
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Mechanical (and Materials) Engineering -- 
Dissertations, Theses, and Student Research 

Mechanical & Materials Engineering, 
Department of 

8-2011 

SIX DEGREE OF FREEDOM MINIATURE SIX DEGREE OF FREEDOM MINIATURE IN VIVOIN VIVO  ROBOT FOR ROBOT FOR 

LAPAROENDOSCOPIC SINGLE-SITE SURGERY LAPAROENDOSCOPIC SINGLE-SITE SURGERY 

Ryan L. McCormick 
University of Nebraska-Lincoln, rlmccorm@gmail.com 

Follow this and additional works at: https://digitalcommons.unl.edu/mechengdiss 

 Part of the Mechanical Engineering Commons 

McCormick, Ryan L., "SIX DEGREE OF FREEDOM MINIATURE IN VIVO ROBOT FOR LAPAROENDOSCOPIC 
SINGLE-SITE SURGERY" (2011). Mechanical (and Materials) Engineering -- Dissertations, Theses, and 
Student Research. 24. 
https://digitalcommons.unl.edu/mechengdiss/24 

This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mechanical (and Materials) 
Engineering -- Dissertations, Theses, and Student Research by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/mechengdiss
https://digitalcommons.unl.edu/mechengdiss
https://digitalcommons.unl.edu/mechengineer
https://digitalcommons.unl.edu/mechengineer
https://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mechengdiss/24?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages


 

SIX DEGREE OF FREEDOM MINIATURE IN VIVO ROBOT FOR 

LAPAROENDOSCOPIC SINGLE-SITE SURGERY 

by 

Ryan L. McCormick 

 

A THESIS 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Master of Science 

 

Major: Mechanical Engineering 

 

Under the Supervision of Professor Shane M. Farritor 

Lincoln, Nebraska 

August, 2011 



SIX DEGREE OF FREEDOM MINIATURE IN VIVO ROBOT 

FOR LAPAROENDOSCOPIC SINGLE-SITE SURGERY 

Ryan Lucas McCormick, M.S. 

University of Nebraska, 2011 

Advisor: Shane M. Farritor 

 The shift in surgery from open procedures to minimally invasive surgery (MIS) 

techniques have provided benefits of decreased recovery time, improved cosmetic results, 

and reduced costs.  As advances in MIS move to minimize the number of external 

incisions, such as with Laparoendoscopic Single-Site (LESS) surgery, additional 

complexities are introduced.  These complexities, including unintuitive controls, reduced 

dexterity, and limited workspace, hinder these methods from more widespread 

implementation in more complicated surgical procedures. 

 Through the use of a miniature in vivo robotic surgical platform designed for 

LESS surgery, these complexities can be mitigated, allowing for wider adoption of MIS 

by placing the entire robotic platform inside the peritoneal cavity.  This thesis presents 

the design, prototyping, and implementation of a two armed surgical robot for use in 

LESS procedures. Each arm of the robot will be individually inserted through a single 

incision in or around the umbilicus before being mated together through the use of a 

central assembly rod.  The robotic platform will provide increased dexterity, larger 

workspace, and more intuitive controls as compared to currently available technologies.   

 A remote surgical user interface will allow the surgeon to perform surgical 

procedures in all quadrants of the peritoneal cavity, as is often required for surgeries such 



as colon resection.  The feasibility of this platform has been demonstrated through 

multiple in vivo LESS procedures, including a cholecystectomy, colon resection, and 

small bowel resection in a live porcine model.   
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Chapter 1: Introduction 

Advances in minimally invasive surgery (MIS), such as laparoscopy, have 

provided patients with the benefits of faster recovery times, improved cosmetics, and 

reduced costs.  Despite these benefits, the nature of inserting long instruments through 

multiple small incisions in the peritoneum for laparoscopic procedures results in 

unintuitive controls, lack of dexterity, and poor visual feedback.  Because of these 

limitations, more complex procedures are rarely completed laparoscopically.  

 As technology allows MIS to transition to less invasive methods of surgery, a 

subset of laparoscopy known as Laparoendoscopic Single Site (LESS) surgery aims at 

reducing the number of incisions to one.  Through LESS, all surgical instruments are 

inserted into the body through a single incision in or around the umbilicus, leaving 

“virtually scarless” cosmetic results.  A transition from a standard open procedure to the 

use of LESS would reduce a patient’s hospital stay from 4-6 days to 1-2 days [1].  

Unfortunately, this method has additional complexities associated with the instruments 

passing through a single incision.  In order to provide proper triangulation and vision for 

the surgeon, the instruments of LESS surgery are articulating, bent, or flexible.  Because 

of this, the tools are crossed at the incision, resulting in collateral hand movements in 

which the surgeon’s right hand controls the left end effector and vice versa. 

 This thesis presents the design and in vivo feasibility testing of a six degree of 

freedom (DOF) miniature in vivo surgical robot designed for LESS surgery, as shown in 

Figure 1.  This two-armed surgical robot can be inserted into the peritoneal cavity 

through a single incision in the umbilicus before being assembled inside the cavity.  This 



7 

 

robot is controlled by a surgeon at a remote user interface to perform surgical tasks in all 

quadrants of the peritoneal cavity, providing increased dexterity and more intuitive 

controls as compared to traditional LESS surgery techniques. 

 

Figure 1: SolidWorks model of surgical robot inside the peritoneal cavity 
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Chapter 2: Background 

Section 2.1: Standard Laparoscopic Surgery 

During the 1990s, technological advances in MIS brought about a transition from 

standard open surgical procedures to laparoscopic procedures [2-3].  By replacing large 

incisions used in traditional open surgeries with a series of multiple 5 - 15 mm incisions 

to perform surgical tasks, patients have been able to enjoy quicker recovery times and 

reduced pain [4].   

Section 2.2: Laparoendoscopic Single-Site (LESS) Surgery 

A possible next step in the evolution of MIS is through the implementation of 

LESS.  Various studies have been performed to test the feasibility of LESS in a wide 

range of surgical procedures.  One such study, performed by Ahmed et al., reviewed 102 

studies of LESS procedures, including cholecystectomies, appendectomies, and 

nephrectomies.  These procedures resulted in operative time, hospital stay, and 

complications comparable to conventional laparoscopy and a low rate of conversion to 

conventional laparoscopy [5].  In Fader and Escobar [6], LESS surgery for gynecologic 

oncology is examined.  In this study, nine laparoscopic procedures were performed 

utilizing LESS.  These preliminary studies have helped demonstrate the feasibility of 

LESS for select patients.        

Section 2.3: Robots for Laparoscopic Surgery 

Various robotic platforms have been developed for use in laparoscopic surgery.  

The first robot approved by the Food and Drug Administration (FDA) for use in 



9 

 

laparoscopic surgery was the Automated Endoscopic System for Optimal Positioning 

(AESOP).  This voice controlled robot provides a stable camera platform for use in 

laparoscopic surgery [7].   

The da Vinci Surgical Robotic System (Intuitive Surgical) is the most prevalent, 

commercially available surgical robotic device.  This system manipulates laparoscopic 

tools inserted through several laparoscopic ports with the use of arms hovering above the 

patient.  This device is controlled by a surgeon located at a remote workstation.  

Advantages of this system include dexterous wrist actuation, tremor filtering, and more 

intuitive controls [8-10].  However, the large size and cost of the da Vinci provide limits 

from more widespread implementation due to financial restrictions of medical facilities. 

 Other research is being performed to develop additional robots to control long 

laparoscopic tools outside the body.  Examples include the Raven [11] and COBRASurge 

[12].  These systems are both more compact and cost effective than the da Vinci.  All 

three of these systems have their tools constrained by incisions in the peritoneum.  

Because of this restriction, working in multiple quadrants inside the peritoneal cavity can 

be difficult and time consuming, making these systems impractical for surgeries requiring 

large, multi-quadrant workspaces, such as colectomies. 

