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FIGURE 7 
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2009; Zhang et al., 2006).  It is clear bICP0 plays multiple roles during productive 

infection; however, the specific mechanisms underlying bICP0 functions are not well 

understood.  Due to its multiple roles and influence on host responses during infection, it 

is likely that bICP0 interacts with a number of cellular as well as BHV-1 encoded 

proteins.     

The bICP0 protein is known to be a nuclear localizing protein, yet during the 

course of infection bICP0 can shuttle between the nucleus and cytoplasm.  We recently 

demonstrated that bICP0 localizes to the cytoplasm of low passage bovine cells at later 

times of infection (Gaudreault and Jones, 2011).  These findings suggest a role for 

cytoplasmic bICP0 during productive infection.  Therefore, it is probable that bICP0 

associates with proteins in the cytoplasm in addition to nuclear proteins.  Identifying 

proteins that interact with bICP0 would provide insight into the molecular mechanisms, 

as well as, additional functions of bICP0 during productive infection.  We therefore set 

forth to identify bICP0 binding partners by coaffinity purification and mass spectrometric 

analysis. 
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MATERIALS AND METHODS 

 

Cells and virus 

Bovine kidney (CRIB) cells and rabbit skin cells (RS) were grown in monolayer 

cultures in Earle’s modified Eagle’s medium supplemented with 10% fetal bovine serum 

(FBS), penicillin (10 U/ml), and streptomycin (100 mg/ml) in a humidified 5% CO2 

atmosphere at 37°C.  The BHV-1 Cooper strain was propagated and titrated in CRIB 

cells.  For infection studies, cells were plated onto 60 or 100 mm culture dishes 16 to 24 

hours prior to virus infection.  Total cells per plate were counted and the specified 

multiplicity of infection (MOI) calculated.   

 

Expression plasmid and transfection 

The wild type bICP0 plasmid is cloned into a pCMV2 expression vector 

downstream of a Flag tag and under the control of the human cytomegalovirus (CMV) 

promoter.  Empty vector was included as a negative control.  RS cells were plated onto 

60 mm culture dishes 16 to 24 hours prior to transfection.  RS cells were transfected 

using the TransitIT-LT1 reagent (MIR 2300, Mirus) according to the manufacturer’s 

protocol.   
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Metabolic labeling of cells with [35]S-methionine  

CRIB cells were infected with BHV-1 at an MOI of 5 for 3 hours.  Cells were 

then washed with PBS and incubated with 2% dialyzed FBS methionine-cysteine free 

EMEM starvation media for 1 hour (Sigma).  For radiolabeling of proteins 0.1 mCi 

[35]S-methionine was added to cultures and incubated for an additional 2 hours.  Cells 

were collected for lysis with RIPA buffer (1% Nonidet P-40, 0.1% sodium dodecyl 

sulfate (SDS), 0.5% sodium deoxycholate, 1 mM phenylmethylsulfonyl fluoride in PBS, 

and one tablet of complete protease inhibitor [Roche] per 10 ml).  Cell lysate was 

incubated at 4°C with rotation for 25 min, sonicated briefly, and then clarified by 

centrifugation at 13,000 rpm at 4°C for 15 min.  

 

Coimmunoprecipitation 

Cell lysates were pre-cleared by incubating with rabbit serum (0.05 ml per 1 ml) 

for 1 hour on ice, followed by addition of washed protein A agarose beads (0.05 ml slurry 

per sample) and incubated with rotation at 4°C for an additional 30 minutes.  Beads were 

pelleted and the supernatants collected for immunoprecipitation.  Samples were incubated 

with approximately 2 g bICP0 polyclonal antibody per 0.5 mg of protein overnight with 

rotation at 4°C.  To each sample, 0.1 ml of protein A agarose bead slurry was added and 

incubated at 4°C with rotation for 4 hours.  Beads were washed three times with lysis 

buffer and the protein eluted by adding 0.05 ml 2X loading buffer (62.5 mM Tris-HCl pH 

6.8, 2% SDS, 50 mM dithiothreitol, 0.1% Bromophenol Blue, 10% Glycerol) and boiling 
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the samples for 5 min.  Proteins were separated on an 8 or 10% SDS poly acrylamide gel 

electrophoresis (SDS-PAGE). 

 

Western blot analysis 

Protein concentrations were quantified by the Bradford assay, and SDS-PAGE.  

