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Advisor: Avery Schwer 

This dissertation presents a Bayesian analysis for determining residential 

occupancy using inexpensive commercially available passive infrared (PIR) motion 

detectors, compared against two other detectors that were used to establish ground-

truth.  One of the ground-truth detectors was a GPS signal from a smartphone, the second 

was a Bluetooth key fob. Data were gathered from four residential locations, and then 

analyzed to determine occupancy. The occupancy data collected from the PIR sensors 

were compared against ground-truth to verify the results of the PIR sensor events that 

were collected every minute for a week. The Bayesian training data that was used to 

determine the prior probability used a four-week time period collected once a minute. 

Having established the correspondence between ground-truth and the PIR sensor 

events, the PIR data were then used to build Bayesian network conditional tables. Once 

the conditional tables were constructed, the Bayesian network results could be compiled 

and then compared against the ground-truth data.  

One analysis compared the ground-truth data against the performance of 

individual PIR sensors and showed that there was a low correlation between the PIR 

motion and occupancy. Further analyses compared the ground-truth data against the 

performance of various groupings of PIR sensors within each residence and showed that 

there was a little less correlation than the individual PIR sensors method. 
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When Bayesian modeling was applied using historical PIR sensor data, results 

demonstrated an improvement in occupancy detection over the individual and grouped 

PIR sensor methods that were evaluated. The historical sensor data (using PIR sensor 

signal pulses) was successfully applied to the network, with an average of .025 ϕ 

correlation improvement. The historical presence data (using ground-truth data) were 

then applied to the same network. This step improved the ϕ correlation between the PIR 

sensors and ground-truth by an average of .40 over the four locations. These findings 

show that applying Bayesian modeling improves the accuracy of occupancy detection 

required for safety and efficiency, which will permit occupants to live in their homes 

longer. 
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CHAPTER 1: INTRODUCTION 

The need for home security is becoming more prevalent, especially for older 

people, due to health and safety concerns. These concerns are creating a need for security 

systems with reliable technology. Technological solutions have their own specific flaws, 

depending on the occupancy detection system they implement. These flaws can create 

false indications or false alerts. Most of these security systems err on the side of 

registering false negatives, a tendency that can be expensive since charges for regular 

false alarms are often levied.  

Owners want reliable systems customized to their own lifestyles. A system that 

avoids the false alerts and other concerns can prompt fines and other penalties, eroding 

confidence in that system. More accurate ways to develop these system algorithms, 

customized for each owner, are therefore desirable. This dissertation presents a method to 

help prevent some of these false alerts, using a Bayesian network approach to occupancy 

data processing and analysis.  

The goal of this dissertation is to demonstrate that a detection algorithm applied to 

passive infrared (PIR) sensors can enhance the detection of occupancy within a space. 

This study investigates: “When using a set of PIR sensors and applying the Bayesian 

method as an overlay, is this study able to improve the accuracy of presence detection 

within the system?” The hypothesis is as follows: 

H1: When applying Bayesian modeling in conjunction with PIR sensors, the 

accuracy of presence detection will improve within a given location compared to 

independent sensor detection. 
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H0: When applying Bayesian modeling in conjunction with PIR sensors, the 

accuracy of presence detection will have no effect on the improvement within a 

given location.  

Chapter 2 defines what occupancy is and how an occupant is detected in this 

research. It also reviews literature on three main types of detection methods which can 

improve upon occupancy detection, such as detectors, circuit designs and analytical 

approach methods. Each of these three methods can improve the accuracy of occupancy 

detection, which then may be implemented within the project. Chapter 2 also explains the 

Bayesian model to help understand the principles of conditional tables, nodes and arcs 

which are used. Bayesian research examples of how other researchers have implemented 

the modeling will be presented. 

Chapter 3 describes the methodology that is implemented in this research. This 

chapter provides the flow chart of how the research is constructed and defined. The 

process of how the PIR sensor data was collected, cleaned, and processed will be 

described in this chapter. Additionally, chapter 3 describes the independent sensor, 

grouped sensor and the Bayesian modeling that is applied to the sensor data to generate a 

prediction of occupancy. 

Chapter 4 is included to provide detail on the specific architecture of the Bayesian 

network for this project.  This chapter presents the seven main steps in building a 

Bayesian network as described later. After the seven steps, the construction of the 

Bayesian network truth tables was presented. This chapter is included to better present 

how the method was constructed. 
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Chapter 5 compares results of various methods from independent, grouped, 

trained Bayesian sensor hours and the trained ground-truth method.  The independent 

sensor method is where each of the PIR motion sensors act independently of each other. 

The grouped method is where two groups of three PIR motion sensors are established and 

two of the PIR motion sensors are required to trigger an event. Trained PIR sensor hours 

method is where the history of the PIR motion sensors are implemented. Finally, the 

trained ground-truth method uses the historical data collected from the ground-truth 

detectors. This chapter then compares how each of these methods relate with one another. 

The results of the overall methods are then summarized.   

Chapter 6 describes the stakeholders and the benefits of applying Bayesian 

network to each of their applications. This chapter also presents future research that 

should be done to improve the accuracy of the results. In the end of this chapter, a 

summary of the research project and final comments and results are established.   
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CHAPTER 2: LITERATURE REVIEW 

 This chapter explores the previous research and various analytical approaches for 

detecting occupancy. Each of the research discussed will provide further insight in 

methods that were used previously to build a deeper framework for learning how 

applying analytics provides improved detection predictions. Section 2.1 defines what 

occupancy is and how it relates to a given space. Section 2.2 demonstrates how 

algorithms are used to detect occupant patterns and behaviors from historical information. 

Section 2.3 presents four detection methods such as: 1) detectors, 2) circuit designs, 3) 

multiple sensors, and 4) analytical approaches. Section 2.4 describes the foundation and 

the basic principles for Bayesian method. Finally, Section 2.5 concludes this chapter with 

an overview of the research and expresses the gaps in previous research that this project 

attempts to fill.  

2.1 Defining “Occupancy” 

Occupancy is defined by Merriam-Webster as “the fact or condition of holding, 

possessing, or residing in or on something or the fact or condition of being occupied” 

(Merriam-Webster, n.d.). The definition of “occupancy” used in this dissertation is the 

true detection of the presence of a target within a given space. Many current systems used 

in commercial, industrial, and residential applications use standalone detectors, applying 

no further analysis to the individual detector signals, despite that this additional step 

could improve detection occurrences. Many methods to detect whether a space is 

occupied have been developed.  
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2.2 Occupancy Detection in the Field of Healthcare  

This section discusses the applications of sensors for detecting occupancy in the 

field of health studies. These applications may allow users to retain residency in their 

homes for longer by providing necessary information indicating detection of occupancy 

within a given space. The use of occupancy detection is a main goal of many detection 

systems in healthcare, due to the desire of the elderly to stay at home for as long as it is 

safe to do so.  

This desire to stay in one’s own home is a challenge in the occupancy-detection 

field, since it is predicted that 23% of the world’s population will be 60 or older by 2050 

(Al-Shaqi, Mourshed, & Rezgui, 2016). Inside that range is the fastest growing age group 

in the world, namely individuals 80 years and older (Labonnote & Høyland, 2017). These 

large and expanding numbers are the main reason behind the need to provide care within 

a home or a given location. Several studies present ways to implement monitoring 

methods to support these age groups. 

 Ambient assisted living (AAL) refers to the use of different sensors to make the 

independent life of a person safer and more comfortable in the home environment 

(Demir, Köseoğlu, Sokullu, & Şeker, 2017). The AAL system can provide comfort by 

monitoring heating, ventilation, and air conditioning (HVAC) to provide an optimal 

living environment (Al-Shaqi et al., 2016). In many cases, AAL can offer continuous and 

real-time monitoring of not only the environment but also occupant behavior and health 

(Al-Shaqi et al., 2016). Some additional systems that Al-shaqi et al. identified are 

installed safety lights that provide warnings regarding medications, for example, when 
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medications are not taken. The use of AAL can provide the extra help required for the 

elderly to stay within their homes longer. 

AAL is typically implemented using different sensors, including magnetic 

switches, temperature sensors, photosensors, pressure pads, water flow sensors, infrared 

motion sensors, power/current sensors, force sensors, smoke/heat sensor, and biosensors 

(Al-Shaqi et al., 2016). In addition to adding sensors that can be used to notify healthcare 

providers if there is a harmful accident such as a fall, Al-Shaqi et al. applied probability 

theories to anticipate results.  

Al-Shaqi et al., considering the use of raw sensor data in their project, note that 

several key events must take place before the data can produce valid results. The first of 

these key steps is that “noise” must be eliminated from the raw data; an analysis must be 

defined and applied to detect the desired patterns. Such steps can include probability 

distribution or clustered analysis, among others. Once the analysis method is selected, it 

can then be modified depending on the data type. The data can then be applied to a 

learning method. A certain amount of training is required, depending on the activity, so 

that the patterns can be determined. Once the training is completed, the current data or 

live data can then be injected to produce a result (Al-Shaqi et al., 2016). 

 This method of monitoring activity using probability and prediction have been 

successful in test cases (Huynh, Fritz, & Schiele, 2008). Huynh et al. were able to detect 

certain activities using wearable sensors. Some of these activities included walking, 

walking while carrying things, driving a car, picking up cafeteria food, sitting at a desk, 

eating meals, and washing dishes. They produced their results by observing a person’s 

daily life activity over a 16-day period. This person was wearing two wearable sensor 
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devices attached to their body. During this time, the subject was required to demonstrate 

75 distinct activities that were, compared to the data and grouped for matching. Machine 

learning was able to predict what activities the person was doing for each segment, with 

an overall 72.7% accuracy. This method is being used in active wear devices to predict 

the movements and activities of the users.  

When applied to monitor elderly individuals, predictions can be quite beneficial. 

For example, Demir et al. demonstrated that the use of multiple sensors to gather 

information with machine learning would help in the diagnosis and treatment of diseases 

within the elderly population (Demir et al., 2017). For example, Demir et al. provided 

information on movements to healthcare professionals that was then used to create a plan 

to encourage movement for the patients. A series of sensors were deployed in the kitchen, 

toilet, bathroom, and bedroom. These sensors gathered an array of raw data. Using fuzzy 

logic, the raw data were then analyzed to find behaviors that were out of the normal 

ranges. The results told the end user if something was open, not open, or simply not 

completed using the methods of their study. The conclusion of their study was that they 

could successfully combine normal occupants’ behavior with sensor data to predict 

specific events that may occur. This concept of predicting normal behavior will become 

useful to predict occupancy normal behavior and sensor data.  

The successes of AAL systems have benefitted those elderly people who desire to 

continue living at home (Gokalp & Clarke, 2013). Gokalp and Clarke showed that AAL 

systems that implemented sensors could predict patterns or occupancy. There is a need 

for better-designed studies with test cases of greater duration, as many of these studies 

cover only a few days. They also noted that longer-term case studies might be difficult to 
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conduct, since the researchers would first need to get permission from both users and 

patients. In the end, many positive results have come from applying analytic modeling in 

parallel with sensors to determine occupancy and patterns.  

2.3 Detection Methods 

Many types of detectors and methods are used for occupancy detection. Section 

2.3.1 describes the main types of detectors and presents their benefits and shortcomings 

when detecting objects or targets.  Section 2.3.2 examines the different types of circuit 

designs that are used to improve sensor detection. Section 2.3.3 discusses the analytical 

approaches that have shown to improve the accuracy systems.   

2.3.1 Detectors 

 Merriam-Webster defines a “detector” as a “device for detecting the presence of 

electromagnetic waves or radioactivity” (Merriam-Webster, n.d.). Detector construction 

varies, as does the way they detect objects within a given range or defined space. Guo et 

al. details the main types of sensors: PIR, ultrasonic, microwave, sound, light barriers, 

video, biometric, and pressure (Guo, Tiller, Henze, & Waters, 2010). These main sensor 

types are evaluated below. 

2.3.1.1 Passive infrared. PIR sensors, also called “passive infrared detectors,” are 

electronic sensors that measure infrared light radiation from the objects that cross the 

field of view. PIR sensors are often used in motion detectors. They are constructed with a 

crystalline material at the center of the rectangle on the face of the sensor, which detects 

the infrared radiation. This sensor is split into two parts to allow the sensor to detect not 

only the infrared radiation itself, but also the change in the condition when the target 

enters and crosses the field of view. When the condition changes, the amount of infrared 
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radiation on the element changes, generating a variance in voltage output. An onboard 

amplifier drives an output to a relay or a microcontroller (Digikey, 2012).  

PIR sensors use a Fresnel lens to focus the infrared energy emitted when a target 

enters the field of view. The Fresnel lens creates the detection pattern. In a detection 

pattern, the target must cross the PIR sensor to detect a changed event. Figure 1 is the 

detection pattern for ZMOTION ZEPIR0AA, a PIR sensor.  

 

Figure 1: Detection pattern ZMOTION ZEPIR0AA sensor: The sensor provides a 60-

degree cone with four beams, or detection zones, with the two inner zones providing the 

greater range up to 5 m (Digikey, 2012) 

PIR sensors are used in both residential and commercial building management, 

and in security applications. PIR sensors’ advantages include low cost, simplistic 

implementation, small size, low power usage, durability, wide lens ranges, an intuitive 

interface, and the ability to operate with or without an additional light source. These 

advantages make them practical for indoor applications, such as operating the lights and 

plug sockets for residential and commercial sites. They can be installed in multiple areas 

to increase the reliability of the detecting an object. Practical examples include placing 
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them at each light switch or entryway (Keller, 2000). PIR sensors are completely passive. 

There is no need for an auxiliary source of power or extra devices that target the objects 

since it uses radiation from the targets. Detection is made without contact.  

However, there are cases in which PIR sensors would not be practical, due to the 

limitations of the sensors, namely in the environment when there are many infrared 

sources like the sun, the size of targets being too small, the distance from the target and 

objects too close or far, and the number of windows and drafts that need to be taken into 

account (Mathas, 2012; Digikey, 2012; Gross, 2018). Given these limitations, PIR 

sensors can generate false detections.  

The limited number of environments in which PIR sensors can operate well are of 

particular concern. Sensors operate poorly outdoors with great temperature fluctuations. 

Temperature changes can cause false alerts. One example of such false alerts can be 

observed with porch lighting activating throughout the day without a legitimate trigger. 

The frequency of the false alerts makes PIR sensors impractical for sensitive applications. 

The detection is made at a distance, which can result in missed triggering events where 

the target is not captured due to its distance from the sensor.  

This limits the acceptability of PIR sensors for security applications because they 

may lead to many false alarms. It is necessary for security sectors to consider the weak 

points of PIR sensors when designing security systems for both residential and 

commercial sectors. Some of the ways the security sector can improve the reliability of 

these weak systems include adding both additional sensors and algorithms to improve 

reliability and reduce false triggering events.  
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Energy management with the use of the PIR sensors is more feasible, since the 

false alerts have less influence than they would within a security system. It is less 

important if a light turns on when no one is present than if the security alarm triggers 

when no one is around, and authorities are called to attend to false alarms.  

People have overcome minor issues associated with PIR sensors in several ways. 

Kim et al. discovered that the placement of the sensors had great effect on detection 

accuracy (Kim, Moon, & Yoon, 2017). Sensors placed on the walls, rather than the 

ceiling, detected occupants most accurately, as did sensors near doors. To further 

improve accuracy, they applied an algorithm in which a door sensor was added with the 

assumption of 30-minute occupancy (i.e., the assumption someone was still located 

within the room). The door sensor was used to create a secondary check for occupancy. If 

no motion was detected after the door sensor contact was closed, then the room was 

assumed to be empty. In the absence of detected motion, an occupant was assumed to be 

within the space until the door sensor contact changed states again. Kim et al. reported 

99.8% accuracy by verifying against the camera when two to six people were in the 

room, with 90.1% accuracy when a single person was in the room. 

The use of PIR sensors can be improved, but people primarily use these sensors 

for only simple applications, due to their lack of accuracy. Hence, PIR sensors are more 

acceptable as individual sensors within energy management systems than within security 

systems, where they would require more accurate sensor methods. 

2.3.1.2 Ultrasonic occupancy. Ultrasonic sensors are active sensors that transmit 

ultrasonic waves into the air and detect waves reflected by objects (Murata, 2008). 

Murata Manufacturing explains ultrasonic waves as sounds that cannot be heard by 
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humans, normally above 20 kHz. Increasing the accuracy of ultrasonic sensors, certain 

materials better reflect these waves: metal, wood, concrete, glass, rubber, and paper. 

Other objects are harder to detect due to their poor refractory properties: cloth, cotton, 

and material with an undulating surface of the material (Murata, 2008).  

Ultrasonic sensors do not need a direct line of sight because sonic waves reflect 

off surfaces and partitions to enter spaces not in direct sight of the sensor device itself. 

Since this sensor method uses sound waves, the color or transparency of the objects has 

no effect on the sensor readings. The use of sound waves also permits these devices to 

work in dark environments, since they do not rely on visual input for detection. 

Ultrasonic waves can penetrate certain materials, allowing a sensor to detect what is 

inside certain objects. This property allows them to detect external or deep objects, 

depending on the frequency of the sound wave, supporting the accurate detection of 

objects when dust, dirt, snow, or rain is in the environment.  