Section 2.4: Robots for LESS Surgery 

In attempts to solve some of the difficulties associated with single incision 

procedures, other robotic solutions for LESS are being developed.  One instance of this 

has been accomplished through the use of the da Vinci in single incision procedures 

instead of the traditional multiport laparoscopic method which it was developed for.  
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Various surgeries, including a right colectomy, have been performed through using 

method [13].  These approached have been limited from performing multiple quadrant 

procedures due to the period of time required to reposition the da Vinci to other 

quadrants. 

 A two armed miniature surgical robot, Single-Port lapaRoscopy bImaNual roboT 

(SPRINT) is also currently being developed for single incision surgery [14].  Both six 

DOF arms are inserted through a port in the umbilicus.  This platform utilizes a 

combination of both motors and cable-driving for both internal and external actuation.  

While preliminary benchtop studies have been performed, in vivo studies have not yet 

been performed. 

Section 2.5: In Vivo Surgical Robots 

Previous robotic designs have aimed to overcome the constraints of working 

through incisions by placing the entire robot inside the peritoneal cavity to assist in 

laparoscopic surgery.  One such example is a pan and tilt camera to provide additional 

views for placing of trocars during the procedure.  Its 15 mm diameter allows the pan and 

tilt camera to be inserted through a standard laparoscopic port [15-16].  Other in vivo 

robots have utilized two helical drive wheels to provide mobility for the platform.  Once 

inserted through an incision, these mobile robots have demonstrated the ability to traverse 

the peritoneal cavity.  Various versions of this platform have been equipped with tools to 

allow for cauterizing, clamping, stapling, biopsy, and sensory capabilities [17]. 

 More recent work within this research group have demonstrated the feasibility of 

a two armed miniature in vivo surgical robot capable of performing surgery utilizing a 
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single incision.  Previous platforms of this nature have performed multiple 

cholecystectomies (gallbladder removals) and a partial colon resection in open 

procedures.  Additionally, the ability to insert a two-armed robot through a single incision 

and grossly reposition the robot to perform tasks in multiple quadrants has been 

demonstrated [18].      
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Chapter 3: Conceptual Design 

Section 3.1: Overview 

A miniature in vivo surgical robotic platform would be very beneficial for use in 

LESS surgeries.  While its application would be useful in a wide variety of surgeries 

currently performed through standard laparoscopy, the largest impact would be for use in 

colon resection.  Colon cancer is the second most deadly form of cancer, with an 

estimated 51,000 deaths resulting from colorectal cancer in 2010 [19].  To perform a 

laparoscopic colon resection, five small incisions are made to allow the introduction of 

various laparoscopic tools through the peritoneal wall.  Once the peritoneal cavity is 

insufflated with CO2, these tools are then used by a surgeon to mobilize the colon.  Once 

the cancer-containing section of colon is mobilized, a 50 - 100 mm incision is made to 

allow the mobilized colon to be pulled through, allowing for the cancerous area to be 

removed.  The remaining unaffected portion of the colon is then reconnected before being 

returned through the 50 - 100 mm incision.   

 Due to the shape of the colon and the fact that it spans multiple quadrants in the 

peritoneal cavity, it is difficult to correctly position the laparoscopic ports to have the 

proper workspace required to reach multiple quadrants.  Currently, out of the 240,000 

colon resections performed in the United States annually, less than 20% are performed 

laparoscopically.  Because of this, the vast majority of colon resection surgeries are 

performed as open procedures, resulting in a 4-6 day hospital stay, coupled with 

increased discomfort and a larger scar for patients.   
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 To mitigate the issues associated with current colon resection, a robotic platform 

would be completely inserted into the peritoneal cavity through a single 50 mm incision 

at the umbilicus, eliminating additional incisions for laparoscopic tools.  A central 

assembly rod would protrude out of the single incision.  The robot would then be used to 

mobilize the colon before the robot is removed through the single incision through which 

it was inserted.  The mobilized colon would then be pulled through this same incision 

where surgeons could externally remove the cancerous section of colon and reconnect the 

healthy sections before the colon is reinserted into the cavity through the single incision.  

This could reduce the hospital stay from 4-6 days required for an open procedure to 1-2 

days. This decreased recovery time would also significantly reduce costs associated with 

extended hospital stays [1].  If the incision is made around the umbilicus, the patient will 

be left with a “virtually scarless” procedure. 

Section 3.2: Design Concepts 

Using knowledge gained from previous prototypes created through this research 

group, this robot will comprise of two arms to perform surgical tasks.  Each arm will be 

individually inserted through a single incision in the peritoneum before being mated 

together using a central assembly rod.  This rod will protrude out the body to allow for 

external gross repositioning of the robot.  This robot will have six degrees of freedom in 

each arm, as well as the ability for open/close actuation of the end effector.  In order to be 

inserted through the single incision, a maximum of 30 mm equivalent diameter is used as 

a guideline.  
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 Each arm of the robot will be made up of a torso, upper arm, lower arm, and 

forearm, as shown in Figure 2.  A one degree of freedom shoulder will be located 

between the torso and the upper arm.  The two degree of freedom elbow will be located 

between the upper arm and lower arm.  A two degree of freedom wrist will be located 

between the lower arm and forearm.  The sixth degree of freedom will be a decoupled 

roll of the end effector and have no effect on the end effector position in Cartesian 

coordinates.  Despite control difficulties associated with controlling a five degree of 

freedom robot in previous iterations, control will be simplified through the 

implementation of an approximate three degree of freedom “wrist” between the lower 

arm and forearm.  With this addition, the inverse kinematic solution for the Cartesian 

coordinates of this approximated wrist will be calculated geometrically using the first 

three degrees of freedom of the robot.  The final three degrees of freedom will be 

completely decoupled from each other, where each degree of freedom provides the 

rotational orientation of the end effector positioned at the end of the forearm.  

 

Figure 2: Assembled miniature surgical robot platform 
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Section 3.3: Design Requirements 

 Various design constraints that are necessary for an in vivo platform designed for 

LESS often are conflicting and require trade-offs.  The largest constraint is the size of 

each arm of the robot, as it needs to be able to be inserted through a single incision into 

the peritoneal cavity without insufflation.  Because of this, the target equivalent diameter 

of the robot is constrained to approximately 30 mm.  This size is the main driving force 

for most of the design decisions.  Once the robot is inserted inside the cavity, it needs to 

have the necessary workspace, dexterity, force, and speed required to perform surgical 

tasks.   

 Researchers at the BioRobotics Lab at the University of Washington have 

performed studies to quantify the forces and speeds used by surgeons performing 

common surgical tasks such as running the bowel, dissecting mesenteric arteries, passing 

a suture, tying a knot, and suturing colon. To measure the forces, the BlueDRAGON 

system was constructed to measure the forces applied by the surgeon while performing 

these laparoscopic tasks in the peritoneal cavity.  It must be noted that the forces applied 

by a surgeon are not the same forces applied to the tissue in vivo as a result of the friction 

in the trocar and the reaction with the abdominal wall.  Due to the limited information 

currently available on force requirements for in vivo tissue manipulation, these force 

values can be used as a preliminary design goal [20-21]. 

 A decision must be made to maximize the usable workspace for the robot while 

limiting the overall length to allow for insertion into the noninsufflated peritoneal cavity.   

Additionally, intersecting workspace must be considered, as it is often required that both 
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end effectors be capable of reaching tissue simultaneously to perform cooperative 

surgical tasks. Through the kinematic orientation of the joints chosen for the design, the 

robot is capable of maintaining dexterity in a large workspace spanning from areas close 

to the torso of the robot out to the extents of the cavity.  Based on initial work, this robot 

is capable of performing surgical tasks in all four quadrants without external gross 

repositioning of the robot. 
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Chapter 4: Kinematic Design 

Section 4.1: Denavit-Hartenberg Parameters 

A kinematic model of the six DOF right arm of the LESS surgical robot is shown 

in Fig. 3.  The base frame {0} and frame {1} are located at the one DOF shoulder joint 

with the z-axis of both frames along the shoulder actuation shaft.  Frames {2} and {3} 

intersect at the two DOF elbow joint located between the upper arm and lower arm.  

Frames {4} and {5} are located between the lower arm and forearm.  The end effector 

rotational frame, {6}, is located along the end of the forearm. 