After electrophoresis, proteins were transferred to a polyvinylidene difluoride membrane 

(Immobilon-P; Millipore).  Membranes were blocked in Tris-buffered saline that 

contained 5% milk.  The beta-actin antibody (sc-1616) was purchased from Santa Cruz 

Biotechnology.  bICP0 was detected using a bICP0 peptide specific rabbit polyclonal 

antibody.  Membranes were then incubated overnight with the indicated primary antibody 

in 5% milk-containing 0.1% Tween 20–Tris-buffered saline.  After washing with 0.1% 

Tween 20–Tris-buffered saline, membranes were incubated with donkey anti-goat (sc-

2020; Santa Cruz Biotechnology), donkey anti-rabbit (NA934V, Amersham 

Biosciences), or sheep anti-mouse (NXA931, Amersham Biosciences) horseradish 

peroxidase-conjugated immunoglobulin G secondary antibodies diluted in blocking 

buffer.  Immunodetection was performed with enhanced chemiluminescence western 

blotting detection reagents (Perkin-Elmer, MA) in accordance with the manufacturer’s 

protocol.  Experiments were repeated three or more times. 
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Mass spectrometric analysis 

The protein gel was stained with coomassie blue and bands of interest were 

excised for mass spectrometric analysis at the Nebraska Center for Mass Spectrometry 

facility located at the University of Nebraska-Lincoln (UNL).  Further processing of the 

samples to be analyzed was performed by the sequencing facility. 
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RESULTS 

 

Identification of bICP0 binding proteins. 

In an effort to identify novel bICP0 interacting proteins in BHV-1 infected cells, 

we performed affinity purification of bICP0 with its putative binding partners which we 

sent for mass spectrometric analysis.  Initially, to determine if we could detect unique 

bands that could be excised and submitted for sequencing, we metabolically labeled 

proteins of BHV-1 infected cells with radioactive [35]S-methionine.  To maximize bICP0 

protein levels, cells were infected at 5 MOI and whole cell extracts collected 5 hours post 

infection to avoid cytopathic effect of the virus on the cells.  Protein extracts were 

immunoprecipitated with a peptide-specific bICP0 polyclonal antibody, the proteins 

separated by SDS-PAGE, and then visualized by autoradiography.  We reproducibly 

detected multiple distinguishable bands from bICP0 immunoprecipitates of BHV-1 

infected cell extracts that were not evident in mock samples that are denoted by the 

asterisks (Figure 1A).  A tenth of the protein extracts used for immunoprecipitation were 

loaded as input (Figure 1B).   

With regards to sample submission guidelines of the Nebraska Center for Mass 

Spectrometry at UNL, we prepared non-radiolabeled proteins from BHV-1 infected or 

mock infected cells to send for mass spectrometry.  Previous experimental conditions 

were scaled up in order to achieve visualization of unique protein bands by coomassie 

blue staining of the protein gel.  In addition, a set of bICP0 immunoprecipitates from 

extracts of RS cells transfected with bICP0 or empty expression vector were also 
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analyzed (Figure 2).  RS cells were chosen for bICP0 overexpression because higher 

transfection efficiency can be achieved in these cells compared to CRIB cells.  Distinct 

bands in bICP0 immunoprecipitates from BHV-1 infected or bICP0 transfected cell 

extracts were consistently observed by coomassie blue gel staining (Figure 2).  When RS 

cells were transfected with a bICP0 expression construct, novel coomassie stained bands 

were also detected (Figure 3). 

Bands of interest were excised and sent for further processing and mass 

spectrometric analysis at the UNL mass spectrometry facility.  The same regions from the 

mock or empty vector samples were also analyzed as a negative control to rule out non-

specific binding to the resin during the purification process.  Four independent sets of 

samples were submitted for sequencing.  A fraction of the bICP0 immunoprecipitated 

sample was analyzed by western blot with bICP0 antiserum to confirm the efficiency of 

the immunoprecipitation.  bICP0 was easily detected by western blot in bICP0 

immunoprecipitates of BHV-1 infected cell extracts and absent in mock samples, as 

expected (Figure 4, top).   Equal amounts of mock infected and BHV-1 infected protein 

samples were subjected to immuno-purification as demonstrated by input levels of beta 

actin (Figure 4, bottom).  Although differences between mock and infected samples were 

visibly observed, sequencing results did not clearly distinguish between proteins of mock 

and infected samples.  Furthermore, proteins unique to BHV-1 infected or bICP0 

transfected samples were not consistently observed.   
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DISCUSSION 

Because of its multiple roles during productive infection, we predicted that bICP0 

interacts with a variety of cellular proteins.  Thus far, bICP0 has been shown to directly 

associate with HDAC, p300, and IRF7 (Saira et al., 2009; Zhang et al., 2006; Zhang and 

Jones, 2001).  Although bICP0 has been shown to affect other cellular proteins such as 

PML and IRF3, a direct interaction was not evident (Gaudreault and Jones, 2011; Saira et 

al., 2007).  Furthermore, bICP0 is able to activate viral transcription (Inman et al., 2001b; 

Zhang et al., 2006; Zhang and Jones, 2001; Zhang et al., 2005), yet there is no evidence 

to indicate that bICP0 binds directly to DNA .  This implies bICP0 interacts with other 

regulatory factors to induce these effects and to stimulate viral gene expression.   