The weakness of ultrasonic sensors is they use sound. They are non-functional in 

a vacuum, for instance, as there is no air through which sound can travel. Ultrasonic 

sensors are also not designed for underwater applications, where radar sensors are more 

effective because they use a different frequency range and construction. Furthermore, 

ultrasonic sensors have difficulty sensing softer materials, such as fabric, since sound 

waves are absorbed by the materials.  

Another weakness limiting the uses of ultrasonic sensors is their sensitivity; false 

triggers can result from any device that can produce squeaking sounds (e.g., a squeaky 

fan) within the detector’s frequency. Lastly, the range of an ultrasonic sensor (about 

10 m) is longer than that of a PIR sensor, with a maximum range of 5 m. The longer 
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range can prevent an ultrasonic sensor from being used in scenarios that require a more 

focused approach, such as in a specific entry way or specific segment within a space. 

Ultrasonic sensors are functional for several types of detection methods, including 

the detection of the signal level of a continuous wave, the measurement of pulse 

reflection time, the utilization of the Doppler affect, the measurement of direct 

propagation time, and the measurement of the Karman vortex. The detection of signal 

level in continuous waves is typically used for counting instruments or objects that pass a 

certain point, such as access switches or parking at parking meters/in parking spaces. 

Measurements of pulse reflection time are generally used for automatic doors, level 

gauges, automatic changeovers of traffic signals, and the back-up sonars on automobiles. 

Intruder alarm systems typically use the Doppler affect in detecting occupancy in all 

directions from a sensor. The measurement of direct propagation time is used for 

densitometers and flowmeters. Flowmeters can also use the Karman vortex in various 

applications. 

Hammoud et al. describe customizing sensitivity per room to improve the 

accuracy of sensors (Hammoud, Deriaz, & Konstantas, 2017). They implement a manual 

adjustment and an automatic adjustment method to “tune” the sensor to the specific room 

and the frequency for better occupant detection. These adjustments were made to help 

overcome some of the native limitations of ultrasonic sensors. By manually tuning a 

sensor, these researchers were able to produce results of 98.2% more accurate occupancy 

detection, compared with a non-tuned sensor within a small room with manual 

calibration. Hammoud et al. also showed 97.5% improved accuracy occupancy detection 
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with automatic calibration to tune the sensor. Calibrating the ultrasonic sensors presents 

an efficient method to help improve sensor accuracy when detecting moving occupants.  

These strengths make ultrasonic sensors more acceptable for use within a security 

system because they allow the detection of an out-of-sight target. In some cases, 

however, increased sensitivity can create undesired false alerts. Security systems created 

for residential and commercial sectors must account for these weaknesses when 

implementing ultrasonic sensors within the design of a system attempting to detect 

occupancy.  

2.3.1.3 Audible sound/passive acoustic. Audible sound or passive acoustic 

sensors involve any combination of sound recorder, detector, microphone, and/or 

hydrophone designed to detect and record sound. They typically use a type of a 

microphone and/or hydrophone for security system design. Depending on the sound 

produced, they can set a threshold for the amplitude, wavelength, and frequency to trigger 

an alarm (Tarzia, Dick, Dinda, & Memik, 2009), for example to detect glass breaking. 

Guo et al. state that audible sensors are known to respond to non-human environmental 

noises and noises from adjacent spaces and are thus prone to false alerts (Guo et al., 

2010).  

Tarzia et al. assert that passive acoustic sensors are functional, depending on the 

type of application and locations of the sensors. Their results show “that it is possible to 

detect the presence or absence of users with near perfect accuracy after only ten seconds 

of measurements” (Tarzia et al., 2009, p. 1); however, it is important to point out that 

they were testing the presence of people, using a computer with web camera microphones 
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and sensors localized within the test space. It is important to determine other triggering 

events that might affect passive audio sensors before their implementation in each space. 

2.3.1.4 Video cameras and CO2. In addition to PIR sensors are other types of 

sensors that can be used for building security and energy-management applications. Two 

of these technologies are CO2 sensors and cameras. The first method is to use CO2 

sensors to detect occupancy. Jin et al. researched the method of using CO2 sensors within 

a room to detect whether there are occupants in the space. Using a CO2 detector, namely 

the K30 10,000 ppm CO2 sensor (Co2meter, n.d.; Jin et al., 2015), they measured CO2 

concentrations within a room. From the CO2 levels, Jin et al. could predict the number of 

occupants within the area. Their method is demonstrated in Figure 2 (Jin et al., 2015). 

 

Figure 2: CO2 model: Fresh air with CO2 concentration U(t) enters the room 

from the supply vent and exits the room after convection and mixing with 

human breath; V(t) which rises to the ceiling, and the measured CO2 

concentration at the return vent is u(1,t) (Jin et al., 2015) 

The second method is to use a camera to detect targets within view. The types of 

cameras to be discussed are low-resolution cameras. These low pixel cameras are 

selected to decrease the amount of video processing. These cameras view infrared heat 



16 

 

from targets rather than registering visible light. Berger and Armitage’s research used a 

16 by 16-pixel infrared camera to detect targets. The first step was to process the low-

resolution image, which was done by rescaling the size to 64 by 64 pixels to increase the 

size and quality of the image. They then applied a background subtraction and Laplacian 

of Gaussian blob detection. Berger and Armitage could then divide the image into 

sections and identify whether the target had moved, as well as count the number of 

targets within the certain area (Berger & Armitage, 2010). The imaging processes can be 

seen in Figure 3. 

 

Figure 3: Infrared camera process: (a) Rescaled input image; (b) Warm 

objects after background subtraction and Log; (c) Binary image after area 

adjustment; (d) Result image (Berger & Armitage, 2010). 

One key consideration with the use of cameras is that many people do not 

appreciate being surveyed (Eisa & Moreira, 2017). Elis and Moreira have pointed out that 

camera-based sensors are not widely accepted among the elderly due to their 

inconvenience, to computational complexity, and concerns over privacy.  

CO2 sensor and the infrared cameras can both provide another source of energy 

management and security applications for the detection of occupancy. Several major 

differences exist between the two methods that should be considered when using either of 

the methods. CO2 sensors provide the accuracy needed to detect the correct number of 
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people within a conference room, but their measurements are delayed, which can be 

problematic. Jin et al. state that a “relatively long time (10–15 minutes)” is required to 

build up the corresponding levels of CO2 concentration (Jin et al., 2015). This time-lag 

greatly weakens this method’s use for security purposes because efficient security 

requires a timelier response.  

Infrared cameras, by contrast, can detect occupants in real time. Environmental 

concerns, windows, and air drafts are no longer a concern since they are filtered out with 

the image processing. This processing also allows more detection zones for movement 

detection. Berger and Armitage demonstrated this flexibility when increasing the 16-by-

16-pixel resolution to 64 by 64 pixels to create more detection zones and increase 

accuracy.  

Some of the similarities between the CO2 sensors and infrared cameras are that 

both can detect how many occupants are within a certain area, increase the accuracy of 

detection for security and energy management applications, and adjust their algorithms to 

improve their accuracy for specific locations and scenarios. Some major differences also 

exist between these two technologies, however: time delay between the motion detections 

(infrared cameras require less delay); system-setup complexity (air quality adds more 

complexity); system costs (infrared systems can cost more depending on the quality of 

the cameras, but air systems can cost more to install if they are not easily accessible); and 

suitability for use in security requirements (for which CO2 sensors are unsuitable, 

although they are more suitable for environmental applications). Elisa & Moreira presents 

a comparison between PIR and cameras for each technology property, which are shown 

in Table 1. 
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Table 1: Sensing technologies, a properties comparison (Eisa & Moreira, 2017). 

 

2.3.2 Circuit design 

The accuracy of detection can be improved by implementing a secondary circuit 

design into the base sensors, so they form a network. Instead of using a single standalone 

sensor, a linked secondary sensor can greatly increase the accuracy of the system as a 

whole. Two ways this accuracy improvement can be made are with the addition of 

circuitry in a series or in a parallel configuration.  

Secondary inputs to occupancy detection can also be added to help decrease the 

number of false alarms. The use of several types of sensors that can help improve and 

build upon the network is preferable. For example, infrared sensors can be paired with 

audio sensors, since the infrared sensor does not detect audio within a given space. The 

goal of the circuit design is to improve detector accuracy by implementing secondary 

checks in the network to better account for environmental errors in each space.  

The use of multiple sensors can greatly improve the quality of a security system. 

The two main methods used to implement multiple sensors into a system are the addition 

of sensors in a series to each other or in parallel with each other (Romeu, 2004). Each of 

these methods has its own implementation methods to improve detection accuracy.  
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2.3.2.1 Series sensors. Sensors used in series require only one sensor in the group 

to be triggered for the whole network to register an alarm. Figure 4 shows a typical series 

design for three sensors. 

 

Figure 4: Series sensor configuration: the arrows in the figure represent the connection 

between the sensors. These could be wired or wireless connections. Each of the three 

sensors is in a single loop, which connects back to the detection system. If any of the 

three sensors are triggered, the whole loop breaks and goes into alarm. 

For example, if Sensor A is a front-entry door contact, Sensor B is a motion 

sensor, and Sensor C is a back-entry door sensor, then when any of the contacts are 

opened, the whole alarm triggers due to any one of the series contacts opening to detect 

an intruder. 

However, sensors used in a series have a major flaw: if any fails, all fail. This 

flaw can be represented mathematically. Given a Sensor A that has a 90% reliability rate, 

adding a second Sensor B in series to the circuit with the same accuracy will now 

decrease reliability to 81%. The series system’s reliability calculation is shown in 

Equation 1 (Romeu, 2004): 
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Rs = R1 x R2 x …. Rn 

 

Rs = 0.9 * 0.9 = 0.81 or 81% 

 

(1) 

One way to overcome this series flaw is to add sensors in a parallel configuration.  

2.3.2.2 Parallel sensors. Sensors can also be linked in a parallel configuration as 

in the Figure 5.  

 

Figure 5: Sensor parallel configuration shows each of three sensors separately 

connected back to the detection system in the network. If any of the three sensors are 

missing, or triggered, unlike the series sensors, the whole loop does not go into alarm, as 

it would have in the series arrangement. 

An algorithm determines the type and how many sensors need to activate for the 

system to identify the event. For example, Sensor A is a front-entry door contact, Sensor 

B is a motion sensor, and Sensor C is a back-entry door sensor. When both door sensors 

are open then a motion sensor is activated and the whole alarm triggers an event. This 

helps prevent false alarms since it takes two events at the same time to generate a positive 

event. 
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This example demonstrates how parallel sensors can overcome the major flaw 

within a series system. Individual sensors are not connected into a chain that links them. 

Rather, they are connected into a star shape in which each of the inputs are independent 

of the other. Demonstrated mathematically, if Sensor A has a 90% reliability, due to its 

specific design, adding a second Sensor B in parallel to the circuit with the same accuracy 

will increase the reliability to 99% (RAC). The parallel system’s reliability calculation is 

shown in Equation 2: 

 

Rp = 1 − (1 − R1) x (1 − R2) x …. (1 − Rn) 

 

Rp = 1 − (1 − 0.9) *(1 − 0.9)  

 

Rp= 1 − (0.1) * (0.1) 

 

Rp = 1 − 0.01 = 0.99 or 99% 

 

(2) 

The parallel system shows improvement from 81% to 99% when sensors are 

added. One common way to add sensors in both series and parallel systems is by 

programming an algorithm in which each of the sensors are considered. The parallel 

configuration clearly guarantees superior accuracy over the series configuration. Other 

analytical approaches may increase accuracy.  

2.3.3 Analytical approach 

Advancements of computers and microcontrollers have brought significant 

improvements to the use of real-time analytical approaches for determining occupancy. 

The basic principle of these methods is to use a collection of past data to calculate a 

predictive algorithm to better determine the state of an area and the occupancy within an 

area. Le presents common ways to determine these predictive equations (Le, 2018): linear 

regression, logistic regression, linear discriminate analysis, classification and regression 



22 

 

trees, Bayesian network, K-nearest neighbors learning vector quantization, support vector 

machines, bagging and random forest, and boosting and AdaBoost. 

A linear regression uses one dependent and one independent variable to determine 

the slope of the line, which can be used to determine other predictions such as estimated 

time before an event occurs or when there will be an occupant within the space. Logistic 

regression uses a binary variable called a “dichotomous dependent variable.” These 

dichotomous variables are normally zero or one. This method is used to explain the 

relationship between one dependent binary variable and one or more independent 

variables.  

Unlike logistic regression, linear discriminate analysis can handle more than two-

class classification problems. A discriminate value for each class can then be calculated 

and a prediction can be made for the class with the largest value. Classification or 

regression trees are a method of decision trees, which are basic flowcharts driven by 

binary answers to specific questions. This method is more simplistic for programming 

and the initial configuration of the predictive analysis.  

The remaining models are more capable and have several advantages over the 

simpler models. Bayesian network models use two forms of probability, one driven from 

a current history data set and another, a conditional probability, driven from assumptions. 

The Bayesian method assumes that all the inputs are independent of each other. Another 

method is the K-nearest neighbor method, which can be used for either regression or for 

classification. However, it is normally used for classification. One benefit of the K-

nearest neighbor method is that it does not make any assumptions about the data. 

However, all the training data must be stored. With the learning vector quantization 
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method, the training data does not have to be saved, since it is an artificial neural network 

algorithm (Brownlee, 2016). This model is a small codebook of vectors that are 

constructed from the training data, which is used to make a classification to predict data. 

Support vector machines deploy a method used to transform a problem using linear 

algebra to simplify the results. This simplification is done by looking at the inner product 

between the points for classification. The random forest method is derived from a 

learning algorithm called “bootstrap aggregation” or “bagging.” This method takes many 

samples and adds a random variable to improve the accuracy of the prediction. Boosting 

and AdaBoost are techniques that attempt to create a strong classifier from a group of 

weak classifiers. This is done by creating shorter decision trees and viewing their 

performance and weights to create stronger classes. The following sections review 

common methods used for detecting occupancy. 

2.3.3.1 Bootstrap aggregation. “Random forest” and “bagging” are alternative 

terms for the ensemble machine learning algorithm called “bootstrap aggregation.” This 

method can be used in various applications. One of these applications is energy 

management for building occupancy. Few studies use this method to identify whether 

there is an occupant within a certain place, for example, in a building for the scheduling 

of operations such as work on HVAC systems. There are many advantages of bootstrap 

aggregation due to the ensemble prediction model. The ensemble prediction model is 

defined as a “set of individually-trained based models … whose outputs are combined to 

make a prediction” (Wang, Wang, & Srinivasan, 2017, p. 110). Similarly, the random 

forest method is created by introducing a component of randomness into the bagging or 

classification tree. Classification tree is explained as follows: “each tree is constructed 
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using a different bootstrap sample, and each node is divided based on a randomly 

selected set of predictors specific to that node” (Kontokosta & Tull, 2017, p. 307). 

Bagging is a process of sequentially combining the weak learners to reduce prediction 

errors by voting over results from a substantial number of bootstrap data points (Wu et 

al., 2018). Once these weak learners are defined and the random parameters are tested, 

the results become good predictors. 

There have been several ways that bootstrapping has been used to solve problems. 

Wang, Wang, and Srinivasan worked with 11 input features, including occupancy and 

temporally related data collected hourly (Wang et al., 2018). This study by Wu et al. used 

environmental, microclimatic, and demographic parameters, including building type, 

degree of thermal environment control, and other values recorded from a field study for 

their inputs into the bagging model. Once the data sources were determined, each 

research group created a plan around the methodology they desired. This methodology 

exhibited the relationship between the different inputs such as the building, floor area, 

number of floors, presence of an attached lot and year built, and so on.  

After the data were collected, Wang et al. then partitioned the data to help 

organize their logic behind the data for the bootstrap method. This required the bootstrap 

be trained through a process in which the common threads were created to be used for 

predictions. This was done by reviewing the data from the location, the local weather, the 

class schedules, and the building operation to check for any visible patterns that needed 

to be considered (Wang et al., 2018). Once the patterns were reviewed, they created three 

modules to be trained and tested independently for the data set. At the end of the study, 

all the modules had high prediction of accuracy, with average mean absolute percentage 
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of errors (MAPEs) of 2.97%, 4.62%, and 4.63% of prediction. One of the major 

limitations of this method was the amount of time it took to complete the predictions. 

This time requirement was due to the training required over the iterations necessary to 

derive accurate predictions (Wang et al., 2018).  

Kontokosta and Tull used a similar method to train their models. However, in 

their case, they trained the model to the point that the predictions matched the historical 

data before trying to predict the future data. Their use of a wider dataset enabled this 

method of training. Training was conducted on a few regions within New York City. The 

information was used to predict other regions within the city data set, as well as across 

different categories within the same set. Kontokosta and Tull found their results could 

successfully predict the utility usage by utilizing the PLUTO data. They did not address 

the amount of time calculations took, since they were not trying to find live data. With 

the successful prediction of bootstrap aggregation, a large amount of training is required 

for each data set used. This extra training requires more computing and a more hands-on 

approach than would be needed for live-occupancy detection.  

These several methods show how data modeling can be used to predict certain 

outcomes. This dissertation uses similar methods to model occupancy data collected from 

a previous timeframe and applies a method to better enhance occupancy predictions.  

