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Abstract
This paper is concerned with the geometrical shape, wetting length, and contact angle of a microdroplet 
on a fiber by using the method free energy variation. The governing equation and relevant boundary con-
ditions of the microdroplet were re-derived based on the free energy variation of the droplet/fiber system. 
The geometrical shape of the droplet was determined as the combination of Legendre’s elliptical functions 
of the first and second kinds, corresponding to the previous results in literature [6]. For contact angle θ 
>15°, a novel efficient semi-analytic approach was proposed to extract the contact angle from experimental 
data. The given approach can be used as theoretical basis of determining surface tension of fluids based 
on a sessile drop on a fiber. 

1  Introduction 

Wetting properties of fluids on fiber surfaces play an important role in the textile industry and polymer 
composites engineering. In textile industry people mainly consider the nature of fiber dyeing and clean-
ing properties by surfactants and the ability of substances to waterproof fabrics. In polymer composites 
engineering, researchers have paid significant attention to the interface properties of various fiber/matrix 
systems such as the fiber surface wetting property and the fiber/matrix interface bonding strength among 
others. These properties affect the toughening and damage mechanisms of fibers as reinforcement in com-
posite materials [1]. As one of the typical micromechanical testing methods, the fiber microdebond test 
has been developed for evaluating the fiber/matrix interface strength [2], [3]. In this testing process, fabri-
cation of uniform micro samples with polymer microdroplets on monofilaments is the key step to yield re-
peatable experimental data since the geometrical shape, aspect ratio, and contact angle of the droplet af-
fect the test results. As a matter of fact, the geometry of a droplet on a fiber is governed by the wetting 
property of the droplet. 

The wetting property of microdroplets on monofilaments has attracted remarkable attention in decades 
[4]. The wetting shape of a microdroplet on a fiber does not appear as a partial sphere as that on a flat sur-
face. Within the framework of Laplace’s formula of surface tension and Young’s equation of wetting an-
gle, Yamaki and Katayama [5] first studied the shape of a microdroplet on a fiber by solving the govern-
ing equation numerically. Carroll [6] considered this problem through an analytic approach, and he found 
that the droplet shape could be expressed as the combination of Legendre’s elliptical functions of the first 
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and second kinds. Furthermore, in an attempt to simplify the use of Carroll’s formula in practice, Wagner 
[7] and Song et al. [8] introduced quite a few numerical algorithms to invert Carroll’s integrations and then 
to extract the contact angle numerically from experimental data. Their results highly depend upon the ac-
curacy of the numerical calculation of the incomplete Legendre’s elliptic integrals, Carson’s integrals of the 
first and the second kinds, and the numerical solutions of algebraic equations involving trigonometrical 
functions. These processes are still relatively complicated for users in practice. 

Therefore, in this work we further investigate the above problem theoretically. Different from the pre-
vious works [5]–[8], we begin with the free energy variation of a microdroplet on a homogenous cylindri-
cal fiber. Without the aid of any further assumptions, we derive the exact governing equation and correct 
boundary conditions governing the geometrical shape, fiber wetting length, and contact angle of the mi-
crodroplet. In an attempt to extract the contact angle from experimental data, a novel efficient semi-ana-
lytic approach with very high accuracy is proposed in the middle range of contact angle (θ > 15°). The po-
tential applications of the model were further addressed. 

2  Problem formulation and solution procedure 

Generally, a liquid placed on a flat solid surface will form a drop with a definite contact angle between the 
liquid and solid phase as shown in Figure 1. The drop/surface wetting properties can be determined [9]–
[11] such that:

Nonwetting in the case of γLS > γSV + γ cos θ, for any value of θ  [0, 180°],                (1)  

Partial wetting in the case of γSV = γLS + γ cos θ, for a specific value of θ  [0, 180°],   (2)  