Co-affinity purification and mass spectrometry analysis of proteins has been a 

successful system for identifying novel protein-protein interactions.  At the present, no 

bICP0-protein interactions have been confirmed from the sequencing results obtained 

from these experiments.  The mass spectrometry data revealed virtually identical results 

from extracts of cells infected with BHV-1 or transiently expressing bICP0, and the mock 

controls.  Furthermore, proteins that were unique from infected or bICP0 expressing 

extracts were not consistently observed.  It is possible that similar proteins were present 

in both mock and infected samples, but at different concentrations which was not evident 

from the mass spectrometry results.  Therefore it is difficult to discern what is purely 

non-specific background and what protein interactions are specific.  The bICP0 protein 

was easily detected by western blot from bICP0 immunoprecipitates of BHV-1 infected 

cell extracts, but not from mock infected samples (Figure 4) suggesting sufficient 
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isolation of bICP0 was achieved.  It is possible that the isolation and purification 

conditions were not optimal for retaining weak interacting proteins, or that putative 

binding proteins were unstable and degraded by proteases.  However, this is unlikely 

since a cocktail of protease inhibitors was used throughout the affinity purification 

process.  Furthermore, unique bands were detected in bICP0 immunoprecipitates 

prepared from BHV-1 infected or bICP0 transfected cells compared to mock or empty 

vector expressing samples (Figures 1, 2 and 3).  This suggests complications may have 

occurred during processing of the samples for analysis by mass spectrometry, or perhaps 

due to the search parameters used for generating the protein analysis data.   

Other affinity-purification systems, such as biotin-streptavidin tagging of proteins 

could enhance binding and purification of bICP0 interacting proteins.  Separation of 

bICP0 immunoprecipitated proteins on a two-dimensional gel would allow better 

isolation of proteins and perhaps easier identification.  Alternative approaches such as 

yeast two-hybrid screening or protein microarrays have also been successful approaches 

to identify viral interacting proteins in other infectious virus systems.  Although we have 

not confirmed any novel bICP0 binding proteins from these mass spectrometry results, 

our initial results clearly showed visibly unique proteins.  Identification of interacting 

factors is a worthwhile endeavor and potential results could provide insight to the 

underlying mechanisms of bICP0 functions and enhance our understanding of bICP0’s 

role during the BHV-1 infectious cycle. 

 

 



98 
 

FIGURE 1 
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Figure 1.  Metabolically labeled proteins of bICP0 immunoprecipitates from BHV-1 

infected cells.  CRIB cells were infected at an MOI of 5.  After 3 hours of infection, cells 

were washed and incubated with 2% dialyzed FBS methionine-cysteine free EMEM 

starvation media for 1 hour.  Proteins were radiolabeled with 0.1 mCi [35]S-methionine 

for an additional 2 hours.  Whole cell protein extracts were collected and 

immunoprecipitated with a bICP0 peptide specific polyclonal antibody.  Following 

separation by SDS-PAGE, the gel was dried and exposed to a phosphorimaging screen 

and analyzed using a Bio-Rad Molecular Imager FX.  

 

 

 

 

 

 

 

 

 

 

 



100 
 

FIGURE 2 
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Figure 2.  bICP0 immunoprecipitated proteins from BHV-1 infected cells.  CRIB 

cells were infected at an MOI 5 and whole cell extracts collected 5 hours post infection.  

Extracts from infected or mock infected cells were used for immunoprecipitation with a 

bICP0 specific antibody.  Proteins were separated by SDS-PAGE and visualized by 

coomassie blue stain.  Sections from the gel outlined in red were excised from the gel and 

sent to the UNL sequencing facility for further processing and analysis by mass 

spectrometry.  The asterisk (*) denotes regions where unique bands were consistently 

observed.  Panels A, B and C are coomassie blue stained gels from independent 

experiments. 
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FIGURE 3 
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Figure 3.  bICP0 immunoprecipitated proteins from bICP0 transfected cells.  RS 

cells were transfected with bICP0 or empty vector and whole cell lysates were collected 

40 hours after transfection.  Protein extracts from transfected cells were used for 

immunoprecipitation with a bICP0 specific antibody.  Proteins were separated by SDS-

PAGE and visualized by coomassie blue stain.  The panels to the right are magnified to 

exhibit more clearly the unique banding patterns in this region.  Sections from the gel 

outlined in red were excised from the gel and sent to the UNL sequencing facility for 

further processing and analysis by mass spectrometry. 
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FIGURE 4 
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Figure 4.  Isolation of bICP0 proteins from BHV-1 infected cells.  A portion of the 

protein extracts recovered from immunoprecipitation and beta actin levels from the input 

prior to immunoprecipitation were analyzed by western blot using a bICP0 specific 

antibody or antibodies recognizing beta actin, respectively.  The bICP0 protein migrates 

at approximately 97 kilo Daltons (kDa) and beta actin at approximately 42 kDa. 
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CHAPTER 5 

