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Ultimate Ruin Probability for a Time-Series Risk 
Model with Dependent Classes of Insurance 
Business 

Lai Mei Wan,* Kam Chuen Yuen,t and Wai Keung Lit 

Abstract§ 

We consider a discrete-time risk model with m (m ~ 2) dependent classes 
of insurance business. The claim processes of these m classes are assumed 
to follow a multivariate autoregressive time-series model of order 1. Given 
this claims model, we explore the probability of ultimate ruin assuming ex­
ponentially bounded claims. As an example, we use simulations to study the 
case where there are two business and the underlying losses are of two types: 
bivariate exponential and bivariate gamma claim distributions. 
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1 Introduction 

For a book of insurance business, it is often assumed that different 
classes of policies are independent. This assumption, however, may not 
be justified in many practical situations. For example, a severe car ac­
cident may trigger auto-insurance claims as well as medical insurance 
claims. In recent years, risk models with various dependence struc­
tures have been studied by many researchers; for example, Dhaene and 
Goovaerts (1997), Ambagaspitiya (1998, 1999), Nyrhinen (1998), Wang 
(1998), Asmussen et al. (1999), Cossette and Marceau (2000), Muller and 
Pflug (2001), Albrecher and Kantor (2002), Goovaerts and Kaas (2002), 
Yuen et al. (2002), Picard et al. (2003), and Wu and Yuen (2003). 

Actuaries have considered the time-series method as a possible tool 
to model risk processes. For example, Gerber (1982) investigated the 
ruin probability by considering the annual gains which form a linear 
time series. Extensions of his result can be found in Promislow (1991) 
and Ramsay (1991). Yang and Zhang (2003) studied a risk model with 
constant interest in which the claim process and the premium process 
are described by an autoregressive model. 

In this paper, we propose a discrete-time risk model with m depen­
dent classes of policies using a time-series approach. Our objective is 
to investigate the ultimate ruin probability for this model. Specifically, 
the claim processes of the m classes are described by a multivariate 
autoregressive model of order 1 (MAR(1)). The MAR(l) model assumes 
that for each of the m classes, the total claim in a certain period de­
pends not only on the claims occurring in that period, but also on the 
total claim of its own class and that of other classes in the previous 
period. Correlation among the claim amounts of the m classes in each 
period also may be assumed. 

Note that Picard et al. (2003) considered a discrete-time model with 
several interdependent risks in which the claim amounts during succes­
sive periods are independent and identically distributed random vari­
ables. 

The MAR(l) risk model and some basic assumptions are introduced 
in Section 2. In Section 3, the ultimate ruin probability for the proposed 
model and its upper bound are investigated. Finally, simulated results 
in the bivariate case are given in Section 4 to reveal the impact of de­
pendence structure on the ruin probabilities. Some closing comments 
are given in Section 5. 
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2 The Model 

We now introduce a discrete-time risk model of an insurance port­
folio consisting of m dependent classes of insurance policies, where 
these classes are labeled 1, 2, "" m. The following assumptions are 
made: 

• Policies are open ended, Le., they remain in force for an unlimited 
length of time. 

• Each class of policies has its own premiums and claims. 

• Premiums are paid at the start of each time period (a period may 
be a year, quarter, month, etc.) and remain constant throughout 
the life of the policy. 

• The total premium paid in the ith period for the policies in class 
j is 1Tj, forj == 1,2" .. ,m. 

• Xji is the total amount of claims incurred by the class j policies 
in the ith period (we only consider exponentially bounded claims). 

• We assume that the events causing Xji will cause further claims 
in the future periods not only in the ph class but also in other 
classes. 

• Wji is the total amount of claims paid on behalf of the class j poli­
cies in the ith period. It consists of Xji and a linear combination 
of all the previous claims in all classes (Le., a linear combination 
of all XhkS for h = 1,2" .. ,m and k = 1,2" .. ,i - 1), and is 
defined in equation (1). 