 

 

Figure 3: Six DOF kinematic model 

  

  



18 

 

The Denavit-Hartenberg parameters for the right robotic arm are displayed in 

Table 1.  The sixth reference frame is completely decoupled and not included in Table 1.  

In this table, LUA is the length of the upper arm, LLA is the length of the lower arm, and 

LFA the length of the forearm. 

Table 1: Denavit-Hartenberg parameters 

 

Section 4.2: Forward Kinematics 

Once the Denavit-Hartenberg parameters are determined, they can be used to 

determine the frame transformations of each frame from the relationship 

i-1
i    [
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resulting in  
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] 
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For simplification, the link length between the lower arm and forearm is 

approximated as zero due to its relative short length.  Since the sixth degree of freedom is 

decoupled from the end effector position, its transformation matrix was found without 

using the Denavit-Hartenberg parameter.  The Cartesian coordinates of the end effector 

can be found using the forward kinematic transform 
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((              )        )            ]
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Section 4.3: Workspace 

Due to the necessity for the robot to have the capabilities to perform surgical tasks 

in multiple quadrants, as required for colectomies, the kinematic orientation and joint 

limits of the robot allow for a dexterous workspace spanning four quadrants of the 

peritoneal cavity.  This orientation provides for a wide range of motion both close to the 

torsos of the robot as well extending to the outer edges of the cavity.  The majority of the 

workspace consists of an inner spherical boundary with a radius of 41 mm and an outer 

boundary of an approximate torus with a tube diameter of 105 mm located 65 mm from 

the torus center.  Due to the placement of the second arm’s torso, this workspace shape 

can be achieved in three of the four quadrants.  The workspace for the remaining 

quadrant is reduced in volume, yet can likely provide sufficient reach and dexterity to 

perform surgical tasks in that quadrant.   

To perform many surgical tasks, the intersecting workspace is a better measure of 

the capabilities of the robot.  In Figures 4 and 5, the left and right arms are represented by 

the blue and red tori, respectively, while the purple volume represents the intersecting 

workspace.  This demonstrates the ability of the robot to perform procedures in all four 

quadrants of the peritoneal cavity.  A SolidWorks rendering of this capability is shown in 

Figure 6.  When the robot is working in the quadrant opposite of the initial orientation, 

the end effector’s orientation will switch, resulting in the left end effector being on the 

right side and vice versa.  Additionally, the ability of multiple quadrant manipulation was 

demonstrated on a benchtop experiment, as shown in Figure 7.   
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Figure 5: Model of intersecting workspace with respect to the colon 

 

Figure 4: Model of intersecting workspace with 

surgical robot 
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Figure 7: Benchtop experiment of multiple quadrant 

capabilities 

Figure 6: Model of surgical robot's four quadrant capabilities 
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Section 4.4: Jacobian 

 The Jacobian matrix can be utilized to determine information such as 

manipulability, force, and speed capabilities of the robot based on its kinematic and joint 

properties.  The infinitesimal translation and rotation of the end-effector corresponds with 

the manipulator Jacobian.  The Jacobian matrix for this six DOF robot would take the 

form of a 6 x 6 matrix made up of column vectors representing the velocity and linear 

velocity generated by each corresponding joint.  This method of computing the Jacobian 

follows the formula of 

   [
  
  
] 

where each component is the sum of  

                    

and  

         . 

In this equation, bi is the unit vector for the joint and ri-1,e is the position vector [22].  

Calculation of components of the Jacobian matrix was performed utilizing MATLAB.  

The code used is further detailed in Appendix A, along with the output of the 6 x 6 

Jacobian  matrix.  

 The 6 x 6 Jacobian matrix can be used to determine the end effector force 

capabilities of at various positions across the workspace.  Joint torques are related to end 

effector forces by the equation 
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where τ is the joint torque vector, J
T 

is the transpose of the Jacobian matrix, and F is the 

force vector. 

Using the guidelines based on the Blue Dragon data of maximum required forces 

in the X, Y, and Z direction of 5 N, 5N, and 20 N, respectively, the force capabilities 

were tested.  Although of the values of the Blue Dragon were force requirements required 

by a user controlling laparoscopic tools from outside the body where trocar friction and 

lever arms effect the end effector forces, they can provide initial target values.  Due to the 

fact the workspace of the robot is revolved, a cross section of the workspace represents 

the force capabilities of the robot across the majority of the workspace.  MATLAB was 

utilized to plot the data points in this cross sectional plane where the respective values of 

Fx, Fy, and Fz met the requirements the force targets of 5 N, 5 N, and 20 N, respectively, 

as shown in Figure 8.   
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Figure 8: Cross sectional force data of the surgical robot's ability to meet or exceed 

force requirements determined by the BlueDRAGON 

The first three joints were stepped through their joint limits with a step size of 10˚ 

while the last three joints were stepped through their joint limits with a step size of 5˚.  

The cross section used for plotting was .5 mm thick centered at the y = 0 plane.  These 
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plots demonstrate the theoretical force capabilities meet or exceed the requirements as 

determined by the Blue Dragon over a wide range of the workspace.  With a smaller step 

size, the addition data points would likely fill in more of the workspace area. 

 The velocity capabilities of the robot at various points across the workspace can 

also be found by utilizing the Jacobian matrix.  The equation relating end effector angular 

velocity is 

    ̇ 

where V is the linear velocity vector and  ̇ is the joint angular velocity vector.  In a 

similar method as for plotting force, MATLAB was utilized to plot data points where the 

robot was capable of obtaining a maximum linear velocity of the end effector benchmark 

of 0.072 m/s, as found through the BlueDRAGON data.  A step size of 10˚ was used for 

all six joints.  Each data point represents a point in the robot workspace where a linear 

velocity of 0.072 m/s is obtainable in the 1 mm cross section centered at the y = 0 mm 

plane.  These plots are displayed in Figure 9.    
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Figure 9:Cross sectional velocity data of the surgical robot's ability to meet or 

exceed linear velocity requirements determined by the BlueDRAGON 
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Chapter 5: Prototype LESS Robot 

Section 5.1: Design 

A miniature in vivo surgical robot was developed for insertion through a single 

incision into the peritoneal cavity to perform surgical tasks.  The robot, as shown in 

Figure 10, consists of two arms, both containing a torso, upper arm, lower arm, and 

forearm.  Once inserted inside the peritoneal cavity, both arms are mated together with 

the use of a central assembly rod.  The left and right end effectors are a grasper and a 

monopolar hook cautery, respectively.  The end effectors are interchangeable depending 

on the procedure requirements.   

 

Figure 10: Prototype surgical robot 
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Section 5.2: Insertion and Attachment 

Each arm of the robot is independently inserted through a single incision in the 

peritoneum from its home position.  Once each arm of the robot is individually inserted 

into the peritoneal cavity through the single incision in the peritoneum, one control rod 

rigidly attached to each torso will be left protruding through the incision.  Each of these 

control rods are aligned with the corresponding hole before the assembly rod is lowered 

until coming in contact with the torso of each arm.   

Each torso then mates with the assembly rod, being constrained rotationally due 

to the geometry of each piece.  A thumb screw is then threaded onto the free end of each 

control rod until the translation of each torso is constrained to the assembly rod.  A 

rubber gasket between the thumb screw and the assembly rod prevents the escape of CO2 

used for insufflation.  The free end of the assembly rod is fed through a Gel Port and 

extra wire is pulled through the wire races.  The Gel Port is then attached to the lower 

ring and the peritoneal cavity is insufflated.     

Section 5.2: Electronics and Communication 

The communication and power for the actuation of the robot is provided through 

tethered wires connected to each motor.  Each motor is a coreless permanent magnet 

direct current motor with a magnetic encoder.  These wires are connected to 

CompactRIOs (National Instruments) NI 9505 motor modules, which provide motor 

driving using a proportional-integral-derivative (PID) control method.  Passive filter 

printed circuit boards (PCB) have been implemented between the motors and the 

CompactRIO to filter out signal interference that may be introduced due to the electrical 
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signal from the cautery.  Power for both the motor and encoders are provided using 

external power supplies.  An Ethernet cable facilitates communication between the 

CompactRIOs and a laptop computer.  Mcobotor position information is sent to the 

CompactRIOs from LabVIEW graphical programming environment (National 

Instruments).   