 

Evaluation of the infectivity of wt BHV-1 and a bICP0 zinc RING finger mutant 

virus in cancer cells. 
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ABSTRACT 

Type 1 interferons (IFN), IFN- and IFN-, play a major role in the recognition 

and response against viral infections.  In many types of cancers, the IFN pathway has 

been disrupted, allowing certain viruses that are inhibited by IFN to grow in these types 

of transformed cells.  BHV-1 encoded bICP0 plays a key role in controlling the IFN 

response by inhibiting the induction of IFN-expression.  Previous work demonstrating 

restriction of BHV-1 by the IFN signaling pathway and a recent study which investigated 

the oncolytic properties of BHV-1, prompted us to examine BHV-1 expression in cancer 

cells which possess potential defects in their IFN pathway.  To learn more about how 

BHV-1 infection may be regulated by IFN, and furthermore, the importance of bICP0 in 

the context of control of IFN, we tested the growth of wt BHV-1 and a bICP0 zinc RING 

finger mutant virus (51g) in cancer cells.  We hypothesized that potential defects in the 

IFN pathway of these transformed cell lines could relieve repression of BHV-1 

replication and the restricted growth properties of the 51g virus.  Due to the instability of 

the 51g virus, reversion of the mutation to wt was a complication during the course of 

these experiments.   
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INTRODUCTION 

The type 1 IFN response plays a major role in the recognition and defense against 

viral infections (Katze et al., 2002; Kawai and Akira, 2006; Samuel, 2001; Uematsu and 

Akira, 2006).  Type 1 interferons (IFN-, IFN-) secreted by activated cells bind to 

specific receptors on the surface of nearby cells to induce expression of interferon 

stimulated genes (ISGs), which subsequently stimulate a cascade of innate immune 

signaling pathways.  BHV-1 and human herpes simplex virus type 1 (HSV-1) share 

similar life cycle and biological properties, and replication of both viruses appears to be 

inhibited by IFN.  As a countermeasure, these viruses encode analogous ICP0 proteins 

which have important biological functions that act against the IFN antiviral defense 

(Eidson et al., 2002; Lin et al., 2004b; Mossman and Smiley, 2002) Jones, 2009).  HSV-1 

infection is regulated by IFN pathways in mice (Halford et al., 2006; Leib et al., 1999), 

and HSV-1 genomes that do not express ICP0 are more sensitive to IFN treatment in 

cultured cells (Harle et al., 2002; Mossman et al., 2000).  Expression of the HSV-1 

encoded ICP0 protein can inhibit the repressive effects of ISGs on HSV-1 and improve 

replication efficiency (Everett and Orr, 2009).  

BHV-1 encoded bICP0 plays a key role in controlling the IFN response by 

inhibiting the induction of IFN-.  bICP0 inhibits IFN- transcriptional activation by 

affecting at least three major regulators of IFN- expression:  Interferon Regulatory 

Factor 3 (IRF3), IRF7, and p300 (Saira et al., 2007; Saira et al., 2009; Zhang et al., 2006).  

IFN- is a branch of the type I IFN response pathway that plays a pivotal role in 

amplification of innate immunity and antiviral defense (Katze et al., 2002; Randall and 
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Goodbourn, 2008).  IRF3 and IRF7 are key components of the IFN response pathway, 

because they act as co-activators of the IFN- promoter (Hiscott, 2007).  p300 is a co-

activator of IRF3-dependent IFN signaling and other antiviral signaling cascades 

(Hiscott, 2007; Vo and Goodman, 2001; Weaver et al., 1998; Yoneyama et al., 1998).  

bICP0 is able to inhibit IFN- promoter activity by inducing proteasome-dependent 

degradation of IRF3 (Saira et al., 2007).  In addition, bICP0 associates with IRF7 and this 

interaction also inhibits activation of the IFN- promoter (Saira et al., 2009).  The 

interaction between bICP0 and p300 may also interfere with p300-stimulated antiviral 

signaling (Zhang et al., 2006).  Furthermore, mice infected with BHV-1 do not display 

clinical symptoms; however, mice lacking type I and type II IFN receptors in the context 

of a RAG-2 gene deletion do not survive BHV-1 infection (Abril et al., 2004).   

In many types of cancers, the IFN signaling pathway does not function properly 

(Hanahan and Weinberg, 2000).  This allows certain viruses that are inhibited by IFN to 

grow in certain tumor cell lines.  This observation has given rise to the development of 

oncolytic viruses as viral vaccines that can be used for the treatment of cancers (Bourke 

et al., 2011; Vaha-Koskela et al., 2007).  Oncolytic virotherapy is a promising means to 

treat certain non-operable tumors.  Consequently, a number of viruses are being 

specifically engineered for this purpose (Cervantes-Garcia et al., 2008; Kelly and Russell, 

2007).  HSV-1 ICP0-null oncolytic vectors are being generated for the use of cancer 

therapy (Hummel et al., 2005), and more recently BHV-1 has been implicated as a novel 

oncolytic virus with promising application for cancer virotherapy (Rodrigues et al., 

2010).  Compared to HSV-1, BHV-1 has a very strict host range (Murata et al., 1999).  