2.3.3.2 AdaBoost model. Similar to the Bootstrap algorithm, the AdaBoost model 

still uses classification of selected weak features to build a cascade-structured detector 

(Wu & Nevatia, 2005). AdaBoost uses an algorithm to learn a set of classifiers also 

known as “weak learners.” Weak learners are obtained sequentially, using re-weighted 

versions of the training data, with the weights depending on the accuracy of the previous 
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classifiers. These weak leaners are then ordered to produce the final stronger classifier 

(Vafeiadis et al., 2017, p. 3). Training is normally done twice to build the weaker learner, 

and from there the algorithm can support prediction. Once there is an understanding of 

what the prediction node requirements are for AdaBoost, data can then be collected for 

specific applications.  

Vafeiadis et al. have presented a different method of gathering information. They 

used three different systems to gather raw information from energy consumption, water 

consumption, and occupancy in specific locations for one month. This data was recorded 

using sensors for all three systems at one-minute intervals to measure the variables for 

their study. Rather than using sensors and data to detect building occupancy, as did 

Vafeiadis et al., Wu and Nevatia used camera detection to detect occupants (Wu & 

Nevatia, 2005). The basic principles used by the two research groups are identical. Wu 

and Nevatia constructed training sample sets with photos, not numbers. They use a 

process like data training with a dataset. From there, Wu and Nevatia ran the training 

method for detecting occupancy, and this result revealed an accuracy detection 

occupancy rate in the range of 80% to 91.2% with the images used compared with 

occupants within the space (Wu & Nevatia, 2005). Vafeiadis et al. had a result of 83.2% 

accuracy in detection of occupancy from the modeling that used trained data compared to 

the occupants’ ground-truth.  

Similar to the bootstrap algorithm, the AdaBoost model still has computing 

requirements, though they are significantly lower. Results are accurate when predicting 

outcome and sorting information using weaker learners if real-time performance is not 

required. An occupancy system requires real-time triggers, these systems may not be able 
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to process the information that is required in time or may require higher computing 

capabilities to get desired results. 

2.3.3.3 Bayesian model. Bayesian method uses conditional probability for 

independent variables. The goal of using the Bayesian model is to determine the 

probability of each cell to be occupied and the state variable associated with the given 

variables (Ribo & Pinz, 2001). A cell is explained as a location defined within a given 

criteria with known previous states. In this application, a cell would be a space that has a 

previously known occupancy probability. This makes the Bayesian model useful when 

there are no strong dependent and independent relationships between the variables. As 

stated by Yeonsook Heo, “A Bayesian approach is used for calibrating uncertain 

parameters in the normative model and quantifying uncertainties in the parameters” (Heo, 

2011, p. 7). Another strength when using the Bayesian method for predictions is that it 

allows for the component forecasting models to come from any trained forecaster with 

well-defined distribution of the forecaster’s mis-forecasts (Howard & Hoff, 2013). As 

such, one can use various history or training backgrounds for each segment or node of the 

Bayesian network.  

In summary to section 2.3.3, the graphical comparison between the three 

analytical approaches can be seen in Figure 6. Each of the three methods have their 

advantages, but due to the Bayesian model’s usefulness when there are no strong 

dependent or independent relationships this dissertation will be using the Bayesian model 

to determine occupancy.    
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Figure 6: Comparison of the models from the analytical approaches. 

(a)Bootstrap Aggregation (Khan et al., 2019); (b)AdaBoost Model (Corporate 

Finance Institute, n.d.); (c)Bayesian Model (McKee & Anddriyas, 2015).  

2.4 Bayesian Model Basics  

Named after Thomas Bayes, who studied binomial distribution, Bayes’ model has 

been more commonly used in probability and risk assessments due to the increasing ease 

of computer calculations. The theorem was not published until Richard Price published it 

as the Bayesian network method. Section 2.4 addresses how Bayesian networks can be 

used to minimize risk of error in security system installations for detecting home 

occupancy. It focuses on the basic background information required to understand 



29 

 

Bayesian networks and of the model for calculations and predictions, as well as the 

methods and terms necessary to express the relationship between each of the nodes with 

their corresponding relationships.  

Section 2.4.1 describes the foundation of Bayesian networks and the ability to use 

conditional probability with assumptions gathered from previous results. Nodes are used 

to express the probability of certain outcomes which is explained in Section 2.4.2. 

Section 2.4.3 discusses the relationship between the nodes and arcs. Research examples 

of Bayesian modeling can be found in Section 2.4.4. The conclusion in Section 2.4.5 will 

summarize the basic principles of Bayesian modeling.     

2.4.1 Conditional Probability  

Fenton and Neil explain that at the heart of the Bayesian approach is the role of 

conditional probability (Fenton & Neil, Risk Assessment and Decision Analysis with 

Bayesian Networks, 2013). Conditional probability is defined as interest in a given event 

after observing a different related event. An event is defined as “some unknown entity,” 

where probability is used to quantify uncertainty about that event. Some examples of 

events are as follows: 1) the home will be occupied, 2) there is motion in the home, and 

3) the next flip of a coin will be tails. Conditional probability can be applied to decide 

what the chances are that a space is occupied due to the monitoring detected. Conditional 

probability statements can help determine whether detected motion is due to curtains 

moving or the room being occupied. If the curtain moves, there is a lower probability that 

the living room is occupied.  

• Event: Motion was detected. 

• Event: Curtain is moving. 
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• Event: Someone is home. 

• Reasoning 1: P(motion was detected | curtain is moving) = room is 

unoccupied. Given that motion was detected, and the curtain is moving, 

there is a low probability there is an occupant.  

• Reasoning 2: P(motion was detected | curtain is not moving) = room is 

occupied. Given that motion was detected and there is no curtain moving, 

there is a higher probability there is an occupant. 

This is the base principle of conditional probability in Bayes’ modeling. The known 

linked (arc) events (nodes) are used to predict the probability of other unknown events, 

referred to as “determining the belief” of those events (Charniak, 1991).  

2.4.2 Node 

There are two types of nodes that make up a Bayesian network: root nodes and 

non-root nodes. Root nodes have no parent nodes. From Figure 7, “motion was detected” 

and “curtain is moving” are both root nodes. Root nodes must use prior probabilities. 

Non-root nodes have parent nodes. From Figure 7, “there is an occupant” is a non-root 

node. Non-root nodes are given all possible combinations of their direct parents to create 

their conditional probability tables, as shown in the following example:  

•  “Motion was detected” and “curtain is moving” are root nodes (i.e. parent 

nodes). 

•  “Someone is home” is a non-root node i.e. a child node to “motion was 

detected” and “curtain is moving.” 

• Prior probabilities for all root nodes and all the conditional probabilities 

for the non-root nodes are required. 
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Figure 7: Example: Node – is it occupied? 

Figure 7 shows a 35% chance that motion was detected and a 10% chance it is 

due to the curtains moving; these are the prior probabilities. Prior probabilities are 

normally calculated from historical data. The following statements present conditional 

probabilities (normally an expert opinion, subjective data, or instance information): 1) if 

there is motion and the curtains are moving, there is a 90% chance that there is no 

occupant; 2) if motion is detected and no curtains are moving, there is a 72% chance 

there is an occupant; 3) if there is no motion detected and the curtains are moving, there 

is a 92% chance there is no occupant; and 4) if there is no motion detected and no 

curtains are moving, then there is only a 2% chance there is an occupant. This method 

requires that a conditional probability be created for all the conditions present from the 

parent nodes.  

Using the nodes, the arcs, and the conditional probability, one can construct a 

Bayesian network to create beliefs that would not normally have been possible to 

calculate with only probability data and historical data. This possibility is the key benefit 

of Bayesian networks; one can develop a belief based on a wide range of events, which 
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can then be used to make expert assumptions concerning events or predictions in real 

time. 

2.4.3 Arc 

Charniak explains that arcs in the “Bayesian network specify the independent 

assumptions that hold between the random variables” (Charniak, 1991, p. 51). Fenton and 

Neil explain that an arc from node A to node B denotes a direct causal or influential 

dependence of node A on node B, with A being the parent of B (Fenton & Neil, Risk 

Assessment and Decision Analysis with Bayesian Networks, 2013). For example: 

• There is an arc between “motion was detected” and “someone is home.” 

• There is an arc between “curtain is moving” and “someone is home.” 

• That means the parent nodes of “someone is home” are “motion was 

detected” and “curtain is moving.” 

 

Figure 8: Example: Arc relationship – is it occupied? Arcs are indicated by arrows and 

point from the parent node to the child node. 

 The definition of an arc indicates a causal dependency of the “someone is home” 

when a “motion was detected” and when a “curtain is moving” on the event that “there is 

an occupant.” Notably, no assumptions or arcs are made to determine whether motion 

was detected because the curtains are moving or rather motion was detected because 

someone is home. Arcs express the relationship within the Bayesian network’s nodes and 

the educated assumptions or the known behaviors.  
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2.4.4 Research Examples 

Bayesian networks have been used in the development of artificial intelligence 

and predictive risk analysis. Weber et al. have reviewed a collection of over 200 articles 

describing the application of Bayesian models that directly relate to the dependability, 

risk analysis, and maintenance of the model (Weber, Medina-Oliva, Smon, & Benoît, 

2012). Within those 200 articles, 61% were referenced as dependability analysis and 26% 

were referenced as risk analysis. The aim of dependability analysis is to provide a 

prediction of a parameter (remaining time to fail, mean time to fail, reliability, etc.) that is 

an input to the data for the decision step (Weber et al., 2012). Risk analysis identifies, 

characterizes, quantifies, and evaluates critical event occurrences. Tijani et al. present a 

case in which they used Bayesian network to simulate occupant behaviors in office 

buildings to “determine the belief” in air quality.  

 Tijani et al.’s model considers the following: 1) permanent calendar, 2) 

intermittent calendar, 3) professor calendar, 4) guest calendar, and 5) CO2 concentration. 

After the five root nodes were defined, they determined which events would be used as 

nodes to help create a belief from defined assumptions. Their certain known assumptions 

were determined by a video feed located in a professor’s office for a determined amount 

of time, which was combined with “expert knowledge” to generate the dynamic Bayesian 

network (Tijani, Ngo, Ploix, Haas, & Dugdale, 2016). This network was used to predict 

the CO2 level in the office from the root nodes and the other node states. Inputs such as 

calendar events help predict occupancy. This research used past historical information to 

build a template of predictions for the behaviors of the occupants. Using historical 
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information is fundamental to analytical methods. The information is used to build the 

historical probability for the methods.  

Mulia et al. used building occupancy to assess Bayesian networks and other 

methods to compare the accuracy of several algorithm approaches, such as moving 

averages, decision trees, conditional random fields, and random forests. They reviewed a 

range of research for occupancy with a range of data collected from passive infrared 

sensors, pressure sensors, CO2 sensors, and depth image cameras. Among the many 

methods reviewed, the Bayesian approached reached one of the highest rates of accuracy 

at 82%, as compared to other analytical methods such as moving average, learning 

machines, and the Markov models (Mulia, Supangkat, & Hariyanto, 2017). Mulia et al. 

concluded that algorithm learning methods and artificial intelligence were most accurate 

when processing data using the Bayesian network. Both the learning methods and 

artificial intelligence used the Bayesian network to determine information about events as 

they were happening. The Bayesian network is simple to implement because the data-

driven estimation strategy does not require prior knowledge. Any lack of information can 

be addressed through subjective judgment, a notion explained as an expression of a 

rational agent’s beliefs about uncertain propositions. In this sense, a rational agent is 

generally considered a subject expert (Fenton & Neil, Risk Assessment and Decision 

Analysis with Bayesian Networks, 2013). 

2.5 Conclusion  

The added need for more accurate occupancy detection requires more 

advancement in detection methods. As discussed in this chapter, there are ways other 

researchers have improved the accuracy of detections which were: 1) detectors, 2) circuit 
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design, and 3) analytical approaches. Analytical approach is the common method of 

improving the occupancy detection. In the research that was reviewed, Bayesian method 

showed to be increasingly common practice when being implemented into systems due to 

the simplicity of applying the required application logic. Two gaps that were discovered 

within the literature review were: 1) that the use of multiple sensors were not very 

common within the research, the researchers relied on each sensor in a series 

configuration; and 2) the researchers used historical information over a relatively short 

period of time. This dissertation will bridge these two common gaps by applying sensors 

in a parallel configuration and use data over a one-month trial.     
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CHAPTER 3 METHODOLOGY 

This chapter defines how the dissertation method is implemented within this 

paper. The independent, multiple-parallel sensor approach is described in this chapter, 

along with how the Bayesian modeling will be applied to the multiplied-parallel sensors 

approach.     

Section 3.1 discusses the flow of the research project. Section 3.2 defines the 

project layout and Section 3.3 demonstrates the data collection process as it is defined. 

Section 3.4 expresses the requirements for cleaning the data that were collected from the 

sensors. Section 3.5 will review the three distinct methods; 1) Independent sensor 

method; 2) Grouped sensor method; and 3) trained Bayesian modeling, that are used. 

3.1 Research Flowchart 

This dissertation investigates the application of Bayesian modeling to a group of 

PIR sensors to improve the accuracy of the overall detection system, allowing for a more 

accurate determination of ‘presence’ within a given area. Figure 9 outlines the conceptual 

flowchart for this project. 
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Figure 9: Research flow chart for the design of this project and the testing for 

Bayesian method implementation. 

3.2 Defining the Project 

A Bayesian network analysis paradigm using multiple sensors is proposed to help 

prevent many common false positives in occupancy-detection systems, ultimately 

improving the accuracy of occupancy detection compared to traditional detection systems 

and methods.  

Data were collected from three locations, as follows: The first location was a 

condominium with two occupants residing in the home. The condominium had a total of 

six PIR sensors within the space, comprising three in the living room and three within the 

bedroom. Figure 10 shows sensor placements within the condominium. 

  

Define

•What are we trying to solve?

•Who are the stakeholders?

•How are we going to solve the problem?

Current 
System

• Independent sensor

•Grouped sensor

Improved 
System

•Bayesian modeling

•Grouped sensor with Bayesian overlay

Results
•What are the outcomes of the improved system?
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Figure 10: PIR sensor placement for the condominium. 

 

The bedroom and living rooms were chosen because they are the rooms with the 

most activity or events throughout the day and evening. Data were collected from the 

location for four weeks.  

The second location was a detached house with one occupant. Data were collected 

from the location over two separate time periods, once in 2018 and another in 2019. 

Figure 11 shows the sensor locations and placements in 2018. Data were collected at this 

location for four weeks. 
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Figure 11: PIR sensor placement for the one occupant in 2018. 

More data were collected at this same location for a four-week period in 2019. 

Different sensor placements were selected, as depicted in Figure 12. 
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Figure 12: PIR sensor placement for the one occupant in 2019. 

 

The third location had residents that were home for longer periods during the day. 

Two retirees lived there. Three of the six PIR sensors were placed in the living room, the 

other three in the bedroom. Data were collected from the location in 2019 over a four-

week period.  

 

Figure 13: PIR sensor placement for the two retirees’ in 2019. 
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With the six PIR sensors placed in the designated locations, the data for motion 

events were then collected. Once the data were collected, analysis methods were applied 

which were then used to predict the occupancy within the selected homes.  

The raw sensor data collected at each location were complemented by ground-

truth data gathered from a smartphone GPS signal, and a Bluetooth key fob. The sensors 

and workflow are described in the next section. 

3.3 Data Collection 

This section describes the data collection method, explaining where the data was 

collected from, and how the data was collected. Section 3.3.1 discusses the method on 

how the sensor data was collected. Section 3.3.2 details how the information from the 

sensors was stored and Section 3.3.3 explains how the stored data was exported for the 

project.   

3.3.1 Data sensor collection 

The design of this project utilizes several PIR sensors, global positioning system 

GPS-based or Bluetooth-based presence detectors, and a central hub that was used to 

gather the information and read the sensor states. The PIR sensors, smartphone GPS 

signal, and Bluetooth key fob presence detectors sent their state changes back to the 

central hub. Every five minutes, these data were uploaded into Google Drive for long-

term storage. Each of these links are explained in this section. Figure 14 shows the 

relationship between the devices. 
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Figure 14: Occupancy detector collection process and device relationship flow. 

The top layer of the data collection included the PIR sensors and cellular phones 

that acted as the two devices used to measure ground truth. The PIR sensors, BOSCH 

Zigbee PIR ISW-ZPR1-WP13 (BOSCH, n.d.) and the Samsung SmartThings F-IRM-US-

2, 3305-S (SmartThings, n.d.) were the sensor models used in this project. These sensors 

are inexpensive and reliable, and they offer a wireless ZigBee communication protocol. 

The BOSCH PIR and the Samsung PIR sensors have a 90° angle of operation to allow 

the sensors to pick up motion within the space. They include eight detection patterns, 

allowing for detailed movement monitoring. Three sensors were placed in each area 

monitored.  

The second group of sensors in the top layer of the data collection, as depicted in 

Figure 14, were the cellular phones acting as the smartphone GPS signal presence and the 

Bluetooth key fob presence detectors. The GPS provided ground-truth through a smart 



43 

 

phone application. For this project, the radius was 517 feet. The research set the center 

point of the GPS radius as the center point of the location, as depicted in Figure 15. 