• If Xi = (Xli,X2i,'" ,Xmi)' denotes the column vector of the m 
total incurred claims in period i, we assume that {Xl, X2, ... } is a 
sequence of independent and identically distributed non-negative 
random vectors having finite mean and covariance matrix. And, 
finally 

• If Wi = (Wli, W2i,"" Wmi)' denotes the column vector of the m 
total paid claims in period i, we assume that {WI, W2, ... } is a 
sequence of dependent vectors such that they follow a MAR(I) 
process, Le., Wi is given by 

Wi = AWi-I + Xi, (1) 

where A is a non-negative constant m x m matrix. Hence, the 
components of Wi are correlated. 
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The model defined by equation (1) may be useful in describing the 
dependence of several classes of insurance business in some real situ­
ations. For example, a natural disaster or a serious fire accident often 
causes various types of claims, and some of these claims such as the 
medical and disability ones may last for many periods of time. The suit­
ability of the MAR(1) model for practical purposes is limited, however, 
partly because the inherent dependence structure affects the marginal 
distributions and thus a separate statistical estimation of marginals and 
the degree of dependence is not possible from the given data. 

Let Un denote the aggregate surplus process of the insurance portfo­
lio at the end of the nth period. As usual, we define the surplus process 
of class j as 

n 

Ujn = Uj + nTTj - I Wji, 

i=l 

for n = 1,2, ... , where Uj is the initial surplus of class j. Thus, 

m n m 

Un = I Ujn = U + nTT - I I Wji, 
j=l i=l j=l 

(2) 

where U and TT are the portfolio's aggregate initial reserve and periodic 
premiums, respectively, Le., 

m 

U = I Uj 
j=l 

m 

and TT = I TTj. 

j=l 

(3) 

For notational convenience, we write '2.j;'1 Wji = 1~ Wi where 1m is an 
m-dimensional column vector of l. 

It is important for the model to be stationary with finite second­
order moments. To fulfill this second-order stationarity condition, the 
eigenvalues of A must be smaller than 1 in absolute value (see Reinsel 
1993). Specifically, all the roots of the characteristic equation of A (as 
a function of A) must be smaller than 1 in absolute value: 

h(;\') = det(M - A) = 0, (4) 

where I is an m x m identity matrix. 
Put X = Xl. Given initial value Wo = w, we see from (1) 

I-Ai . 
E(Wil = I _ A E(X) + Nw, 

which depends on i. Hence, the MAR(I) process is locally non-stationary. 
As i - 00, however, its asymptotic mean becomes 
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E(W) = limE(Wd = (I - A)-lE(X), 
i-oo 

which is independent of i. Besides, the covariance of Wji and Wj,i+l only 
depends on lag l, where l = -i, -i + 1, ... , n - i, but not on i. Thus, 
the MAR(l) process is asymptotically stationary. In this paper, the term 
stationarity is generally used to mean asymptotic stationarity. 

The net-profit condition requires that the aggregate premium should 
be greater than the expected value of the claims in each time period, 
that is, 

(
I - Ai. . ) 

1T > l~ 1 _ A E(X) + Nw , 

for all i. Here, we assume in the sense of stationarity that 

1T > l~ ((I - A)-lE(X)) , (5) 

which is a necessary condition for deriving Theorem 1 given below. 

3 The Probability of Ultimate Ruin 

Let the time of ruin T be the smallest time at which equation (2) 
becomes negative, Le., 

T = min{n: Un < OIUo = u}. 

Then, the probability of ultimate ruin given the initial surplus u, the 
aggregate premium per period 1T, and the initial claim Wo = w is given 
by 

l/1(U, 1T, w) = Pr(T < oolUo = u, 1T, Wo = w). (6) 

In order to prove the main result of the paper, we need to make use 
of the following modified surplus process. Define 

where 

()(' = l~A(I - A)-l 

= (()(l, ()(2,' .. ,()(m)' 
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It is obvious that {E 1, E2, ... } is a sequence of independent and identi­
cally distributed random variables with finite mean and variance. The 
modified surplus process On is then defined as 

On = Un - a'Wn 

= Un-l + IT - (1m + a)'Wn 

= Un - 1 + IT - (1m + a)' (AWn-l + Xn) 

= Un- 1 + IT - (1m + a)'AWn-l - (1m + a)'Xn, 

with 00 = it = u - a'w. By the definition of a, we have 

a'J = (1m + a)' A. 