BHV-1 does not grow in normal rodent or human cells, but can replicate in certain 
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immortalized and transformed human cell types (Hammon et al., 1963; Murata et al., 

1999; Rodrigues et al., 2010).  This property has made BHV-1 a promising candidate for 

use as an oncolytic viral vector which was recently proposed (Rodrigues et al., 2010).  

The ability of BHV-1 to propagate in a number of normal, immortalized, and transformed 

human cell lines was investigated, and BHV-1 was shown to preferentially replicate in 

cells that were either immortalized or transformed (Rodrigues et al., 2010).   

In this study, we examined the replication of BHV-1 in a cancer cell line (U2OS) 

that have putative defects in its IFN pathway.  We wanted to compare the growth 

potential of a bICP0 zinc RING finger mutant virus (51g) that has restricted growth 

properties in calves and cultured cells (Saira et al., 2008), with wt BHV-1 in atypical cells 

in which the IFN system was defective.  We hypothesized that the restricted growth 

properties of the 51g mutant may, in part, be due to the inability of the virus to inhibit the 

repressive effects of the IFN pathway.  We investigated whether the potential defects in 

the IFN pathway of these transformed cell lines could relieve inhibition of the 51g virus 

to replicate efficiently.  Therefore, we set forth to examine the viral growth kinetics and 

gene expression profiles of wt BHV-1 and the 51g mutant virus in normal and cancer 

derived cells.   
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MATERIALS AND METHODS 

 

Cells and virus 

P19 murine embryonic teratocarcinoma cells, U2OS human osteocarcinoma cells, 

bovine kidney (CRIB) cells, and low passage bovine turbinate (BT) cells were grown in 

monolayer cultures in Earle’s modified Eagle’s medium supplemented with 10% fetal 

bovine serum (FBS), penicillin (10 U/ml), and streptomycin (100 mg/ml) in a humidified 

5% CO2 atmosphere at 37°C.  The wt BHV-1 Cooper strain was obtained from the 

National Veterinary Services Laboratory, Animal and Plant Health Inspection Services 

(Ames, IA).  Construction of the BHV-1 bICP0 zinc RING finger domain mutant (51g) 

was described previously (Saira et al., 2008).  BHV-1 Strains were propagated and 

titrated in CRIB cells.  For infection studies, cells were plated onto 60 or 100 mm culture 

dishes 16 to 24 hours prior to virus infection.  Total cells per plate were counted and the 

specified multiplicity of infection (MOI) calculated.  Cells were infected with the wt 

BHV-1 or 51g at an MOI of 1.0, and were harvested at the indicated times after infection. 

 

RNA extraction and reverse transcription (RT) PCR  

 Total RNA was extracted from cells using Trizol reagent (Invitrogen, Cat# 15596-

018) as described by the manufacturer.  RNA was treated with DNase I (Invitrogen) and 

subjected to reverse transcription using SuperScript III reverse transcriptase (Invitrogen) 

according to manufacture protocol.  RNA was reverse transcribed using oligo(dT) 
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primers (Invitorogen).  Ten percent of the generated cDNA was used as template for PCR 

using GoTaq DNA polymerase (Promega).  The following primer sequences were used to 

amplify viral transcripts:  bICP0 forward primer 5’-TGC AGT CTC TCA TCC ACA GC-

3’ and reverse primer 5’-GCG ACC CGG TCA ATA AAC T-3’; bICP4 forward primer 

5’-CTG CAG GAG GAA CAG CTT CT-3’ and reverse primer 5’-GTG TTC GTG CCG 

GAG ATG-3’; bICP22 forward primer 5’-GCG CTG GTC CTC CGG CTC C-3’ and 

reverse primer 5’-CTC GCT GGC GGG GCT TGG-3’; thymidine kinase (TK) forward 

primer 5’-GCC GCC GTA CTG GAC ATG CG-3’ and reverse primer 5’-GCC GAG 

TCC CCG TAA GGC GAT-3’; bTIF forward primer 5’-CCC AAG CCC CGT TCG 

CAG C-3’ and reverse primer 5’-TGC CCG CCC GCC CTT AGA A-3’; glycoprotein C 

(gC) forward primer 5’-GAG CAA AGC CCC GCC GA AGG A-3’ and reverse primer 

5’-TAC GAA CAG CAG CAC GGG CGG-3’.  Cellular glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) forward primer 5’-CCA TGG AGA AGG CTG GGG-3’ and 

reverse primer 5’-CAA AGT TGT CAT GGA TGA CC-3’ was used as a control to 

insure equal loading.  PCR products were analyzed on a 1.2% agarose gel. 