 

Figure 15: SmartThings application location and presence area. 

Once the phone has entered the given space, the device then shows the presence 

of an occupant. The presence establishes the ground-truth. Once the phone is outside of 

the given area, the phone state then shows the occupant to be away. The Bluetooth key 

fob detector provides ground-truth by a similar method. When it is detected within the 

range of the SmartThings hub, it registers the occupant as present. When the presence 

detector is outside of the range, it shows the occupant as not present.  

 All the sensors within the top layer report to the second layer, the Samsung 

SmartThings hub. The SmartThings hub was selected for several key features. This 
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device can connect wirelessly to a wide range of sensors. With the intent of commercial 

application, the device allows hardware monitoring and control of connected devices in 

your home using a single smartphone application. The SmartThings hub device facilitated 

the collection and management of PIR sensors and other sensor data (SmartThings, n.d.).  

3.3.2 Information storage 

Signals from individual devices were stored at the SmartThings hub using the 

application Simple Event Logger. Simple Event Logger, designed by Kevin 

LaFramboise, captures event logs within the SmartThings hub and stores them in a 

Google Sheets spreadsheet (LaFramboise, n.d.). LaFramboise recommends using the 

application to accurately log all device activity. Each event is stored on a separate row to 

show the time and the details of the events. The logger records the event time, device, 

event name, event value, and event description. 

Since the Simple Event Logger can be easily configured, it creates a data source 

when working with the information and the configuration parameters selected for this 

project. Configurations are listed as follows: 1) motion sensors selected, in this case six 

PIR sensors; 2) presence sensors selected, in this case two cellular phones acting as a 

smartphone GPS signal presence detector; 3) events logged, in this case activity, motion, 

and presence; 4) logging options, in this case event logging every 5 minutes; 5) 

maximum catch-up interval, in this case up to one hour; 6) maximum number of events to 

log for each device per execution set, in this case up to 200; 7) log event description on or 

off, in this case on; 8) use value and unit for description on or off, in this case on; 9) 

additional columns for short date and hour on or off, in this case on; 10) delete extra 
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columns turned on or off, in this case on; and 11) set archive type, in this case set as 

events. 

These specific configurations allow the Simple Event Logger to collect the 

desired data from the occupants. The above configurations allow each of the six PIR 

sensors and the cellular phones to create a log entry in the Simple Event Logger. Once 

the events are collected, the event logger can then pass the logs onto Google Sheets every 

five minutes, where they can then be exported, as was required for the subsequent step in 

the present study. The spreadsheet was exported for use within the algorithm and cleaned 

for errors that might have occurred during the logging process, as explained in Section 

3.3.3.  

3.3.3 Information export 

Once the sensor states have been collected within Google Sheets Spreadsheets, 

information can be exported. Data can be exported from Google Sheets in two main 

ways: through the export function within Google Sheets Spreadsheets or through the code 

used to calculate instant predictions from the sensor states. These two methods are 

detailed below. 

Google Sheets has a built-in export feature that was used for exporting the sensor 

state data from online to a local computer for review. Assume one has an active account 

with Google, where the document is being stored. The first step in exporting the 

information from Google Sheets is to log into Google Sheets. Once a user is logged in, 

the sheet where the Simple Event Logger transfers and stores data can be selected. When 

the desired sheet is selected, the document can be opened, and the “File” menu can be 

selected. The file can then be downloaded (to export the data in the desired format). The 
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researchers cleaned the information the data exported as a Microsoft Excel (.xlsx) 

document.  

3.4 Data Cleaning 

Data cleaning is vital for data sets, as it is used to exclude information that the 

system does not know how to process. For example, when utilizing a learning algorithm 

from previous occupancy information, excess data recorded are more susceptible to 

errors, due to undefined data. The undefined data that are collected can include 

temperature, or any other logged entries created for testing. Such extra information can 

cause errors within the learning algorithm. The undefined data must therefore be removed 

from the dataset. In this case, another example of cleaning information is that the battery 

percentage data were removed from the dataset, since these data are not vital to detecting 

motion but were used for debugging to ensure the battery levels were not contributing to 

false signals. Other events and their subgroups removed from the data included 

temperature-related information. The temperature event was removed because it has no 

effect on occupancy within the given space. Transaction data were also removed since 

they have no significant effect on the event and provides only a health check for when the 

device is connected to the SmartThings hub. 

Only recorded pulses from the PIR sensors and signals from the smartphone 

presence detectors and key fob presence detector were retained. The events and 

subgroups not deleted were the motion events, including the subgroups of “active” and 

“inactive.” The “active” status, signaling occupancy, indicates a motion event was 

detected from the PIR sensor, while “inactive” status means the device does not detect a 

motion event. 
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After the data were cleaned, they were then uploaded in Google Sheets so that the 

code could pull them when applying the Bayesian model. This step completed the 

integration of the analysis and the hardware into a system to improve the detection of 

presence.  

3.5 Analysis Methods 

This dissertation reviews three methods that are used to determine occupancy 

detection. Section 3.5.1 discusses the independent method and how it is applied to the 

research. Section 3.5.2 demonstrates the grouped sensor method and Section 3.5.3 

describes how the Bayesian modeling is applied.  

3.5.1 Independent sensors 

The first analysis method applied uses data from only the PIR sensors. This 

method relies on each of the six sensors in each of the locations to trigger an event 

independently. Even if a single sensor triggers due to a movement, the system will 

assume there is an occupant within the space. There is no redundancy or verification 

within this independent method. This method was implemented in all the test locations. 

The equation pseudocode for the independent sensor method is as follows: 

If (LivingSensor1 OR LivingSensor2 OR LivingSensor3 OR BedroomSensor1 OR 

BedroomSensor2 OR BedroomSensor3 = Motion Detected) 

Then (there is occupancy) 

Else (there is no occupancy) 

For an example from the condominium location in Table 2, observe line one. 

There were no PIR sensors triggered, so the results showed there was no occupant within 

the location. From the second line, there was one motion event trigger, which is the 
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minimum requirement for a location to register an occupant, and so occupancy is 

registered.  

Table 2: Condominium analysis method for independent method example 

 
Date/Time 

LivingRoom 

Sensor1 

LivingRoom 

Sensor2 

LivingRoom 

Sensor3 

Bedroom 

Sensor1 

Bedroom 

Sensor2 

Bedroom 

Sensor3 
Output 

1 
2018-09-27 

20:16:00 
0 0 0 0 0 0 0.0 

2 
2018-09-27 

20:17:00 
0 0 0 1 0 0 1.0 

3 
2018-09-27 

20:18:00 
1 1 1 0 1 0 1.0 

 

The independent sensor arrangement shows the degree of accuracy for each of the 

sensors, acting on their own. The accuracy was calculated using data collected over a 

typical month and viewing a specific week within that same month. A typical month was 

defined as each of the four location’s households behaving according to their normal 

routines of going to work and coming back home to their house. Each of the four 

locations had sensors located in the high-traffic areas to best detect any motion that may 

occur.  

The independent sensor arrangement is used in home automation and detection 

systems. It incorporates a motion-detection device that engages an event when triggered. 

For example, when there is motion in a room, a light may turn on, then turn off when 

motion is no longer detected. The theoretical segment of ϕ correlation equation represents 

the presence data for each of the time segments. The ϕ correlation coefficient is expressed 

by taking into account both the correct and incorrect results to compare how close the 

occupancy measured by each method and its sensors were to the event time of each space 

(Guo, 2007). The researchers calculated ϕ correlation following Guo for each sensor and 

node at the one-minute level over the length of the four-week study. The PIR sensor data 



49 

 

were resolved to a one-minute interval and compared with the smartphone and key fob 

ground-truth, using ϕ correlation. This resolution can be seen in Table 3. 

Table 3: Correlation coefficient cross-table format (Guo, 2007). 

 

 

 

(3) 

  

For each of the six-independent sensors at each of the four locations, the ϕ 

correlation was calculated as against the ground-truth. These six correlations were then 

averaged together to calculate the error for each of the one-minute time slots. An example 

of the correlation method described would be that if there were 100 time slots of one 

minute recorded, the PIR sensor data would show that 25 of the 100 time slots measured 

motion. Out of those same 100 time slots, the ground-truth showed there were 50 time 

slots that had an occupant. Of those 50 time slots, 20 had correct ground-truth and PIR 

sensor detection. The ϕ correlation calculations variables are N11 = 20, N10 = 30, N01 = 5, 

and N00 = 45.  

  
𝛷 =  

(20∗45) – (30∗5) 

√50∗50∗25∗75
  

 

𝛷 = 0.4087 

(4) 

 



50 

 

3.5.2 Grouped sensors 

This section discusses the principle of implementation of the grouped method 

with the six sensors at each of the four locations. Unlike the independent sensor method, 

the grouped method requires that two or more of the six sensors must be triggered to 

initiate an event. This method is like the “parallel” sensor configuration described earlier. 

At least two sensors must register a movement for the system to assume there is an 

occupant within the space. If only one sensor pulses, then that single sensor event is 

ignored. This requirement adds a layer of redundancy and verification. The equation 

pseudocode for the grouped sensor method is as follows: 

If (LivingSensor1 + LivingSensor2 + LivingSensor3 > 1) OR 

(BedroomSensor1 + BedroomSensor2 + BedroomSensor3 > 1) 

Then (there is occupancy) 

Else (there is no occupancy) 

For an example from the condominium location in Table 4, observe line one. 

There were two PIR sensors triggered, so the results showed there was an occupant 

within the location. From the third line, there was only one motion event trigger, which 

does not meet the minimum requirement for a location to register an occupant hence the 

result is no occupant. 
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Table 4: Condominium grouped sensor example 

 Date/Time LivingRoom 

Sensor1 

LivingRoom 

Sensor2 

LivingRoom 

Sensor3 

Bedroom 

Sensor1 

Bedroom 

Sensor1 

Bedroom 

Sensor1 

Output 

1 2018-09-

25 

19:38:00 

0 1 1 0 0 0 1.0 

2 2018-09-

25 

19:39:00 

0 0 0 0 0 0 0.0 

3 2018-09-

25 

19:40:00 

1 0 0 0 0 0 0.0 

 

The motivation for grouping sensors is that one PIR sensor is not accurate enough 

to detect motion. Detection errors are minimized by ensuring more than one PIR sensor 

has pulsed before the system registers an event.  

The grouped sensors method is used to improve the accuracy of event data. There 

are several options for grouped sensors that can be implemented. Grouped methods 

incorporate several motion devices that must be triggered before an event is registered. 

The network must contain at least two sensors in the same room space that trigger before 

an event is registered. For example, LivingRoomSensor1 and LivingRoomSensor2 must 

detect motion within the same one-minute time slot before an occupant is considered to 

be in the room. If only one sensor detected a motion event, the logic would consider the 

room unoccupied. Only one of the rooms needed to detect motion for this logic to 

consider there was an occupant within the entire space or to have an occupant in either of 

the four locations.  

Multiple room assumptions were taken into account to conclude that if any 

motion triggering event (i.e., if two or more sensors detect motion) occurred within the 

given space, an occupant was assumed present in that space. If “MotionLivingGroup” 
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detected a motion event and “MotionBedroomGroup” did not detect the same event, an 

occupant was still registered within the given location.  

3.5.3 Bayesian modeling 

 This section demonstrates the Bayesian modeling implemented for the data from 

the six sensors at each of the four locations. This method is the principle of applying a 

past probability of occupancy to generate a prediction that the location is occupied. The 

Bayesian modeling used two historical data sets that were collected. The first historical 

data set is the PIR sensor signals. This historical data set is a collection of all motion 

pulses that were collected within each of the four locations. This collection allows the 

calculation of the prior probability that was used in the “trained PIR sensor hours”. The 

second data set is the collection of the smartphone GPS signal and the Bluetooth key fob 

location occupancy data.  This set was the collection of occupancy within each of the four 

same locations. The smartphone GPS signal and Bluetooth key fob history was used to 

calculate the prior probability of the occupancy, this is referred to as the “trained ground-

truth”.  

Using each of the two historical data sets, the prior probabilities for the Bayesian 

modeling was calculated over a four-week period. This four-week period is called 

“training” since the model is learning from the historical data points. The four-week 

training period for the four locations are: 1) the timeframe for the condominium from 

09/19/2019 through 10/18/2019; 2) the house with one occupant (2018), from 03/03/2018 

through 04/03/2018; 3) the house with two retirees, from 05/05/2019 through 06/05/2019; 

and 4) the house with one occupant (2019) from 06/12/2019 through 07/02/2019.  
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Training took each of these four-weeks’ worth of historical information and 

categorized the events into one-minute time slots. Each of these minute time slots 

accounted for the day of the week. That means the training accounted for each 1,400 

minutes of each day of the week. Once the training categorized the events, it then could 

calculate the probability that an event occurred for that minute time slot for each day. The 

probability was calculated based off how many times an event occurred within the 

specific minute and day.  

For example, at the condominium on Thursday 09/19/2019 between 12:00:00 – 

12:00:59 and Thursday 10/03/2019 between 12:00:00 – 12:00:59 there were PIR sensor 

pulses, but the other two Thursdays 09/26/2019 and 10/10/2019 between 12:00:00 – 

12:00:59 there were none. Two out of the four Thursdays’ minute time slots between 

12:00:00 – 12:00:59 had a pulse so the trained data would have resulted in a prior 

probability of 0.5, or half of the time there would be a pulse generated during the specific 

time slot. This same training using the days of the week and minute time slots were used 

for each of the six PIR sensors and the smartphone GPS signals and Bluetooth key fobs to 

generate their corresponding prior probability for each time slot.  
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 CHAPTER 4: BAYESIAN MODELING FOR OCCUPANTS 

This chapter explains the Bayesian modeling method to be used to detect 

occupants within each of their locations using the sensor data collected at each home. The 

same Bayesian network was applied to the specific datasets from each location. This 

chapter defines the network that will interpret the sensors’ events and convert the results 

into a percentage of probability that the occupant will be home. The purpose of this 

chapter is to provide more project orientated explanation of how the Bayesian network 

was designed and how each of the network nodes function.  

Section 4.1 identifies each of the seven steps that were used to develop the 

Bayesian network. Section 4.2 presents each of the nodes that are in the network and their 

corresponding conditional or discrete truth tables. Section 4.3 provides a walk-through 

example of the Bayesian network that is used in this dissertation. 

4.1 Bayesian Modeling Design 

Fenton and Neil have explained that at the heart of the Bayesian approach is the 

role of conditional probability (Fenton & Neil, Risk Assessment and Decision Analysis 

with Bayesian Networks, 2013). Conditional probability is explained as the likelihood of 

a given event after a different event is observed. An event is defined as “some unknown 

entity” where probability is used to quantify uncertainty about that event. The uncertain 

event in this study is the determination of occupancy within a location. The principle 

used to construct the conditional probability is historical data collected in the location and 

gathered using the six PIR sensors, the smartphone GPS signal, and the Bluetooth key 

fob. The conditional probability is inserted into the Bayesian network and then used to 

generate a prediction of whether some space is occupied, given real time sensor inputs 
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and the occupancy timeframe. The breakdown of each of the main parts used to apply the 

Bayesian method is discussed in the following sections.  

Fenton and Neil (Fenton & Neil, Risk Assessment and Decision Analysis with 

Bayesian Networks, 2013) have defined seven main steps in building a Bayesian network 

model. These seven steps were used as guidelines to construct the model for this work: 1) 

identify the set of variables relevant to the problem; 2) create a node corresponding to 

each of the variables identified; 3) identify the set of states for each variable; 4) specify 

the states for each node; 5) identify the variables that require direct links; 6) create the 

identified links; and 7) for each node in the Bayesian network, specify the node 

probability table. 

The inputs that applied to the Bayesian network are motion sensor states, the 

specified room in the house, the time of day, and the state of the smartphone and 

Bluetooth fob. When the Bayesian model has processed the historical data (i.e. training 

from four weeks data), a prediction is generated for that time slot and is compared with 

the occupied state values inferred from the individual sensors, the grouped sensors, and 

the presence overlay. Section 4.1.2 describes the process. 

4.1.1 Identify the set of variables that are relevant for the problem 

The main variables used to determine occupancy are as follows: PIR sensor 

signal, GPS/Bluetooth signal, time slots, and location. The variable of motion is defined 

as a Boolean variable that is true when a PIR sensor pulses or false when no motion is 

detected within the given timeframe. The motion variable is parsed with the three motion 

sensors in the living room and the three motion sensors in the bedroom, giving a total of 

six variables required with motion. For each of the six sensors, only one pulse is required 
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for the detector to register motion. Ground-truth is determined via the smartphone GPS 

signal and Bluetooth key fob. Each is a Boolean variable, true when the device is present 

within the given area and false when the devices are away or not within the given space. 

Data for the two devices are compiled as a single variable, since the model is not 

concerned with who is home, but rather, whether someone is present.  