This together with the definition of En allow us to rewrite the modified 
surplus as 

On = Un-l + IT - a'Wn-l - En 

= On-l + IT - En. 

It can be shown that the condition (5) is equivalent to 

(7) 

(8) 

The total premium per period can be expressed as IT = (1 + r]) lE (E 1 ) 

where r] > 0 is the relative security loading for the modified surplus 
process. It is intuitively clear from (7) that ruin is certain if r] is negative. 
We now define the adjustment coefficient R as the smallest positive 
solution of 

lE[ e-R(rr-f!lj = l. 

The adjustment coefficient is assumed to exist for all models considered 
in this paper. 

Theorem 1. For U :2: 0, 

rjJ(U, IT, w) = lE[e-RUTIT<ooj (9) 

To prove Theorem 1, one can make use of equations (7) and (8), and 
then follow the proof of the one-dimensional case given in Bowers et al. 
(1997). It should be pointed out that Theorem 1 only holds for expo­
nentially bounded claims. The following corollary is easily established: 
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Corollary 1. Given that equation (9) holds, we have 

( ) 'UUB( ) -Ru tJ1 U,IT,W s'Y U,IT,W = e . 

Proof: As all the (XiS of (X are non-negative, we have UT s UT < 0. 
Therefore, the denominator on the right hand side of (9) is greater than 
one. This gives us an upper bound tJ1UB (u, IT, w) for the ultimate ruin 
probability. 

4 Simulation Studies: Models and Results 

Simulations are used to study the effect of the time-series model­
ing and the correlation between the current claim amounts on the ruin 
probabilities in the bivariate case. 

4.1 The Models Used 

Four discrete-time risk models are used. For notational convenience, 
we set Wi = Wli, Zi = W2i, Xi = Xli, and Yi = X2i. 
Modell: 

(Wi) = (Xi) + (a b) (Wi-I) , 
Zt Yt c d Zt-I 

where a, b, c, and d are non-zero constants, and (Xi, Yd follows 
a bivariate distribution. In this model, the correlation between Wi 
and Zi comes from the AR(l) coefficients as well as the correlation 
of Xi and Yi. 

Model 2: 

(Wi) = (Xi) + (a' 0,) (Wi-I) , 
Zt Yt ° d Zt-I 

where a' and d' are non-zero constants, and (Xi, Yd comes from a 
bivariate distribution. The correlation between Wi and Zi is solely 
due to the correlation of Xi and Yi. 

Model 3: 

(W:) = (Xi) + (a b) (W~-I) , 
Zt Y t C d Zt-I 

where a, b, c, and d are non-zero constants, and Xi and Yi are 
independent. The correlation between Wi and Zi comes solely 
from the AR(l) coefficients. 
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Model 4: 

(W~) = (Xi) + (a' 0,) (Wi-I) , 
Zt Yt 0 d Zt-l 

where a' and d' are non-zero constants, and Xi and Yi are inde­
pendent. In this model, Wi and Zi are independent. 

In order to obtain a consistent comparison across models, Xi and Yi 
are set to have equal mean in each of the four models. In order to do a 
fair comparison, the parameters a, b, c, d, a', and d' are chosen in the 
way that the asymptotic means of Wand Z, lE[W] and lE[Z], in the four 
models are equal. Thus, we set 

, lE(X) 
a = 1 - lE(W)' and d' = 1 _ lE(Y) 

lE(Z) . 

In our simulation studies, we consider two bivariate distributions for 
the two types of claims in Models 1 and 2. One is the bivariate expo­
nential distribution while the other is the bivariate gamma distribution. 
Hence, the claim amounts of the two classes in Models 3 and 4 are gen­
erated from the corresponding marginal distributions. 