 

One-step growth kinetics 

 U2OS or BT cells were plated to 100 mm dishes 16 to 24 hours prior to infection.  

Cells were infected at MOI 1, followed by absorption for 1 hour at 37 C in serum-free 

media.  Cells were then washed with phosphate buffered saline (PBS) and replaced with 

10% serum containing media.  Supernatants containing virus were collected at 8, 16, 24, 
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and 48 hours after infection and subjected to three rounds of freeze-thaw cycles.  

Supernatants were clarified by centrifugation and titered on CRIB cells for plaque assay. 
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RESULTS 

 

Expression profiles of wt and a mutant BHV-1 in normal or cancer cells. 

 To examine the kinetics of wt BHV-1 and the 51g mutant virus in these cultured 

cell subsets, we analyzed viral gene expression by measuring transcript levels of viral 

genes.  During BHV-1 productive infection, viral genes are temporally regulated and 

classified as immediate early (IE), early (E), or late (L) genes.  Genes representative of 

each gene class were selected and mRNA transcript levels detected by RT-PCR.  Primers 

from previous studies were used to detect transcripts of the IE genes bICP0, bICP4, and 

bICP22, E gene TK, and L genes bTIF and gC.  Primary bovine turbinate (BT) cells and 

human osteocarcinoma (U2OS) cells were infected at an MOI of 1 and RNA was 

extracted after 4, 8, 16, or 24 hours of infection.  Reverse transcription PCR was 

performed and expression of viral transcripts normalized to cellular GAPDH levels.  

Viral transcripts were readily detected in both U2OS and BT cells infected with wt BHV-

1 or the 51g virus (Figure 1).  Transcript levels of the genes analyzed appeared to be 

generally higher in U2OS cells infected with wt BHV-1 compared to 51g infected cells, 

especially at 4 and 8 hours after infection (Figure 1A).  This result was opposite to what 

was observed in BT cells at these time points (Figure 1B).  At 16 and 24 hours post 

infection (hpi) in U2OS and BT cells, all transcript levels analyzed, with the exception of 

bTIF, were expressed at comparable levels by both viruses (Figure 1A and 1B).  Viral 

genes bICP22, gC, and to a slightly lesser extent TK were expressed at similar levels by 

both viruses at all time points in U2OS and BT cells (Figure 1A and 1B).  Results from 
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these experiments did not appear to particularly agree with our hypothesis, but were 

inconclusive due to reversion or contamination of the 51g mutant virus.  Upon noticing 

phenotypic growth changes of the 51g mutant, viral genomic DNA was extracted, the 

region containing the mutation amplified by PCR, and sent for sequencing.  Sequencing 

results revealed loss of the 51g mutation, explaining the inconsistency in our results.  

Thus, we are unable to draw definitive conclusions from these experiments at the current 

time.  In addition to BT and U2OS cells, a murine teratocarcinoma cell line (p19) was 

also examined; however, viral transcripts were not detected from these cells infected with 

either virus, indicating these cells were not permissive for BHV-1 infection (data not 

shown). 

 

Growth kinetics of BHV-1 and 51g in normal and cancer cells. 

The growth kinetics of wt BHV-1 and the 51g mutant virus in normal or cancer 

cells was then evaluated by plaque assay.  U2OS and BT cells were infected at MOI of 1 

in serum-free media followed by replacement with media containing 10% serum after one 

hour incubation.  Supernatants containing virus produced from the infected cells were 

collected at 8, 16, 24, and 48 hpi and subjected to three rounds of freeze-thaw cycles.  

Supernatants were cleared by centrifugation and titers for plaque assay were performed in 

CRIB cells.  Results of titers from two independent experiments in U2OS and BT cells 

are shown in Figure 2.  We observed that the 51g mutant grew at slightly higher titers in 

U2OS cells than BT cells compared to wt BHV-1 at earlier times after infection (Figure 

2A).  By 24 hpi, the 51g mutant and wt BHV-1 produced similar titers in U2OS cells 
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(Figure 2A).  Conversely, in BT cells, higher titers of wt BHV-1 were observed 

compared to the 51g virus (Figure 2B).  This observation suggests that the 51g mutant 

may replicate more efficiently in U2OS cells than wt BHV-1.  In both cell lines tested, 

the 51g virus had reduced growth potential compared to wt BHV-1 which had increased 

titers over time (Figure 2A and 2B).  The 51g virus produces well-defined plaques that 

fail to spread (Saira et al., 2008).  Therefore, impaired cell-to-cell spread of the 51g virus 

could partially explain the reduced growth kinetics observed in these experiments (Figure 

2).  Because we do not know exactly when the 51g mutant virus reverted, these 

experiments must be repeated to confirm these results.  Nonetheless, these experiments 

do confirm that BHV-1 can grow in U2OS cells, but at reduced levels compared to 

infected permissive bovine BT cells. 
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DISCUSSION 