Time is used as a label variable and as a labeled node. Fenton and Neil explain a 

node as a variable whose set of states is simply a set of labels (Fenton & Neil, Risk 

Assessment and Decision Analysis with Bayesian Networks, 2013). Time is a labeled 

node, since the model is not using time as a ranking or a percentage but as a slot of time 

during which the researchers look for positive events to happen. Each of the one-minute 

time slots were used over a one-week time slot and is generated as a variable for use in 

the probability table. The last variable is a label variable that tells in what room the event 

occurred. This information generates the creation of the conditional tables. The next step 

is to incorporate these variables into nodes. 

4.1.2 Create a node corresponding to each of the variables identified 

The nodes were created within a python script using the open-source Bayesian 

pomegranate library (Schreiber, 2018). Using the pomegranate library, the model can add 

each of the variables as corresponding nodes: LivingSensor1, LivingSensor2, 

LivingSensor3, BedroomSensor1, BedroomSensor2, BedroomSensor3, 

MotionLivingGroup, MotionBedroomGroup, and Ground-Truth. 

In the nodes, the model added two extra groups that were not part of the original 

variables: “MotionLivingGroup” and “MotionBedroomGroup.” These groups are used to 
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help reduce the conditional probability table complexity by reducing the direct arc nodes 

to the final node.  

4.1.3 Identify the set of states for each variable 

These nodes are used throughout the Bayesian network modeling, allowing the 

predictions of each of the node states to be followed. The final state of occupancy is then 

predicted. Each of the states for the defined variables and nodes must be defined. The list 

of states is as follows:  

• LivingSensor1 (0 – No motion detected, 1 – Motion was detected)  

• LivingSensor2 (0 – No motion detected, 1 – Motion was detected) 

• LivingSensor3 (0 – No motion detected, 1 – Motion was detected) 

• BedroomSensor1 (0 – No motion detected, 1 – Motion was detected) 

• BedroomSensor2 (0 – No motion detected, 1 – Motion was detected) 

• BedroomSensor3 (0 – No motion detected, 1 – Motion was detected) 

• MotionLivingGroup (0 – No motion detected, 1 – Motion was detected) 

• MotionBedroomGroup (0 – No motion detected, 1 – Motion was detected) 

• Ground-Truth (0 – Not present, 1 – Present) 

• HomeHours (one-minute time slots over the one-week timeframe) 

Each room required two PIR sensors to trigger a signal event. For this reason, only two 

states exist for each of the six PIR sensors, as well as for the “MotionLivingGroup” and 

“MotionBedroomGroup,” since these are derived from the six PIR sensors split evenly 

between the rooms. 

The “Ground-Truth” has the two states of “Not present” and “Present.” These two 

states are from the GPS-enabled or Bluetooth-enabled devices that establish ground-truth. 
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If either sensor is located at home, then the state will be present, or if neither are home at 

the location, then the state will show not present. The last node in the list is the 

“HomeHours” node. This node is defined as a list node, since more than two states are 

used. Each state of the nodes uses a one-minute time increment over the selected week. 

The Bayesian predictions of the network are compared over the one-minute time slot 

throughout the whole selected week.  

4.1.4 Specify the states for each node 

In this step, the two states that are used with the nodes in the network are either 

discrete or continuous. The pomegranate library website 

(https://pomegranate.readthedocs.io/en/latest/index.html) describes two types of states: 1) 

a discrete distribution made up of characters and their probabilities, whose probabilities 

sum to 1.0; and 2) a conditional probability table that depends on values from at least one 

previous distribution and can have as many distributions as needed to encode for each 

node within the model. 

Each of the six sensor nodes are defined as a discrete variable since they are not 

driven by any other nodes and are independent of each other. The “MotionLivingGroup” 

and the “MotionBedroomGroup” are created as conditional nodes. These two node results 

are generated by sensor signal nodes for their particular room. The Ground-Truth node is 

conditional since it is from the conditions of the HomeHours nodes. The HomeHours 

nodes are discrete since they are used to influence the other nodes within the network. 

These network links are identified in the next section. 
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4.1.5 Identify the variables that require direct links 

Direct links are arcs in which each of the nodes reacts. The links connect with 

each of the sensors in the rooms to drive the conditional tables for their corresponding 

rooms. The Ground-Truth and HomeHours decide whether an occupant is in the room 

groups within that timeframe. 

Main links are used to help build the conditional tables for each of the conditional 

nodes, as shown in Figure 16. For example, either LivingSensor1, LivingSensor2, or 

LivingSensor3 must be triggered for the “MotionLivingGroup” node state to change. 

State changes depend on the node directly linked to their previous nodes. Since 

BedroomSensor1, BedroomSensor2, and BedroomSensor3 are not directly linked to the 

“MotionLivingGroup” node, there is no interaction between those nodes, so there is no 

state change. 

4.1.6 Create the identified links 

The direct links are arcs and are shown in the Figure 16. 

 

Figure 16: Bayesian Networks: Direct links for Bayesian network with HomeHours parallel with Ground-Truth. 

The figure identifies the direct links by the arrows between the nodes. The discrete 

variables are the root nodes or the parent nodes. They are the drivers of the conditional 

table nodes, the non-root nodes, and the child nodes. The root nodes or the parent nodes 

“LivingSensor1,” “LivingSensor2,” and “LivingSensor3” are directly linked to the 
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conditional non-root node “MotionLivingGroup”; “BedroomSensor1,” 

“BedroomSensor2,” and “BedroomSensor3” are directly linked to the 

“MotionBedroomGroup.” The non-root nodes “MotionLivingGroup” and 

“MotionBedroomGroup” and the two root nodes “Ground-Truth” and “HomeHours” are 

directly linked to the final node “Occupant.” Occupant is the final node indicating 

whether someone is home during a specific timeframe from the “HomeHours” node. This 

data will be used to test the result of the Bayesian network against the other methods. 

4.1.7 Bayesian network node probability tables 

The root nodes LivingSensor1, LivingSensor2, LivingSensor3, BedroomSensor1, 

BedroomSensor2, BedroomSensor3, and Ground-Truth are the discrete distribution nodes 

in the network. These discrete distribution nodes have only two states, and the probability 

of each state for the PIR sensors is the same. The probability for each of the six sensors is 

as follows: 

• P(LivingSensor1 | No Motion) = 0.5 and P(LivingSensor1 | Motion) = 

0.5 

• P(LivingSensor2 | No Motion) = 0.5 and P(LivingSensor2 | Motion) = 

0.5 

• P(LivingSensor3 | No Motion) = 0.5 and P(LivingSensor3 | Motion) = 

0.5 

• P(BedroomSensor1 | No Motion) = 0.5 and P(BedroomSensor1 | 

Motion) = 0.5 

• P(BedroomSensor2 | No Motion) = 0.5 and P(BedroomSensor2 | 

Motion) = 0.5 
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• P(BedroomSensor3 | No Motion) = 0.5 and P(BedroomSensor3 | 

Motion) = 0.5  

• P(Ground-Truth | Not Present) = 0.5 and P(Ground-Truth | Present) = 

0.5  

Each of the six sensors has the same probability of detecting the same motion 

event because the sensors monitor the same space. Hence, conditional probability tables 

for “MotionLivingGroup” and “MotionBedroomGroup” are as follows: 

• P(MotionLivingGroup | LivingSensor1,LivingSensor2,LivingSensor3) = 

0.33 

• P(MotionBedroomGroup | LivingSensor1,LivingSensor2,LivingSensor3) 

= 0.33 

Each of the three sensors has an equal probability assigned in the Bayesian model, 

meaning that each of the three sensors has 0.33% of the overall probability of the motion 

grouped sensors. 

4.1.8 Conditional probability 

“HomeHours” is the next table to be constructed. This action is discussed in this 

section, where the historical data are applied to construct the conditional probability 

tables and more accurately express the predictions over each time slot for the week 

tested. The Bayesian method allows for the option to have conditional probability tables 

that can drive predictive results from the network. The conditional probability table is 

constructed from past results or historical data. This historical data is comprised of the 

collection of events over a certain timeframe from the location. The test uses a four-week 

period in which events are gathered. These events are due to each of the six PIR sensors, 
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plus the two devices used to measure ground truth. Each of the events are paired with the 

one-minute increment time slots from each day of the week.  

For example, all recorded events were gathered for a four-week period during the 

time slot of a Monday at 12:00:00–12:00:59 for “MotionLivingGroup.” Then the 

probability for that time increment of Monday at 12:00:00–12:00:59 for 

“MotionLivingGroup” is calculated as shown below: 

Triggering Events: 2 of 3 sensors 

Device: “MotionLivingGroup” 

Time Slot: Monday at 12:00:00 – 12:00:59 

Probability Equation: P() = Events / (Total Event) 

P(LivingSensor1 | Monday at 12:00:00 – 12:00:59) = 2 pulses / 4 weeks = 0.50 

On Monday between 12:00:00–12:00:59, there were two events over a four-week period; 

hence, there was a probability of 0.50, or a 50% chance of an event on Mondays at 

12:00:00–12:00:59 for “MotionLivingGroup.” 

 The calculation for each of the six sensors and the two devices used to measure 

ground truth are used to show the combined probabilities. These four-week probabilities 

drive the conditional tables for the Bayesian nodes in the predictive network. The period 

of four weeks allows for a greater defined probability for the grouped sensors. When the 

timeframe is increased to more than a four-week period, the probability for the grouped 

sensors levels out. This leveling would limit the conditional probability table and the 

effect on the rest of the Bayesian network. The grouped sensors were defined to register 

an event when they detected two or more motion events within the same one-minute time 

slot.  
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 To verify whether the occupants were or were not present, it was necessary to 

calculate the historical presence data from the ground-truth detectors over the same four-

week time period. This process is similar to the probability calculations for each of the 

grouped sensors. Since the data were collected over four weeks, the probability for the 

data is as follows: 

Triggering Events: 1 of 2 sensors 

Device: “Ground-Truth” 

Time Slot: Friday at 09:00:59 - 09:30:00 

Probability Equation: P() = Events / (Total Event) 

P(Present | Friday at 09:00:59 - 09:30:00) = 1 pulse / 4 weeks = 0.25 

A plot for each day of the week was created, showing the probability for the combined 

devices used to measure ground truth. The probabilities for the combined devices are 

vital to help improve the accuracy of the Bayesian network because they help apply the 

historical information. Having the ground-truth data applied to the Bayesian network 

allows the network to draw upon information from occupant routines, which then can be 

applied during the sleep cycles, since the PIR motion sensors can’t detect the movements 

of the occupants while they sleep.  

4.2 Bayesian Method Truth Tables 

Once the nodes have been defined, the network defines the parameters for each 

node. These parameters can be configured for either a discrete distribution or a 

conditional probability table. The network, the parent nodes, or the starter nodes were 

defined as discrete distribution nodes. The remainder of the nodes were constructed as 

conditional probability tables, relying on the results from the other nodes within the 
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occupancy network. Each node has its own outputs depending on the beliefs applied to 

the parent nodes, as explained in Sections 4.2.1 to 4.2.13. 

4.2.1 LivingSensor1 

LivingSensor1 is a discrete distribution node in which a belief is applied. When 

beliefs are applied to a particular node, these beliefs are considered states. Hence, the 

LivingSensor1 node could be either in a state of “Motion” or a state of “No Motion.” No 

differences between the input and output of this node exist.  

Table 5: LivingSensor1 node inputs and outputs comparison 

State Input Output 

LivingSensor1 – Motion 1 1 
LivingSensor1 – No Motion 0 0 

 

 

Table 5 demonstrates that the inputs and outputs are identical for the LivingSensor1 

node, which is due to the application of a belief statement to the node. The belief signifies 

“Motion” when the column shows a value of 1, and 0 when no motion was detected  

4.2.2 LivingSensor2 

LivingSensor2 is another discrete distribution node in which a belief can be 

applied to the node. Inputs, outputs, and all other details are the same as described in 

4.2.1. 

Table 6: LivingSensor2 node inputs and outputs comparison 

State Input Output 

LivingSensor2 – Motion 1 1 

LivingSensor2 – No Motion 0 0 

 

4.2.3 LivingSensor3 

LivingSensor3 is also a discrete distribution node. Details are the same as 

described in sections 4.2.1 and 4.2.2. 
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Table 7: LivingSensor3 node inputs and outputs comparison 

State Input Output 

LivingSensor3 – Motion  1 1 

LivingSensor3 – No Motion 0 0 

 

4.2.4 MotionLivingGroup 

 The “MotionLivingGroup” is a conditional probability table in which the results 

for this node are generated by its input arcs that connect to other nodes. This node applies 

the inputs of LivingSensor1, LivingSensor2, and LivingSensor3 to the conditional table to 

generate the outputs that are shown in the Table 8.  

Table 8: MotionLivingGroup node inputs and outputs comparison 

 State LivingSensor1 LivingSensor2 LivingSensor3 Output 

1 Motion Living Room 0 0 0 0.0 

2 Motion Living Room  0 0 1 0.0 

3 Motion Living Room  0 1 0 0.0 

4 Motion Living Room  0 1 1 1.0 

5 Motion Living Room 1 0 0 0.0 

6 Motion Living Room  1 0 1 1.0 

7 Motion Living Room  1 1 0 1.0 

8 Motion Living Room  1 1 1 1.0 

 

If more than two sensors detect the same event, then the output is true. A true 

output means motion was detected within the group.  

4.2.5 BedroomSensor1 

BedroomSensor1 is a discrete distribution node in which a belief would be 

applied to the node. When beliefs are applied to a particular node, these beliefs are 

considered states. The BedroomSensor1 node could therefore be either in a state of 

“Motion” or a state of “No Motion.” There are no differences between the input and 

output of this node, as indicated in the results columns of Table 9. 
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Table 9: BedroomSensor1 node inputs and outputs comparison 

State Input Output 

BedroomSensor1 – 

Motion  

1 1 

BedroomSensor1 – No 

Motion 

0 0 

 

The inputs and outputs are identical for BedroomSensor1 node, because of the 

application of a belief statement to the node. In Table 9, the belief is “Motion” when there 

is a one located in the column. If no value of one appears, then a zero is substituted for all 

other results.  

4.2.6 BedroomSensor2 

BedroomSensor2 is another discrete distribution node in which a belief would be 

applied to the node. When beliefs are applied to a particular node, these beliefs are 

considered states. Hence, the BedroomSensor2 node could be either in a state of 

“Motion” or a state of “No Motion.” There are no differences between the input and 

output of this node, as Table 10’s results columns demonstrate, for BedroomSensor2 

node. 

Table 10: BedroomSensor2 node inputs and outputs comparison 

State Input Output 

BedroomSensor2 – 

Motion  

1 1 

BedroomSensor2 – No 

Motion 

0 0 

 

The inputs and outputs are identical for the BedroomSensor2 node, because of the 

application of a belief statement to the node. In Table 10, the belief is “Motion” when there 

is a one located in the column. If there was not a one, then there was a zero substituted in 

for all other results.  
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4.2.7 BedroomSensor3 

BedroomSensor3 is a discrete distribution node in which a belief would be 

applied to the node. When beliefs are applied to a particular node, these beliefs are 

considered states. The BedroomSensor3 node could be either in a state of “Motion” or a 

state of “No Motion.” There are no differences between the input and output of this node.  

Table 11: BedroomSensor3 node inputs and outputs comparison 

State Input Output 

BedroomSensor3 – 

Motion  

1 1 

BedroomSensor3 – No 

Motion 

0 0 

 

Outputs follow the inputs, as is similar to the other five sensors shown previously. 

4.2.8 MotionBedroomGroup 

The “MotionBedroomGroup” is a conditional probability table in which the 

results of this node are generated by its input arcs, which connect to other nodes. This 

node used the inputs BedroomSensor1, BedroomSensor2, and BedroomSensor3 applied 

to the conditional table to generate the outputs shown in Table 12. 

Table 12: MotionBedroomGroup node inputs and outputs comparison 

 State Bedroom 

Sensor1 

Bedroom 

Sensor2 

Bedroom 

Sensor3 
Output 

1 Motion Bedroom Room 0 0 0 0.0 

2 Motion Bedroom Room 0 0 1 0.0 

3 Motion Bedroom Room 0 1 0 0.0 

4 Motion Bedroom Room 0 1 1 1.0 

5 Motion Bedroom Room 1 0 0 0.0 

6 Motion Bedroom Room 1 0 1 1.0 

7 Motion Bedroom Room 1 1 0 1.0 

8 Motion Bedroom Room 1 1 1 1.0 
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If more than one sensor detects the same event, then, the output is true. True 

output means motion was detected within the group.  

4.2.9 Occupant 

 The “Occupant” is another conditional probability table in which the results of 

this node are generated by the input reviewed from the inputs “MotionLivingGroup” and 

“MotionBedroomGroup,” which are applied to the conditional table to generate the 

outputs shown Table 13. 

Table 13: Occupant node inputs and outputs comparison 

 State MotionLivingGroup MotionBedroomGroup Output 

1 Occupant  0.0 0.0 0.0 

2 Occupant 0.0 1.0 1.0 

3 Occupant 1.0 0.0 1.0 

4 Occupant 1.0 1.0 1.0 

 

The conditional table of the “Occupant” node output occurs when there is at least 

one input that has detected motion, signifying that the condition is true, indicating an 

occupant within the space. Table 13 shows that if one input detects an event, the output is 

true. True output means was motion detected within the group. This logic stems from the 

fact that if either of the two rooms had two or more sensors detect the same event, 

someone must be in that room. Row three of Table 13 shows an occupant in the 

“MotionLivingGroup,” which caused the output to be one. For the last line in the table, 

there were two rooms that detected motion or had an occupant, so again, the table output 

was true, indicating motion was detected within the location.  