Section 5.3: Remote Surgical Interface 

The remote surgical user interface system consists of a monitor, triple-action 

footpedal, and controller.  Two controllers were developed in parallel.  The first system 

utilizes Phantom Omni (Sensable) haptic devices while the second system utilizes a 

scaled, kinematically-matched Master.   

5.3.1: Master Controller 

One of the controllers for the remote surgical user interface system developed 

used a kinematically matched master that was scaled 1.8:1 as compared to the surgical 

robot.  The master system consists of two arms mounted onto an adjustable base.  Each 

arm has a one degree of freedom shoulder, two degree of freedom elbow, two degree of 

freedom wrist, and handle that can be rolled.  Additionally, a trigger is used to control the 

actuation of the end effector.  As the handles, which represent the end effector of each 

robotic arm, are moved around the workspace of the master, potentiometers at each joint 

record the joint angles for each arm.  This information is then sent to LabVIEW via a 

USB DAQ (National Instruments) to provide motor position set points for each joint of 

the robot.  Since each joint is directly mapped, there is no need to calculate the inverse 
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kinematic solution for each end effector position.  An image of the Master is shown in 

Figure 11. 

The monitor provides visual feedback for the surgeon.  The triple action foot 

pedal provides for locking of both the right and left arm of the surgical robot.  Before 

each arm of the robot is unlocked, the respective arm of the master must be positioned in 

the same orientation as the robot to avoid undesired movement of the robot.   

 

 

Figure 11: Master controller for remote surgical interface 

 

5.3.2: Phantom Omni Controller 

A second control system was implemented utilizing two Phantom Omni 

(Senasable) haptic devices with specialized handles, as shown in Figure 12.  The 
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Phantom Omni devices have the capability of measuring six DOF.  The X,Y,and Z 

Cartesian coordinates and three rotational degrees of freedom of the devices gimbal are 

measured.  The device also provides force feedback in the three translational degrees of 

freedom.  To use this device for the six DOF robot, the robot was broken into two sets of 

three degrees of freedom.  The first system is determined by the Cartesian coordinates of 

the wrist joint.  The rotation of the gimbal is then used to correspond to the three 

rotational degrees of freedom (Rx, Ry, and Rz) of the forearm of the robot.  By doing 

this, the problems associated with multiple solutions to larger order degree of freedom 

robotic systems are mitigated.  It is approximated that the three axese intersect at the 

wrist despite the length of the link between the lower arm and forearm.  This is justified 

due to the relatively short length of this link and the fact that the robot is controlled based 

on the vision of a surgeon, allowing for intuitive compensation by the surgeon to position 

the end effector.  This visual compensation is also used to mitigate the effects of motor 

backlash propagation through the robot, although solutions to reduce backlash are being 

attempted. 
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Figure 12: Phantom Omni controller for remote surgical interface 

 

 The position of the wrist can be determined based on the first three rotational 

frames of reference corresponding to the first three joints of the robot as 

           
   

   
    

where  
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This resulting forward kinematic location of the wrist joint gives the Cartesian 

coordinates based on the Phantom Omni coordinate system of 

X  (           )          

Y  (           )          
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Z            

In order to map the joint angles for a desired wrist position, the inverse kinematic 

solutions for each of the joints can be solved using the geometric solution.  The inverse 

kinematic solutions for the first three angles follow the equations 
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The position of the wrist is prevented from exiting the usable workspace through 

the use of haptic feedback in the Cartesian coordinates of the Phantom Omni controllers.  

A haptic workspace consisting of a torus and inner cylinder was programmed into a C++ 

program used to communicate between the Phantom Omni controllers and the LabVIEW 

program.  The C++ code is attached in the Appendix A.   

 A custom handle was designed to be implemented with the Phantom Omnis to 

control the end effector position and orientation on the robot.  The handle is scaled such 

that the length from the gimbal axis to the end of the handle corresponds to the length 

between the wrist of the robot and the end effector.  Once the handle is in the surgeon’s 

hand and the robot is unlocked, the Rx, Ry, and Rz orientations of the handle will be 

translated to the corresponding orientations for the robot’s end effector.  While Rz is 

completely decoupled from the other joint angles of the robot, Rx and Ry are partially 
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decoupled from the other joint angles.  Due to the rotational orientation of the lower arm, 

each of these angles must be compensated for, resulting in the last three joint angles to be 

calculated from 

       (               (
 (   

    )           
 

       √   
    

) 

          

      

 This solution mitigates previous issues resulted from the lack of haptic feedback 

in the gimbal which could be used to prevent the robot from reaching orientations outside 

of its joint limits which were possible to reach with the Phantom Omnis.  It should be 

noted that in the equation for θ4 the area of the workspace where LLA
2
 – z

2
 = 0 

corresponds with the upper boundary of the workspace.  Due to the implemented haptic 

boundary limits, this situation is prevented from occurring.   With previous generations of 

higher degree of freedom robots, when these orientations outside the robot’s workspace 

were reached, an inverse kinematic solution could not be solved, which often resulted in 

the robot “jumping” into undesired orientations.  Through the method of partially 

decoupling the gimbal orientation, only one joint is affected if the orientation is not 

within the robot’s workspace.  If the determined joint angle is out of the range of joint 

limits for that particular joint, the joint is held at that joint limit until the gimbal is 

brought back into the usable workspace volume.  No other joints are affected by this 

exiting of the workspace.  Additionally, the internal mechanical joint limits of the 

Phantom Omni controller and the ergonomic arrangement of the user interface greatly 
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reduce the occurrence of a joint set point exceeding its joint limit.  A spring-loaded 

trigger allows for open/close actuation control of the respective end effector.  The angle 

of the trigger is read through the use of a potentiometer and is mapped to a corresponding 

angle of the robotic end effector. 

 This system provides possible advantages over the direct master-slave system, 

including tremor filtering, clutching, and motion scaling.  In order to implement motion 

scaling, an adjustable handle would need to be implemented to compensate for the 

change in scale to the forearm.  Due to the approximate intersection of the final three 

axes, Pieper’s solution [23] was originally considered as an inverse kinematic solution to 

use for the controller.  Because of complications associated with the lack of rotational 

orientation haptic feedback, Pieper’s solution was not implemented for this controller. 

Section 5.4: Segment Design 

 The design of each arm segment will be presented in further detail.  Each of the 

components for the torso, upper arm, lower arm, and forearm are identical, and therefore 

interchangeable between the left and the right arm.   

5.4.1: Torso 

Shown in Figure 13, the torso motor housing holds the motor and actuation 

mechanism for the first joint.  A spur gear is rigidly attached to the output shaft of the 

torso motor.  As the motor output shaft turns, the motor spur gear rotates the output shaft 

spur gear, which is radially constrained with the torso rotational shaft through a flat 

placed on the output shaft and the bore of the spur gear.  The output shaft is supported 

with two flanged ball bearings.  The lower flanged ball bearing is seated in the lower 
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torso cap.  The output shaft is constrained to the torso to upper arm link with a bolt.  A 

hex nut provides an axial constraint to the output shaft.   

 

Figure 13: Internal view of the torso 

 

5.4.2: Upper Arm 

The torso to upper arm link is constrained to both of the upper arm motor housing 

halves with bolts threaded into the torso to upper arm link, as shown in Figure 14.  The 

second joint is actuated from a motor located inside the upper arm motor housing.  An 

encoder provides position information for the motor.  A planetary gearhead is attached to 

the motor by way of mating threads standard on these motors and planetary gearheads. 
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The planetary gearhead is rigidly attached to the upper arm gear housing by use of epoxy 

to prevent rotation and translation of the motor assembly.  A spur gear is rigidly attached 

to the output shaft of the gearhead.  As the spur gear is rotated by the motor, torque is 

transmitted to the output spur gear, which is rigidly attached to the upper arm to lower 

arm link.  This link is supported by a pair of ball bearings housed in the upper arm gear 

housing.  A button socket cap bolt is threaded into this the link, preventing translation.  

This joint provides roll for the lower arm. 

