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Abstract

We compared the stratigraphy of sediment cores that span the last 13,000 yrs from three sites in the main basin of Lake Tit-
icaca, Boliva/Peru as indicators of regional paleoclimate. The cores show similar patterns of change after ~6,400 calendar
yrs before present (cal yr BP) but differ before that time. Site NE98-PC2, which is near the Rio Illave and its delta, shows
differences in diatom species composition and in calcium carbonate concentrations relative to cores from the other two
sites, particularly during times of inferred high precipitation. In contrast, the carbon isotopic stratigraphy of the three sites
is relatively similar. The magnetic susceptibility data suggest that the proximity of site NE98-PC2 to the river and delta re-
sulted in higher loads of detrital sediment prior to 6,400 yr BP, whereas pelagic sources contributed most of the sediment at
the other sites. These differences highlight the potential for spatial heterogeneity of sediment records in large lake systems
and the importance of evaluating multiple cores for robust interpretation of paleoenvironmental history.

1. Introduction

Most palecenvironmental studies of lacustrine sediment re-
cords use one or a small number of cores, based on the as-
sumption that sedimentation is sufficiently homogenous across
the lake that a small number of cores are representative of the
history of the basin. Studies of multiple cores from relatively
small lakes suggest that for many biological and geochemical
variables, stratigraphic trends are generally replicated from
site to site. In contrast, accumulation rates are highly variable
among cores from different depths and depositional settings
(Engstrom and Swain, 1986; Anderson et al., 1994). In large
lakes, the potential for inter-site variability is greater, because
larger basins commonly have greater morphometric complex-
ity and the potential for significant variation in watershed ge-
ology and vegetation. In addition, physical processes, which
mix and distribute sediments, chemical constituents and bi-
ota, are spatially variable in large lakes. All of these processes
can produce variability in the water column and in sedimen-
tary records (e.g. Rea et al., 1994; Talbot and Laerdal, 2000).
Nonetheless, many studies of multiple cores from large lake
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systems show similar behavior through time among multiple
cores (Cross et al., 2000; Takemura et al., 2000; Johnson et
al., 2002; Prokopenko et al., 2005).

Here, we compare temporal patterns of change in cores
from three different locations in the large tropical Lake Titi-
caca, Bolivia/Peru to evaluate spatial variability among sev-
eral sites within the main basin of the lake. The records span
the late-Glacial and Holocene and represent deposition un-
der a range of climate conditions, allowing us to evaluate
whether the sites behave in a similar fashion under differ-
ent mean climate states. We also use multiple proxies, in-
cluding both biotic and geochemical variables, to determine
whether some variables are more sensitive to location than
others. This paper focuses on new high-resolution analyses
from NE98-PC2 (15° 57.480'S 69°26.652'W), which we ob-
tained in 142 m water depth in the main basin of the lake, off
the Rio Ilave delta (Figure 1). Patterns of change in NE98-
PC2 are compared with previously published analyses from
NE98-PC1 (152 m) and NE97-PC7 (89 m), which were an-
alyzed at coarser temporal resolution (Baker et al., 2001;
Tapia et al., 2003).
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Figure 1. Map of Lake Titicaca showing the location of the NE98-PCI,
NE98-PC2, and NE97-PC7 cores (indicated by stars).

1.1. Site description

Lake Titicaca (14°09'-17°08" S, 68°03'-71°04'W) is a
large tropical lake at 3,810 m on the Altiplano of Boliva and
Peru (Figure 1), a high-elevation internally drained plateau
between the eastern and western cordillera of the Andes. The
lake consists of a large (7,131 km?) deep (max depth 284 m,
mean depth 125 m) main basin and a smaller (1,428 km?)
shallower basin (max depth 42 m, mean depth 9 m), which are
connected at the Straits of Tiquina (25 m depth). Today, hy-
drologic inputs are balanced between direct rainfall (47%) and
inflow (53%) from six major rivers. In the modern lake, water
export is primarily via evaporation (91%), with <9% loss via
the sole surface outlet, the Rio Desaguadero at 3,804 m eleva-
tion (Roche et al., 1992). The lake is oligosaline (0.1 g1°! sa-
linity) and moderately productive (mesotrophic).

