two triangular elements. The volume of each square void is random between 2 times of 

minimum volume and 2 times of maximum volume of elements. The total volume of all 

square voids is 3% of the total volume of whole polycrystal model. Figure 4.4 (b) shows 

a sample of the porous polycrystal model with square voids and a zoom view. The 

purposes of constructing this model are: First this model can be used to investigate the 

effect of special voids with a fix shape; Second, it can be also used to study the mesh 

convergence for constructing random-shaped voids. The details of mesh convergence will 

be described in Section 4.3.3. 

At last a porous polycrystal model with random-shaped voids is generated. The 

method of constructing random-shaped voids is the same as that of constructing 

triangular voids, but the difference is that a random-shaped void in grain is deleting two 

or three triangular elements which connect together from the polycrystal part. The voids 

are called random-shaped voids because each void has different shape. The total volume 

of all random- shaped voids is 3% of the total volume of whole polycrystal model Figure 

4.4 (c) shows a sample of the porous polycrystal model with random-shaped voids and a 

zoom view.  
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  (b) 

(c) 
x 

y 

Figure 4.4:  200-grain porous polycrystal models of AD995 with 3% voids of different

shapes:  (a) Triangular voids; (b) Square voids; and (c) Random-shaped voids. 

(a) 
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4.3.2  Void Modeling Studies and Results 

Void modeling studies to examine for their performances and mesh dependencies 

for modeling and analysis of microplasticity-driven void collapsing in AD995 under 

shock compression are carried out.  The results are for three porous polycrystal models of 

AD995 with 3% voids of different shapes: triangular, square and random-shaped. The 

material models are described in Section 4.2. Only both prismatic slip and basal slip 

( cp 2.7 GPa and cb 3.3 GPa) is considered.  Boundary conditions and load history 

are the same as the study of pure and dense Al2O3, which are shown in Figure 3.1 and 3.2 

respectively.  

Macroscopic response. Figure 4.5 compares the three model predictions of the 

macroscopic longitudinal and mean stress (area–weighted average values) as functions of 

the applied compressive uniaxial strain with the experimental data of Dandekar & 

Bartowski (1993) and Reinhart & Chhabildas (2003) and the results of pure and dense 

Al2O3. The following three significant points can be made. First, for three porous 

polycrystal models with 3% voids, the longitudinal and mean stress response display 

different behaviors, that means different void models have different influences on the 

longitudinal and mean stress and an effective void model is important for simulation. 

Second, compared with the data of pure and dense model, the longitudinal and mean 

stress response of porous polycrystal models display a different softening behavior with 

different void shapes, the random-shaped void model is the most soften, the triangular 

void model is a little soften and the square void model is between random-shaped void 

model and triangular model. Third, the longitudinal stress calculations based on porous 
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polycrystal models don’t match well with the experimental data and the response displays 

a stiffening behavior at the HEL and beyond the HEL. 
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Figure 4.5: Comparison of computed response of three porous polycrystal models of

AD995 with 3% voids of different shapes (triangular, square and random-shaped),

computed response of pure and dense of Al2O3, and measured response of AD995. The

numerical results shown are for both prismatic slip and basal slip of cp 2.7 GPa and

cb 3.3 GPa. 
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Effective plastic strain. The effective plastic strain is defined by: 

 p
ij

p
ij

p 
3

2
 , (3.11) 

where p
ij  are the plastic strain components, which are uniform in each element. To 

examine the microscopic behaviors of void models, the comparison of contour plots of 

effective plastic strain p  field at y = 16.0 GPa stress state of different models is shown 

in Figures 4.6. Figures 4.6 (a)-(d) show respectively the effective plastic strain fields of 

polycrystal models with (a) Pure and density, (b) Triangular voids, (c) Square voids and 

(d) Random-shaped voids, assuming possible slip in both prismatic and basal systems 

with cp 2.7 GPa and cb 3.3 GPa. The intensity of effective plastic strains is 

presented in the same scale. The higher effective plastic strains more than 5% are shown 

by using red color. It can be observed that the distribution of plastic strain is not 

continuous in all the figures. From Figure 4.6 (a) to (d), pure and dense model to random-

shaped void model, they involve the increase of red areas of higher effective plastic strain, 

the more increase of effective plastic strain means the much more softening behavior in 

macroscopic response. For porous polycrystal models, the red areas of higher effective 

plastic strains are near the voids which are collapsing. Random-shaped void model has 

more red areas because the random-shaped voids are easily collapsed, and triangular void 

model has small red areas because most of triangular voids are rigid and hardly collapsed, 

even the collapsed voids are like random-shaped voids ( two or more triangular void 

connected together). This is why the longitudinal and mean stresses display the same 

behavior as pure and dense material for the triangular void model. 
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(a) Pure and density (b) Triangular voids 

x 

y 

(c) Quadrilateral voids (d) Random-shaped voids 

Figure 4.6: Comparison of contour plots of effective plastic strain field at y = 16.0

GPa stress state for void modeling study of different models: (a) Pure and density; (b) 

Triangular voids; (c) Quadrilateral voids; (d) Random-shaped voids. 
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4.3.3  Mesh Density and Void Randomness 

From void modeling study, it is demonstrated that the random-shaped void model 

is the best porous polycrystal model for the simulations. Random-shaped voids are used 

to construct porous VP-FE model for AD995.  The other issues are mesh density and void 

randomness. What is the best mesh density for porous VP-FE model because mesh 

density can affect the performance of voids? Can a porous VP-FE model generated with a 

type of random voids represent other types of porous VP-FE models? The studies of 

mesh density and void randomness are needed to solve the issues. 

The study of mesh density and void randomness is described here. Since the 

random-shaped voids are constructed by deleting two or three elements which connect 

together from polycrystal part and are generated randomly, the locations of random-

shaped voids change with different mesh density. It is hardly to compare the models with 

different density meshes since the voids are different. For this reason, porous models with 

the special square shape voids are developed to study the mesh convergence. The details 

of constructing square voids are presented in Section 4.3.1. Because the square voids are 

not extracted from the elements, they don’t change with different density meshes after 

they are generated. It is convenient to compare them to study the mesh convergence. The 

processes are: First, the tests of square void models with different density meshes are 

carried out and the best reasonable mesh density is obtained by comparing the 

longitudinal stress response with experimental data. Second, the best reasonable mesh 

density is suggested for porous VP-FE model with random-shape voids, so the 

polycrystal part is meshed by using this mesh density and then some different samples of 
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porous VP-FE models with random-shaped voids generated by different random numbers 

can be obtained for the study of the void randomness. The detail of constructions of 

random-shaped voids is presented in Section 4.3.1. And third, we can also construct 

different samples of porous VP-FE models with different mesh densities for some kind of 

random-shaped voids to double check the mesh convergence. At last a kind of porous 

VP-FE model with random-shaped voids, which is the best representation of porous VP-

FE models, is obtained for the analysis of strength of Polycrystalline AD995. The results 

of the studies are present below.  

From the tests of different porous VP-FE models with square voids, the result of 

the best reasonable mesh density is 13209 elements in total. Using this mesh density,   

several porous polycrystal models with 3% different types of random-shaped voids are 

obtained for the study voids randomness. Two examples of porous VP-FE models with 3% 

random-shaped voids with this mesh density, sample1 and sample 2, are used to describe 

the results of the study voids randomness. The two models with mesh and voids are 

shown in Figure 4.7 (a) and (b), respectively. The voids of sample 1 and sample 2 are 

generated in the different locations, so the two samples have different type of voids.  The 

results of strengths response of the two samples are compared to determine void 

randomness. In addition, the result of strengths response of another sample with more 

mesh of total 26517 elements is compared with them to check mesh convergence. Figure 

4.7 (c) shows the porous VP-FE model with more mesh.    

Figure 4.8 shows the results of comparison of model predictions of the 

macroscopic longitudinal and mean stress as functions of the applied compressive 
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(b) Sample‐2 (3% porosity) (a) Sample‐1 (3% porosity)

x

y

(c) Sample‐1 (more mesh)

Figure 4.7: Porous polycrystal models with two different distributions of 3% 

random-shaped voids, (a) Sample-1, (b) Sample-2, and (c) Sample-1(more mesh).  
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uniaxial strain. The following two significant points can be made. First, longitudinal 

stress response for sample 1 (more mesh) displays a little stiffen behavior than that of 

sample 1 beyond HEL and up to 12GPa. That means even sample 1 has more mesh, but 

the result is not good. Mesh convergence is also proven.  Second, the calculations of 

longitudinal and mean stresses response for sample 1 and sample 2 are the same. That 
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Figure 4.8: Comparison of longitudinal and mean stress response of sample 1, 

sample 2 and sample 1 (more mesh) for the studies of void randomness and mesh 

density.  
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(b) Sample-2 (3% porosity) (a) Sample-1 (3% porosity) 

Figure 4.9: Comparison of contour plots of effective plastic strain field at y = 16.0 GPa 

stress state for porous polycrystal models with two different distributions of 3% random-

shaped voids, (a) Sample-1 and (b) Sample-2.  

x 

y 

means the two types of voids have the same effects on the strength of AD995. The results 

of sample 1 can represent those of sample 2. Void randomness is verified. The same 

results can also be obtained through the examination of the effective plastic strain fields. 

Figures 4.9 (a) and (b) show the effective plastic strain fields of sample 1 and 

sample 2, respectively. The intensity of effect plastic strains is presented in the same 

scale. The higher effective plastic strains more than 5% are shown by using red color. It 

can be observed that the plastic strains have the similar distribution in the two figures and 

also both have the similar reds areas of higher effective plastic strains which are near the 

collapsing voids. Consequently, the two model samples have the same macroscopic 

response. 
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Although the results of mesh density and void randomness are only presented by 

two samples of porous polycrystal models for consistency, verification calculations with 

different samples of porous polycrystal models have been carried out to ensure that the 

results presented are statistically representatives.  

 

4.4  Strength Analysis and Results of Polycrystalline AD995 

In order to explain 15-30% reduction in the HEL and more signification reduction 

in the post-HEL strength of shocked-AD995, the roles of glassy grain boundaries, voids 

and microplasticity in the inelastic deformations and strengths of polycrystalline AD995 

under uniaxial–strain compression are examined. The numerical simulations and results 

for the strength response of shocked-AD995 are presented in this section. 

The roles of glassy grain boundaries are studies based on a 200-grain 2-D porous 

VP-FE model by treating the grain boundaries as a glassy second phase (weaker 

boundaries). 3% triangular voids are considered in the model.  The reason of using this 

kind of voids is that we can focus on studying the roles of weaker boundaries because the 

influence of triangular voids is very small according the previous void modeling studies 

(see section 4.3.2). The results of the roles of glassy grain boundaries are presented in 

Section 4.4.1. In order to examine the roles of voids, 2-D 200-grain porous polycrystal 

models with 1%, 2% and 3% random-shaped voids are developed and the simulations are 

carried out based on these models. The results of the roles of voids are presented in 

Section 4.4.2. Microplasticity analysis and results of strength of polycrystalline AD995 
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are presented in Section 4.4.3. The boundary conditions and load history are described in 

Figure 4.2 and 4.3 respectively. The porous VP-FE model and the material model are 

implemented into ABAQUS/Explicit code with User-material Subroutine for FE analysis.  

The results are presented as the follows. 

4.4.1  The Roles of Glassy Grain Boundaries 

The purpose of this study is to examine if the weaker boundaries can explain the 

reduction in the HEL and more signification reduction in the post-HEL strength of 

shocked AD995. The FE model considers a 2-D 200-grain porous VP-FE model with 3% 

triangular voids. The technical method is the grain boundaries are treated as a glassy 

second phase with 50% weaker elastic response and 90% weaker in strength (weaker 

boundaries). The parameters are 0  = 70.35 GPa, 0  = 80.015 GPa, B = 4.56, p0 = -0.8 

GPa,  = 32.64, q0 = 3.906 GPa and  = 1.5. Crystal material model considers nonlinear 

elasticity and crystal plasticity with both basal slip and prismatic slip of cb 2.7 GPa 

and cp 3.3 GPa. The porous VP-FE model and the material model are implemented 

into ABAQUS/Explicit code with User-material Subroutine for FE analysis. 