 

Figure 14: Internal view of the upper arm 

 

5.4.3: Lower Arm 

Shown in Figure 15, the upper arm to lower arm link interfaces with the lower 

arm by way of the lower arm rotational shaft.  A flat has been placed on both the lower 

arm rotational shaft and the bore of the upper arm to lower arm link to constrain the 
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rotation of these parts.  A set screw also threads into the link to constrain the parts 

axially.  Ball bearings, which are housed in the lower arm motor housing, support the 

lower arm rotational shaft.  A spur gear is rigidly attached to the rotational shaft.  A bolt 

constrains the rotation shaft axially.  The rotation shaft is rotated as the 15 mm motor is 

actuated, rotating the motor output spur gear, which is rigidly attached to the output shaft 

of the motor.  The motor is constrained utilizing two bolts which go through the motor 

housing and are threaded into the mounting holes of the motor.  The lower arm gear 

cover covers the moving gears to prevent outside objects from contacting the moving 

gears.  It is held in place by the mounting bolts for the motor.  This joint provides yaw for 

the lower arm.  This joint actuation mechanism is identical to the actuation of the fourth 

joint with the lower arm to forearm link being actuated with respect to the lower arm, 

providing yaw for the forearm.   
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Figure 15: Internal view of the lower arm 

 

5.4.4: Forearm 

The internal workings of the forearm pitch joint are shown in Figure 16.  The 

lower arm to forearm link is connected to the forearm by interfacing with the forearm 

rotational shaft.  A flat has been placed on both mating surfaces to constrain these parts 

radially.  The forearm rotational shaft is supported by ball bearings which are seated in 

the forearm pitch motor housing.  A spur gear is rigidly attached to the rotational shaft.  

The rotational shaft is constrained axially through the use of a button socket cap bolt.  

When the 15 mm motor is actuated, the motor shaft spur gear, which is rigidly attached to 

the output shaft of the motor, also rotates.  The motor is constrained by two bolts through 
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the motor housing which are threaded into the mounting holes of the motor.  These bolts 

also hold the forearm gear cover in place to prevent outside objects from contacting the 

moving gears.  Torque is transmitted from the motor spur gear to the rotational spur gear, 

providing pitch for the forearm.  The forearm pitch motor wiring cover provides a back 

support for the motor as well as covers the wiring.  This cover is held in place using two 

bolts through the motor housing.  Four bolts attach this motor housing to the rest of the 

forearm. 

 

Figure 16: Internal view of the forearm pitch joint 

 

Shown in Figures 17 and 18, the grasper housing is mated with the rotational 

motor spur gear.   Actuation of the rotational motor and rotational motor gearhead causes 
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rotation of the rotational motor spur gear, also resulting in the rotation of the grasper 

housing.  The grasper housing is supported by two bearings to reduce rotational friction 

of the grasper housing.  A distal hex preload nut limits translation of the grasper housing 

and provides a preload for the bearings to further help reduce friction during rotation of 

the grasper housing.  A beveled washer is located between the ball bearing and hex 

preload nut to provide compliance.  

 

Figure 17: Internal view of grasper forearm 
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Figure 18: Cross-sectional view of grasper rotation mechanism 

 

The grasper actuation motor is rigidly coupled to the motor housing by two 

actuation motor mounting bolt, as shown in Figure 19.  These two mounting bolts 

constrain the translation and rotation motion of the actuation motor to motor housing.  

The motor is rigidly attached to a spur gear.  Actuation of this motor causes rotation of 

the spur gear, which leads to the rotation to the driveshaft housing spur gear.  The 

driveshaft housing spur gear is rigidly coupled to the driveshaft housing coupled to the 

grasper driveshaft.  Rotation of the driveshaft housing spur gear is provided through the 

actuation motor, resulting in rotation of the driveshaft housing and the translation of the 

grasper driveshaft due to it being constrained radially by grasper teeth.  



44 

 

 

Figure 19: Cross sectional view of grasper driveshaft actuation mechanism 

 

As shown in Figure 20, a grasper rotation bolt threads through one side of the 

grasper housing and extends through a hole in both grasper teeth.  A pin machined into 

the grasper driveshaft rides in the grooves of the grasper teeth.  As the grasper driveshaft 

is translated forward and back, the pin moves along the grooves, resulting in the opening 

and closing of the graspers. 

The rotation mechanism of the grasper driveshaft is assisted by a proximal hex 

preload nut, beveled washers and bearing elements.  The driveshaft housing is rigidly 

coupled to a driveshaft housing screw.  This constrains translation of the driveshaft 

housing to the proximal bearing. 
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Figure 20: View of grasper teeth actuation mechanism 

 

The cautery rotational gear is mated with a rotational motor spur gear, as shown 

in Figure 21.  The motor spur gear is actuated by a rotational motor and motor gearhead 

coupled to the motor.  Actuation of this motor and gearhead causes rotation of the motor 

spur gear, resulting also in the rotation of the cautery rotational gear and the cautery 

housing.  The cautery housing is supported by two bearing elements proximal to the 

cautery rotational gear:  The cautery housing and proximal bearing are further coupled to 

a cautery shaft nut that limits translation of the cautery housing and provides a preload 
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for the two bearing elements to aid in reducing friction during rotation of the cautery 

shaft. 

 

Figure 21: Cross-sectional view of cautery rotation mechanism 

 

Section 5.5: Dual End Effector Forearm 

This robot is also capable of utilizing a dual end effector forearms for use with bi-

directional kinematics on a miniature in vivo surgical robot.  In this design, two end 

effectors can be utilized by a surgeon controlling the miniature in vivo surgical robot with 

equal dexterity and similar control.  This can allow for more complex procedures to be 

completed that require various end effectors without the need to remove and insert new 

tools into the peritoneal cavity. 

The surgeon can control the default end effector of the robot to perform its typical 

surgical task.  Once the surgeon needs the use of the other end effector, the proximal joint 

can be rotated 180 degrees.  Once this occurs, the surgeon is able to use the second end 
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effector with the same dexterity and workspace volume as the first end effector.  A 

similar process allows for the robot to be reoriented to switch back to use of the first end 

effector.  This process is shown in Figure 22.     

 

Figure 22: Side and top view of the dual end effector implementation on the left 

robotic arm 

 

In the forearm, one motor will control the rotation of the end effector and one 

motor will control the open/close actuation.  One end effector combination could include 

a monopolar cautery with a rotational degree of freedom plus a second end effector, such 

as a gripper or scissor, with a rotational degree of freedom and open/close actuation.  One 
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motor will provide actuation for open/close of one end effector while a second motor will 

provide simultaneous rotation for both end effectors.  For rotation, torque will be 

transmitted from the motor to the end effector shaft through spur gears.  The open/close 

actuation will be accomplished through a lead screw mechanism.  These mechanisms are 

a combination of both methods used for the individual cautery and grasper forearm as 

presented in the previous section. 

Other options with various end effector combination could include two end 

effectors, both capable of both rotation and open/close actuation.  In this configuration, 

one motor will provide simultaneous rotation of both end effectors, while a second motor 

will provide simultaneous open/close actuation for both end effectors.  Other possibilities 

could include a linkage between the two end effectors to allow for both end effectors to 

be actuated between open and closed positions.  Possible end effectors could include 

various graspers, needle drivers, scissors, cautery, Ligasure, or knife options.  

The kinematics of each robotic arm allow for nearly identical dexterity and 

workspace volume for both end effectors.  This is due to the placement of joints allowing 

for similar range of motion in both directions, as shown in Figure 23.  When not in 

transition between end effectors, the proximal joint have full mobility.  Because of this, 

when the arm is rotated into the orientation for use of the second end effector, the 

kinematics of the robot stay relatively the same, allowing for each of the two end 

effectors to be controlled by the surgeon in a similar way.  Future work can lead to 

increased range of motion and larger dexterous workspace through rearrangement of 

components and joints.   
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Figure 23: Bidirectional capability of joints 

 

Volume of material at the end effector side of the forearm has been minimized to 

allow for better visualization of the end effector in use.  The cross sectional area of the 

dual tip end effector forearm is compact enough to fit through a single incision for use in 

Laparoendoscopic Single-Site Surgery (LESS).  