4.2 Bivariate Exponential Distribution 

4.2.1 An Overview 

Block and Basu (1974) introduced the so-called absolutely contin­
uous bivariate exponential distribution which possesses the loss of 
memory property. Here, we simply called it the bivariate exponen­
tial distribution. Assume that the claim amounts (X, Y) follow the bi­
variate exponential distribution. With parameters ?Il, A2, A12 > 0, and 
A = Al + A2 + A12, the joint distribution function of (X, Y) is defined as 

F(x,y) 
A 

A A exp (-AIX - A2Y - AI 2max(x,y)) 
1 + 2 

A 12 
- A A exp (-Amax(x,y)), 

1 + 2 

for x, y > O. Note that A12 is the key parameter determining the corre­
lation between X and Y and that X and Yare independent when A12 = O. 
Some of the statistical properties derived by Block and Basu (1974) (with 
minor corrections) are as follows: 
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JE(X) = 1 + i\12i\2 
i\1 + i\12 i\(i\1 + i\2)(i\1 + i\d' 

JE(Y) _ 1 + i\ 12 i\1 
- i\2 + i\12 i\(i\1 + i\2)(i\2 + i\12)' 

'Var(X) = 1 + i\12i\2(2i\1i\ + i\12i\2) 
(i\1 +i\12)2 i\2(i\1 + i\2)2(i\1 + i\12)2' 

'Var(Y) = 1 + i\12i\1 (2i\2i\ + i\12i\1) 
(i\2 + i\d 2 i\2(i\1 + i\2)2(i\2 + i\12)2' 

<C (X Y) = (i\I + i\~)i\12i\ + i\1i\2i\I2 
ov, i\2(i\I+i\2)2(i\I+i\12)(i\2+i\12)' 

p(X, Y) = i\12((i\I + i\~)i\ + i\ 1i\ 2i\12) 

x )( (i\1 + i\2)2(i\1 + i\12)2 + i\2(i\2 + 2'\1)i\2) 

X ~((i\1 + i\2)2('\2 + i\12)2 + i\di\1 + 2'\2)i\2), 

where p(X, Y) is the correlation coefficient of X and Y. It is easy to 
see that X and Yare positively correlated. Block and Basu (1974) also 
derived some useful properties of the bivariate exponential distribution 
which allow us to generate (X, Y) easily. The properties include: 

1. min(X, Y) follows exponential distribution with mean ,\. 

2. The difference C = X - Y has distribution function 

F(g) = { IIj~1I2 ;xp ((i\2 + i\12)g) , 9 ~ 0, 
1- II

j
; 1I2 exp (-(i\1 + i\12)g) , 9 > O. 

3. min(X, Y) is independent of C. 

Based on these properties, one can generate random variables (X, Y) 
using the following steps: 

Step 1: Generate random variables Rl and R2 following uniform (0,1) 
distribution. 

else go to Step 5. 
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Step 3: X = -In(~-Rtl and Y = X-G. 

Step 4: Go to Step 1 for a new set of X and Y. 

Step 5: G > 0 and 

Step 6: Y = (-In (1 - R 1)) / A and X = G + Y. 

Step 7: Go to Step 1 for a new set of X and Y. 

4.2.2 Simulation Results 

In our simulation studies, we arbitrarily select a = 0.4, b = 0.2, 
c = 0.2, and d = 0.4 for Models 1 and 3. With these parameter values, 
the solutions of (4) with m = 2 are 0.2 and 0.6. For Models 2 and 4, 
we set a' = 0.6 and d' = 0.6. Then, both roots of (4) equal 0.6. There­
fore, the stationarity condition is satisfied in each of the four models. 
The parameters of the bivariate exponential distribution are chosen to 
be Al = A2 = 0.070466 and A12 = 0.38486. Hence, JE(X) = JE(Y) = 3 
and the asymptotic means of Wand Z are JE(W) = JE(Z) = 7.5. The 
correlation coefficient of X and Y is p(X, Y) = 0.3333. The asymptotic 
variances Var(W) and Var(Z), the asymptotic covariance Cov(W, Z), 
and the asymptotic correlation coefficient p(W, Z) can be calculated 
using the standard method for a typical stationary MAR(I) modeL Fur­
ther details about the calculation of these values can be found in Reinsel 
(1993). Their numerical values are summarized in Table 1 and can serve 
as indicators for the variances, covariances, and correlation coefficients 
of Wi and Zi. 