Model predictions of macroscopic longitudinal and mean stresses (volume-

averaged values) as functions of the applied compressive uniaxial strain are plotted in 

Figure 4.10. The experimental longitudinal data of Dandekar & Bartowski (1993) and 

Reinhart & Chhabildas (2003) and the computed longitudinal and mean stress response of 

porous VP-FE model with 3% triangular voids (non-wearker boundaries) are shown in 

the figure for comparison. The following two significant points can be made. First, the 
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longitudinal stress calculations cannot match the experimental data of AD995 and the 

longitudinal stress displays a stiffening behavior at the HEL and high stiffening behavior 

beyond the HEL. Second, the longitudinal stress response of porous model with 3% 

triangular voids and weaker boundaries only displays a little softening than that of 3% 

Figure 4.10: Macroscopic longitudinal and mean response of polycrystalline AD995 

with 3% triangular voids and weaker grain boundaries.  
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triangular voids (non-weaker boundaries). It can be observed that the effect of the weaker 

grain boundaries is small and cannot explain the observed HEL and post-HEL response 

of shocked-AD995. In other word, it is not the glassy grain boundaries in AD995 alumina 

responsible for its lower shock strength than the dense one. 

4.4.2  The Roles of Voids 

 To examine the roles of voids, 2-D 200-grain porous VP-FE models with 1%, 2% 

and 3% random-shaped voids are developed, shown in Figure 4.11 (a), (b) and (c), 

respectively. The material model considers nonlinear elasticity, crystal plasticity and 

effective strength model (see Section 4.2). Only both prismatic (primary) slip and basal 

slip of cp 2.7 GPa and cb 3.3 GPa are considered. The porous VP-FE model and the 

material model are implemented into ABAQUS/Explicit code with User-material 

Subroutine for FE analysis. Numerical simulations for longitudinal and mean stresses 

response of polycrystalline AD995 are carried out for these three porous polycrystal 

models.  

Model predictions of macroscopic longitudinal and mean stresses response are 

plotted in Figure 4.12. The experimental longitudinal data of Dandekar & Bartowski 

(1993) and Reinhart & Chhabildas (2003) and the computed longitudinal and mean stress 

response of pure and dense -alumina are shown in the figure for comparison. From 

Figure 4.10, the following three significant points can be made. First, the longitudinal and 

mean stresses response of three porous models display a softening behavior than those of 

pure and dense -alumina. Second, with the increase in the percentage of voids, the much 
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more softening behaviors are displayed for the longitudinal and mean stresses response. 

The effect of voids on strength of AD995 is remarkable. Third, the longitudinal stress 

Figure 4.11: Porous polycrystal models with three different percent porosities of 

random-shaped voids, (a) 1% porosity, (b) 2% porosity, and (c) 3% porosity. 

(a) 1% porosity (b) 2% porosity 

x 

y

(c) 3% porosity
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calculations based on porous polycrystal with 3% porosity compare well with the 

experimental data up to HEL, but it displays a stiffening behavior on the post-HEL.  

To examine the microscopic behavior of shocked AD995 with 1-3% porosities, 

the contour plots of the effective plastic strain fields for porous ploycrystal model with 
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Figure 4.12: Comparison of computed response for polycrystalline AD995 by using 

porous polycrystal models with random-shaped voids of 1-3% porosities.  
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1%, 2% and 3% porosity at stress states of y = 16 GPa are shown in Figure 4.13 (a), (b) 

and (c) respectively. The intensity of effective plastic strains is presented in the same 

scale. The higher effective plastic strains more than 5% are shown by using red color. 

From Figure (a) to (c), with the increase in the percentage of voids, the models involve 

more intensity in effective plastic strain and more red areas of higher effective plastic 

strains. It means that macroscopic stresses response become much more softening with 

the increase of effective plastic strain from 1% porosity to 3% porosity. For the entire 

figures, the distribution of plastic strain is not continuous and the red areas of higher 

effective plastic strains are near the voids. It can be observed that microplasticity 

becomes easier to initiate near the voids, evolve in a way of deformation band, and leads 

to voids collapsing. The more collapsing voids have, the much more softening the 

macroscopic response displays.  It can be concluded that it is the voids, not the glassy 

grain boundaries in AD995 alumina responsible for its lower shock strength than the 

dense one. The model predictions can match the experimental data up to HEL but the 

experimental data right above HEL shows a much more abrupt post-HEL softening than 

the model prediction. It needs further analysis to explain the significant reduction in the 

post-HEL strength of shock AD995.      
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(a) 1% porosity (b) 2% porosity 

(c) 3% porosity x 

y 

Figure 4.13: Comparison of contour plots of effective plastic strain field at y = 16.0

GPa stress state for porous polycrystal model with of random-shaped voids of different 

percent porosities: (a) 1% porosity, (b) 2% porosity, and (c) 3% porosity. 
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4.4.3  Analysis of the Strength of Polycrystalline AD995    

The model prediction of longitudinal stress response for porous VP-FE model 

with 3% random-shaped voids can match the experimental data up to HEL but it displays 

a much more stiffening behavior than the experimental measurement of post-HEL 

strength. The purpose of this analysis is to examine the post-HEL strength of shocked 

AD995 and make the model prediction match well with the experimental data. Since the 

post-HEL behavior of longitudinal stress response is relative to the deformation systems 

and all the previous calculations are based on both prismatic (primary) slip ( cpb 2.7 

GPa) and basal slip ( cb 3.3 GPa) conditions, the two studies with different deformation 

systems and material model parameters are considered for the analysis of the strength of 

pollycrystalline AD995.  

The first study is to activate a deformation twinning system because deformation 

twinning is another important deformation mode (He et al., 2002) and activating this 

deformation twinning maybe soften the longitudinal stress response. Hence, a 

deformation twinning system with the two slip systems are considered for the first study. 

The deformation twinning is assumed as basal twinning   01100001 . The relevant 

system for basal twinning is shown in Figure 4.1. The constitutive equations for modeling 

and simulation of crystal slip and crystal deformation twinning are described in section 

4.2.  The CRSS ( c ) of basal twinning is considered as a lower value and roughly equal 

to basal slip ( ctw  2.7 GPa).  The value of ctw  is used as the CRSS of both basal slip 

and twinning. The numerical simulation base on the deformation systems combined basal 
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twinning and prismatic slip with the CRSS of ctw  2.7 GPa and cp 3.3 GPa is carried 

out. The porous polycrystal model used is 3% random-shaped voids model.  The 

microstructure model and material model including twinning are implemented into 

ABAQUS/ Explicit code for FE analysis. Boundaries condition and load history are the 

same as those of α-Al2O3 (see Figure 3.1 and 3.2).  

Model predictions of longitudinal stress and mean stress response for the first 

study are shown in Figure 4.14. It can be observed that the longitudinal stress response 

based on basal twinning and prismatic slip with the CRSS of ctw  2.7 GPa and cp 3.3 

GPa (the long dash line) displays a much softening behavior than that of both basal and 

prismatic slip (no twinning) with the CRSS of cb  2.7 GPa and cp 3.3 GPa (the solid 

line), but compared with the experimental data (black circle dot), it still displays a 

stiffening behavior. The result shows that although by activating the deformation 

twinning, model prediction of longitudinal stress response displays much softening, it 

still cannot match well with the experimental data.  The second study is considered.  

In the second study, the different material model parameters for deformation 

systems of crystal plasticity are considered. Since model prediction cannot compare well 

with the experimental data even basal twinning system is activated, we have a reason to 

think that the material parameters for crystal plasticity of AD995 maybe have not the 

same values as those of pure and dense alumina. The lower CRSS of deformation 

systems maybe the reasons of abrupt post-HEL softening of strength of shocked AD995. 
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So the material parameters of lower CRSS values than those of pure and dense alumina 

are considered in this study. 

The deformation systems combined basal twinning and prismatic slip with two 

conditions of lower CRSS are considered: (1) ctw  1.8 GPa and cp 2.0 GPa; (2) 

ctw  2.0 GPa and cp 2.4 GPa.  The numerical simulations based on the two 

conditions are carried out through ABAQUS/Explicit. The results of calculations are also 

shown in Figure 4.14 (the dot dash line and the double dot dash line). The following three 

significant points can be made. First, the calculations predict the same mean stress 

response, which is consistent with the assumptions of material model. Second, the 

longitudinal stress calculations based on ctw  1.8 GPa and cp 2.0 GPa can match well 

the experimental data in the post-HEL and up to 12.4 GPa, but the calculated value for 

HEL is lower than that observed. Third, the longitudinal stress calculations base on 

ctw  2.0 GPa and cp 2.4 GPa can match well with the experimental at HEL and even 

in the post- HEL up to 14 GPa.  

It can be observed that model predictions by basal twinning and prismatic slip 

with the low CRSS of ctw  2.0 GPa and cp 2.4 GPa compare better with 

experimental data than those predicted by other parameters of CRSS. It shows that using 

the same slip system and model parameters as pure and dense alumina may not be 

sufficient for explaining the inelastic behavior of AD995, especially in the post-HEL, and 

the influence of basal twinning and prismatic slip with the lower CRSS on shocked 

AD995 may be significant. In fact, the macroscopic response of shock AD995 is well 
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captured by model simulation using ctw  2.0 GPa and cp 2.4 GPa up to longitudinal 

of 14 GPa or about 2 times the HEL. 

 

Figure 4.14: Macroscopic longitudinal and mean stresses response of polycrystalline 

AD995.  
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To examine the microscopic behavior of shocked AD995, the contour plots of 

effective plastic strain p fields at three stress states: (a) GPay 62.7 , (b) 

GPay 06.12 , and (c) GPay 03.14  are shown in Figure 4.15. The deformation 

systems are allowed to occur in basal twinning and prismatic slip systems with the CRSS 

of ctw  2.0 GPa and cp 2.4 GPa. The same intensity scale is used for different stress 

states. The fields of effect plastic strains higher than 5% are described in red areas. The 

calculated HEL is about 7.1GPa. At little above HEL GPay 62.7  (a), there exists a 

small amount of slipped crystals, but the intensity of plastic strain is still small. Voids 

collapsing are initiated. At GPay 06.12  (b), more crystals are deformed with 

increased intensity of plastic strain. The evolution of microplasticity from (a) to (b) is 

rapid since the activated deformation systems. There involves some more red areas of 

high plastic strain near the voids and void collapsing evolves in the way of deformation 

twinning band. The more increase of effective plastic strain can explain the much 

softening behavior in longitudinal response. A significant increase in the intensity of 

effective plastic strain can be observed in (c) at GPay 03.14 . Many more red areas of 

high plastic strain are involves near the voids and lead to void collapsing. Some voids are 

totally collapsed and the calculation is failed to continue. The longitudinal stress of the 

simulation is up to 14.03 GPa, about 2 times of HEL. 
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(a) y = 7.62 GPa (b) y = 12.06 GPa 

(c) y = 14.03 GPa 

x 

y 

Figure 4.15: Contour plots of effective plastic strain field in polycrystalline AD995 at 

three different stress states: (a) y = 7.62 GPa, (b) y = 12.06 GPa, and (c) y = 14.03 

GPa, assuming possible deformations in both basal twinning and prismatic slip systems 

with ctw 2.0 GPa and cp 2.4 GPa. 
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4.5  Summary 

In this chapter, micromechanical analysis has been used to investigate the strength 

of polycrystalline AD995 alumina under dynamic loading and understand the difference 

between the inelastic deformation of shocked AD995 and that of shocked pure and dense 

-phase alumina. Three types of 2-D porous VP-FE models have been constructed and 

examined for their performance and mesh dependencies for modeling and analysis of 

microplasticity-driven void collapsing in polycrystalline AD995 under shock 

compression. The material model of AD995 considers nonlinear anisotropic crystal 

elasticity and rate-dependent crystal plasticity. Microplasticity is assumed to originate 

from combined basal and prismatic slip, and even deformation basal twinning.  The 

microstructure and material models have been implemented into ABAQUS/Explicit for 

finite element analysis. First, the grain boundaries are treated as a glassy second phase to 

examine the effects of weaker grain boundaries. Next, AD995 is approximated as pure 

alumina with 1%, 2% and 3% porosities to investigate the roles of voids in the inelastic 

deformation of AD995 under uniaxial-strain. Neither of the two studies can explain the 

observed HEL and post-HEL response of shocked AD995. At last, microplasticity 

analyses consider deformation twinning  and crystal slip with lower CRSS of deformation 

systems are carried out to explain the observed  the observed HEL and post-HEL 

response of shocked AD995.     