To better accommodate the use of both end effectors, a method to retract one of 

the end effectors will be used, as shown in Figure 24.  When the first end effector is in 

use, the second end effector will be partially retracted to avoid unwanted collisions with 

tissue of the second end effector.  Once the second end effector is needed for use, it will 

extend out from the forearm while the arm reorients itself using the reorientation 

protocol.  The second end effector will be extended beyond the first end effector to allow 

use without the first end effector colliding with tissue.  Once the use of the second end 

effector is completed, it will retract back into the forearm as the arm reorients itself for 

use of the first end effector.   
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Figure 24: Retracted and extended cautery end effector 

 This mechanism is better demonstrated in Figures 25 and 26.  The rotational spur 

gear causes the rotation of the long cautery shaft.  The long cautery shaft, which is 

supported by two ball bearings, is mated with the retractable cautery shaft.  As this 

rotation occurs, the externally threaded retractable cautery shaft is threaded into the 

threaded energizing ring, advancing the retractable cautery shaft through a combined 

rotation and translation.  The threaded energizing ring is rigidly constrained to the 

forearm motor housing.  The power supply for the cautery is attached to the threaded 

energizing ring via a wire to conduct the energy required for use of the cautery to the 

hook cautery tip. A rod supports the retractable cautery shaft to assist in maintaining 

proper mating between the retractable cautery shaft and the long cautery shaft. 
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Figure 25: Transparent retractable cautery view 

 

 

Figure 26: Retractable cautery mechanism cross sectional view 
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Chapter 6: In Vivo Results 

 This six DOF miniature in vivo surgical robot has been used in three non-survival 

surgical procedures in a live porcine model at the University of Nebraska Medical Center.  

All cases were approved by the institutional review board.  During these procedures, the 

robot was controlled by a surgeon at the remote surgical user interface located in the 

surgery room away from the porcine model. 

Section 6.1: Insertion and Attachment 

The surgical robot prototype was successfully inserted into the peritoneal cavity 

during three separate procedures in live porcine models.  Each arm was inserted 

individually before being coupled together using a central assembly rod.  The incision in 

the peritoneum in each of these procedures was approximately 60 mm to provide initial 

proof of concept.  In the future, this incision size will be decreased.  The steps of this 

process are shown in Figure 27.  After the incision was made, the insertion procedure 

took an average of five minutes for insertion and insufflation.   
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Figure 27: Insertion of surgical robot into porcine peritoneal cavity 
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Section 6.2: Surgical Procedures 

6.2.1: Cholecystectomy 

The surgical robot was used to perform a single incision cholecystectomy, or 

gallbladder removal.  Once the robot was inserted through a single incision into a live 

porcine model, a standard laparoscope was inserted through the Gel Port in such a way 

that it utilized the original single incision by going through a cutout in the assembly rod.  

This cutout was designed to allow for four degree of freedom motion of the laparoscope 

inside the cavity to provide visual feedback to the surgeon.  Once the robot was grossly 

positioned with use of the protruding assembly rod, the liver was retracted utilizing a 5 

mm laparoscopic grasper through an additional laparoscopic port.  In future applications, 

this retraction could be performed with a scarless 3 mm retractor to maintain single 

incision classification.   

 Once the robot was in position and the liver was retracted, the surgeon took his 

place at the remote surgical user interface made up of the master controller, monitor, and 

triple-action footpedal.  Additionally, a standard cautery foot pedal was used to control 

the cut and coagulation abilities of cautery.   

The first step of the cholecystectomy was the separation of the cystic duct from 

the liver bed.  After this step was complete, the cystic duct was dissected.  Finally, the 

gallbladder tissue was dissected from the liver bed until the gallbladder was completely  
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Figure 28: In vivo cholecystectomy images 

 

detached.  Once the procedure was completed, the robot and gallbladder were removed 

from the body through the single incision.  Images from this procedure, as seen through 

the laparoscopic view displayed on the monitor of the surgical user interface, are shown 

in Figure 28. 
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6.2.2: Colon Resection 

This robot was also used to perform a colon resection on the live porcine model.  

After the robot was inserted and the peritoneal cavity was insufflated, the left grasper end 

effector was used to grasp portions of the colon and provide tension in the mesentery 

when pulled.  Once tension in the mesentery was achieved, the right hook cautery end 

effector was utilized to dissect the mesentery in order to mobilize the colon.  Images, as 

seen by the surgeon in real time via the monitor, are shown in Figure 29. 

 

Figure 29: In vivo colectomy images 
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6.2.3: Small Bowel Resection 

Due to the differences in the anatomy of the colon of a human and porcine model, 

the small bowel in a porcine model is used to simulate the right colon found in a human.  

For this procedure, the left arm’s grasper end effector was used to grasp a portion of 

small bowel and pull the tissue to create tension in the mesentery.  The right arm’s hook 

cautery end effector was then used to dissect the mesentery in order to mobilize the small 

bowel, as would be required for human colon resection.  Laparoscopic images from this 

procedure as viewed by the surgeon through the monitor at the remote surgical user 

interface are shown in Figure 30. 

 

Figure 30: In vivo small bowel resection image 
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Chapter 7: Conclusion 

This thesis presented a six DOF miniature in vivo surgical robot designed for 

LESS.  The robot has the capabilities of being inserted through a single incision and 

performing surgical tasks over a large, multiple quadrant workspace.  Once inserted 

inside the peritoneal cavity, the robot is controlled via a remote surgical user interface.  

Feasibility has been demonstrated in multiple LESS procedures, including a 

cholecystectomy, colon resection, and small bowel resection.   

 Future work will focus on implementing the retractable cautery dual end effector 

forearm and performing procedures in multiple quadrants without external repositioning.  

To complete this, a new onboard camera will likely be needed capable of providing 

visual feedback in multiple quadrants.  A control system will also need to be 

implemented to provide the surgeon with acceptable switching of dual end effectors.  

Additional work will also be performed to improve robustness and reliability of the 

platform to the level required for FDA approval. 

. 
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Appendix A. Kinematic Design Supporting Material 

MATLAB Code to Determine Forward Kinematics and Jacobian: 
clc 
clear 

  
syms theta1 theta2 theta3 theta4 theta5 theta6 theta7; 
%syms sin(theta1) sin(theta2) sin(theta3) sin(theta4) sin(theta5) 

sin(theta6) sin(theta7); 
syms Lua Lla Lfa real; 

  
P5e = [Lfa 0 0]'; 

  
T01 = [cos(theta1) -sin(theta1) 0 0; sin(theta1) cos(theta1) 0 0; 0 0 1 

0; 0 0 0 1]; 

  
T12 = [cos(theta2) -sin(theta2) 0 0; 0 0 1 -Lua; -sin(theta2) -

cos(theta2) 0 0; 0 0 0 1]; 

  
T23 = [cos(theta3) -sin(theta3) 0 0; 0 0 -1 0; sin(theta3) cos(theta3) 

0 0; 0 0 0 1]; 

  
T34 = [cos(theta4) -sin(theta4) 0 Lla; sin(theta4) cos(theta4) 0 0; 0 0 

1 0; 0 0 0 1]; 

  
T45 = [cos(theta5) -sin(theta5) 0 0; 0 0 -1 0; sin(theta5) cos(theta5) 

0 0; 0 0 0 1]; 

  
T56 = [0 0 1 0; -sin(theta6) -cos(theta6) 0 0; cos(theta6) -sin(theta6) 

0 0; 0 0 0 1]; 

  
T02 = T01*T12; 
T03 = T02*T23; 
T04 = T03*T34; 
T05 = T04*T45; 
T06 = T05*T56; 
T46 = T45*T56; 
T36 = T34*T46; 
T26 = T23*T36; 
T16 = T12*T26; 

  
T35 = T34*T45; 
T25 = T23*T35; 
T15 = T12*T25; 

  
P0e = T05*[P5e;1] 

  
bbar = [0 0 1]'; 

  

  
% i = 1 
b0 = bbar; 
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JA1 = b0; 

  
r0 = T05*[P5e; 1]; 
r0 = r0(1:3); 

  
JL1 = cross(b0, r0); 

  