2. Methods

2.1. Field

Piston cores were obtained from multiple locations in Lake
Titicaca in 1997 and 1998 (Figure 1). In this paper we use pre-
viously published data (diatoms, geochemistry, magnetic sus-
ceptibility) that span the last 13,000 yrs from sites NE97-PC7
and NE98-PC1 (uppermost 5.0 and 2.4 m, respectively). A de-
tailed description of results and their interpretation for these
sites are included in earlier publications (Baker et al., 2001,
Tapia et al., 2003). Total core length of our new core, NE98-
PC2, was 7.87 m; the last ~13,000 yrs is included in the up-
permost 5.7 m of the record (Figure 2). Magnetic suscepti-
bility of the cores was measured in the field. The cores were
shipped to the US and stored at 4 °C prior to sampling. Sam-
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Figure 2. Relationship between core depth (cm) and calendar age (cal yr BP)
based on accelerator mass spectrometry '4C analysis of bulk organic carbon.
A cubic spline was fit to the dates to generate an age model. Error bars rep-
resent 20.

ples from NE98-PC2 were analyzed for diatoms and sedi-
ment geochemistry at 2-cm intervals throughout the length of
the core, yielding a total of 287 samples. Sample resolution
ranges from ~10 yrs in the uppermost sediments to ~100 yrs
in the basal meter.

2.2. Chronology

Core chronology is based on ten accelerator mass spec-
trometry '“C dates on acid-leached bulk organic carbon (Table
1) that were calibrated using CALIB 4.4 (Stuiver and Reimer,
2004). No reservoir correction was applied, because surface
sediments from box cores from the main basin of Lake Titi-
caca do not show a reservoir effect (Baker et al., 2001). A cu-
bic spline through the calibrated dates was used to generate an
age model (Figure 2). Ages in the text are expressed as calen-
dar years before present (cal yr BP).

2.3. Diatoms

Samples for diatom analysis were treated with 10% hydro-
chloric acid and cold hydrogen peroxide to, respectively, re-
move carbonates and organic matter and then were rinsed to
remove oxidation by-products. Prepared samples were dried
onto coverslips, and the coverslips were mounted onto slides
with Naphrax. Species were identified on a Zeiss Axioskop 2
microscope with a 1,000x (N.A. = 1.40) oil immersion objec-
tive. A minimum of 300 diatom valves was counted on each
slide. Diatom abundance in each sample is expressed as a per-
cent of the total diatom count. Diatom taxa are grouped into
one of four main ecological groups (freshwater plankton, sa-
line plankton, salinity indifferent plankton, and benthic) based
on known ecological affinities (Servant-Vildary, 1992; Tapia
etal., 2003).
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Table 1.

Radiocarbon and calibrated ages determined by accelerator mass spectrometry (AMS) on the total organic carbon of the
mud. Age determinations were made at the University of Colorado (INSTAAR) and Woods Hole Oceanographic Institute
(OS) radiocarbon laboratories. Upper and lower limits of the calibrated ages represent the 2 sigma ranges

Sample number Sample depth 5'3C PDB Age
(cm) 13C yr BP

INSTAAR 20 -22.1 1070
0S-33544 76 -23.72 1340
0S-33543 142 -22.84 1970
0S-41669 202 -22.02 2690
0S-33542 286 -17.39 4370
0S-33541 324 -17.6 5560
INSTAAR 400 -17.6 7060
INSTAAR 460 -21.3 7650
0S-41668 516 -15.78 6970
0S-33540 562 -23.07 10850

2.4. Geochemistry

Samples for geochemical analysis were dried, powdered,
weighed, and leached in buffered (pH = 5.5) ammonium ace-
tate—acetic acid. Weight percent calcium carbonate was calcu-
lated from the atomic absorption spectrometric (Perkin Elmer
5000) determination of dissolved calcium, assuming that all
calcium was originally present as calcium carbonate. The in-
soluble residue was rinsed several times in reagent-grade wa-
ter. Portions of this material were dried and weighed prior to
determination of organic carbon and its stable isotopic com-
position. Stable carbon isotopic compositions were measured
on a Finnigan MAT Delta Plus XL isotope mass spectrometer
in the Duke University Environmental Stable Isotope Labora-
tory and are reported relative to the PDB standard. Standard
deviations for replicate carbon measurements were generally
less than 0.5%. The precision for the carbon isotopic measure-
ments was +0.2%o.