Numerical results of void modeling studies for polycrystalline AD995 based on 

both basal and prismatic slip indicate the followings. First, triangular voids are so rigid to 

be collapsed and may be inadequate for intense plastic deformation near voids. The 
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longitudinal stress response of porous polycrystal model with 3% triangular voids 

displays almost the same behavior as that of pure and dense alumina. Second random-

shaped voids are found to be the most advantageous, providing relative ease in 

construction, more realistic void shape modeling, and good ability for capturing void 

collapsing process. The longitudinal stress response of porous polycrystal model with 3% 

random-shaped voids displays the much more softening behavior than that of pure and 

dense alumina. Third, using porous polycrystal model with 3% square voids is convenient 

to have a test of mesh density. At last, void randomness is tested by using different 

porous polycrystal models of random-shaped voids to ensure that the results are 

statistically representative. Porous VP-FE model with random-shaped voids is used for 

the analysis of strength of AD995. 

Numerical results for the analysis of strength of polycrystalline AD995 under 

dynamic loading indicate the followings: (1) Weaker grain boundary cannot explain the 

observed HEL and post HEL response of shocked AD995. (2) It is the voids in AD995 

that responsible for its lower shock strength than the dense one. Microplasticity becomes 

easier to initiate near the voids, evolves with the deformation band, and leads to void 

collapsing. Model prediction based on both basal slip and prismatic slip with cp  2.7 

GPa and cb 3.3 GPa cannot match the experimental data. (3) Model prediction based 

both deformation twinning and prismatic slip with high threshod ctw  2.7 GPa and 

cp 3.3 GPa can match the experimental data up to HEL, but cannot match the 

experimental data in the post-HEL. (4) In fact, model prediction can match well with the 

experimental data if a lower threshold of CRSS for deformation systems in crystal 
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plasticity than that of pure and dense alumina is used. The macroscopic response of shock 

AD995 is well captured by model prediction based on both deformation twinning and 

prismatic slip with low threshold ctw  2.0 GPa and cp 2.4 GPa up to longitudinal 

stress of 14 GPa or about 2 times of HEL. (5) The evolution of effective plasticity strain 

based on both deformation twinning and crystal slip with lower threshold is rapid for both 

intensity and plasticity field when the material is shocked to ~12 GPa, which can explain 

the abrupt post-HEL of strength of AD995. (6) When the shock stress is up to 14 GPa, 

most of the crystals have been plastically deformed and some voids are collapsed totally.  
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CHAPTER 5 

RESPONSE OF POLYCRYSTALLINE ALUMINUM 

OXYNITRIDE UNDER SHOCK COMPRESSION 

 

5.1  Introduction 

Polycrystalline aluminum oxynitride (AlON) is a very important material for 

advanced structural engineering purposes. In particular, it can be sintered into a nearly 

fully dense isotropic and transparent polycrystalline solid which has the potential of 

serving as a low-cost, but high-strength, window material. In this regard, AlON has a 

distinct advantage in relation to polycrystalline Al2O3, which cannot be produced with 

true optical transparency (Graham and Munly, 1988). The crystals of AlON have cubic 

spinel structure and a typical size of 200 microns. The synthesis, fabrication, and 

microstructure of polycrystalline AlON have been described in detail by McCauley and 

Corbin (McCauley and Corbin, 1982). Although there are several studies to measure the 

Hugoniot Elastic Limit (HEL) of shocked AlON (Cazamias and Fiske, 2001; McCauley, 

2002; Thornhill et al., 2005), the results regarding its shock strengths and mean stress 
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response are conflicting. The compressive strengths of shocked AlON under dynamic 

loading are not yet clear.  

In view of the interest in AlON spinel as a transparent structural engineering 

material, it is necessary to have a good understanding of the strength of the material 

under shock compression and determine its strength properties. For the purposes, 

macroscopic effective shock strength modeling and simulations to interpret the available 

plate impact experiments on AlON and 3-D mesoscopic VP-FE modeling and analyses to 

predict the crystal elasticity and plasticity of shocked AlON are carried out. 

 Effective shock strength modeling and wave profile simulations of a series of 

plate impact experiments on AlON are presented in Section 5.2, including material model 

descriptions, FE models and simulations, and the analysis of results. The material 

modeling considers a pressure–dependent effective shock strength model that combines 

the Drucker-Prager plasticity with a limited strength cap and a nonlinear elasticity model 

assuming compression-dependent bulk modulus as detailed in Section 5.2.1. FE models 

and simulations are presented in Section 5.2.2, including the description of experiments 

that are simulated, the configurations of FE models and the simulations. The details of 

results are discussed in Section 5.2.3, including the comparisons of wave profiles 

between simulation results and experimental measurements, the optimized material 

model parameters, the determination of the effective shock strength of AlON, as well as 

the relationship between the longitudinal stress and particle velocity. 

Mesoscopic analyses using a 600-grain cubic VP-FE model that allows explicit 

modeling of anisotropic crystal elasticity and plasticity and grain-to-grain interactions are 
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presented in Section 5.3. The method for modeling and simulations is described in 

Section 5.3.1, including the details for the 600-grain cubic VP-FE model, material 

descriptions, and numerical simulations. The analysis to determine the ambient elastic 

constants Cij of AlON crystals in the polycrystalline form is presented in Section 5.3.2. 

Microplasticity analysis to determine the compressive crystal strength of shocked AlON 

is presented in Section 5.3.3. Section 5.4 summarizes the key findings of the studies 

presented in this chapter. 

 

5.2  Simulations to Interpret Plate Impact Experiments on AlON  

To determine the effective strength of shock-compressed AlON, a series of wave 

profile simulations of the plate impact experiments on AlON (Thornhill et al., 2005) are 

carried out by using a pressure–dependent strength model that combines the Drucker-

Prager plasticity with a limited strength cap. Compared with the wave profiles between 

the simulations and the experiments, the effective compressive strength and mean stress 

response of shocked AlON are obtained. Details of the material modeling, FE model for 

wave profile simulations, and results are presented below.  

5.2.1  Material Model 

Effective shock strength model. It is found that the effective shock strength of 

several polycrystalline ceramics can be well summarized by a pressure-dependent 

“plasticity” law as depicted in Figure 5.1. Equivalence between pressure p and 

compressive mean stress 3/ii  (where ij  are the components of the Cauchy stress) is 
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assumed. The flow stress is measured in terms of the second invariant of deviatoric stress 

2J  )2/( ijij SS  with ijijij pS   . The flow stress is assumed to vary with pressure 

similar to the flow-surface treatment of the Johnson-Holmquist (JH-2) model (Johnson 

and Holmquist, 1994). The flow surface has a pressure-dependent portion that follows the 

Drucker-Prager plasticity ( sF ), a limit strength portion that is pressure-independent ( cF ), 

and a transition connecting these two portions smoothly ( IF ), which are defined by Eqs. 

2.34(a) ~ 2.35 (b) (see Section 2.3.3). The constitutive equation of the Drucker-Prager 

model can be solved with arbitrary degree of non-associativity (Loret and Prevost, 1986) 

using Eqs. 2.36 ~ 2.40 (see Section 2.3.3). The following parameters of the effective 

shock strength model need to be determined and optimized from the simulations: 0q  the 

limiting strength, 0p  the cohesion of intact material,   the friction angle of flow surface

sF , and 0q  the radius of transition curve IF . 

q0

p0 p 

 

2J

Fs 

Fc 

F1

Figure 5.1: Schematic of shock strength model. 
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Nonlinear elasticity model. Typically, the compression dependence bulk modulus 

can be described as 

  3/2)]/1(1[ 000   VVBK               (5.1) 

Where 0V and V are respectively the initial and current specific volumes, )/1( 0VV  

volume compression, 0  the initial Lamé constant, 0  the initial shear modulus, and B  

the nonlinearity correction parameter. The values of initial density 0 , 0 and 0  are 

chosen as: 3
0 /3670 mkg , GPa33.1260  , GPa5.1260   ( McCauley, 2002). The 

parameter B needs to be determined from the simulations. 

5.2.2  Finite Element Model and Simulations  

In recent years, plate impact experiments were performed by several investigators. 

For example, Thornhill and vogler have published a set of wave profiles of plate impact 

experiments on AlON with a VISAR window used Lithium fluoride (Thornhill, et al., 

2005). These experiments provided numerical simulations original data and verification 

for the results of simulations. The simulations are based on these experiments conducted 

by T. F. Thornhill.  

Description of experiments that simulated. The experimental configurations are 

schematically shown in Figure 5.2 (a). There were two kinds of configurations. One was 

a flier of copper (Cu) impacting the sample of AlON with a Lithium fluoride (LiF) 

window bonded to its back surface. AlON diameters were 23 or 29 mm while Cu flier 

was 27 mm in diameter. Another was a flier of coaxial flier aluminum (Al) surrounding 



 108

copper impacting the sample of AlON with a LiF window bonded to its back surface. 

AlON diameter was 50 mm while the inner Cu flier diameter was 17 mm and the Al 

outside diameter was 64 mm. LiF window was boned on the AlON for interface velocity 

measurements resulting from Al and Cu impactors. The interface velocity measurements 

(Exp. # 8, 7, 2, 1 and 6 in reference) are shown in Figure 5.2 (b).  

Impact summary and some results including the shock stress  , the particle 

velocity pu  and the shock velocity sU  for the experiments are listed in Table 5.1. They 

(a) The configurations of 
impact experiments 

(b)  Interface particle velocity measurements of 
impact experiments 

Exp.#8 

Exp.#2 
Exp.#7

Exp.#1 

Exp.# 6 - Cu 

Exp.# 6 - Al 

Figure 5.2: The configurations and Interface particle velocity measurements of impact 

experiments. 
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were calculated by using jump condition analysis method in the reference (Thornhill et 

al.,, 2005). The strains  are calculated by the measurement data of the initial density 0

and the density of hugoniot state   by using the equation of )ln( 0  .  

Table  5.1: Impact summary and some results for AlON experiments by Thornhill et al..  

 

The configurations of finite element models. To simulate these experiments, the 

configurations of experiments are modeled using planar axisymmetric FE models, as 

shown in Figure 5.3. Figure 5.3 (a) shows the type of model for simulating the 

experiments of No. 1, 2, 7 and 8. The model includes the Copper impactor, the AlON 

Exp. 