Complete wetting in the case of γSV > γLS + γ cos θ, for any value of θ  [0, 180°],        (3)  

where γSV is the solid–vapor surface tension (specific surface energy), γ is the liquid–vapor surface ten-
sion (surface tension), and γLS is the liquid–solid surface tension (interfacial tension). In case (1) the liq-
uid should not wet the solid at all; in case (2) the three surface tensions balance along the line of mutual 
contact to form the contact angle θ; and in case (3) the Gibbs function is minimized when the solid is wet-
ted completely. In the equilibrium condition with other forces ignored (such as force of gravity, chemi-
cal, electromagnetic, and hydrostatic forces, etc.), according to Young’s equation (2), the contact angle θ 
can be used as a measure of the interfacial tension when the two other interfacial tensions are known. For 
a microdroplet, the effect of its gravity on the droplet shape is negligible. The microdroplet forms a par-
tial sphere when placed on a flat surface [10], while it forms a bell-shaped surface when placed on a cylin-
drical fiber. Figure 2 shows a typical epoxy microdroplet placed on a SiC fiber after curing [12], which was 
used as the microdebond specimen for evaluating the interface strength between epoxy and fiber. 

Figure 1. Different configurations of the vapor-fluid-solid interfaces: a) nonwetting; b) partial wetting; c) complete 
wetting. 
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Now let us consider a microdroplet placed on a homogenous cylindrical fiber. When the microdroplet 
is in equilibrium, its surface forms a surface of revolution with the axisymmetric x-axis as shown in Figure 
3. According to the wetting theories [13]–[14], the total free energy of the microdroplet can be expressed 
by 

(4)

where the geometrical symmetry of the microdroplet has been considered, and the force of gravity and 
other forces such as chemical, electromagnetic, and hydrostatic forces are ignored. In relation (4) y(x) is 

Figure 2. SEM micrograph of an epoxy microdroplet on 
a SiC fiber (fiber diameter ~14°μm) [12]. 

Figure 3. Schematic diagram of a microdroplet on a fiber. 
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the microdroplet radius at locus x. The known boundary conditions at x = 0 and x = L/2 are 

y′(0) = 0,   y(L/2) = r0                                                                                                                       (5)

The unknown conditions are the microdroplet peak radius y(0) and the fiber wetting length L, which will 
be determined according to the volume conservation of the microdroplet: 

(6)

where V0 is the microdroplet volume, a constant for a given microdroplet/fiber system, and r0 is the fiber 
radius. 

For a given microdroplet in equilibrium on a fiber, the free energy functional (4) should take the extre-
mum under the conditions (5) and (6). This variational problem under the subsidiary conditions can be re-
formulated into an unconditioned variational problem by introducing Lagrange’s multiplier μ: 

(7)

where:

(8)

with two ends on the x- and y-axes satisfying Equations (5), respectively. The extremal of the free energy 
functional (7) leads to the classic Euler–Lagrange equation 

Fy – dFy′/dx = 0 ,                                                                                                                              (9) 

with two transversality conditions at x- and y-axes: 

Fy′|x=0 = 0                                                                                                                                        (10)  

and 

F – Fy′y′|x=L/2 = 0 .                                                                                                                          (11)  

Let us first consider these transversality conditions. Substitution of Equation (8) into (10) yields 

 (12)  

which accords to the symmetric condition (5) at x = 0. Furthermore, plugging Equation (8) into (11) leads 
to 

 (13)  

With the aid of relation (5), i.e., y(L/2) = r0, and the definition of the contact angle h at x = L/2, 
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y′(L/2) = –tan θ ,                                                                                                                           (14)  

Equation (13) leads to the contact angle of the microdroplet on the fiber: 

cos θ = (γSV – γLS)/γ ,                                                                                                                     (15)  

which is constant for a given microdroplet/fiber system. Equation (15) is exactly Young’s equation of con-
tact angle. This shows that the contact angle of a microdroplet on a fiber is a material constant, indepen-
dent of the geometrical aspect ratio and equal to that on a flat surface. This confirms the choice of constant 
contact angle in previous works [5], [6]. 