4.2.10 HomeHours 

 “HomeHours” is a discrete distribution node in which a belief would be applied 

to the node, but in a manner that differs from that applied for LivingSensor1, 
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LivingSensor2, LivingSensor3, BedroomSensor1, BedroomSensor2, and 

BedroomSensor3. For the “HomeHours” node, it did not apply a belief as a state of 

“Motion” or “No Motion,” but rather a probability regarding a motion event within that 

certain timeframe. Hence, the “HomeHours” node applied the probability that there was a 

“Motion” or “No Motion” event from the four weeks of training data. This training 

probability was applied to the discrete distribution input. The node probability “Motion” 

applied to the network is the same as the output of this node and can be seen in the results 

columns of Table 14, for the “HomeHours” node. 

Table 14: HomeHours node inputs and outputs comparison 

 State Motion No Motion Output 

1 Home Hours  1 0 1 

2 Home Hours 0.75 0.25 0.75 

3 Home Hours 0.5 0.5 0.5 

4 Home Hours 0.25 0.75 0.25 

5 Home Hours 0 1 1 

 

The “Motion” probabilities and the outputs are identical for the node because they 

applied a belief statement to the node. Notably, the inputs to the discrete distribution 

equation must equal one, this can be seen in the “Motion” and “No Motion” columns for 

each of the time slots where the sum of the two columns equal a value of one.  

4.2.11 OccupantIncludingHours 

 The “OccupantIncludingHours” is a conditional probability table in which the 

results are generated from the two prior nodes: 1) Occupant and 2) HomeHours. These 

two inputs are applied to the Bayesian network, which generates the outputs. The 

possible combinations of inputs and outputs are shown in Table 15. 
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Table 15: OccupantIncludingHours node inputs and outputs comparison 

 State Occupant HomeHours Output 

1 Occupant Including Hours  1.0 1.0 1.0 

2 Occupant Including Hours 0.0 0.75 0.37 

3 Occupant Including Hours 1.0 0.5 0.87 

4 Occupant Including Hours 0.0 0.25 0.12 

5 Occupant Including Hours 0.0 0.0 0.0 

6 Occupant Including Hours 1.0 0.75 0.93 

7 Occupant Including Hours 0.0 0.5 0.25 

8 Occupant Including Hours 1.0 0.25 0.12 

 

4.2.12 Ground-Truth 

The “Ground-Truth” node applies a belief as a state of “Present” or “Not-Present” 

from historical probability. This application allows the “Ground-Truth” node to 

implement the probability that there was a “Present” or “Not-Present” event from the four 

weeks of trained data as a prior probability to the Bayesian network. Table 16 shows the 

prior probability combinations of the Ground-Truth node. 

Table 16: Ground-Truth node inputs and outputs comparison 

 State Present Not Present Output 

1 Ground-Truth 1 0 1.0 

2 Ground-Truth 0 0 0.0 

3 Ground-Truth 0.75 0.25 0.75 

4 Ground-Truth 0.25 0.75 0.25 

5 Ground-Truth 0.5 0.5 0.5 

 

The “Present” prior probabilities and the outputs are identical for the node, 

because of the belief statement applied to the node. The inputs to the discrete distribution 

equation must equal 1, as shown in the “Present” and “Not-Present” columns for each of 

the time slots, where the sum of the two columns equal a value of one.  
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4.2.13 OccupantIncludingGroundTruth 

 The “OccupantIncludingGroundTruth” is a conditional probability table in which 

the output for this node is generated by the OccupantIncludingHours probability and the 

output of the Ground-Truth node. The OccupantIncludingHours is the prior probability 

from the historical sensor signal data. The output of this node is displayed in Table 17. 

Table 17: OccupantIncludingGroundTruth node inputs and outputs comparison 

 State OccupantIncludingHours Ground-

Truth 

Output 

1 Occupant Added Hours + 

Ground-Truth 

0 1 0.74 

2 Occupant Added Hours + 

Ground -Truth 

0 0.2 0.18 

3 Occupant Added Hours + 

Ground -Truth 

0.1 0.2 0.26 

4 Occupant Added Hours + 

Ground -Truth 

0.1 0.5 0.43 

5 Occupant Added Hours + 

Ground -Truth 

0.1 0.7 0.6 

6 Occupant Added Hours + 

Ground -Truth 

0.1 1 0.78 

7 Occupant Added Hours + 

Ground -Truth 

0.2 1 0.81 

8 Occupant Added Hours + 

Ground -Truth 

0.2 0.7 0.65 

9 Occupant Added Hours + 

Ground -Truth 

0.3 0.7 0.7 

10 Occupant Added Hours + 

Ground -Truth 

0.8 0.2 0.73 

11 Occupant Added Hours + 

Ground -Truth 

0.8 0.2 0.69 

12 Occupant Added Hours + 

Ground -Truth 

0.8 1 0.96 

13 Occupant Added Hours + 

Ground -Truth 

0.9 1 0.98 

14 Occupant Added Hours + 

Ground -Truth 

0.9 0.7 0.91 

15 Occupant Added Hours + 

Ground -Truth 

1 1 1 
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4.3 Bayesian Example for the Condominium 

The first level of nodes in the Bayesian network include the six individual PIR 

sensor nodes. Each of these nodes is a binary state. The binary states are either zero or 

one, where zero indicates no motion was detected by the PIR sensor and where one 

indicates motion detected within the area. These binary states are the same for the six 

sensor nodes. The inputs and outputs of these sensor nodes directly follow the motion 

activity within the location. The condominium input and the output comparison for the 

sensor parent nodes for the Bayesian network defined in the previous section is shown in 

Table 18. 

Table 18: Bayesian sensor node truth table template for each of the six PIR sensor nodes 

 Sensor Node States Output 

1 0 0 

2 1 1 

 

The next level of the Bayesian network contains the grouped room nodes. These 

are the two nodes interpreting their PIR sensor nodes to ensure at least two motion 

events. Given two motion events, the group nodes become true. For example, as depicted 

in Table 19, the condominium had three sensors in the living room that detected motion. 

This scenario resulted in the output of the living room grouped node to be one. There was 

motion within the room. However, the bedroom group only had one PIR sensor that 

detected motion, so the bedroom group node remained a zero; in other words, no motion 

was detected. 
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Table 19: Living room and bedroom group node input and output example 

Date/Time Node Input Node Output 

     

2018-09-

24 

17:09:00 

LivingRoom 

Sensor1 

LivingRoom 

Sensor2 

LivingRoom 

Sensor2 

LivingGroup 

Results 

1 1 1 1 

 

Bedroom 

Sensor1 

 

Bedroom 

Sensor2 

 

Bedroom 

Sensor3 

 

BedroomGroup 

Results 

1 0 0 0 

     

 

Once the grouped nodes were calculated, the output of the living room and 

bedroom group nodes were then sent to the occupant node. The occupant node checked 

the output of the grouped nodes and determined whether any occupants were in either of 

the rooms. If any occupant was present—meaning if either of the two group’s outputs had 

a value of one—then the condominium had occupants. This situation is expressed by the 

group node, as depicted Table 20. 

Table 20: Condominium occupant grouped node input and output example 

Date/Time Node Input Node Output 

2018-09-24 17:09:00 

LivingGroup 

Results 

Occupant 

1 

1 

 

BedroomGroup 

Results 

0 

 

An occupant was determined to be within the condominium. If both the living 

room and the bedroom nodes were zero, then the output of the occupant node would have 

been zero. The output of the occupant node is then combined with the PIR sensor 

historical data, or prior probability, and is applied to the Bayesian network to produce the 
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trained sensor output. The Bayesian network generates a value, P(E), which is the initial 

degree of belief based off the whole network. The trained sensor output can be expressed 

as the likelihood of an occupant being at the condominium based on historical 

information combined with the current PIR sensor states. Table 21 shows the occupant 

node result and the prior probability that produces the train sensor node occupancy 

probability. 

Table 21: Condominium trained sensor node example and calculations 

 

Date/Time 

Occupant 

Node 

Results 

P(E|H) 

Prior 

Probability 

 

P(H) 

Bayesian 

Network 

Value 

P(E) 

Trained PIR 

Sensor Node 

(output) 

P(H|E) 

2018-09-24 

21:00:00 

1 .75 0.8108 0.925 

2018-09-24 

17:09:00 

1 0.5 0.5747 0.87 

2018-09-24 

21:01:00 

1 0.25 0.3086 0.81 

 

The Trained PIR Sensor Node is calculated using the Bayesian equation (Fenton & Neil, 

2013, p. 116):  

P(H|E)  =
𝑃(𝐸|𝐻) ∗ 𝑃(𝐻)

𝑃(𝐸)
 

 

(5) 

The higher the prior probability, or the more often the occupant was home during 

training time, the higher the output probability generated. A high output probability 

indicates a greater chance of the occupant being home if they are “normally” home 

during the four weeks of the trained hours at that time.  

The next step in this analysis was to apply the presence detector prior probability 

to the Bayesian network. This step is called the “trained with presence detector hours” 

method. An example of this calculation with the condominium location is like the trained 



75 

 

hours calculation previously demonstrated. Table 22 shows the trained hours node result 

and the prior probability that produces the train sensor node occupancy probability. 

Table 22: Condominium trained Ground-Truth node example and calculations 

 

Date/Time 

Trained PIR 

Sensor Node 

 

P(E|H) 

Prior 

Probability 

 

P(H) 

Bayesian 

Network 

Value 

 

P(E) 

Trained 

Ground-Truth 

(output) 

P(H|E) 

2018-09-24 

21:00:00 

0.925 1.0 0.9439 0.98 

2018-09-24 

18:40:00 

0.87 0.75 0.7331 0.89 

2018-09-24 

17:09:00 

0.81 1.0 0.8526 0.95 

 

The Trained PIR Sensor Node is calculated using the Bayesian equation (Fenton & Neil, 

2013, p. 116):  

P(H|E)  =
𝑃(𝐸|𝐻) ∗ 𝑃(𝐻)

𝑃(𝐸)
 

 

(6) 

The impact of the presence sensor on the trained sensor hours in the example is 

shown in Table 22. The top row in the table demonstrates a probability of 0.925 with a 

prior probability of the presence sensor of 1. This strong prior probability caused the 

output of the Bayesian network to increase to 0.98. Additionally, this can be seen on the 

bottom row in Table 22, even with a 0.81 probability, the prior probability remains the 

same at one, and the occupancy probability still increases to 0.95, since the presence 

probability has a strong influence on occupancy in the Bayesian network.  

In conclusion, the Bayesian network is constructed using Fenton and Neil’s seven 

suggestions: 1) identify the set of variables relevant to the problem; 2) create a node 

corresponding to each of the variables identified; 3) identify the set of states for each 
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variable; 4) specify the states for each node; 5) identify the variables that require direct 

links; 6) create the identified links; and 7) for each node in the Bayesian network, specify 

the node probability table (Fenton & Neil, Risk Assessment and Decision Analysis with 

Bayesian Networks, 2013). The Bayesian network has a node for each of the main 

decision points to be used to detect the occupancy. The truth table behind each of the 

decisions used has also been presented. This allows the Bayesian network to be 

constructed, which will generate an occupancy prediction. 
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CHAPTER 5: COMPARISON 

This chapter compares the Bayesian network results with the independent sensors, 

grouped sensors, trained hours, and GPS signal and Bluetooth key fob presence data for 

each of the four locations. The comparison groups include the following: 1) individual 

sensor results compared with the smartphone GPS signal and Bluetooth key fob presence 

data, 2) grouped sensor results compared with the smartphone GPS signal and Bluetooth 

key fob presence data, 3) trained PIR sensor hours data, and 4) trained ground-truth 

information compared with the GPS signal and Bluetooth key fob data over several 

simulations to determine the reliability of the Bayesian network when certain types of 

sensor failures are injected into the network.  

5.1 Independent Sensor 

In the independent sensor method, one of the six sensors at a location must trigger 

for the location to show an event. A correlation between the ground-truth is calculated for 

each of the six sensors. Then, an overall calculation is based on any one sensor triggering. 

This overall calculation is the correlation of the independent sensor method. Calculations 

are completed for each of the four locations. 

The correlation is calculated from the independent sensor events compared with 

the ground-truth. The higher the correlations are, closer to 1.0, the stronger the 

relationship is considered. If the correlation is 1.0, then the PIR sensor events triggered at 

the same time, and the signal from either of the devices used to measure ground truth 

showed occupancy. The way the correlation is calculated for LivingSensor1 is shown in 

Equation 7. 
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ϕ correlation =
(296)(3,637)– (6,140)(7)

√(6,436)(3,644)(303)(9,777)
 

 

ϕ correlation = 0.12  

(7) 

 

From equation 7, the ground-truth and the PIR sensor pulse data detected motion 

at the same time 296 times, and neither the PIR sensor nor the ground-truth detected 

motion 3,637 times. Over the one-week timeframe, there was a false positive seven times, 

and 6,140 times no motion was detected when there was an occupant. The end correlation 

is thus 0.12. This low correlation stems from the 6,140 times there was no motion when 

there was an occupant, of which 4,015 of these times occurred between 07:00 PM and 

07:00 AM. 

Using the cross-table correlation below, the coefficient of the correlation can be 

calculated. 

Table 23: Condominium sensor 1 correlation to ground-truth over one-week timeframe.  

 

 

The other six PIR sensor correlations at each location are calculated in the similar 

manner. The results indicate the strength of the relationship. Correlations range from 

“−1” to “1,” with positive 1.0 being strongly related and negative 1.0 being not related. In 

the correlation above, the Condo-LivingSensor1 has a weak relationship to ground-truth 

with a value of 0.12.  Table 24 shows the values of the ϕ correlation with ground-truth for 

all sensors at all locations. These values are generally low as expressed because the pulse 

rate of individual sensors is low relative to the time any space is occupied.  
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Table 24: Independent correlation for the six PIR sensors for the individual 

locations 

 
Living 

Sensor1 
Living 

Sensor2 
Living 

Sensor3 
Bedroom 
Sensor1 

Bedroom 
Sensor2 

Bedroom 
Sensor3 

Condominium 0.12 0.12 0.12 0.14 0.12 0.10 

One Occupant 
(2018) 

0.18 0.21 0.19 0.13 0.18 0.12 

Two Retirees 0.68 0.69 0.69 0.71 0.81 0.72 

One Occupant 
(2019) 

0.16 0.18 0.23 0.16 0.21 0.36 

  

The independent method takes into account that if any of the PIR sensors register 

an event, then it is assumed there is an occupant. The correlation for the independent 

method is then calculated across a one-week time period. Similarly, the correlations for 

each of the methods are calculated to compare the predicted events with the ground-truth, 

which is demonstrated by using Microsoft Excel equation, CORREL.  CORREL is used 

to simplify the process of calculating the correlation of the occupant data with ground-

truth over the large data set, see Table 25 (MAT, n.d.). 

Table 25: Independent method correlation calculation variables. Where n = 

10,080 minutes per week, x = Independent method detection and y = ground-

truth  

 

In a comparison of all the four locations (see Table 26), the location with two retirees has 

the highest correlation. Figure 17 shows the weak relationship between the individual 

sensors and ground-truth. The blue lines show where the individual sensors detected 

occupancy, and the orange bar shows the ground-truth of an occupant present.  
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Figure 17- Independent Sensor correlation to Ground-Truth at the 

Condominium for 09-25-2018 

The main difference between this location and the other three locations is the 

addition of movement during sleeping hours. The two retirees had much more movement 

during these hours.  

Table 26: Independent sensor summary 

 
Independent Sensor 

Method 

Condominium 0.22 

One Occupant (2018) 0.30 

Two Retirees 0.90 

One Occupant (2019) 0.41 

  

In conclusion, the independent sensor method improves the results over a single 

PIR sensor within a given location because it considers all the six sensors and any of the 

sensors can trigger an event. The main factor that greatly affects the results is sleep time 

in which the occupants are present, but no motion event can be detected. This factor is 

due to the PIR sensors not being sensitive enough to detect slight movement within a 

space.  
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5.2 Grouped Sensors 

The grouped sensor method requires at least two sensors in an area to trigger 

before an event would record an occupant. This method reduces the desired correlations 

in all four locations since the sensors in each of the locations had fewer motion triggers 

throughout the timeframes and particularly during the sleeping hours. The correlation 

calculation for the condominium is shown in Table 27. 

Table 27: Grouped method correlation calculation variables. Where n = 

10,080 minutes per week, x = grouped method detection and y = ground-truth 

 

The ϕ correlation coefficient at the condominium, one occupant (2018), the two 

retirees’ location, and one occupant (2019) equal: 0.15, 0.23, 0.83, and 0.27, respectively. 

These correlations decrease when compared with the independent detection method. This 

decrease is due to some of the motion events being filtered out, since with the grouped 

method at least two PIR sensor events must occur for the system to indicate an occupant. 

Figure 18 presents the group sensor occupancy compared with ground-truth occupancy 

that occurred at the Condominium. 
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Figure 18- Grouped Sensor correlation to Ground-Truth at the Condominium 

for 09-25-2018 

 

This added requirement decreases the ϕ correlation for each of the locations. 