# 

Impact 

velocity 

km/s 

Flier thick 

mm 

AlON 

Thick 

mm 

AlON 

HEL  

GPa 

AlON Hugoniot 

pu  

km/s 

sU  

km/s 

  
  

GPa 

1 2.612 Cu  1.477 3.005 9.83 1.550 8.970 0.189 51.0 

2 3.124 Cu 1.474 3.010 8.72 1.880 9.110 0.232 62.9 

3 1.561 Al  3.009 3.010 10.59 0.541 8.080 0.071 16.0 

3 1.561 Cu 1.855 3.010 9.17 0.896 8.290 0.110 27.2 

6 1.577 Al  3.259 3.012 10.50 0.549 7.950 0.073 16.1 

6 1.577 Cu 3.057 3.012 10.50 0.897 8.420 0.112 27.8 

7 3.846 Cu 1.509 2.982 10.73 2.350 9.390 0.289 80.9 

8 4.124 Cu 1.526 2.990 10.29 2.530 9.610 0.305 88.9 
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sample and the LiF windows buffer. The thicknesses of Copper impactor and AlON 

sample are the same as the experiments (see Table 5.1). To prevent the wave coming 

back, the thickness of LiF needs be enough thick, modeled as 15mm. Figure 5.3 (b) 

Figure 5.3: The configurations of finite element models: (a) for experiments # 1, 2, 

7, and 8; (b) for experiments # 3 and 6. The models are meshed by 4-node 

axisymmetric elements.  

Cu AlON LiF

V0 
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Int.1 Int.2 

Cu AlON LiF

V0 
Symmetric

Al 

Int.1 Int.2 

Int.1 – Surface to surface contact            Int.2 – Tied surfaces 

The place where the 
velocity profile simulation
results are plotted  

The place where the stress 
& strain simulation results 
are plotted  
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(b)  

 4-node 
elements 

 4-node 
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shows the type of model for simulating the experiments of No. 3 and 6. The model 

includes the Cu and Al impactor, the AlON sample and the LiF windows buffer. To 

model the Cu and Al impactor, the whole impactor is divided into two parts. The inner is 

Al and the outer is Cu. The AlON sample and LiF windows are also divided into two 

parts according the impactor. The thicknesses of Cu impactor, Al impactor and AlON 

sample are the same as the experiments (see Table 5.1). The thickness of LiF is also 

modeled as 15mm.  

The models are implemented into ABAQUS/Explicit and meshed by 4-node 

axisymmetric solid elements, which are not shown in Figure 5.3 because the element size 

(about 0.025mm) is so tiny.  Figure 5.3 also shows the boundary conditions used for the 

2-D plate impact simulations: (1) the center of the model is confined as symmetric; (2) 

the intersection between the impactor and the AlON sample is modeled as surface to 

surface contact (explicit); (3) the surfaces of the intersection between the AlON sample 

and the LiF window are tied together; (4) the initial velocity of the impactor is V0, which 

values are equal as the experiments (see Table 5.1). 

Plate impact simulations. Material models of AlON, Copper, Al and LiF are 

implemented into ABAQUS/Explicit code with User-material Subroutine (VUMAT) for 

FE analysis. The material models of Copper, Al and LiF are employed as the 

hydrodynamic models (Feng and Gupta, 1994 & 1996), which are implemented into 

ABAQUS material model– equation of state by the following parameters, shown in Table 

5.2. 
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The simulations are performed to match the wave profiles of AlON-LiF 

interfacial velocity vs. time with the experimental data by adjusting the parameters of 

material strength model of AlON, and at the same time the compressive longitudinal and 

mean stress response of shocked AlON are obtained. The places where the simulation 

results of velocity profiles, stresses and strains are plotted are also shown in Figure 5.3. 

Table 5.2: The parameters of material model for Cu, Al and LiF 

Material 
0  

( kg/m3 ) 

0c  

( m/s ) 
s  0  

G  

( GPa ) 

0Y  

(MPa) 

Cu 8930 3944.7 1.423 1.99 48.0 20.0 

Al 2703 5188.3 1.382 2.0 27.63 324.0 

LiF 2640 5148.0 1.353 1.63   

 

where 0  is the initial density, 0c and s define the linear relationship between the linear 

shock velocity sU  and the particle velocity pu  as ps sucU  0 , 0  is the constant for the 

Grüneisen parameter , G is the shear modulus G  and 0Y  is the yield strength. 

 

5.2.3  Result and Discussions  

The results presented in the section are for the plate impact experimental 

simulations on ALON, including the results of wave profiles, the material strength model, 

the compressive longitudinal and mean stress response and the relationship between 

longitudinal stress and particle velocity. The details of the results are described as the 

followings.  
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Results of wave profiles. The simulation results of AlON-LiF interfacial velocity 

profiles computed by using the pressure-dependent material strength model are shown in 

Figure 5.4. The processes of simulations are: firstly, based on the experiment #2, the 

simulation wave profile is computed to match well with the experimental measurement of 

experiment #2 by adjusting the parameters of material model, and a group of material 

parameters is obtained; secondly using this group of material parameters and the same 

conditions of the simulation of experiment #2, the simulations for other experiments (Exp. 

Figure 5.4: Comparison of the simulation results and experimental data of the 

AlON-LiF interfacial velocities.
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# 1, 6, 7 and 8) are carried out to obtain the wave profiles and these wave profiles are 

compared with the experimental measurements; next, to get optimize the material 

parameters by repeating  the first two steps until the match between the simulation results 

and experimental measurements is satisfied. In Figure 5.4, the simulation results compare 

very well with the experimental measurements by the optimized parameters for the 

strength model: GPap 35.00  , 14.32 , GPaq 06.50  , 8.1 , and GPa33.1260  , 

GPa5.1260  , 25.4B .  

AlON strength model. This optimized strength model is plotted in Figure 5.5 in 

comparison with the experimental data of kolsky bar measurement (Paliwal et al., 2008) 
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Figure5.5: The plot of the strength model of ALON, compared with the 

experimental data of kolsky bar measurement and plate impact measurement. 
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and plate impact measurement (Thornhill et al., 2005). From the figure, the curve 

compares well with the experimental data.  

Some results for the simulations are listed in Table 5.3. The simulation results of 

the shock velocity sU  and the particle velocity pu  compare well with the experimental 

data in Table 5.1, but the longitudinal stresses are higher than the data calculated by jump 

conditions in Table 5.1. The details of stresses response are discussed in the following. 

 

Table 5.3:  Some results of plate impact simulations for ALON. 

 

Simu. 

# 

AlON Hugoniot 

pu  

(km/s) 

sU  

(km/s) 

  
   

(GPa) 

1 1.554 8.8953 0.184 53.538 

2 1.897 9.1899 0.225 66.670 

3 0.525 8.0137 0.0566 18.556 

3 0.881 8.3186 0.101 29.865 

6 0.530 8.0184 0.0573 18.716 

6 0.884 8.3219 0.102 29.931 

7 2.306 9.5406 0.275 83.445 

8 2.528 9.7304 0.302 92.931 
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Macroscopic response. Model predictions of macroscopic longitudinal and mean 

stresses are plotted in Figure 5.6. Shock longitudinal stress data by jumping condition 

analysis and mean stress response (Thornhill et al., 2005) are shown in the figure for 

comparison. In addition, mean stress response by simulating the relationship of the shock 

velocity sU  and the particle velocity pu is also shown in Figure 5.6. The following four 
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Figure 5.6: Macroscopic longitudinal and mean stress response of AlON. 
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significant points can be made. First, the mean stress calculations are up to 86 GPa, the 

longitudinal stress calculations are up to 92 GPa, and the calculated value for HEL is 

10.37 GPa. Second, the mean stress calculations by using AlON strength model (dash 

line) can agree with the mean stress response (dash dot line) of Thornhill et al. (2005) 

because there only have small differences between them. Third, the longitudinal stress 

calculations based on AlON strength model (solid line) compare well with the shock 

stress data by jump condition analysis (black circle dots) of Thornhill et al. up to HEL but 

there have big difference between them beyond HEL. There must be some errors in the 

shock stress data by the jump condition analysis since the shock stress data have conflict 

with the mean stress response. So it can be said that the longitudinal stress response is a 

good prediction because it is consistent with the mean stress response. Fourth, the mean 

stress response by simulating the relationship of the shock velocity sU  and the particle 

velocity pu compares well with that based on AlON strength model. The simulation result 

of the relationship is ps uU 857.0564.7  . 

Longitudinal stress versus particle velocity. The relationship of longitudinal 

stress and particle velocity is another important application for ceramics. The profile of 

longitudinal stress vs. particle velocity for the simulations based on AlON strength model 

is shown in Figure 5.7. In order to get the relationship of profile of longitudinal stress and 

particle velocity, the profile is fitted by a curve. The equation of the curve that fits the 

profile well is   
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Figure 5.7: Longitudinal stress versus particle velocity of AlON. 
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5.3  3-D Analysis of Polycrystalline AlON 

The analysis presented in this section focuses on polycrystalline model of AlON. 

3-D analysis of elastic calculations and microplasticity analysis are performed because it 

is necessary to have a base of elastic constants Cij in describing its macroscopic response 

to arbitrary loads and stress and the parameters of crystal microplasticity model for 

polycrystalline AlON. 3-D 600-grain cubic VP-FE model is developed for the simulation, 

presented in Section 5.3.1. The material model considers elasticity and crystal plasticity, 

also presented in Section 5.3.1. The elastic calculations to determine the ambient elastic 

constants Cij of polycrystalline AlON is presented in Section 5.3.2. Microplasticity 

analysis to determine compressive strengths of shocked AlON are presented in Section 

5.3.3.  

5.3.1  Modeling and Simulations  

The modeling methodology consists of three components: (1) a realistic 3-D 

model of polycrystalline microstructure, (2) a material model including elasticity and 

crystal plasticity, and (3) a solution algorithm to implement the microstructure and 

material model into the commercial FE code the ABAQUS/Standard for numerical 

analysis. 

The polycrystalline microstructure is modeled using a cubic (3-D) VP-FE model 

with 600 grains randomly assigned crystallographic orientations. The configuration of 3-

D polycrystalline model is shown in Figure 2.7. The details of methods for constructing 
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3-D polycrystalline model, finite element mesh and model test are described in the 

Chapter 2. 

The simulations include elastic calculations and microplasticity analysis. The 

purpose of elastic calculations is to estimate a base of elastic constants Cij (C11, C12 and 

C44) for polycrystalline AlON. In the microplasticity analysis, macroscopic longitudinal 

and mean stress response are obtained by using non-linear elasticity and crystal plasticity 

material model in which the parameters consider the same values as those used for 

polycrystalline Al2O3.  The results of macroscopic response are compared with the results 

of  plate impact experimental simulation and the parameters that selected are discussed. 

 For elastic calculations, the material model considers linear anisotropic elastic 

behavior. For a cubic material, the elasticity stiffness matrix is given by  
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Parameters C11, C12 and C44 need to be determined through the calculations. There are 

two types of the loading conditions for elastic calculations. One is uniaxial-strain 

compression: uniform pressures are applied on the front and the back surfaces of the 

polycrystal, while the transverse displacements are prevented at the four lateral surfaces 

as shown in Figure 5.8(a). Another is hydrostatic compression: uniform pressures are 

applied on the all six surfaces as shown in Figure 5.8(b).  
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For microplasticity analysis, the material model considers nonlinear anisotropic 

crystal elasticity and crystal plasticity. The slip system  110111  is considered in the 

investigation. The nonlinear elasticity and crystal plasticity modeling and the solution 

technique by FE method have been introduced in Section 2.3. The loading condition is 

uniaxial-strain compression. 

 3-D FE mesh preserving the polycrystalline microstructure (Figure 5.8), material 

model and loading conditions are implemented into the commercial FE code, the 

ABAQUS/Standard for numerical analysis. The procedure of the elastic calculations and 

Normal displacements of the 
nodes on four lateral surfaces 
are prevented. 