Now let us further consider the Euler–Lagrange equation (9). Substitution of Equation (8) into (9) 
yields 

(16)

which may be reformulated as 

 (17)  

Due to the revolution surface of the microdroplet shown in Figure 3, the radii of curvature of the surface 
at locus [x, y(x)] can be expressed by 

(18)

Therefore, relation (17) can be recast as 

γ(1/R1 + 1/R2) = μ                                                                                                                          (19)  

where μ is Lagrange’s multiplier, a constant. Equation (19) is the familiar Laplace’s formula of surface ten-
sion. Lagrange’s multiplier μ with pressure unit can be expressed such that 

μ = Δp = pL – pV ,                                                                                                                           (20)  

where pL and pV are the pressures inside and outside the microdroplet, respectively. 
The microdroplet shape shown in Figure 3 can be determined by solving the differential equation (16) 

[6]. With conditions at x = 0 and x = L/2, it can be easily proved that Equation (16) has the first integration 

(21)  

where 

A =μ/2γθ = (y0 – r0 cos θ)/y0
2 – r0

2,  B = y0r0(y0 cos θ – r0) = (y0
2 – r0

2).                                    (22)  

The excess pressure of the microdroplet can be determined from Equations (20) and (22) as 

Δp = pL – pV = 2γ(y0 – r0 cos θ)/(y0
2 – r0

2) .                                                                                  (23)  
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Furthermore, the microdroplet shape can be obtained by integrating Equation (21): 

(24)

Substitution of Equation (22) into (24) leads to a concise form: 

(25)

with 

λ = (y0 cos θ – r0)/(y0 – r0 cos θ) .                                                                                                 (26)  

By using the variable transformation 

y 2 = y0
2(1 – k2 sin2 φ),                                                                                                                   (27)  

with 

k2 = 1 – λ2 (r0/y0)2 ,                                                                                                                         (28)  

the integral (25) can be expressed in terms of two special functions [6]: 

x = λr0F(k, φ) + y0E(k, φ) ,                                                                                                             (29)  

where F(k, φ) and E(k, φ) are respectively Legendre’s elliptical functions of the first and second kinds de-
fined as 

(30)

The fiber wetting length L can be obtained by using condition (25) of y(L/2) = r0 such that 

L = 2[λr0F(k, φ0) + y0E(k, φ0)],                                                                                                       (31)

where φ0 is the dimensionless parameter determined from Equation (27) with y = r0. Consequently, the 
volume of the microdroplet can be expressed as 

(32)

Therefore, for a given microdroplet of volume V0 on a fiber of radius r0, the droplet geometries θ, L, and y0 
are determined completely by the system. Once L and y0 are measured in experiments, the contact angle 
θ can be calculated by the inverse of Equation (31), which can be solved numerically referring to the work 
by Carroll [6], Wagner [7], and Song et al. [8], among others. Once the contact angle θ is determined, Equa-
tions (29), (31), and (32) determine the microdroplet shape, wetting length, and volume completely for any 
given aspect ratios. 
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3  Contact angle of microdroplet on a fiber 

In practice, the microdroplet geometries L, y0, and r0 are usually measured by means of optical micros-
copy and electron scanning microscopy (SEM). Once L, y0, and r0 are available, the contact angle θ can be 
approximated through matching Carroll’s characteristic curves [6]. However, it has been shown that an 
accuracy better than ±5° cannot be obtained based on this method. In an attempt to overcome the limita-
tion of Carroll’s work, Wagner [7], Song et al. [8], and others numerically inverted Equation (31) to extract 
the characteristic θ  – (L/r0) curves for various aspect ratios (y0/r0) that appear more convenient for practi-
cal use. Here we propose an efficient semi-analytic approach to simplify the inverse of Equation (31) in the 
middle range of contact angle (θ > 15°). As a matter of fact, the dimensionless wetting length l (Equation 
(25) at x = L/2) may be expressed into a function of a dimensionless variable λ: 

(33)

where the dimensionless variables are 

(34)

 Here the magnitude of λ is no more than 1.0 for a realistic microdroplet/fiber system, and the aspect ratio 
ρ0 is always larger than 1.0. Introduce the following Taylor’s series expansion based on Newton’s binomi-
nal formula: 

(35)

which decays rapidly for (λ/ρ) < 1.0. Substitution of Equation (35) into (33) leads to an approximate ex-
pression of l(λ) :

(36)  

The integration of each term in Equation (36) can be expressed explicitly in terms of fundamental func-
tions. As a result, a polynomial approach of l(λ) can be obtained: 

l(λ) = C0 + C1λ + C2λ2 + C3λ3 + C4λ4 + C5λ5 + C6λ6+ C7λ7 + C8λ8 

+ C9λ9 + C10λ10 + C11λ11 + + C12λ12,                                                                      (37)  

where 
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(38)