Table 28: Grouped sensor summary 

 
Grouped Sensor 

Method 

Condominium 0.15 

One Occupant (2018) 0.23 

Two Retirees 0.83 

One Occupant (2019) 0.27 

 

At the two retirees’ location, there is still a higher correlation over the other 

locations. This higher correlation is due to the extra motion events detected by the PIR 

sensors during the sleep time. This method decreases the accuracy of events detected to 

lower than the independent method above. This decrease can be seen in Table 29. 

Table 29: Comparison between independent and grouped sensor method 

 

Independent Sensor 
Method 

Grouped 
Sensor 

Method 
Compared 

Condominium 0.22 0.15 −0.07 

One Occupant (2018) 0.30 0.23 −0.08 

Two Retirees 0.90 0.83 −0.06 

One Occupant (2019) 0.41 0.27 −0.14 
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For the first three locations in the table above, it is interesting to note that the 

decrease in the correlation is about the same at each of the locations. This rough 

equivalence does not hold for the one occupant (2019) location. The assumption is that at 

the one occupant (2019) location, the sensors are more evenly spread throughout the 

house. It was unlikely that two sensors would detect the same motion event in the same 

timeframe. 

5.3 Trained PIR Sensor Hours 

The trained sensor hours’ method, using Bayesian method, first takes the previous 

sensor data over a month, also known as prior probabilities, from the specific sensors and 

then applies them to the analysis to improve predictions. The calculations for the 

condominium consider the historical information to create a more accurate prediction. 

This increase in accuracy can be seen in the condominium calculation in Table 30. 

Table 30: Trained sensor method correlation calculation variables. Where n = 

10,080 minutes per week, x = trained method detection and y = ground-truth 

 

The ϕ correlation for the condominium location using the trained or historical 

sensor data method was a ϕ of 0.16, a slight decrease from the independent method and 

slight increase over the grouped method. For the one occupant (2018) location, there is a 

correlation of 0.24, and for the other one occupant location (2019), a correlation of 0.34. 

The sensor location placements do demonstrate an effect on the accuracy of detecting an 

occupant within the given locations. 
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Figure 19- Trained PIR Sensor Hours correlation to Ground-Truth at the 

Condominium for 09-25-2018 

  

In Table 31, the two retirees’ location shows the greatest correlation due to their 

increase in activity during nighttime hours and the detection of this during the sleeping 

hours. 

Table 31: Trained PIR sensors with historical sensor summary 

 
Trained PIR 

Sensor Hours 
Method 

Condominium 0.16 

One Occupant (2018) 0.24 

Two Retirees 0.84 

One Occupant (2019) 0.34 

 

The correlation for four locations presents a decrease from the independent sensor 

method, as can be seen in Table 32. The trained Bayesian hours do not provide the same 

correlation results as the independent sensor method due to the lack of sensors providing 

event detection. The trained Bayesian hours requires two sensor pulses to detect an event 

which ultimately decreases the correlation in the results, though increases the accuracy.  

  



85 

 

Table 32: Comparison between independent and Trained PIR sensor hour history method 

 

Independent 
Sensor Method 

Trained PIR 
Sensor 
Hours 

Method 

Compared 

Condominium 0.22 0.16 −0.06 

One Occupant (2018) 0.30 0.24 −0.07 

Two Retirees 0.90 0.84 −0.06 

One Occupant (2019) 0.41 0.34 −0.07 

 

A comparison of the Bayesian trained hours results with the grouped sensor 

method results offers a more accurate correlation. The Bayesian trained hours method 

does improve the accuracy of event detection within specific scenarios. The grouped 

method and the Bayesian method are more closely related than either are to the 

independent sensor system because the grouped method and the Bayesian method use the 

logic of having at least two or more sensors detected in order to determine occupancy.  

Table 33: Comparison between grouped and trained PIR sensor hour history 

method 

 

Grouped 
Sensor 

Method 

Trained PIR 
Sensor 
Hours 

Method 

Compared 

Condominium 0.15 0.16 0.01 

One Occupant (2018) 0.23 0.24 0.01 

Two Retirees 0.83 0.84 0.01 

One Occupant (2019) 0.27 0.34 0.07 
  

A review of the results at the location with two retirees indicates that the 

correlations scored much higher at this location. This higher score is due to the occupants 

not leaving the location as regularly as the occupants in the other three locations, 

allowing less time for the sensors to detect that no motion has occurred. The other three 

locations had more no motion events, which negatively affects their correlations.  
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5.4 Trained Ground-Truth 

When comparing the historical probability for the hours with the ground-truth, as 

seen in Section 3.5.3, the addition of ground-truth information in the correlation for the 

condominium improves the accuracy of the results significantly over those of other 

methods. Table 34 shows the steps required to calculate the correlation between the 

trained presence method and ground-truth: 

Table 34:Trained with presence sensor method correlation calculation 

variables. Where n = 10,080 minutes per week, x = trained presence method 

detection and y = ground-truth 

 

The correlation for the condominium using the trained presence-detection method 

sees an improvement to 0.70, and for one occupant (2018) sees an improvement to 0.71. 

Figure 20 shows the trained ground-truth occupancy results after applying the previous 

known occupancy. The trained ground-truth and the actual ground-truth are more similar 

than the other methods tested.  

 

Figure 20- Trained Ground-Truth  correlation to Ground-Truth at the 

Condominium for 09-25-2018 
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The location with the retiree’s correlation shows an increased correlation of 0.94, and the 

final location of one occupant (2019) demonstrates an improved correlation of 0.82, as 

shown in Table 35. 

Table 35: Trained ground-truth summary 

 
Trained Ground-

Truth Method 

Condominium 0.70 

One Occupant (2018) 0.71 

Two Retirees 0.94 

One Occupant (2019) 0.82 

 

These results show greater than double the performance of the independent, 

grouped, and trained hours’ methods. This improvement is predominately due to the GPS 

or key fob at the location during the sleeping hours still prompting the detection of an 

occupant in the locations. Improvement of the correlation can be seen across all the other 

methods in Tables 36, 37, and 38. 

Table 36: Independent sensors compared with trained ground-truth summary 

 

Independent Sensor 
Method 

Trained 
Ground-Truth 

Method 
Compared 

Condominium 0.22 0.70 0.48 

One Occupant  0.30 0.71 0.41 

Two Retirees 0.90 0.94 0.05 

One Occupant  0.41 0.82 0.41 

 

The comparison of the two retirees’ correlation for the independent sensors and 

the trained sensors with the presence sensors is of particular interest. The retirees were at 

home most of the time. When the occupants are home for a longer duration, the need for 

a GPS or Bluetooth presence detector is reduced. The greatest improvement amongst the 

locations is the condominium location. The residents were not home as often, meaning 



88 

 

that the need for a GPS or Bluetooth presence detector was required to improve the 

accuracy of the occupancy.  

The grouped method compared to the trained ground-truth shows similar results. 

The two retirees’ location shows the least improvement, due to the relatively low reliance 

on the ground-truth as the occupants are home more. The overall correlation does 

improve with the added presence-detection history. 

Table 37: Grouped sensors compared with trained ground-truth summary 

 
Grouped Sensor 

Method 
Trained Ground-

truth Method 
Compared 

Condominium 0.15 0.70 0.54 

One Occupant (2018) 0.23 0.71 0.48 

Two Retirees 0.83 0.94 0.11 

One Occupant (2019) 0.27 0.82 0.55 

 

Both Bayesian methods (the trained PIR sensor hours method and the trained 

ground-truth method) increase the correlation in each of the four locations. The largest 

increase is observed when ground-truth detectors were applied at each of the locations. 

Table 38: Bayesian sensor history compared with trained ground-truth 

summary 

 
Trained PIR 

Sensor Hours 
Method 

Trained 
Ground-truth 

Method 
Compared 

Condominium 0.16 0.70 0.53 

One Occupant (2018) 0.24 0.71 0.47 

Two Retirees 0.84 0.94 0.10 

One Occupant (2019) 0.34 0.82 0.48 

5.5 Comparison Conclusion 

This section presents the final comparison of the different methods. The 

condominium has a 0.22 correlation value with occupancy and ground-truth when each of 
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the six PIR sensors acted independently of each other. This higher result over the grouped 

and Bayesian trained hours and those trained with the ground-truth is due to the lack of 

the required motion that must be detected for an event to register an occupant.  

The grouped sensors method exhibited a poorer relationship with ground-truth 

than did the independent sensor method. This lower performance is due to the grouped 

sensors method’s requirement of more than one PIR sensor to detect the same motion 

from the occupants. When applying the training for the Bayesian model for each of the 

six PIR sensors, the correlation value increases from 0.15 to 0.16 for the grouped method. 

The increase is due to the network knowledge for when the event was “most likely” to be 

present. In the condominium, the greatest improvement came when the trained sensor 

hours with presence detector was applied and found a correlation of 0.70.   

Table 39: Comparison of the correlation for each of the four methods for the 

condominium location 

Method Correlation 

Independent Sensors 

Grouped Sensors 

Trained PIR Sensor Hours 

Trained Ground-Truth 

0.22 

0.15 

0.16 

0.70 

 

Table 39 demonstrates that the trained presence detector has a much stronger 

relationship with ground-truth compared to any of the other methods. The main reason 

for this improvement was that the ground-truth detector knew when the occupants were 

home and not active, unlike the PIR sensors, which required movement across the 

detection zones. 

The single occupant location shows a trend like that of the condominium location. 

The independent sensors have a stronger relationship with ground-truth than do the 

grouped sensors, with a 0.30 correlation value for the independent method and 0.23 for 
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the grouped method. Applying the trained sensor hours and the current PIR sensor data to 

the Bayesian network, an increased correlation value of 0.24 was noted. Finally, the 

strongest correlation between the four methods tested is the method where the ground-

truth detection history was applied, with a correlation of 0.71. The comparison results for 

the one occupant (2018) location in are shown in Table 40.  

Table 40: Comparison of the correlation for each of the four methods for the 

one occupant (2018) location 

Method Correlation 

Independent Sensors 

Grouped Sensors 

Trained PIR Sensor Hours 

Trained Ground-Truth 

0.30 

0.23 

0.24 

0.71 

 

The next location, with the two retirees, revealed some extra insight into how 

different locations have different activities that can affect results. In this location, the 

correlation values were much higher than in any of the other locations. The main factor 

driving these stronger correlation values was the two occupants being at their home for 

most of the time. This tendency to be at home did not apply to the three other locations, 

where the occupants were normally away. The retiree’s location had the strongest 

correlation with ground-truth of all the four methods.  

Notably, however, the improvement from the grouped method to the trained hour 

method again increased by a correlation value of 0.01. This increase, presented in Table 

41, did not hold in other previous locations.  
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Table 41: Comparison of the correlation for each of the four methods for the 

two retirees’ location 

Method Correlation 

Independent Sensors 

Grouped Sensors 

Trained PIR Sensor Hours 

Trained Ground-Truth 

0.90 

0.83 

0.84 

0.94 

 

The last location to compare is the one occupant (2019) location. This is the same 

location as the one occupant (2018) location but with different sensor placements and in a 

different year. The location has the second-strongest correlation values between the four 

locations, due to the improved PIR sensor location placement. Unlike the individual study 

at this location where the six PIR sensors were placed only within two rooms, this second 

individual study had the sensors placed throughout the whole house. The PIR sensor had 

more surface to have a larger coverage for detecting motion within the location.  

Notably, Table 42 shows that the Bayesian modeling affects the difference 

between the grouped method and the trained hours’ method more substantially than in the 

other three locations. Unlike the other three locations, this location had an increase of 

0.16 in the correlation value. This increase could be due to the different sensor 

placements or to different activities registered by the single occupant. The second point 

of interest for this location is the stronger correlation for the independent method, likely 

due to the increased PIR sensor coverage. However, with the improved coverage, the 

performance of the grouped sensor method was about the same in this particular location. 
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Table 42: Comparison of the correlation for each of the four methods for the 

one occupant (2019) location 

Method Correlation 

Independent Sensors 

Grouped Sensors 

Trained PIR Sensor Hours 

Trained Ground-Truth 

0.41 

0.27 

0.34 

0.82 

 

The review of the results shows that the four locations indicate an increase in 

correlation when the ground-truth is applied to the Bayesian network. All the other 

methods were within the same lower ranges of correlation. The locations with one 

occupant, overall, have a greater correlation with ground-truth than does the 

condominium location. This greater reliability is due to the increased motion events 

detected during the evening hours, as seen with the retiree’s location. This location has 

better results overall, due to the detection during the normal sleeping periods. These 

overall results can be seen in Table 43. 

Table 43: Overall summary results of each method and locations 

 

Independent 
Grouped 
Sensors 

Trained 
PIR Sensor 

Hours 

Trained 
Ground-

Truth 

Condominium 0.22 0.15 0.16 0.70 

One Occupant 
(2018) 

0.30 0.23 0.24 0.71 

Two Retirees 0.90 0.83 0.84 0.94 

One Occupant 
(2019)  

0.41 0.27 0.34 0.82 

 

The correlation results for the four methods shown in Table 43, are low compared 

to previous research. This lower correlation is due to the minimal PIR sensor pulses that 

occur throughout the nighttime. This can be seen when comparing the correlation for a 

24-hour period versus a 07:00AM – 07:00PM period where nighttime is not included, see 



93 

 

Figure 21. Table 44 shows the results for a 24-hour period for each of the four methods. 

 

Figure 21- Condominium daytime example of low correlation 

Table 44: Comparison of the correlation for each of the four methods for the 

condominium location in a 24-hour period and a daytime period (07:00AM – 

07:00PM) 

Method 24-hour Daytime 

Independent Sensors 

Grouped Sensors 

Trained PIR Sensor Hours 

Trained Ground-Truth 

0.22 

0.15 

0.16 

0.70 

0.44 

0.30 

0.34 

0.69 

 

By removing the nighttime hours, the correlations for the condominium location 

improved. This shows that throughout the nighttime, the PIR sensors are unable to detect 

enough movement when  measuring occupancy. However, the Trained Ground-Truth 

method results were nearly the same between the 24-hour period and the daytime 

correlation. This is due to the added ground-truth that helps overcome the PIR sensor 

detection issue, since the ground-truth are using GPS and Bluetooth detection devices and 

do not rely on motion to be detected. The other three locations had similar results as seen 

in Table 45 through Table 47.   
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Table 45: Comparison of the correlation for each of the four methods for the 

one occupant (2018) in a 24-hour period and a daytime period (07:00AM – 

07:00PM) 

Method 24-hour Daytime 

Independent Sensors 

Grouped Sensors 

Trained PIR Sensor Hours 

Trained Ground-Truth 

0.30 

0.23 

0.24 

0.71 

0.47 

0.34 

0.37 

0.67 
 

Table 46: Comparison of the correlation for each of the four methods for the 

two retirees’ location in a 24-hour period and a daytime period (07:00AM – 

07:00PM) 

Method 24-hour Daytime 

Independent Sensors 

Grouped Sensors 

Trained PIR Sensor Hours 

Trained Ground-Truth 

0.90 

0.83 

0.84 

0.94 

0.89 

0.82 

0.83 

0.92 

 

Table 47: Comparison of the correlation for each of the four methods for the 

one occupant (2019) in a 24-hour period and a daytime period (07:00AM – 

07:00PM) 

Method 24-hour Daytime 

Independent Sensors 

Grouped Sensors 

Trained PIR Sensor Hours 

Trained Ground-Truth 

0.41 

0.27 

0.34 

0.82 

0.46 

0.31 

0.36 

0.82 

 

After reviewing the PIR sensor, Table 48 through Table 51, each sensor 

correlation for the four locations had a strong relationship. However, none of the six 

sensors in each location had a correlation of 1.0. The strongest correlation was found to 

be at the Condominium between sensor2 and sensor3 with a correlation of 0.86. The 

weakest correlations were found at one occupant (2019) between sensor5 and sensor2, 

and sensor5 and sensor3 with a correlation of -0.02. 
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Table 48: Comparison of the correlation for each of the six sensors for the 

Condominium 

 Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6 

Sensor1 - 0.81 0.82 0.18 0.07 0.12 

Sensor2 0.81 - 0.86 0.19 0.08 0.11 

Sensor3 0.82 0.86 - 0.16 0.07 0.11 

Sensor4 0.17 0.19 0.16 - 0.32 0.26 

Sensor5 0.07 0.08 0.07 0.32 - 0.26 

Sensor6 0.12 0.11 0.11 0.30 0.26 - 
 

Table 49: Comparison of the correlation for each of the six sensors for the one 

occupant (2018) 

 Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6 

Sensor1 - 0.68 0.71 0.03 0.03 0.02 

Sensor2 0.68 - 0.75 0.06 0.05 0.04 

Sensor3 0.71 0.75 - 0.06 0.07 0.05 

Sensor4 0.03 0.06 0.06 - 0.54 0.81 

Sensor5 0.03 0.05 0.07 0.54 - 0.50 

Sensor6 0.02 0.04 0.05 0.81 0.50 - 
 

Table 50: Comparison of the correlation for each of the six sensors for the two 

retirees’ location 

 Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6 

Sensor1 - 0.74 0.74 0.14 0.11 0.14 

Sensor2 0.74 - 0.84 0.21 0.17 0.21 

Sensor3 0.74 0.84 - 0.22 0.18 0.22 

Sensor4 0.14 0.21 0.22 - 0.78 0.92 

Sensor5 0.11 0.17 0.18 0.78 - 0.78 

Sensor6 0.14 0.21 0.22 0.92 0.78 - 
 

Table 51: Comparison of the correlation for each of the six sensors for the one 

occupant (2019) 

 Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6 

Sensor1 - 0.17 0.47 0.28 0.02 0.22 

Sensor2 0.17 - 0.44 0.53 -0.02 0.00 

Sensor3 0.47 0.44 - 0.64 -0.02 0.06 

Sensor4 0.28 0.53 0.64 - -0.01 0.01 

Sensor5 0.07 0.08 0.07 0.32 - 0.47 

Sensor6 0.22 0.00 0.06 0.01 0.47 - 
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In Table 52 through Table 55 the amount of time each PIR motion sensor and 

ground-truth detectors measured an occupant within each of the four locations can be 

seen. 