                                          (a)                                                                 (b) 

Figure 5.8: 3-D polycrystal, microstructure-preserving FE mesh, and applied loading

conditions (a) uniaxial-stain compression and (b) hydrostatic strain compression. 

x

Uniform pressures 
on the front and  the 
back surfaces. 

Uniform pressures 
on all six surfaces. 
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  y 
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the results are presented below are presented in Section 5.3.2. Microplasticity analysis 

and the results are presented in Section 5.3.3. 

 

5.3.2  Elastic Calculations and Results  

Numerical simulations to determine the elastic constants C11, C12 and C44 of 

polycrystalline AlON under uniaxial-strain and hydrostatic-strain compressions are 

performed using a 600-grain 3-D VP-FE model and the ABAQUS/Standard FE analysis. 

The procedure to determine C11, C12 and C44 is as follows. 

Trial sets of parameters C11, C12 and C44 for calculations are selected first. For a 

cubic material, 2)( 221144 CCC   in general. Parameters C11, C12 and C44 of its crystals 

may be approximated by the following equations (Frank et al., 1996) 
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where L  and   are the longitudinal modulus and shear modulus of the polycrystalline 

bulk form of the material, respectively; H is the characteristic parameter for cubic 

material. In the current study, the values of H are selected from -100 GPa to 100 GPa 

(except for 0 GPa) in 10 GPa step. So there are totally 20 sets of parameters for 

calculations.  
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The calculations under the two type loading conditions (uniaxial-strain and 

hydrostatic-strain compressions) are then performed. For a trial set of C11, C12 and C44, 

the ratio of volume-averaged longitudinal stress over volume-averaged longitudinal strain, 

that of volume-averaged mean stress over volume-averaged volumetric strain, and that of 

volume-averaged normal stress difference over volume-averaged normal strain difference 

from the uniaxial-strain compression calculation gives respectively the resulting 

longitudinal modulus ܮ′, bulk modulus ܭ′, and shear modulus ߤ′ of the polycrystalline 

material corresponding to the trial set of parameters. The hydrostatic compression 

calculation yields only the bulk modulus of the trial polycrystal. The result provides an 

independent check for the bulk modulus. The shear modulus of the trial polycrystal can 

be checked independently using ߤ′	ሾൌ 3ሺܮ′ െ  .ሻ/4ሿ′ܭ

Three small load levels of 0.5 GPa, 2 GPa and 5 GPa are used for each type 

loading condition to examine the effect of load level. The modulus results of the trial 

polycrystal need to compare with a reference or experimental data. The values of 

GPa 388L , GPa 5.126 and GPa 3.219K (McCauley, 2006) are selected as the 

reference moduli. There are totally 120 sets of results (not shown in this chapter) 

obtained. From the analysis of the results, we find, when H is equal to -60 GPa 

( GPaC 0.41211  , GPaC 0.12312   and GPaC 0.11444  ), the results are close to the 

reference data. For a better match with the reference data, parameter C44 is further 

changed from 114.0 GPa to 118.0 GPa because the crystal shear modulus makes the 

biggest difference in the resulting polycrystal moduli. The results of this set of parameters: 

GPa 0.41211 C , GPa 0.12312 C  and GPa 0.11844 C  are shown in Table 5.4. The 
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following three significant points can be made. First the results can match well with 

reference data. Second, the result can be verified through different loading conditions of 

uniaxial-strain compressions and hydrostatic-strain compressions. There have some 

differences between them, but they are not significant. Third, with load increasing, the 

differences between the predicted results and the reference data increase only slightly. 

The effect of load level is also small. This set of parameters GPa 0.41211 C ,

GPa  0.12312 C  and GPa 0.11844 C can be used as the ambient elastic constants of 

polycrystalline AlON. 

 

Table 5.4:  Some results of elastic analysis for AlON. 

 ( GPa 0.41211 C , GPa 0.12312 C  and GPa 0.11844 C ; GPa  388L , 

GPa 5.126  and GPa 3.219K ) 

 

Loading 
Conditions 

Uniaxial-Strain Compressions Hydrostatic Compressions 

Loads (GPa) 0.5 2.0 5.0 0.5 2.0 5.0 

L (GPa) 388.04 387.74 385.55 

 (GPa) 126.55 126.40 124.99 

 

K  (GPa) 219.34 219.21 218.90 219.33 218.94 218.41 
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5.3.3  Microplasticity Analysis  

The modeling methodology consists of three components: (1) a realistic 3-D 

model of polycrystalline microstructure, (2) a material model including compression-

dependent elastic stiffening and crystal plasticity, and (3) a solution algorithm to 

implement the microstructure and material model into the commercial FE code the 

ABAQUS/Standard for numerical analysis. 

The polycrystalline microstructure is modeled using a cubic (3-D) VP-FE model 

with 600 grains, as shown in Figure 5.8 (a). Since the loading condition is uniaxial-strain 

compression, uniform pressure is applied on the front surface and the back surface of the 

polycrystal and the transverse displacements are prevented at the four lateral surfaces. 

Focusing on the effects of microplasticity in polycrystalline AlON under uniaxial-

strain compression, the elastic properties of shocked AlON, Cij (  GPa 0.41211 C ,

GPa 0.12312 C  and GPa 0.11844 C ) which obtained through previous elastic analysis 

are used. The material modeling of nonlinear elasticity and crystal plasticity and the 

solution technique by FE method have been introduced in Section 2.3. 

The nonlinear elastic model is described in Eqs. (2.4a)-(2.4c), and the model 

parameter A = 4.3 is determined by fitting a linear function to the bulk modulus-

volumetric compression relationship derived from the 2-D plate impact simulation of the 

mean stress response of a polycrystalline AlON under plane shock wave compression.  

The slip system  110111  is considered in the microplasticity analysis. This is 

the primary slip system of spinel ceramic crystals (Hornstra, 1960; Mitchell, 1999). The 
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slip plane and the slip direction are shown in Figure 5.9. The selection of constitutive 

parameters for crystal plasticity is based on the assumptions of rate-independent and non-

hardening plasticity similar to those used for polycrystalline Al2O3 [see Section 3.2.3].  

Model predictions of macroscopic longitudinal and mean stresses (volume-

averaged values) from the 3-D microplasticity analysis are plotted in Figure 5.10. Each 

calculation obtains a point, shown as a black circle in the figure. Longitudinal stress 

response by 2-D plate impact experimental simulations and mean stress data are shown in 

the figure for comparison. For the presumed the slip system  110111 , an optimized 

CRSS value of c 3.35 GPa is obtained by matching the macroscopic response results 

of the 3-D ploycrystal model simulations with those of the 2-D plate impact experimental 

simulations. The microplasticity model prediction captures the transition to the softer 

Figure 5.9:  The slip system in AlON (spinel ceramic) crystals. 
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response at HEL, and the calculated value for HEL agrees well with the experimental 

data of 10.37 GPa.   

According the results of plate impact experimental simulations, the preliminary 3-

D microplasticity analysis is simply studied. Since the results of strength of 

polycrystalline AlON need to be verified by the experiment data, we will consider the 

detailed investigations, such as the different slip systems, the values of CRSS’s 

parameters c and effective plastic strain distributions, in the future works after the 
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Figure 5.10:  Macroscopic compressive longitudinal and mean stresses response of 3-D 

microplasticity analysis and experimentally determined response on AlON. 
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experiments for measuring the effective compressive strength of AlON. The next step of 

the future works is to design the experimental measurement for the shock strength for 

polycrystalline AlON. Since the simulations of 3-D analyses provide the first round for 

material selection and configuration design. A method using a pressure manganin gauge 

to measure the high strengths of polycrystalline ceramics is suggested and it is used for 

polycrystaliine SiC-N. The detail of experimental design and gauge simulations for 

polycrystalline SiC-N are presented in the Chapter 6. 

 

5.4  Summary 

In this chapter, plate impact experimental simulations and 3-D polycrystal 

analysis have been carried out to investigate the strength of polycrystalline AlON under 

shock compression. The plate impact experimental simulations employ FE models of 

published experiments, and consider the pressure–dependent shock strength model that 

combines the Drucker-Prager plasticity with a limited strength cap and the model of 

nonlinear compression dependence bulk modulus as the material model. FE models and 

the material model are implemented into ABAQUS/Explicit code with User-material 

Subroutine for finite element analysis. A series of wave profiles simulations of plate 

impact experiments on ALON are performed. The 3-D polycrystal analysis employs a 

600-grain cubic VP-FE model. Material models consider elasticity and crystal plasticity. 

FE models and the material model are implemented into ABAQUS/Standard code with 

User-material Subroutine for finite element analysis. Elastic calculations and 
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microplasticity analysis are performed. The results of strength of polycrystalline AlON 

and strength properties are obtained.   

Numerical results for plate impact experimental simulations show that: (1) the 

wave profiles of AlON-LiF interfacial velocities compare very well with the 

experimental measurements, (2) material strength model compares very well with the 

experimental data, and the optimized parameters for the strength model are:

GPa 35.00 p , 14.32 , GPa 06.50 q , 8.1 , and GPa 33.1260  , 

GPa 5.1260  , 25.4B ,  (3) the macroscopic response of longitudinal stress and 

mean stress are obtained, longitudinal stress response is consistent with the mean stress 

response, the HEL of AlON is 10.37 GPa, and the relationship of the shock velocity sU  

and the particle velocity pu  is ps uU 857.0564.7  , and (4) the relationship of 

longitudinal stress and particle velocity is obtained. 

 Numerical results of elastic calculation for polycrystalline AlON show the 

followings. First the results can match well with reference data. Second, the result can be 

verified through different loading conditions of uniaxial-strain compressions and 

hydrostatic-strain compressions. Third, with the loads increasing, the differences between 

the results of the moduli and reference data increase, but the effect of the loads is not big. 

This set of this set of parameters GPa 0.41211 C , GPa 0.12312 C  and GPa 0.11844 C

can be used as the elastic constants of polycrystalline AlON. 
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Numerical results show that 3-D ploycrystal modeling and microplasticity 

analysis for polycrystalline AlON by using a nonlinear elasticity parameter A = 4.3 and 

the slip system  110111
 
with the CRSS’s value of c 3.35 GPa can match the 

macroscopic response determined by the plate impact experimental simulations. The 

calculated value for HEL is 10.37 GPa, which agrees well with the analyzed experimental 

data (10.37 GPa).  To measure the strength of shocked polycrystalline AlON directly, a 

method using manganin stress gauges in both the longitudinal and lateral configurations 

is suggested. The gauge calibrations for the two configurations are determined from 

numerical simulations of the calibration experiments on a polycrystalline a-6H silicon 

carbide (SiC-N), for which the shock response and strength are known. The details of 

experimental design and simulations of gauge calibration experiments on SiC-N are 

presented in Chapter 6. 
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CHAPTER 6 

NEW FINITE ELEMENT PIEZORESISTANCE MODEL 

AND GAUGE SIMULATIONS   

 

6.1  Introduction 

The shear strength of a solid under shock wave compression is critically important 

for its applications in impact engineering. However, if the material’s inelastic response 

differs from that of the classical plasticity as observed for ceramics and other brittle 

solids, the material shear strength in the shocked state cannot be uniquely determined 

from a conventional plate impact shock wave experiment that measures only the 

longitudinal stress or particle velocity (one can be determined from the other through the 

momentum equation) (Feng et al., 1997). The macroscopic loading condition in such an 

experiment is that of uniaxial strain, which, for an isotropic material, gives rise to one 

longitudinal principal stress in the shock wave direction and two equal-magnitude lateral 

principal stresses in the two orthogonal transverse directions. Hence, the maximum shear 

stress sustained by the material in the shocked state is one half of the difference between 

the longitudinal and lateral principal stresses. In other words, the shear strength of the 
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material in the shocked state can be determined from a plate impact experiment if both 

the longitudinal and lateral stresses measured.  