The restriction of BHV-1 replication in bovine cells (Murata et al., 1999), the 

observation that disruption of type I and type II IFN signaling in mice abolishes this 

restriction (Abril et al., 2004), and the ability of BHV-1 to preferentially replicate in 

transformed cells with defects in their IFN pathway (Hammon et al., 1963; Rodrigues et 

al., 2010) suggest that the IFN response serves as an effective barrier to infection by 

BHV-1 and may contribute to its ability to infect transformed cells outside of its host 

range.  A recent study failed to correlate cellular IFN signaling status and permissiveness 

for BHV-1, and instead suggested that BHV-1 replication may be particularly sensitive to 

cell cycle regulation (Rodrigues et al., 2010).  What determines BHV-1 host restriction 

and the mechanism by which BHV-1 induces oncolysis of human cells remains to be 

elucidated, but these phenomena likely depended on a collection of different factors 

including both IFN signaling and cell cycle regulators.   

BHV-1 genomes that fail to express the bICP0 protein or contain mutations within 

the zinc RING finger domain of bICP0 (51g) have defective replication and virulence 

properties in cattle, and are not stable in culture (Geiser et al., 2005; Saira et al., 2008).  

The 51g mutant virus grows poorly in permissive bovine cells under culture conditions 

(Saira et al., 2008).  Calves infected with 51g produced 2 to 3 logs lower levels of 

infectious virus, exhibited reduced clinical symptoms, and did not reactivate from latency 

following dexamethasone infection which induces reactivation in cattle 100 percent of 

the time (Saira et al., 2008).  BHV-1 viruses that are less virulent and that do not 

reactivate from latency are attractive candidates for the development of better BHV-1 
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vaccines and safer oncolytic viral vector-related therapies.  Propagation of growth 

defective viruses, such as 51g, remains to be a challenge.  While wt BHV-1 is readily 

propagated in culture, it is difficult to obtain high titers of the 51g mutant virus and 

consequently, repeated passage and concentration of the virus is necessary.  We were 

interested to see if cells with known defects in their IFN signaling could alleviate the 

reduced growth potential of the 51g virus.  These studies confirm that BHV-1 and the 51g 

mutant virus can grow in U2OS cells and viral gene expression could be readily detected, 

albeit at reduced levels compared to infected permissive bovine (BT) cells (Figures 1 and 

2).   

The impaired growth ability of 51g increases the selective pressure for mutations 

that rescue this growth defect.  During the course of these studies, the phenotypic growth 

properties of the 51g mutant became less apparent; therefore, sequencing of the viral 

genomic DNA of the mutant was performed to verify the presence of the 51g mutation.  

The sequencing results revealed loss of the 51g mutation on two separate occasions.  

Reversion of the 51g mutation to wild type was an impediment to the progress of these 

experiments and thus, additional experiments are warranted to validate the results 

obtained and presented in this chapter.  The instability of the mutation within this highly 

conserved functional motif clearly indicates that the preservation of this cysteine residue 

is crucial for the integrity of the zinc RING finger domain.  Moreover, the phenotype of 

the 51g virus further underscores the significant role bICP0 plays in the success of viral 

infection and the requirement of this particular motif for the critical functions of bICP0. 
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FIGURE 1  
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Figure 1.  Expression profiles of wt and a mutant BHV-1 in cancer or normal cells.  

Human osteocarcinoma (U2OS) cells (A) and primary bovine turbinate (BT) cells (B) 

were infected with wt BHV-1 or the 51g virus.  RNA was extracted from infected and 

mock infected cells at the indicated times after infection and RT-PCR performed.  PCR 

products were analyzed on a 1.2% agarose gel.  The viral transcripts evaluated are 

denoted on the right, and the class of each gene is indicated on the left.  Cellular GAPDH 

was used to insure equal loading. 
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FIGURE 2 
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Figure 2.  Growth of BHV-1 and the 51g mutant in normal and cancer cells.  U2OS 

cells (A) and BT (B) were infected at 1 MOI with wt BHV-1 or the 51g virus.  

Supernatants containing virus produced from the infected cells were used for viral 

titration and plaque assay.  Graphs represent two independent experiments for each cell 

type. 
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GENERAL CONCLUSIONS 

 

BHV-1 is an economically important pathogen of cattle and although vaccines are 

available, better vaccines are warranted.  Current modified live vaccines cause immune 

suppression in cattle and can lead to serious disease in young calves and abortions in 

pregnant cows (Jones and Chowdhury, 2007; van Drunen Littel-van den Hurk, 2006).  