  
% i = 2 
b1 = T01(1:3,1:3)*bbar; 
JA2 = b1; 

  
r1 = T15*[P5e; 1]; 
r1 = r1(1:3); 

  
JL2 = cross(b1, r1); 

  

  
% i = 3 
b2 = T02(1:3,1:3)*bbar; 
JA3 = b2; 

  
r2 = T25*[P5e; 1]; 
r2 = r2(1:3); 

  
JL3 = cross(b2, r2); 

  

  
% i = 4 
b3 = T03(1:3,1:3)*bbar; 
JA4 = b3; 

  
r3 = T35*[P5e; 1]; 
r3 = r3(1:3); 

  
JL4 = cross(b3, r3); 

  

  
% i = 5 
b4 = T04(1:3,1:3)*bbar; 
JA5 = b4; 

  
r4 = T45*[P5e; 1]; 
r4 = r4(1:3); 

  
JL5 = cross(b4, r4); 

  

  
% i = 6 
b5 = T05(1:3,1:3)*bbar; 
JA6 = b5; 

  
r5 = P5e; 
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JL6 = cross(b5, r5) 

  
JA = [JA1 JA2 JA3 JA4 JA5 JA6]; 
JL = [JL1 JL2 JL3 JL4 JL5 JL6]; 

  
J = [JL; JA] 

  
JT = transpose(J); 

  
for k = 1:6 
    for i = 1:6 
        J(i,k); 
    end 
end 
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MATLAB Code for Force and Velocity Plots: 
clear all 
close all 
clc 

  

  
%dlmwrite('manipdata.dat', ['X', 'Y', 'Z', 'w']) 

  
%% Joint Parameters 
theta1min=-89*pi/180; 
theta1max=89*pi/180; 
theta1step=10*pi/180; 

  
theta2min=-90*pi/180; 
theta2max=90*pi/180; 
theta2step=10*pi/180; 

  
theta3min=-90*pi/180; 
theta3max=90*pi/180; 
theta3step=10*pi/180; 

  
theta4min=-90*pi/180; 
theta4max=90*pi/180; 
theta4step=10*pi/180; 

  
theta5min=-90*pi/180; 
theta5max=90*pi/180; 
theta5step=10*pi/180; 

  
theta6min=-90*pi/180; 
theta6max=90*pi/180; 
theta6step=10*pi/180; 

  

  
%%Robot Specs (mm) 
Lua = 65.4; 
Lla = 41; 
Lfa = 63.7; 
%% Motor Specs mNm 
T(1) = 1220.61; 
T(2) = 490; 
T(3) = 264.17; 
T(4) = 264.17; 
T(5) = 264.17; 
T(6) = 264.17; 

  
wm(1) = .97; %rad/s 
wm(2) = 1.69; 
wm(3) = 1.11; 
wm(4) = 1.11; 
wm(5) = 1.11; 
wm(6) = 6.46; 

  
halfxsection = .25; 
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l=0; m=0; n=0; p=0; q=0; Xn=0; nn=0; 
for theta1= theta1min:theta1step:theta1max 
    l=l+1; 
    m=0; 
    for theta2= theta2min:theta2step:theta2max 
        m=m+1; 
        n=0; 
        for theta3= theta3min:theta3step:theta3max 
            n=n+1; 
            p=0; 
                for theta4= theta4min:theta4step:theta4max 
                 p=p+1; 
                 q=0; 
                    for theta5= theta5min:theta5step:theta5max 
                 q=q+1; 

                  

  

  
            %% Forward Kinematics 
            XF(n,p,q) =  Lua*sin(theta1) - Lla*(sin(theta1)*sin(theta3) 

- cos(theta1)*cos(theta2)*cos(theta3)) - 

Lfa*(cos(theta5)*(cos(theta4)*(sin(theta1)*sin(theta3) - 

cos(theta1)*cos(theta2)*cos(theta3)) + 

sin(theta4)*(cos(theta3)*sin(theta1) + 

cos(theta1)*cos(theta2)*sin(theta3))) - 

cos(theta1)*sin(theta2)*sin(theta5)); 
            YF(n,p,q) =   Lla*(cos(theta1)*sin(theta3) + 

cos(theta2)*cos(theta3)*sin(theta1)) + 

Lfa*(cos(theta5)*(cos(theta4)*(cos(theta1)*sin(theta3) + 

cos(theta2)*cos(theta3)*sin(theta1)) + 

sin(theta4)*(cos(theta1)*cos(theta3) - 

cos(theta2)*sin(theta1)*sin(theta3))) + 

sin(theta1)*sin(theta2)*sin(theta5)) - Lua*cos(theta1); 
            ZF(n,p,q) =  Lfa*(cos(theta2)*sin(theta5) + 

cos(theta5)*(sin(theta2)*sin(theta3)*sin(theta4) - 

cos(theta3)*cos(theta4)*sin(theta2))) - Lla*cos(theta3)*sin(theta2); 

           

  

  
 %% Jacobian Calculation Frame Zero 

  

  

  
            J(1,1) = Lua*cos(theta1) - 

Lfa*(cos(theta5)*(cos(theta4)*(cos(theta1)*sin(theta3) + 

cos(theta2)*cos(theta3)*sin(theta1)) + 

sin(theta4)*(cos(theta1)*cos(theta3) - 

cos(theta2)*sin(theta1)*sin(theta3))) + 

sin(theta1)*sin(theta2)*sin(theta5)) - Lla*(cos(theta1)*sin(theta3) + 

cos(theta2)*cos(theta3)*sin(theta1)); 
            J(2,1) = Lua*sin(theta1) - Lla*(sin(theta1)*sin(theta3) - 

cos(theta1)*cos(theta2)*cos(theta3)) - 

Lfa*(cos(theta5)*(cos(theta4)*(sin(theta1)*sin(theta3) - 

cos(theta1)*cos(theta2)*cos(theta3)) + 
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sin(theta4)*(cos(theta3)*sin(theta1) + 

cos(theta1)*cos(theta2)*sin(theta3))) - 

cos(theta1)*sin(theta2)*sin(theta5)); 
            J(3,1) = 0; 
            J(4,1) = 0; 
            J(5,1) = 0; 
            J(6,1) = 1; 
            J(1,2) = Lua - Lla*sin(theta3) - 

Lfa*(cos(theta3)*cos(theta5)*sin(theta4) + 

cos(theta4)*cos(theta5)*sin(theta3)); 
            J(2,2) = Lfa*(sin(theta2)*sin(theta5) - 

cos(theta2)*(cos(theta5)*sin(theta3)*sin(theta4) - 

cos(theta3)*cos(theta4)*cos(theta5))) + Lla*cos(theta2)*cos(theta3); 
            J(3,2) = 0; 
            J(4,2) = 0; 
            J(5,2) = 0; 
            J(6,2) = 1; 
            J(1,3) = cos(theta1)*(Lla*sin(theta3) + 

Lfa*(cos(theta3)*cos(theta5)*sin(theta4) + 

cos(theta4)*cos(theta5)*sin(theta3))); 
            J(2,3) = sin(theta1)*(Lla*sin(theta3) + 

Lfa*(cos(theta3)*cos(theta5)*sin(theta4) + 

cos(theta4)*cos(theta5)*sin(theta3))); 
            J(3,3) = Lfa*sin(theta1)*sin(theta5) - 

cos(theta1)*(Lla*cos(theta3) - Lfa*(cos(theta5)*sin(theta3)*sin(theta4) 

- cos(theta3)*cos(theta4)*cos(theta5))); 
            J(4,3) = -sin(theta1); 
            J(5,3) = cos(theta1); 
            J(6,3) = 0; 
            J(1,4) = Lfa*sin(theta1)*sin(theta2)*sin(theta5) - 

Lfa*cos(theta2)*cos(theta5)*sin(theta4); 
            J(2,4) = cos(theta2)*(Lla + Lfa*cos(theta4)*cos(theta5)) - 