Thin piezoresistance foils have been widely used as stress gauges in shock wave 

experiments. Although embedding such a gauge in a solid sample introduces a 

heterogeneous layer (composed of gauge foil, packaging material and bonding material) 

into the sample, its adverse effects are limited to the rise of measured stress profile when 

the embedding layer is facing the shock wave direction. The steady state gauge response 

in this longitudinal gauge configuration can be experimentally calibrated and uniquely 

related to the sample material’s longitudinal stress under uniaxial-strain shock 

compression through the gauge calibration. It would seem a natural and straightforward 

extension of the longitudinal gauge technique to embed a piezoresistance stress gauge 

transversely in a solid sample to measure its lateral stress in the shocked state. In fact, 

such a lateral gauge technique has been studied extensively (Feng et al., 1997; Hammond 

et al., 2004; Winter et al., 2008). Unfortunately, it has been found that unlike a 

longitudinal gauge layer a transverse gauge installation layer makes the sample material 

loading condition in the vicinity of the layer deviate from that of uniaxial strain (Feng et 

al., 1997; Hammond et al., 2004). Consequently, the lateral stress measured the gauge 

may differ from the desired uniaxial-strain lateral stress. The error in the shear strength 

determined with such a measurement increases with the layer thickness and the 

impedance difference between the sample and the layer. 
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An iterative lateral gauge analysis procedure based on accurate two-dimensional 

computational modeling of the interactions of lateral gauge with bonding epoxy and 

shocked solid sample was proposed to deal with this issue (Feng et al., 1997) and applied 

successfully in a series of lateral manganin gauge experiments for measuring the lateral 

stress in a polycrystalline6H silicon carbide (Cercom SiC-B material) under shock 

compression (Feng et al., 1998). The gauge analysis is however specialized for a 

particular type of low-impedance manganin gauges fabricated in the Institute for Shock 

Physics at the Washington State University. Accurate model of the manganin foil’s 

elastoplastic response and determination of its piezoresistivity tensor are prerequisites of 

the analysis. Neither is available for commercial manganin gauges, which are 

standardized and convenient to use. In particular, VISHAY 580SF manganin gauge with 

200 m effective width and 5 m thickness as shown in Figure 6.1 is configurationally 

optimized for lateral gauge applications. However, a reliable method for using this type 

of gauges to accurately determine the lateral stresses in solids under uniaxial-strain shock 

compression is lacking. 

Figure 6.1:  Dimensions of the manganin element of VISHAY 580SF gauge in mm 
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The objectives of this joint research project are to develop a gauge analysis 

method that can accurately interpret the measurements of VISHAY 580SF manganin 

gauges in the lateral gauge configuration and reliably infer from them the lateral stress 

reposnse of the sample material under shock wave compression, and to apply the method 

to determine the shear strength of shocked ceramics. The plate impact shock wave 

experiments necessary to complete this project were carried out and will be completed by 

the colleagues at U.S. Army Research Laboratory. Presented in this chapter are the 

iterative gauge analysis procedure, gauge piezoresistance model, and three-dimensional 

(3D) finite element (FE) gauge model developed for VISHAY 580SF manganin gauge as 

well as the preliminary results for the gauge piezoresistance model calibration and the 

lateral gauge response simulations. 

The iterative gauge analysis procedure considered in this work is based on 3D FE 

modeling of a VISHAY 580SF manganin gauge embedded transversely in a solid 

subjected to prescribed shock compression and a trial lateral gauge calibration. First, the 

lateral gauge measurements obtained in the material intended to characterize will be 

converted to the trial lateral stress response by using the trial lateral gauge calibration. 

The results, in conjunction with the known longitudinal stress response in the shocked 

state (which may be determined independently from conventional plate impact shock 

wave experiment on the material), will then be used to construct a trial shear strength 

model for the material. Next, numerical simulations with this trial strength model and the 

3D FE model for the gauge-sample assembly will be carried out to compute the lateral 

gauge output for the loading condition of each of the lateral gauge experiments. If the 
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computed lateral gauge response matches the experimental measurements, the trial 

strength model is a proven good representation of the shear strength of the material under 

shock wave compression. Otherwise, the trial lateral stress response will be modified 

accordingly and the next round iteration proceeds. 

Unlike the work reported in Feng et al., 1998. where the initial trial lateral gauge 

calibration was calculated from the known elastoplastic and piezoresistive responses of 

the gauge material, the mechanical and piezoresistive properties of VISHAY 580SF 

gauge material, a thin layer of manganin printed on a polymeric backing material are not 

exactly known and are very difficult to measure independently. Therefore, we consider an 

empirical piezoresistance model for VISHAY 580 SF gauge, calibrate the model and 

determine the needed initial trial lateral gauge calibration through combined gauge 

calibration experiments using a matrix material whose shock strength behavior is known 

and 3D FE modeling of the experiments. Since the technique will be used primarily for 

determining the shear strength of shocked brittle solids, polycrystalline 6H silicon 

carbide is used as the matrix for the calibration experiments. 

New finite element piezoresistance modeling is developed in Section 6.2. Three-

dimensional (3-D) finite element gauge model developed for VISHAY 580SF manganin 

gauge and gauge simulations are presented in Section 6.3. The preliminary results for the 

gauge piezoresistance model calibration and the lateral gauge response simulations are 

presented in Section 6.4. Section 6.5 summarizes the key findings of gauge simulations 

presented in this chapter. 
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6.2  New Finite Element Piezoresistance Model 

Piezoresistance Model for Foil Gauge. The resistance of a homogeneous 

conductor with uniform cross section can be related to the conductor material resistivity , 

the conductor length l and the conductor cross-sectional area A as follows: 

 ܴ ൌ  (6.1)  .ܣ/݈ߩ

The interpretation for  is not unique in the literature and the one given by Arlt  

states: 

 Conductivity ≡ ଵ

ఘ
ൌ ே௡೎௘ట

௏
,  (6.2) 

where N is the absolute number of atoms in the conductor, nc the number of free 

electrons per atom, e the electronic charge, ߰ the electron mobility, and V the conductor 

volume. Substituting Eq. (6.2) into Eq. (6.1) and noticing that ܸ ൌ  gives ܣ݈

 ܴ ൌ ሺ݈ଶ/ܰ݊௖݁ሻሺ1/߰ሻ. ( 6.3) 

For the range of loading conditions of interest, the product of ܰ݊௖݁ is constant. 

Hence,  

 Δܴ/ܴ଴ ൌ ሺ݈/݈଴ሻଶሺ߰଴/߰ሻ െ 1, (6.4) 

where ∆ܴ ≡ ܴ െ ܴ଴  and subsprit 0 denotes the quantities in the initial 

undeformed state. The above resistance change equation for a homogeneous and uniform 

conductor is different from that of the conventional strain gauge theory and that of the 

previous model for piezoresistance gauges (Feng et al., 1997) in that it does not explicitly 

involve strains in the directions tranverse to the electric current direction. The normalized 
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resistance change ∆ܴ/ܴ଴ depends on the current direction conductor stretch squared and 

on the ratio of the electron mobility in initial undeformed lattice to that in the deformed 

lattice. The lattice deformation can be related unique to the elastic strain of the conductor 

and thus to its stress state. In other word, the gauge resistance change is sensitive to both 

conductor strain and stress. Since a stress state can be fully characterized by the 

corresponding principal stresses, the mobility ratio ߰଴/߰ may be written as 

 ߰଴/߰ ൌ ݂ሺߪଵ, ,ଶߪ  ሻ.  (6.5)	ଷߪ

Along a given loading path, for which the stress normal to the conductor ߪN 

dictates the variations of the principal stresses, we may reasonably approximate f with the 

following relation:  

 ݂ ൌ Nߪߨ ൅ 1,  (6.6) 

where ߨ is the effective piezoresistivity coefficient along the loading path and can be a 

function of ߪN. Since the existence of unique longitudinal gauge calibration is a widely 

observed fact, the above approximation is appropriate for a piezoresistance gauge in the 

longitudinal gauge configuration. The validity of Eq. (6.6) for a piezoresistance gauge in 

the lateral gauge configuration will be examined in the current work. Substituting Eqs. 

(6.5) and (6.6) into Eq. (6.4) yields 

 Δܴ/ܴ଴ ൌ ሺ݈/݈଴ሻଶሺߪߨN ൅ 1ሻ െ 1.  (6.7) 

New FE piezoresistance model for VISHAY 580SF manganin gauge. The 

manganin pressure gauge is one of the most used sensors in shock wave experiments. 

Manganin is a copper–manganese-nickel alloy with low strain sensitivity, but a relatively 



 138

high sensitivity to hydrostatic pressure. Resistance change as a function of applied 

pressure is linear to extremely high pressure. Manganin pressure gauges are special–

purpose sensor with manganin foil grid for measuring hydrostatic pressure and for shock 

wave studies. The VISHAY 580SF pattern of manganin pressure gauge is chosen for the 

experiment because it is designed especially for investigating the effects of sweeping 

explosive waves. A typical manganin 580SF gauge is shown in Figure 6.1. During the 

experiment, the manganin gauge is embedded in the sample. The resistance change 

history is recorded. Hence, new FE piezoresistance model for numerical method to 

calculate the gauge resistance change is developed. In the numerical calculations, 

different elements representing the gauge foil have different mechanical states resulting 

in different values of resistance change. The active foil of manganin gauge with elements 

is shown in Figure 6.2. The gauge foil has an initial total length L0 with total N segments. 

In the jth segment, it has an initial length 
)(

0
jL with nj parallel elements. The new FE 

piezoresistance model is derivate as the follows. 

Figure 6.2:  Schematic view of gauge foil with elements. 
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In the numerical calculations by using new FE piezoresistance model, the relative 

gauge resistance change, Eq.(6.7), can be written as 
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where R is the current gauge resistance, R0 is the initial gauge resistance,
0R

R
 is the gauge 

resistance change, 0L is the initial total length, L is the current total length, α is the 

parameter, and  z  is the stress in the gauge with z axis being in the direction of 

electrical current. So, the rate between the current resistance and initial resistance can be 

written as 
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The initial resistance and current resistance of the No. jth segment are calculated 

by  
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and 









j

j

n

i
j

i

j
n

i
j

i
j

R

R
RR

1
)(

)(

1
)()( 1

111
.  (6.9 b) 

where )(
0

jR is the initial resistance of jth segment, )( jR is the current resistance of jth 

segment, jn is the total number of elements in jth segment, i is the No. ith element in jth 
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segment, )(
0

j
iR is the initial resistance of ith element in jth segment (it is equal for all the 

jn  elements), )( j
iR is the current resistance of ith element in jth segment. 

Then the current resistance and initial resistance of the whole gauge foil are 

calculated by  
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where )(
0

jL is the initial length of the jth segment, N is the total number of segments. So, 

the rate between the current resistance and initial resistance can be written as 
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For the ith element in jth segment, the rate of the initial resistance and current 

resistance can be written as Eq. (6.8b) by   

 )1( )(

2

)(
0

)(

)(
0

)(









 j

zij
i

j
i

j
i

j
i

L

L

R

R  . (6.12) 



 141

where 
)(

0
j
iL is the initial length of ith element in jth segment, 

)( j
iL is the current length of 

ith element in jth segment, and 
)( j

zi  is the stress of ith element in jth segment with z axis 

being in the direction of electrical current. 