3. Results

Throughout the PC2 core, the sediments consist of gray
to brown silty mud that is faintly laminated or banded below
250 cm (~4,000 yr BP) and without visible structure above.
Magnetic susceptibility values, which are indicative of detrital
inputs to the lake from the watershed (Baker et al., 2001), are
high (>200 SI units) prior to 8,000 cal yr BP and then decline
gradually, reaching values <20 SI units after ~6400 cal yr BP.
This change in sedimentation character impacts the radiocar-
bon chronology for the core (Figure 2), which shows a ma-
jor change in sediment accumulation rate over the interval be-
tween 8,000 and 6,400 cal yr BP.

Calcium carbonate is generally low (<3% by weight)
throughout the sediments dated prior to ~5,300 cal yr BP (Fig-
ure 3), with intervals of slightly elevated concentrations (3—
10%) from 10,600 to 10,300, 7,200-7,000, and 6,400—6,000.
Peak values occur between 5,300 and 4,000 cal yr BP (3—
30%), with low values (<5%) after 4,000 cal yr BP.

Age error Calibrated age Lower Upper
cal yr BP cal yr BP cal yr BP
50 933 799 1056
30 1235 1174 1288
30 1875 1744 1950
40 2769 2730 2850
35 4897 4832 5026
35 6313 6205 6403
65 7837 7691 7955
50 8398 8218 8538
60 Excluded
60 12878 12634 13108
6'3C is relatively depleted prior to 9,000 cal yr BP

(<—24%o), excepting in the interval from 10,600 to 10,300,
when values are higher (Figure 3). Values fluctuate (—18
to —25%o) from 9,000 to 7,600 cal yr BP, are heaviest be-
tween 7,600 and 4,000 cal yr BP, and become more depleted
(<—20%o) after that time.

The diatom stratigraphy of the lower part of the PC2 core
(Figure 3 and Figure 4) fluctuates between the planktonic
taxon Cyclotella stelligera and a suite of benthic diatoms.
The benthic taxa include species that grow in both the lake
and influent rivers (Tapia et al., 2003): there are no taxa re-
stricted to fluvial environments. Prior to 10,000 cal yr PB,
benthic diatoms are >50% of the assemblage, followed by a
decrease in relative abundance from 10,000 to 9000 cal yr BP.
From 9,000 to 7,800 cal yr BP, benthic diatoms are typically
>85% of the diatom assemblage, whereas between 7,800
and 6,800 cal yr BP, the planktonic C. stelligera is common.
From 6800 to 3300 cal yr BP, two groups of diatoms alter-
nate in dominance: (1) benthic diatoms; and (2) the salinity
tolerant planktonic taxon, Cyclotella meneghiniana, together
with Chaetoceros muelleri, which only grows in waters with
a salinity >2 g 17!, Benthic diatoms are most common be-
tween 5,700 and 4,800 cal yr BP; other periods in this inter-
val are characterized by C. meneghiniana and C. muelleri.
From 3,300 to 1,700 cal yr BP, C. meneghiniana dominates.
The freshwater planktonic taxon, Cyclostephanos andinus, the
dominant taxon in the modern lake (Tapia et al., 2003), is the
most abundant species after that time.

4. Discussion

The diatom and geochemical data from sites NE97-PC7
and NE98-PC1 in the main basin of Lake Titicaca (Baker et
al., 2001; Tapia et al., 2003) show patterns that are character-
istic of a fresh overflowing lake (freshwater planktonic dia-
toms, depleted 6'3C, low calcium carbonate) in the late-Gla-
cial from ~13,000 cal yr BP, with a brief period of lowered
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Figure 3. A comparison of the magnetic susceptibility (SI units), 5'3C (%o), %CaCO (by weight), and benthic diatom (%) stratigraphy in sites NE98-PC1, NE98-
PC2, and NE97- PC7 over the last 13,000 yrs. On the magnetic susceptibility profiles, the right-hand x-axis is for NE98-PC2 and the left-hand y-axis provides

the scale for the other two sites.

lake level between ~11,500 and 10,000 cal yr BP, as indicated
by a large amplitude increase in benthic diatoms, a slight in-
crease in calcium carbonate concentration, and enriched car-
bon isotopic values. Between 10,000 and 8,500 cal yr BP the
lake was also fresh and overflowing, followed by a major
lake-level decline at 8,500 cal yr BP, when benthic diatoms in-
creased in abundance, inputs of isotopically enriched organic
carbon increased, and calcium carbonate began to increase as
the lake dropped below the outlet and salinity built up. Lake
level remained low until about 4,500 cal yr BP, although fluc-
tuations in benthic diatom abundance suggest some high-fre-
quency variation superimposed upon the generally low lake
levels. After 4,500 cal yr BP, lake level increased, flooding the
shallow Lago Huifaimarca subbasin at ~3,500 cal yr BP. The
lake reached modern high-stand levels after 2,000 cal yr BP,
as indicated by the dominance of C. andinus, depleted car-
bon isotopic values, and absence of calcium carbonate in the
sediments.