Lfa*cos(theta1)*sin(theta2)*sin(theta5); 
            J(3,4) = 

Lfa*cos(theta1)*cos(theta5)*sin(theta2)*sin(theta4) - 

sin(theta1)*sin(theta2)*(Lla + Lfa*cos(theta4)*cos(theta5)); 
            J(4,4) =  cos(theta1)*sin(theta2); 
            J(5,4) = sin(theta1)*sin(theta2); 
            J(6,4) = cos(theta2); 
            J(1,5) = Lfa*sin(theta1)*sin(theta2)*sin(theta5); 
            J(2,5) = Lfa*cos(theta2)*cos(theta5) - 

Lfa*cos(theta1)*sin(theta2)*sin(theta5); 
            J(3,5) = -Lfa*cos(theta5)*sin(theta1)*sin(theta2); 
            J(4,5) = cos(theta1)*sin(theta2); 
            J(5,5) = sin(theta1)*sin(theta2); 
            J(6,5) = cos(theta2); 
            J(1,6) = 0; 
            J(2,6) = -Lfa*(cos(theta3)*sin(theta2)*sin(theta4) + 

cos(theta4)*sin(theta2)*sin(theta3)); 
            J(3,6) = Lfa*(cos(theta4)*(cos(theta1)*cos(theta3) - 

cos(theta2)*sin(theta1)*sin(theta3)) - 

sin(theta4)*(cos(theta1)*sin(theta3) + 

cos(theta2)*cos(theta3)*sin(theta1))); 
            J(4,6) = cos(theta4)*(cos(theta3)*sin(theta1) + 

cos(theta1)*cos(theta2)*sin(theta3)) - 

sin(theta4)*(sin(theta1)*sin(theta3) - 

cos(theta1)*cos(theta2)*cos(theta3)); 



67 

 

            J(5,6) = sin(theta4)*(cos(theta1)*sin(theta3) + 

cos(theta2)*cos(theta3)*sin(theta1)) - 

cos(theta4)*(cos(theta1)*cos(theta3) - 

cos(theta2)*sin(theta1)*sin(theta3)); 
            J(6,6) = - cos(theta3)*sin(theta2)*sin(theta4) - 

cos(theta4)*sin(theta2)*sin(theta3); 

  
  %% Manipulability Measure 
            w(n,p,q) = sqrt(abs(det(J*transpose(J))))/9775100000000000; 

             
 %% Force and Velocity 
          F = ((J')^-1)*T'; % mNm/mm 
            F =inv(transpose(J))*T'; 
            Fx(n,p,q)=abs(F(1)); 
            Fy(n,p,q)=abs(F(2)); 
            Fz(n,p,q)=abs(F(3)); 

  
            V = J*wm'; 
            Vx(n,p,q)=abs(V(1)); 
            Vy(n,p,q)=abs(V(2)); 
            Vz(n,p,q)=abs(V(3)); 

             
            % Find minimum values 
            %Fm(n,p,q),Fp(n,p,q) = min(abs(F)); 

             
            %Vm(l,m,n),Vp(l,m,n) = min(abs(V)); 

  
                    end 
                end 

                 
        end 

         

  

  
    %% Plot Workspace Mesh 
% figure(1) 
% hold on 
% s = 30; 
% for a=1:size(YF,1) 
%    for b=1:size(YF,2) 
%        for c=1:size(YF,3) 
%            if abs(YF(a,b,c)) < 0.1 
%                if (XF(a,b,c)) > 0 
%                    if w(a,b,c) > .1 
%                    

scatter3(XF(a,b,c),YF(a,b,c),ZF(a,b,c),s,w(a,b,c),'filled'); 
%                    %csvwrite('csv.dat',[XF(a,b,c), YF(a,b,c), 

ZF(a,b,c), w(a,b,c)]); 
%                    %dlmwrite('manipdata.xls',[XF(a,b,c), YF(a,b,c), 

ZF(a,b,c), w(a,b,c)]); 
%                    dlmwrite('manipdata.dat', [XF(a,b,c), ZF(a,b,c), 

w(a,b,c)], '-append') 
%                    end 
%                end 
%            end 
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%        end 
%    end 
% end 

  
%%Force Plot 

             

  
figure(1) 
hold on 
for a=1:size(YF,1) 
   for b=1:size(YF,2) 
       for c=1:size(YF,3) 
           if abs(YF(a,b,c)) < halfxsection  
               if(XF(a,b,c)) > 0 
                   if (Fx(a,b,c)) > 5 
                   scatter(XF(a,b,c),ZF(a,b,c), 'k', 'filled'); 
                   end 
               end 
           end 
       end 
   end 
end                 

  
%% view(1); 
view(0,90); 
axis([0 170 -120 120]) 
%colorbar; 
%colormap('default') 
xlabel('X mm') 
ylabel('Z mm') 

  
title('Fx') 

  
%%Force Plot 
figure(2) 
hold on 
for a=1:size(YF,1) 
   for b=1:size(YF,2) 
       for c=1:size(YF,3) 
           if abs(YF(a,b,c)) < halfxsection  
               if(XF(a,b,c)) > 0 
                   if (Fy(a,b,c)) > 5 
                   scatter(XF(a,b,c),ZF(a,b,c), 'k', 'filled'); 
                   end 
               end 
           end 
       end 
   end 
end                 

  

  
%% view(1); 
view(0,90); 
axis([0 170 -120 120]) 
%colorbar; 



69 

 

%colormap('default') 
xlabel('X mm') 
ylabel('Z mm') 
title('Fy') 

  
%%Force Plot 
figure(3) 
hold on 
for a=1:size(YF,1) 
   for b=1:size(YF,2) 
       for c=1:size(YF,3) 
           if abs(YF(a,b,c)) < halfxsection 
               if(XF(a,b,c)) > 0 
                   if (Fz(a,b,c)) > 20 
                   scatter(XF(a,b,c),ZF(a,b,c), 'k', 'filled'); 
                   end 
               end 
           end 
       end 
   end 
end                 

  
%% view(1); 
view(0,90); 
axis([0 170 -120 120]) 
%colorbar; 
%colormap('default') 
xlabel('X mm') 
ylabel('Z mm') 
title('Fz') 

     
%%Velocity Plot 
figure(4) 
hold on 
for a=1:size(YF,1) 
   for b=1:size(YF,2) 
       for c=1:size(YF,3) 
           if abs(YF(a,b,c)) < halfxsection  
               if(XF(a,b,c)) > 0 
                   if (Vx(a,b,c)) > 72 %.072 m/s = 72 mm/s 
                   scatter(XF(a,b,c),ZF(a,b,c), 'k', 'filled'); 
                   end 
               end 
           end 
       end 
   end 
end                 

  

  
%% view(1); 
view(0,90); 
axis([0 170 -120 120]) 
%colorbar; 
%colormap('default') 
xlabel('X mm') 
ylabel('Z mm') 
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title('Vx') 

  
%%Velocity Plot 
figure(5) 
hold on 
for a=1:size(YF,1) 
   for b=1:size(YF,2) 
       for c=1:size(YF,3) 
           if abs(YF(a,b,c)) < halfxsection  
               if(XF(a,b,c)) > 0 
                   if (Vy(a,b,c)) > 72 %.072 m/s = 72 mm/s 
                   scatter(XF(a,b,c),ZF(a,b,c), 'k', 'filled'); 
                   end 
               end 
           end 
       end 
   end 
end                 

  

  
%% view(1); 
view(0,90); 
axis([0 170 -120 120]) 
%colorbar; 
%colormap('default') 
xlabel('X mm') 
ylabel('Z mm') 
title('Vy') 

  
%%Velocity Plot 
figure(6) 
hold on 
for a=1:size(YF,1) 
   for b=1:size(YF,2) 
       for c=1:size(YF,3) 
           if abs(YF(a,b,c)) < halfxsection  
               if(XF(a,b,c)) > 0 
                   if (Vz(a,b,c)) > 72 %.072 m/s = 72 mm/s 
                   scatter(XF(a,b,c),ZF(a,b,c), 'k', 'filled'); 
                   end 
               end 
           end 
       end 
   end 
end                 

  
%% view(1); 
view(0,90); 
axis([0 170 -120 120]) 
%colorbar; 
%colormap('default') 
xlabel('X mm') 
ylabel('Z mm') 
title('Vz') 
    end 
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    display(theta1) 

     
end 
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