For the ith element in jth segment, the strain can be written as 
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Substituting Eqs. (6.12) and (6.13) into Eq. (6.11), the rate between the current resistance 

and initial resistance can be written as 
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The gauge resistance change of the whole gauge foil can be obtained by  
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6.3  3-D Finite Element Modeling and Gauge Simulations 

6.3.1  Longitudinal Gauge Simulation 
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The configuration of a typical longitudinal gauge experiment is shown 

schematically in Figure 6.3 (a). The impactor is copper with 5.9 mm thick. The target is 

ceramic sample - manganin gauge sandwich. A schematic view of ceramic sample - 

manganin gauge assembly is shown in Fig.3 (b). The front sample plate is 5.83mm thick 

and the black sample plate is 13.12mm thick.  A manganin foil gauge (0.01mm thick) is 

glued between two plates of the ceramic sample with a thin layer of epoxy. The total 

thickness of the epoxy-gauge layer is approximately 0.14 mm. The impact velocity is V0.  

3-D Finite element model for the configuration of a typical longitudinal gauge 

experiment is developed. The epoxy-gauge bond part is modeled three layers: the front 

epoxy (0.06 mm thick), the middle layer with the gauge (0.01 mm thick) and the back 

Cu impactor Ceramic sample 

Gauge

Figure 6.3: Schematic view of a longitudinal gauge experiment. (a) Impact

configuration,  (b) ceramics sample- manganin gauge assembly. 

( a ) ( b ) 

V0 V0

Epoxy 

Manganin 
gauge 

Ceramic sample 
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epoxy (0.07mm thick). The constraint of ABAQUS/Explicit Tie is used to assemble all 

the epoxy layers and two samples together. The interaction of the impactor and the front 

sample is modeled as ABAQUS/Explicit Surface to Surface Contact. The mesh of the 

model is shown in Figure 6.4 (a), a zoom view of the epoxy–gauge three layers (in y-z 

plane) is shown in Figure 6.4 (b), and partial mesh of manganin gauge is shown in Figure 

6.4 (c). All the elements are 3-D solid 8- node elements. 

         (a)                                                                 (b) 

Figure 6.4:  3-D FE model for longitudinal gauge experiment. (a)model mesh, (b) a 

zoom view of the epoxy three layers, and (c) partial mesh of manganin gauge. 

y
zx 

z

y

                                              (c)                                                
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The copper is employed as the hydrodynamic models (Feng and Gupta, 1994 & 

1996). The parameters of the cooper material model are shown in Table 5.2. The epoxy is 

modeled as an elastic-plastic material with a constant strength of 0.05GPa. An initial 

density of 1184 kg/m3 is assumed. The manganin foil is modeled as a cooper material. 

The 3-D FE model and material models are implemented into ABAQUS/Explicit code for 

FE analysis. The results of longitudinal stress response are obtained and gauge resistance 

changes are calculated by Eq.(6.15). The details of results are presented in Section 4.4. 

6.3.2  Lateral Gauge Simulation 

The configuration of a typical Lateral gauge experiment is shown schematically in 

Figure 6.5 (a). The impactor is copper with 5.9 mm thick. The target is ceramic buffet 

and sample-manganin gauge assembly. Ceramic buffer is 2.5 mm thick. The thickness of 

Figure 6.5: Schematic view of a lateral gauge experiment. (a) Impact configuration, 

(b) ceramics sample- manganin gauge assembly. 

Gauge 

Epoxy 

Cu impactor 

                   (a)                                                                      (b) 

V0 

Ceramic buffer and sample

V0 

Ceramic sample 

Manganin 
gauge  
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ceramic sample is 22.0 mm including the top and bottom two slabs. The manganin gauge 

(0.01mm thick, 2 mm away from the back edge of ceramic buffet) is directly glued 

between the two slabs of the ceramic sample with a thin layer of epoxy, shown in Figure 

6.5 (b), and then the sample-manganin gauge assembly and the buffer are glue together. 

The total thickness of the epoxy-gauge layer is approximately 0.14 mm. The impact 

velocity is V0. 

3-D Finite element model for the configuration of a typical lateral gauge 

experiment is developed. The epoxy-gauge bond part is modeled three layers: the top 

layer (0.06 mm thick), the middle layer with the gauge (0.01 mm thick) and the bottom 

layer (0.07mm thick). The constraint of ABAQUS/Explicit Tie is used to assemble the 

epoxy-gauge bond part and two slabs of the ceramic sample together, as well as the 

sample-manganin gauge assembly, epoxy, and the buffer.  The interaction of the impactor 

and the front of ceramic buffer is modeled as ABAQUS/Explicit Surface to Surface 

Contact. The mesh of the model is shown in Figure 6.6 (a), a zoom view of the epoxy–

gauge three layers (in y-z plane) is shown in Figure 6.6 (b), and partial mesh of manganin 

gauge is shown in Figure 6.6 (c). All the elements are 3-D solid 8- node elements. 

The copper is employed as the hydrodynamic model (Feng and Gupta, 1994 & 

1996). The parameters of the cooper material model are shown in Table 5.2. The 

manganin foil is modeled as a cooper material. The epoxy is modeled as an elastic-plastic 

material with a constant strength of 0.05GPa. An initial density of 1184 kg/m3 is assumed. 

The other parameters of epoxy are: smc /27270  , 469.1s , 742.00   and G = 2.0 

GPa.  
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The 3-D FE model and material models are implemented into ABAQUS/Explicit 

code for FE analysis. The results of lateral stress response are obtained and gauge 

resistance changes are calculated by Eq.(6.15). The details of results are presented in 

Section 4.4. 

Figure 6.6:  3-D FE model for lateral gauge experiment. (a) model mesh, (b) a zoom 

view of the epoxy three layers, and (c) partial mesh of manganin gauge. 

y 
z x 

                                              (c)                                                

(a)                                                                                (b) z

y
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6.4  The results for the gauge simulations  

A sample test of longitudinal gauge on SiC-N sample is carried out at the lower 

impact velocity. V0 is equal to 314m/s. Model prediction of gauge resistance change for 

this sample test compares well with the experimental data. In addition, numerical 

simulations of longitudinal and lateral gauge experiments at other higher impact velocity 

are carried out. The simulation results of longitudinal and lateral stresses response 

provide the important information for performing the gauge experiments. The 

preliminary simulation result of the sample test for piezoresistance model calibration is 

presented in Section 6.4.1. The simulation results of longitudinal gauge experiments are 

presented in Section 6.4.2.  Section 6.4.3 shows the simulation results of lateral gauge 

experiments. 

6.4.1  The Preliminary Simulation Result of a Sample Test  

A test of longitudinal gauge on SiC-N sample is carried out at the impact velocity 

314m/s by using the configuration of a longitudinal gauge experiment shown in Figure 

6.3. The gauge resistance change is record. The numerical simulation of this test is 

carried out. The material model of SiC-N is employed as effective strength model and 

nonlinear bulk modulus, which are described in Section 5.2.1. The parameters are 

obtained by plate impact simulation of the experiment by Volger et al. (Volger et al., 

2006). The results of the parameters are: 3
0 g/cm 227.3 , GPa 153.950  , 

GPa 024.1950   and GPa 2.50 p , 356.26 , GPa 5.70 q , 4.2 , 52.4B .  
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Model prediction of longitudinal stress response is obtained and the gauge 

resistance change is calculated by Eq. (6.15). The result is shown in Figure 6.7 with the 

comparison of the experimental data.  The simulation result of gauge resistance change 

compares the experimental data well when the calibrated parameter  is equal to –0.91.   

6.4.2  The Results of Longitudinal Gauge Simulation 

The numerical simulations of longitudinal gauge experiment are carried out. 

Model predictions of longitudinal stress response at four impact velocity: V0 = 314 m/s, 

Figure 6.7: Comparison of computed and measured resistance change of a longitudinal

manganin gauge in SiC-N sample under shock compression. 
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600 m/s, 1250 m/s and 1800 m/s are plotted in Figure 6.8(a), and the relative gauge 

resistance changes calculated by Eq.6.15 are shown in Figure 6.8(b). 

 

6.4.3  The Results of Lateral Gauge Simulation  

The numerical simulations of lateral gauge experiment are carried out. Model 

predictions of loateral stress response at three impact velocities (V0 = 314 m/s, 600 m/s 

and 1250 m/s) are plotted in Figure 6.9(a), and the relative gauge resistance changes 

calculated by Eq.(6.15) are shown in Figure 6.9(b).The peak lateral stress in gauge, 

corresponding uniaxial longitudinal stress and lateral stress are summarized in Table 6.1. 
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Figure 6.8:  The results for longitudinal gauge experiment simulations. 
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Table 6.1: Summary of lateral gauge experimental simulations 

Simulation 
number 

Impact 
Velocity 

(m/s) 

Lateral 
stress 

in 
gauge(GPa) 

(peak) 

0/ RR

(peak) 

Corresponding 
uniaxial 

longitudinal 
stress(GPa) 

(peak) 

Corresponding 
uniaxial lateral 

stress(GPa) 
(peak) 

 
1 
 
2 
 
3 
 

 
314 

 
625 

 
1250 

 

 
1.20 

 
2.82 

 
9.04 

 

 
0.1074 

 
0.2574 

 
0.8302 

 

 
6.36 

 
12.55 

 
25.65 

 

 
1.29 

 
2.74 

 
8.73 

 
 

            (a) The lateral stresses                              (b) Gauge resistance changes  

Figure 6.9:  The results for lateral gauge experiment simulations. 
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At the peak stress state, resistance change values are obtained from more gauge 

simulations at different impact velocities, shown in Figure 6.10 with the different peak 

stress levels of longitudinal and lateral stresses. To get the relationship of resistance 

change and stress response, for high-strength ceramics, a least square fit is needed to 

obtain the calibration curve (Feng et al., 1997). The fit curves are also shown in Figure 

6.10 and the equations for manganin foil gauge calibration are obtained by: 

For longitudinal stress simulation, 

 242
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and for longitudinal stress simulation, 
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Figure 6.10:  Calibrations of the manganin gauge response. 
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6.5  Summary  

In this chapter, a new finite element piezoresistance model for interpreting the 

measurement of a commercial manganin stress gauge embedded in a plate impact target 

is developed and numerical method to calculate the gauge resistance change is derivate 

and the relative gauge resistance changes for longitudinal and lateral stress response are 

obtained. 

The configurations of longitudinal and lateral gauge simulation including 

ceramics sample – manganin gauge assembly are designed. 3-D plate impact FE models 

for the configurations of longitudinal and lateral gauge experiments are developed. The 

sample – gauge assembly is modeled as ABAQUS/Explicit Tie, and the interaction of 

impact and target is modeled as ABAQUS/Explicit Surface to Surface Contact. The 

material models of copper, epoxy and manganin gauge are employed as hydrodynamic 

models. The 3-D FE models and material models are implemented into ABAQUS 

/Explicit code for FE analysis. 

Calibrated with the longitudinal gauge measurements obtained in the shock-

compressed SiC-N. From the model simulations, the calibrations for the gauge in both the 

longitudinal and lateral configurations are obtained. This enables the determination of 

ceramic shock strength directly from the gauge measurements in the two configurations.   

Although this study is on ceramic SiC-N material, the simulation results of longitudinal 

and lateral stresses response provide the important information for performing the gauge 

experiments. The configurations of longitudinal and lateral gauge experiments are 

recommended for the experiments on AlON. 
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CHAPTER 7 

CONCLUSIONS 

In this research, a computational polycrystal modeling technique, which combines 

Voroni polycrystal simulation with finite element analysis, has been applied to study the 

effects of polycrystalline microstructure, crystal anisotropy, porosity, and their 

interactions with microscopic deformation/damage mechanisms on the responses of 

several polycrystalline ceramics under shock compression and to extract their strength 

properties in conjunction with the available shock compression data or with macroscopic 

effective property modeling and simulations of the related plate impact shock wave 

experiments.  