It can be observed that l(λ) in Equation (33) increases monotonically in the domain λ  (0, 1) since its first 
derivative 

(39)

is always positive in this domain, and also the coefficients of polynomial (37) Ci (i = 1, 2, ... , 12) are all pos-
itive. Therefore, Equation (37) only has one single root λ0 in this domain for a given l0, which can be easily 
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determined using existing numerical algorithms such as the simple Newton’s method. Finally, the contact 
angle θ can be extracted from Equation (34): 

θ = cos–1[(1 + λ0ρ0)/(λ0 + ρ0)].                                                                                                        (40)  

With the aid of relations (34), (37), (38), and (40), a family of characteristic l – θ curves for several aspect ra-
tios ρ0 are plotted in Figure 4, which provide a very precise approach for contact angle θ > 15°. 

As an example to illustrate the accuracy of the present method, we choose the experimental data for the 
contact angle of glycerol droplets on carbon filaments as shown in Table 1 [6]. It can be found that, in the 
middle range of contact angles as discussed, results predicted by the present method (Column D in Ta-
ble 1) are extremely close to those obtained by Wagner’s methods (Columns B and C in Table 1). When 
θ is close to 0° and therefore λ very close to 1, the present method may lead to cutoff errors due to use of 
the cutoff Taylor’s series (35). Nevertheless, numerical experiments show that at θ > 15° the cutoff error is 
lower than 0.5°. Therefore, the present method is sufficient for most of practical use usually with contact 
angle θ > 15°. 

Figure 4. Variation of contact angle with dimension-
less length [L/(2r0)] for different aspect ratios (ρ0). 

Table 1. Contact angle of glycerol droplets on carbon filaments 

Droplet         Dimensionless      Aspect                     Contact angle (θ) (degrees) 
number         droplet length       ratio 
                       (l)                               (ρ0)                            A                                B                             C                            D 

1 	 10.00 	 4.00 	 ~45 – 50 	 48.46 	 48.42 	 48.425 
2 	 10.00 	 4.75 	 ~67 – 72 	 69.20 	 69.20 	 69.209 
3 	 10.00 	 4.13 	 ~48 – 53 	 51.87 	 51.93 	 52.072 
4 	 12.57 	 5.00 	 ~44 – 49 	 47.36 	 47.45 	 47.470 
5 	 11.43 	 4.57 	 ~45 – 50 	 48.38 	 48.49 	 48.438 
6 	 10.86 	 4.43 	 ~47 – 53 	 50.83 	 50.85 	 50.853 
7 	 12.57 	 5.14 	 ~48 – 54 	 51.01 	 51.06 	 51.007 
8 	 9.43 	 3.57 	 ~40 – 45 	 42.43 	 42.39 	 42.329 
9 	 9.00 	 3.57 	 ~45 – 50 	 47.07 	 47.09 	 47.056 

Experimental data by Wagner (1990).
A: Data predicted by Carroll’s method [6].
B: Data predicted by Wagner’s method [7].
C: Data predicted by Wagner’s method [7].
D: Data predicted using the present method. 
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4 Concluding remarks 

The governing equation and exact boundary conditions for determining the geometrical shape and contact 
angle of a microdroplet on a fiber have been obtained by means of the variation of the free energy func-
tional. The geometrical shape, fiber wetting length, and microdroplet volume are determined in closed-
form. In an attempt to extract the contact angle precisely in practice, an novel efficient numerical approach 
is proposed by expressing the fiber wetting length in terms of a series expansion of the characteristic num-
ber λ, which gives very high accuracy for contact angle θ > 15°. 

The present method is based on the principle of energy variation. Therefore, it is convenient to fur-
ther include effects of other forces on the geometrical shape of microdroplets placed on complex sur-
faces. In these cases, the free energy functional can be used directly for developing the relevant finite el-
ement method (FEM) and boundary element method (BEM) for microdroplet systems. The approach 
given in this work can be used for the scaling analysis of the microdroplet aspect ratio and contact an-
gle. The present method can be used with great advantage in understanding of the wettability of fluid 
droplets on filaments, which are used extensively in the textile industry and fiber/epoxy composites 
engineering. 
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