Table 52: Comparison of the occupant time for each of the six PIR motion 

sensors and each ground-truth detector for the Condominium 

Senor/Detector Time(min) 

Sensor1 303 

Sensor2 306 

Sensor3 311 

Sensor4 372 

Sensor5 258 

Sensor6 188 

Ground-Truth1 6,436 

Ground-Truth2 6,421 
 

Table 53: Comparison of the occupant time for each of the six PIR motion 

sensors and each ground-truth detector for the occupant (2018) 

Senor/Detector Time(min) 

Sensor1 313 

Sensor2 417 

Sensor3 355 

Sensor4 159 

Sensor5 313 

Sensor6 138 

Ground-Truth1 4,970 

Ground-Truth2 4,958 
 

Table 54: Comparison of the occupant time for each of the six PIR motion 

sensors and each ground-truth detector for the two occupants in two retirees’ 

Senor/Detector Time(min) 

Sensor1 313 

Sensor2 417 

Sensor3 355 

Sensor4 159 

Sensor5 313 

Sensor6 138 

Ground-Truth1 8,471 

Ground-Truth2 4,369 
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Table 55: Comparison of the occupant time for each of the six PIR motion 

sensors and each ground-truth detector for the occupant (2019) 

Senor/Detector Time(min) 

Sensor1 134 

Sensor2 155 

Sensor3 415 

Sensor4 277 

Sensor5 246 

Sensor6 754 

Ground-Truth1 7,415 

Ground-Truth2 7,394 

 

The correlation between the two ground-truth detectors is 0.98 for three of the 

four locations. The two retirees’ location has a lower correlation. This lower correlation 

between the two ground-truth devices seemed to occur when one of the two devices 

stopped registering its’ presence. The correlation between the ground-truth devices at 

each of the locations can be seen in Table 56. 

Table 56: Comparison of the correlation for each of the four-locations ground-

truth devices. 

Method Correlation 

Condominium 0.9812 
One Occupant (2018) 0.9777 
Two Retirees 0.2833 
One Occupant (2019)  0.9759 
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CHAPTER 6 SUMMARY AND FUTURE RESEARCH 

This chapter discusses how each of the project stakeholders is affected by the 

results of this research paper and the way they can implement Bayesian modeling to their 

applications. This research is a foundation on how a practical application could be 

constructed. This chapter discusses how other future research may apply the practice of 

multiple sensors and Bayesian modeling to other applications.  

Section 6.1 discusses the stakeholders for the project and how this paper can 

benefit them. Section 6.2 suggests other ways to implement the Bayesian modeling that 

may improve on this research. Section 6.3 summarizes the paper and the results. 

6.1 Project Stakeholders 

The stakeholders for this project are those who need to enhance their occupancy 

detection within their locations. The main stakeholders are homeowners who desire to 

improve their occupancy detection in a residential environment, doctors and patients who 

want to monitor movement and occupancy within a given space, people involved with 

elder care safety, and those who deal in utility automation. These stakeholders will all 

have an advantage when utilizing the Bayesian network within their area of expertise.  

6.1.1 Homeowners 

Homeowners would benefit from a Bayesian network when looking for ways to 

automate various procedures within their home. Some of these procedures might include 

operating lights, controlling an appliance such as a coffee maker, setting alarms or alerts, 

setting a thermostat, or feeding pets, to name a few. With the combination of sensors and 

the Bayesian network modeling, homeowners can improve their lifestyles and implement 

better functionality within their homes, in conjunction with current devices. Currently, 
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most devices like coffee makers, lights, and alarms are set manually, where “set” means 

defined parameters configurable by the user. Homeowners set the time the coffee maker 

turns on, for example at 6:00 AM every weekday. Homeowners might also set yard lights 

to turn on at 7:00 PM and turn off at 7:00 AM. Bayesian modeling could help improve set 

time configurations. 

With the implementation of computing configurations on the owner’s devices, 

consumers can apply some logic to their device’s operations. From the research 

conducted in this paper, an improvement in the detection of an occupant in the home was 

discovered by gathering the information from previous events and applying that 

information to a monitoring network to better improve the outcome. This practice can be 

applied to the owner’s devices, after a training period, to gather historical data. This 

historical data would then be added to the proper logic. The logic would then be applied 

to the owner’s devices.  

For example, at what time does the homeowner turn on the coffee maker? What is 

the likelihood that the time is the same on the weekend or a weekday? Do they have a 

confidence level range when they want to turn on the coffee maker? They can answer 

these questions in a manner similar to questions answered about whether there was 

motion within a given room. They can then apply it to a network, which will create a 

prediction and operate the coffee machines or an alternative task. One of the advantages 

of the Bayesian network is its capability to apply other sensors within the network to help 

create a prediction. One example is the application of this prediction to the coffee maker 

to trigger an event. Predictive analysis could be applied with a motion sensor, allowing 

the coffee maker to operate based on defined parameters. 
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The use of Bayesian modeling and the advancement in smart home device hubs, 

which can monitor events and apply logic behind them, can allow individuals to further 

automate their lifestyles.  

6.1.2 Doctors and Patients 

Doctors and patients can both benefit from the Bayesian modeling. Doctors could 

implement behavioral data into their monitoring systems. Bayesian modeling must be 

carefully applied when used in healthcare, since the network depends on reliable data. 

However, with proper testing, a Bayesian model can help doctors create personal, 

complex logic for each patient. The use of several types of sensors could be implemented 

to monitor movements within the patient’s location and alert the monitoring station of 

information that does not fit the patient’s normal routine. These routines could be built 

from the motion sensors or cabinet sensors, within the patient’s home.  

These personal routines will be patient-dependent since the logic would be 

constructed from the patient movements. An example of such routines is a patient advised 

to start being active at 9:00 AM each day and open the door to head to the kitchen for 

their morning medication. If the patient has completed the appropriate training time 

period for the stated task, then the implementation of Bayesian modeling can help ensure 

the task is completed within its parameters. If the task is not completed, a notification 

method could be implemented. 

In this system, the network may be designed to detect occupancy within the 

location. The opposite of occupancy is no occupancy. That sounds simple enough; 

however, what is meant by this is that if during a certain timeframe the occupants have a 

25% chance of being home, or of completing a set task, then one can say with 75% 
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certainty that they are also not expected to be home or not to have completed the set task. 

This example shows that this same method can be used to detect patients’ behavior 

probabilities within their location and to monitor activities within the healthcare system 

to ensure strong, effective healthcare and improved patient care outcomes.  

6.1.3 Elder Care 

With elder care stakeholders, the Bayesian modeling could help enhance the 

monitoring of the elderly. Depending on the types of sensors and the placement of 

sensors within the monitored space, several practical applications could be used. Some of 

these applications might include observing motion within the space if the elderly person 

is still mobile, monitoring location occupancy, and watching for specific events such as 

the opening of cabinet doors, lighting changes, temperature changes, and audio changes. 

These sensors can help monitor specific triggering events, which can help register the 

normal activities of the elderly. 

One example of this application is to use cabinet or drawer sensors to register 

triggering events, if this is the place for medications that need to be taken. The network 

can be constructed to check for normalcy for when the cabinet door is typically opening 

and closing. Then, the monitoring system could move to the next step to determine 

whether an event is normal; if not, the system could send a notification to the elder, the 

caregiver and/or the family to advise them of the atypical action. 

The growing elderly population desires more options to allow them to remain in 

their homes and age in their current places of residence. This phenomenon is driving the 

need for more adaptable monitoring systems. This Bayesian modeling, in elder care, 

supports peoples’ desires to remain in their own homes and lead safer lives as they age.  
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6.1.4 Utility Automation 

Utility automation is becoming a popular trend within the smart home scenario. 

There are devices that customers can use to set air conditioning and heating units to 

certain temperatures within their homes. The temperatures for their utilities can be set and 

programmed to change over various timeframes throughout the day. In order for utility 

automation stakeholders to continue to create benefits for their customers, they will need 

to improve their computational power, and the Bayesian network can allow for some of 

this improvement by including probabilities in the processing.  

Most of these learning devices and smart devices still require the consumer to set 

the base on their devices, and they then rely on this information to continue forward 

through time. However, in this research, multiple types of sensors are needed to have 

more accurate implementation. This principle of applying more than one type of sensor 

can significantly improve outcomes. This method could be used for utility automation 

such as heating or air conditioning, operating water supplies, and electrical usage 

monitoring, rather than having the user continue to manually set the devices for every 

application. 

The results of the applied Bayesian modeling can help reduce manual input into 

many types of systems. Once the manual application is removed, their reliability could be 

improved, since the use of the Bayesian method can be adaptive for a forward-rolling 

timeframe and based on updated historical events. Applying a rolling timeframe means 

having the historical data in only four-week increments that are constantly updated, like 

how activities were monitored within this study research. This solution is more practical 

than setting system constant values, due to ever-changing behavior over time. It is 
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important to keep up-to-date probability within the modeling to provide the best 

environment for consumers. 

The desire to detect occupancy accurately is a main goal for many stakeholders: 

1) homeowners, in order to improve the efficiency and function in their homes; 2) 

healthcare professionals, to help provide better care at home for patients; 3) eldercare, to 

enable them to safely live longer within their homes; and 4) security industry, allowing 

them to detect events more precisely. These goals are the core motivators that will push 

the development of home occupancy systems into the next stages of predictive analysis, 

where there will be a need to use several types of detection methods. Some of these 

methods will use additional sensors, while others will use additional algorithms to 

improve the sensor data generated into valuable event occurrences, such as occupancy.  

6.2 Future Research 

Two key points should be investigated to identify areas to address in attempts to 

improve the effectiveness of the Bayesian method. These points include changing the 

conditional tables and trying to use other forms of sensors. This study created the 

conditional tables by determining the values using experience and previous studies. It 

would be interesting to develop a method where the conditional tables could be generated 

by other means. The new conditional table values might be a combination of additional 

relationships or be generated by running a string of simulations to determine the best 

outcome. Future research could also involve experiments that use another form of sensor 

to help predict occupancy. This study was based on the use of PIR sensors, smartphone 

GPS signals, and a Bluetooth key fob presence data that was applied to improve the 

results. Additional forms of motion sensors were not tested. Two other forms of sensors 
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that might enhance the gathering of information are pixilated and infrared cameras. This 

study did not include these two types of cameras because the cost is greater, the PIR 

sensors were readily available, and primarily because this study aimed to focus on 

Bayesian modeling, not sensor technology. Additionally, there are several other types of 

presence sensors that might be acceptable to replace or enhance the GPS devices, such as 

door contacts and other Bluetooth-connected devices.  

Our research of the Bayesian network could enhance the outcome of a simple PIR 

sensor network. This dissertation did not study additional forms of sensors or other 

methods to improve the conditional tables. It will take additional research to enhance and 

improve the Bayesian modeling for home occupancy detection. Such research is vital for 

the enhancement of the smart home prediction methods currently in use.  

6.3 Summary 

In summary, this study was able to produce the answer to its research question: 

“When using a set of PIR sensors and applying the Bayesian method as an overlay, is this 

study able to improve the accuracy of presence detection within the system?” There was 

an improvement in the accuracy of prediction when using a set of PIR sensors and 

applying the Bayesian method. In Chapter 1 the hypothesis stated:  

H1: When applying Bayesian modeling in conjunction with PIR sensors, the 

accuracy of presence detection will improve within a given location. 

H0: When applying Bayesian modeling in conjunction with PIR sensors, the 

accuracy of presence detection will have no effect on the improvement within a 

given location. 
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This study was able to accept the hypothesis and reject the null hypothesis when applying 

the Bayesian modeling in conjunction with the PIR sensors. The accuracy of the 

presence-detection results did improve within the given location and for the current 

occupants. For the condominium, the correlation improved from 0.22 to 0.70; for one 

occupant (2018), the correlation improved from 0.30 to 0.71; for the two retirees’, the 

correlation improved from 0.90 to 0.94; and for the one occupant (2019), the correlation 

improved from 0.41 to 0.82. The improvement in the correlation was due to the 

implementation of trained sensor data into a Bayesian network. 

The results of the independent sensors showed that the ϕ correlation between 

detection and ground-truth for each location were the condominium at 0.22, one occupant 

(2018) at 0.30, two retirees’ at 0.90, and one occupant (2019) at 0.41. These results show 

two interesting comparisons: 1) comparing the one occupant (2018) and one occupant 

(2019) showed that sensors spread throughout the space differently improved the 

correlation in the one occupant (2019) location, and 2) the two retirees who are home 

most of the day have a higher ϕ correlation compared to the other four locations. These 

higher correlation results should be studied further because the independent sensor 

method may be more practical in specific locations, as seen in the two retirees’ location 

results where the occupants are at home longer. The limit to the independent sensors is 

their lack of confirmation to each of the other sensors where there is no second sensor 

that is required to confirm the sensor signal. Further investigation will need to be done to 

better understand how false signals can affect the results when reviewing the correlation 

over a week period.   
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The grouped sensors have this secondary confirmation by design. For each 

location, the correlation at the condominium is 0.15, one occupant (2018) is 0.23, two 

retirees’ is 0.83, and one occupant (2019) is 0.27. These showed the same two interesting 

results as in the independent sensor method; the one occupant (2019) location had slight 

improvement over the one occupant (2018) and the two retirees’ location had a higher 

correlation then the other locations. Grouped sensor has the limitation of sensor 

placement. This research was designed to place three sensors within a given space, 

however each location had several different room shapes and sizes which lead to some 

rooms having more sensor area coverage than others. This can be viewed with the one 

occupant (2019) and one occupant (2018), where there is an increase in correlation due to 

sensor placements. 

The trained Bayesian hours’ method has a slight correlation improvement over the 

grouped method. The results showed that the correlation for condominium is 0.16, one 

occupant (2018) is 0.24, two retirees’ is 0.84, and one occupant (2019) is 0.34. The 

improved results are from the historical probability that was applied to the Bayesian 

network. The limitation is the premade assumptions that were used for the Bayesian 

network conditional tables. The assumptions may be able to be enhanced by running 

several scenarios within each location to identify the ideal conditional table assumptions.  

The Bayesian presence method shows the largest improvement over all the other 

methods. The correlation for each location is, condominium is 0.70, one occupant (2018) 

is 0.71, two retirees’ is 0.94, and one occupant (2019) is 0.82. Applying the location 

history probability to the Bayesian network increases the correlation to the condominium, 

one occupant (2018), two retirees’ and the one occupant (2019). It is important to present 
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the two retirees’ location did not improve as much, since they are normally home. The 

limitation to this method was having to rely on smartphone or Bluetooth presence 

detector connectivity during the research period. If the connectivity is poor, the 

occupancy data and the ground-truth data were not available. 

The main limitation that affects all the methods discussed is the PIR sensor’s lack 

of ability to detect occupants during the sleep cycles. The methods could not detect 

motion during that timeframe while the occupants were asleep, motionless, due to the 

construction and placement of the devices. The condominium had nearly zero movement 

during the evening; however, the other three locations had a fair amount of movement 

during the sleeping hours. This extra movement at the retiree’s location helped increase 

the overall correlation, since movement was detected, allowing the system to help predict 

there was an occupant home during those hours. The use of the PIR sensors can be 

helpful for specific types of purposes, but for the detection of occupants, they were not 

very effective without presence detectors. 

Adding another form of detection, namely of detecting the occupants during their 

sleep cycle, improves prediction results overall. This improvement with the presence 

detectors was seen in the results for all locations after adding the presence detector 

history. The primary added benefit was that the presence detectors had the ability to 

detect the occupant’s presence during the sleeping cycle. In future studies, additional 

methods of detection could be investigated to detect occupancy movements during the 

sleep cycle.  

The use of the Bayesian modeling adds significant capabilities when one uses 

sensors to predict events, and the accuracy of its use improves with a second form of 
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detection added to the system. Accurate and appropriate sensors are needed to detect all 

the events required for system design. Without these sensors, lower correlations will 

occur due to the construction of certain types of sensors. PIR sensors were unable to 

detect motion within the space during the sleep cycle of the occupants. Once this issue 

was overcome with Bayesian modeling and the presence-detection events applied, the 

network became more accurate and was more immune to the limitations in the test. 
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