Square-plate Voronoi polycrystal-finite element (VP-FE) models with 200 2-D 

grains or cubic VP-FE models with 600 3-D grains are generated for topologically 

accurate microstructure modeling. It is shown that good statistical representations can be 

achieved with these VP-FE models. A concurrent multiscale modeling technique is 

employed to examine the loading range, over which the volume-averaged responses of 

the mesoscopic VP-FE models to prescribed uniform boundary displacement or traction 

are good representations of the macroscopic material behavior. It is found that accurate 
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representations can be achieved for shock stresses up to twice the Hugoniot elastic limit 

(HEL). 

The mesoscopic VP-FE models have been applied to examine the roles of 

intragranular microplasticity and deformation twinning, intergranular microdamage, and 

voids in the inelastic deformations and shock strengths of two polycrystalline phase 

aluminum oxides, Lucalox (99.9% pure and dense) and AD995 (99.5% pure and 97% 

dense). For Lucalox, 3-D analysis with a 600-grain cubic VP-FE model and material 

models considering nonlinear elasticity and crystal plasticity by the activation of 

prismatic slip or combined prismatic (primary) and basal (secondary) slips has been 

performed. The results show that: (1) Microplasticity by prismatic slip alone is adequate 

only near the HEL but underestimates post-HEL softening; (2) Model prediction by 

combined prismatic and basal slips compares well with the experimental data up to a 

shock stress of 20 GPa or about 2.2 times the HEL.  

For AD995, 2-D analysis with porous VP-FE models has been performed to 

investigate the causes for observed signification reductions in HEL and post-HEL 

strength of the shocked material and to understand the difference between the inelastic 

deformation of shocked AD995 and that of shocked Lucalox. The studies performed and 

the results are as follows:  

(1) Three types of 2-D porous VP-FE models have been constructed and 

examined for their performances and mesh dependencies for modeling and analysis of 

microplasticity-driven void collapsing in AD995 under shock compression. Numerical 

results of void modeling study show: (a) Triangular voids are so rigid to be collapsed and 
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may be inadequate for intense plastic deformation near voids, and the longitudinal stress 

response of porous polycrystal model with 3% triangular voids displays almost the same 

behavior as that of Lucalox; (b) Random-shaped voids are found to be the most 

advantageous, providing relative ease in construction, more realistic void shape modeling, 

and good ability for capturing void collapsing process, and the longitudinal stress 

response of porous polycrystal model with 3% random-shaped voids displays much more 

softened behavior than that of Lucalox; (c) Good statistical representation is achieved 

with the porous polycrystal model with 3% random-shaped voids. 

 (2) The results of the studies to examine the roles of glassy grain boundaries and 

voids in the inelastic deformation and strength of shocked AD995 show that: (a) Weaker 

grain boundary cannot explain the observed HEL and post-HEL response of shocked 

AD995; (b) It is the voids in AD995 that responsible for its lower shock strength than 

Lucalox; (c) Microplasticity becomes easier to initiate near the voids, evolves with the 

deformation band, and leads to void collapsing.  

 (3) Numerical results for various microplasticity models show that: (a) Model 

prediction based on prismatic primary slip at cp  2.7 GPa and basal secondary slip at

cb 3.3 GPa cannot match the experimental data; (b) Model prediction based both basal 

deformation twinning at ctw  2.7 GPa and prismatic slip at cp 3.3 GPa can match the 

experimental data up to HEL, but cannot match the post-HEL data; (c) The macroscopic 

shock response of AD995 is well captured by model prediction based on basal 

deformation twinning at ctw  2.0 GPa and prismatic slip at cp 2.4 GPa for shock 
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stresses up to 14 GPa or about twice the HEL; (d) The evolution of effective plasticity 

strain based on both basal deformation twinning and prismatic slip with lower thresholds 

becomes rapid both for intensity and for volume of participating material when shocked 

to about 12 GPa, which can explain the abrupt post-HEL softening observed for AD995.   

Both macroscopic effective strength modeling and mesoscopic analyses based of 

3-D VP-FE models have been performed for polycrystalline aluminum oxynitride 

(AlON), a newly developed transparent polycrystalline ceramic. First, wave profile 

simulations with a macroscopically homogeneous model considering compression-

dependent nonlinear elasticity and pressure-dependent effective strength have been 

carried out to interpret a series of plate impact experiments on AlON. The results show 

that: (1) The simulated wave profiles with the optimized model parameters compare very 

well with the experimental measurements;  (2) The material has a HEL of 10.37 GPa and 

retains post-HEL effective strength for the range of shock compression examined (up to 

93 GPa shock stress) contrary to the shock strength loss results from the previous jump 

condition analysis for the same experiments (Thornhill et al., 2005); (3) The relationship 

between the shock velocity sU  and the particle velocity pu  is ps uU 857.0564.7  . The 

relationship between the longitudinal stress and the particle velocity is also obtained. 

Next, 3-D mesoscopic analyses with a 600-grain cubic VP-FE model have been 

conducted to extract the crystal elasticity and crystal plasticity properties of AlON. The 

numerical results show that: (1) Ambient crystal elasticity constants of GPa 0.41211 C ,

GPa 0.12312 C , and GPa 0.11844 C  yield the best match to the elastic modulii of 

polycrystalline AlON determined by the ultrasonic measurements; (2) The shock 
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response and effective shock strength of AlON can be very well described by the 

combination compression-dependent dilatational elasticity with a stiffening parameter of 

A = 4.3 and  110111  crystal slip at a CRSS value of c 3.35 GPa. 

Finally, a new finite element piezoresistance model for interpreting the 

measurement of a commercial manganin stress gauge embedded in a plate impact target 

has been developed and calibrated with the longitudinal gauge measurements obtained in 

a shock-compressed polycrystalline -6H silicon carbide (SiC-N). From the model 

simulations, the calibrations for the gauge in both the longitudinal and lateral 

configurations are obtained. This enables the determination of ceramic shock strength 

directly from the gauge measurements in the two configurations. Although the calibration 

is done for SiC-N material, the method is expected to be useful for measuring the 

longitudinal and lateral stresses of other similar polycrystalline ceramics. The simulation 

results also provide important information for performing the gauge experiment. 
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APPENDICES 

 

A-1  The algorithm for constructing polycrystal model  

The algorithm for constructing a 3-D Voronoi polycrystal in a unit cube is as 

follows: 

1.   Generate N  “controlled” random points in a unit cube, where “controlled” means 

that a newly generated point is accepted only if the distance between the point and 

each of the other existing points is not less than the allowable minimum distance. 

All of the permissible points are regarded as the Voronoi cell nuclei.  

2.    Select a radius r  to define the size of local search sphere S , where r  is a 

parameter determined through test. 

3.    Draw a line connecting the ith nucleus iN , where i  = 1, 2, 3, … , N , with any 

other nucleus in the sphere S  centered at iN . Suppose there are M  points (nuclei) 

besides iN  in the sphere S , therefore, M  lines are obtained ( M < N ). For each 

of these lines, construct a perpendicular plane bisecting the line so that M  planes 

are obtained. In addition, the six planes of the unit cube are added into the set of 

planes. 
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4.    Find the intersection point for each combination of three planes belonging to the 

set, say, point P . 

5.    Compare the values of ipD  with jpD  where ipD  and jpD  denote, respectively, the 

distance between iN  and P  and that between P  and jN  ( j  = 1, 2, …, M , ij  ). 

If ipD  is smaller than all of jpD , then, P  is a vertex of the Voronoi cell associated 

with iN . In addition, the three planes intersect at P  are the planes containing the 

three faces of that cell. Otherwise, P  is discarded and the search goes on. In this 

way, all of the vertices and face planes of the cell are found. Let the number of 

vertices and that of face planes of the ith cell be iV  and iF , respectively ( i = 1, 

2, …, N ). 

6.    Repeat steps 3-5 for each of the other nuclei to determine the vertices and face 

planes associated with each of the N  cells in the unit cube.  

7.    Sequence all vertices on each face plane to define each edge of the face and thus 

the face itself for each cell. Let the number of edges of the ith cell be iE  ( i = 1, 

2, …, N ). 

8.    Check whether the following Eqs. (2.1) and (2.2) are satisfied by iV , iF  and iE  

( i = 1, 2, …, N ). 

Any cell in a 3-D Voronoi tessellation satisfies the Euler’s criterion (Wu and Guo, 

2000) 2 FEV  (2.1) 

and the relation 42  FV , (2.2) 
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where V, E, and F denote respectively the number of vertices, edges, and faces 

associated with the cell. 

9.    A microstructure-preserving numerical mesh is laid, which is described in Section 

2.2.2. 

10.    Assign randomly selected crystallographic orientation to each of the cells.  

After the above steps, a cubic Voronoi polycrystal model with microstructure-

preserving numerical mesh is constructed. When the FE method is used for numerical 

solution, the model is termed as the Voronoi polycrystal-finite element (VP-FE) model. 

The algorithm for constructing square (2-D) Voronoi polycrystal model is similar 

to that for the 3-D model. The difference is that all planes degenerate to lines and that 

each vertex is obtained from line intersection.  
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A-2  The solution procedure and iteration scheme of crystal plasticity model. 

Let left superscripts “t” and “t+t” denote the quantities associated with the 

material configurations before and after an infinitesimally small time increment, 

respectively. Then, Eq. (2.3) can be discretized in time as (Hughes and Winget, 1980; 

ABAQUS Manual, 2004) 

 )(: pttt εεCσσ  , (2.12) 

with Ttt RσRσ  , (2.13) 

and    2/2/ 1 ωIωIR   , (2.14) 

where σt  is the stress at time t but defined with respect to the previous local 

crystallographic base, and superscript T represents transpose operation. Equations (2.13) 

and (2.14) transform the stress at time t from the previous crystallographic base to the 

current one. Plastic strain increment can be calculated from Eq. (2.5) as 

 



n

p

1

)()(



 Pε . (2.15) 

Therefore, Eq. (2.12) can be rewritten as 

 







 




n

ttt

1

)()(:


 PεCσσ . (2.16) 

Shear strain increment )(  can be calculated using a control parameter  in the 

range of (0, 1] as 
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 tttt   ])1[( )()()(    , (2.17) 

with  
k

t

t
tt

g )(

)(
)(

0
)( )sgn( 


    , (2.18) 

and  
k

tt

tt
tttt

g )(

)(
)(

0
)( )sgn( 


 




   . (2.19) 

Combining Eqs. (2.16), (2.17) and (2.19), the following stress-based iterative 

equation can be obtained to solve the stress for a given time increment: 
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For the convenience of implementing the Newton-Raphson iteration algorithm in 

ABAQUS/Standard and ABAQUS/Explicit, Eq. (2.20) is recasted into the matrix form: 

 0rσPσPPCσf 







 


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  , (2.21) 

with  t 01   , )()(
2 1  gt , (2.22) 

and  
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where Ĉ  is the 6  6 matrix of tangent elastic constants of the crystal as described in Eq. 

(2.4), and )(ˆ P , σ̂  and ε̂  are 6  1 matrices, given by 
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The Newton-Raphson iteration can then be written as 
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where m is the index for iteration. Stress variation  mtt σ̂  is determined by solving Eq. 

(2.26), and the stress is updated as 
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  mttmttmtt σσσ ˆˆˆ 1    . (2.29) 

Stress σ̂tt   iterates with the initial value of σ̂t , and is assumed to converge when 

the absolute values of  1ˆ  mtt σf  and  1ˆ  mtt σ  are less than very small positive values. 

Then the rate of shear strain can be updated using 

   1
)()(

2
)()(

20
)( ˆˆˆˆ  

k
ttTttTtt σPσP    . (2.30) 

Shear strain increment of -slip system can be obtained by Eq. (2.17). Using Eq. 

(2.15), plastic strain increment with respect to current local crystallographic base is 

determined. Finally, )(g  can be updated through 

 


 
n tt

t

ttt dhgg
1

)()()(






  . (2.31) 

This iterative solution scheme is implemented in ABAQUS/Explicit through 

User-defined subroutine - VUMAT  
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