A comparison of data from site NE9§-PC2 with these pre-
viously published results demonstrates that the three sampling
locations in Lake Titicaca show both major and minor differ-
ences in pattern of change that are produced by several causes.
The chronology of the cores is based on radiocarbon analysis
of bulk organic matter, with associated errors of 50-250 yrs,
and some of the differences between cores are undoubtedly a
product of the precision of chronological control. Sampling
resolution also influences the shape of stratigraphic profiles,
and the three sites have very different sample spacing: core
PC7 has the lowest resolution (mean spacing 400 yrs; range
140-710 yrs), PC1 has intermediate resolution (mean spac-
ing 175 yrs; range 20-511 yrs), and PC2 has the highest sam-
pling resolution (mean spacing 40 yrs; range 8—100 yrs). The
impact of sample resolution is evident in the diatom records
(Figure 3): the PC2 stratigraphy suggests that the period be-
tween 6,800 and 4,800 cal yr BP was highly variable, whereas
the coarsely resolved PC7 shows largely directional changes
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Figure 4. The relative abundance (%) of the dominant diatom species in the PC2 core during the last 13,000 yrs. Cyclotella stelligera, Cyclostephanos andi-
nus, and Aulacosiera spp. are planktonic freshwater species; Cyclotella meneghiniana is a planktonic salinity indifferent taxon, Chaetoceros muelleri is a saline
planktonic species. Benthic sum is a group of shallow-water diatoms, including some benthic species characteristic of elevated salinity.

from low benthic abundance at 6,800 cal yr BP to high abun-
dance by 4,800 cal yr BP. In this case, it is likely that the re-
cord from PC7 was sampled too coarsely to capture much of
the high-frequency variation observed in PC2.

In general, the higher sampling resolution of the PC2 core
relative to the other cores allows climate variation at millen-
nial to centennial scales to be more clearly defined. However,
some stratigraphic features of PC2 differ from the other two
sites, particularly in the period prior to 7,800 cal yr BP. We ar-
gue that the pattern observed in the PC2 core is not charac-
teristic of the basin-wide depositional pattern. This hypothe-
sis is bolstered by recent data from drill cores in Lake Titicaca
(Fritz and Baker, unpublished data), which replicate the pat-
terns evident in PC1 and PC7. The most striking difference
among the cores is that planktonic diatoms dominate at sites
PC1 (152 m water depth) and PC7 (89 m) prior to 11,800 yr
PB and in the interval from 9,000 to 7,800 cal yr BP, whereas
benthic diatoms dominate the PC2 core (142 m), despite wa-
ter depths equivalent to those at PC1. In addition, prior to
7,800 cal yr BP, periods of freshwater diatom dominance
in the other sites include both C. stelligera and C. andinus,
whereas in PC2 (Figure 4), C. andinus is present only in very
small percentages (<5%). The calcium carbonate stratigra-
phy of the PC2 core also differs from the other cores in the
early part of the records. Prior to 6400 cal yr BP, PC2 shows
only muted increases at times when carbonate concentrations
increased in PC7 and PC1. In general, despite similar water

depths in PC1 and PC2, the CaCOj stratigraphy of PC2 most
closely resembles that of the shallow water site PC7, near
Puno Bay (Figure 1).

The sedimentology of the PC2 core suggests that the dif-
ferences in the PC2 stratigraphy relative to the other cores in
the lower sections likely are related to inputs from the nearby
Rio Illave and its delta. Magnetic susceptibility (Figure 3),
which is an indicator of detrital inputs to the coring site, re-
veals a strong fluvial influence at site PC2. Magnetic suscep-
tibility values in PC2 are more than an order of magnitude
higher than at sites PC1 and PC7 in the period prior to 6400 yr
BP, suggesting substantially greater clastic inputs during this
time. Geomorphic data from the Rio Illave and Ramis valleys
indicate that the intervals prior to 11,600 and from ~9,000 to
8,000 yr BP were periods of high discharge from rivers in the
Lake Titicaca drainage basin (Rigsby et al., 2003; Farabaugh
and Rigsby, 2005). We suggest that inputs of diatoms and sed-
iment from the Rio Illave and its delta during periods of high
discharge dominate the record at site PC2 from the late-Gla-
cial through the mid-Holocene. The PC2 core represents a
predominantly pelagic signal only after ~8,000 cal yr BP, and
substantial fluvial inputs continue until ~6,400 yr BP.