Furthermore, these vaccines can reactivate from latency and be transmitted to susceptible 

cattle (Ellis et al., 2005; Muylkens et al., 2007; van Drunen Littel-van den Hurk et al., 

2001).  There has also been interest to develop BHV-1 as a vector to deliver antigens to 

cattle for vaccine purposes, and for use as an oncolytic vector for targeting treatment of 

human cancers (Rodrigues et al., 2010).  Although Alphaherpesvirinae subfamily 

members share similar biological properties, BHV-1 has evolved its own mechanisms by 

which it is able to establish a successful infection.  Further evaluation of the biology of 

BHV-1 is necessary to understand the underlying molecular events related to infection by 

this virus.  Thus, the reasons stated above make BHV-1 biology a relevant area of study.   

BHV-1 encoded bICP0 is a multifunctional protein that is critical for efficient 

replication, virulence, and reactivation from latency (Geiser et al., 2005; Saira et al., 

2008).  A number of important functions have been attributed to bICP0 (Jones, 2009); 

however, the underlying mechanisms by which bICP0 carries out these functions are not 

well understood.  In order to gain insight into the molecular mechanisms and other 

potential functions of bICP0, coaffinity purification of bICP0 and mass spectrometry 

analysis of bICP0 bound proteins was performed.  Although we have not confirmed any 
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novel bICP0 binding proteins from these mass spectrometry results, our initial results 

clearly showed visibly unique protein bands.  This is promising for identifying bICP0 

associating proteins and would contribute to our understanding of the underlying 

functional mechanisms of bICP0.   

The C3HC4 zinc RING finger motif is a critical functional domain of bICP0 that 

possesses intrinsic E3 ubiquitin ligase activity (Diao et al., 2005; Everett et al., 2010).  

Although these studies did not identify any novel proteins targeted by bICP0 for 

ubiquitination, they did demonstrate that bICP0 increases the level of protein 

polyubiquitination.  These studies also demonstrated that an intact zinc RING finger 

domain is important for regulating bICP0 protein stability, potentially by catalyzing its 

own ubiquitination.  Other sequences toward the C-terminus of bICP0 also appear to play 

a role in stability of the bICP0 protein.  These studies demonstrated that deletion of 

sequences at the C-terminus of bICP0 alters bICP0 localization, levels, and cell 

morphology (Gaudreault and Jones, 2011).   

PML protein levels were dramatically reduced in a proteasome-dependent manner 

in bovine cells following infection with BHV-1 or expression of bICP0 in the absence of 

other viral genes (Gaudreault and Jones, 2011).  Because the underlying function of PML 

is still unclear, it is difficult to exactly define what the reduction of PML does for the 

virus.  However, PML is known to promote apoptosis (Bernardi and Pandolfi, 

2003;(Giorgi et al., 2010) and antiviral responses (Everett and Chelbi-Alix, 2007; 

Geoffroy and Chelbi-Alix, 2011; Tavalai and Stamminger, 2008), and these studies 

demonstrated that over-expression of PML appears to correlate with reduced BHV-1 
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replication.  Although the zinc RING finger domain was found to be important for 

efficient PML degradation, altering the localization of bICP0 did not appear to affect its 

ability to reduce PML levels.  This suggests that either bICP0 induces degradation of 

PML by an indirect mechanism or that bICP0 interacts with PML in the cytoplasm.  

Cytoplasmic PML has been shown to be important for regulating apoptosis (Giorgi et al., 

2010) and in the resistance to viral infections (McNally et al., 2008), giving precedence 

for bICP0 to interact with PML in the cytoplasm.   

Furthermore, bICP0 was found to be present in the cytoplasm of primary low-

passage bovine cells at later times of BHV-1 productive infection (Gaudreault and Jones, 

2011).  This implicates a role for cytoplasmic bICP0 during infection, and suggests late 

viral proteins or induced factors may sequester bICP0 to the cytoplasm of productively 

infected cells.  Recently, other work from our lab has shown cytoplasmic bICP0 can 

inhibit IFN- promoter activity and induce degradation of IRF3 as efficiently as wt 

bICP0 (Da Silva and Gaudreault, unpublished).  Thus, this data suggests a role for 

cytoplasmic bICP0 in repressing the innate immune response and altering cell fate after 

infection.   

Attempts were also made to determine if the impaired replication potential of the 

bICP0 zinc RING finger mutant virus (51g) could be rescued in cells with defects in their 

IFN signaling.  Although the reversion of the 51g mutation to wild type was an 

impediment to the progress of these experiments, the instability of the mutation within 

this highly conserved functional motif clearly indicates that the preservation of this 

cysteine residue is essential for the integrity of the zinc RING finger domain.  Moreover, 
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the phenotype of the 51g virus further underscores the significant role bICP0 plays in the 

success of viral infection and the requirement of this particular motif for the critical 

functions attributed to bICP0. 

In conclusion, the studies presented in this dissertation provide further evidence 

that will contribute to a better understanding of the role of BHV-1 encoded bICP0 during 

productive infection and the mechanisms underlying its critical functions.   
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