Local influences associated with the proximity of site PC2
to the Rio Illave also may have contributed to differences in
the diatom species composition during the intervals domi-
nated by planktonic diatoms. In modern Lake Titicaca, C. stel-
ligera is most common in the open waters of nearshore re-
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gions of the lake, whereas C. andinus is common in offshore
areas (Tapia et al., 2003). Therefore, the high abundance of C.
stelligera and the low abundance of C. andinus in the plank-
tonic dominated parts of the PC2 record prior to 6400 yr BP
may result because of the proximity of the coring site to the
Rio Illave delta. Variability among the cores in species com-
position only occurs during planktonic dominated parts of the
record, because the flora of the delta and the coring site are
likely similar during arid intervals when lake level drops and
both areas are dominated by benthic diatoms.

The proxy with the greatest fidelity among the three sites
is the §'3C of bulk organic matter. In Lake Titicaca, 5'3C is a
proxy for lake-level change, such that as lake level lowers, the
increased contribution of carbon from submersed littoral mac-
rophytes relative to planktonic algal sources produces heavier
isotopic values (Cross et al., 2000; Rowe et al., 2002). Our
hypothesis of a strong fluvial influence on the PC2 site dur-
ing wet periods in the late-Glacial and early Holocene sug-
gests that these intervals should contain riverine carbon. Riv-
erine carbon is likely to have a terrestrial source, which in
the Lake Titicaca catchment would be composed primarily of
C3 plants that are depleted in 6'3C values relative to littoral
sources (Cross et al., 2000). Thus, the §'3C characteristics of
the fluvial (C3 terrestrial) sources of carbon likely were simi-
lar to the carbon isotopic signature produced from C3 plank-
tonic algae during intervals of high lake level. As a result, the
013C stratigraphy is generally coherent among the three sites
throughout the last 13,000 yrs.

Spatial variations in sedimentary diatom assemblages and
geochemical variables have been demonstrated in a number of
paleolimnological studies, although the majority of these stud-
ies examine distributional patterns in surface sample transects
rather than long-term stratigraphic variation in cores (e.g.
Bradbury and Winter, 1976; Downing and Rath, 1988; Kie-
nel and Kumke, 2002). It is also well known that some diatom
taxa are restricted to rivers (rheophilic) and that these species
have potential as indicators of changing river inflow with time
(Ludlam et al., 1996). Yet, relatively few examples of long-
term spatial variability of stratigraphic pattern for diatoms or
other proxies have been documented in large lake systems. In
Lake Titicaca, the influence of the river system on sedimenta-
tion patterns extends to a deepwater site at considerable dis-
tance (>10 km) from the river’s mouth. It is unclear whether
the river itself is the direct source of sediment or whether the
river is transporting material from its delta to the PC2 core
site during times of high flow. Alternatively, the position of
the delta may have migrated and produced a change in the dis-
tribution of deltaic sediments. In any case, the influence of the
fluvial system and its delta was temporally variable. During
the late-Glacial and early Holocene, fluvial influence produced
spatial heterogeneity primarily during wet periods, because
the riverine and deltaic material transported during periods of
high flow differed from the material characteristic of the open
lake. In contrast, any riverine influence during dry intervals
would have simply reinforced the sedimentary characteristic

of low lake stands. Beginning about 8,000 cal yr BP, over a
period of approximately 1,500 yrs, the fluvial impact on site
PC2 gradually diminished, which is evident in the magnetic
susceptibility data. As a result, the three core sites converged
and show a similar pattern of change after 5000 cal yr BP.
Given that precipitation increased after 4,000 yr BP (Baker et
al., 2001), the reduced fluvial signature after this time is likely
related to changes in patterns of sediment deposition associ-
ated with evolution in the morphometry of the river valley, the
river delta, and the lake, rather than a change in flow. Overall
these data highlight the complex depositional environments in
large lake systems in space and time and the need for multiple
cores to adequately infer environmental history.
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