Table 1 
Asymptotic Variances, Covariances and Correlation 
Coefficients for Bivariate Exponential distribution 

Model Var(W) Var(Z) Cov(W, Z) p(W, Z) 
1 10.0482 10.0482 5.0238 0.5000 
2 11.3043 11.3043 3.7677 0.3333 
3 9.4203 9.4203 1.8841 0.2000 
4 11.3043 11.3043 0.0000 0.0000 
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The relative security loading 17 is set to be 0.05, so the constant total 
premium per period is TT = 15.75. The initial values are U = 10 and 
W = Z = O. The number of simulations used for computing the results 
is 10,000, and the sample size is 100. We first study the finite-time ruin 
probability which is defined as 

l/JN(U,TT,W,Z) = Pr(T::; NIUo = U,TT, WO = w,Zo = z). 

The results are shown in Table 2 with standard errors in parentheses. 
It is observed that as N increases, the finite-time ruin probabilities for 
the four models increase. As N - 00, with other parameters fixed, 
the values of l/J N (u, TT, W, z) approach the ultimate ruin probability 
l/J(u, TT, w, z). 

We also compare the results across the four models with the same 
length of period. The values of the finite-time ruin probability for Model 
1 are greater than those for Model 2 simply because Modell has a higher 
degree of dependence which leads to a higher asymptotic correlation 
coefficient p (W, Z). With the same argument, the finite-time ruin prob­
abilities for Model 3 are greater than those for Model 4. Moreover, the 
finite-time ruin probabilities for Modell and Model 2 are higher than 
those for Model 3 and Model 4, respectively, because the correlation 
between X and Y introduces additional dependence in the former two 
models. 

From Table 2, we see that the values of l/JN (u, TT, w, z) for N = 1,800 
and N = 2, 000 are very close. Therefore, the value of l/J N (u, TT, W, z) 
with N = 1,800 can be treated as a good approximation of the ultimate 
ruin probability in the following numerical studies. 

Simulation studies are further carried out to investigate how the 
ultimate ruin probability is affected by the value of the initial surplus u. 
For TT = 15.75 and W = z = 0, the ultimate ruin probabilities for various 
values of U are summarized in Table 3. With a larger initial surplus, the 
approximated values of the ultimate ruin probability become smaller. 
It is also noticed that as the value of U increases, the standard error for 
the estimated upper bound also increases. This can be easily explained 
by the form of the upper bound, that is, l/JUB (u, TT, w, z) = exp( -Ru). 
In words, a small deviation of the simulated R from the mean has a 
relatively much larger effect on the upper bound with a large value of 
u. The relation between the relative security loading and the ultimate 
ruin probability also is examined. Table 4 summarizes the results with 
U = 10 and W = z = O. As 17 increases, the ultimate ruin probabilities 
decrease very quickly. 
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Finally, in view of Theorem 1, we discuss the empirical behavior of 
the adjustment coefficient R as a function of the model parameters. 
From Tables 3 and 4, we see that R increases as u or TT increases. In 
general, for a given set of (u, TT), l/lUB decreases steadily as the degree 
of dependence decreases from Model 1 to Model 4, and hence R is not 
too sensitive to the model change (that is, the change in the degree 
of dependence). If we fix a model and change the correlation between 
X and Y, empirical evidence also shows that R decreases in a rather 
uniform manner as the correlation between X and Y increases. 

4.3 Bivariate Gamma Distribution 

4.3.1 An Overview 

Johnson and Kotz (1972) constructed a multivariate gamma distri­
bution from independent random variables Ho, HI, .. . , Hm where Hj 
follows standard gamma distributions with parameters 8j Wj > 0) 
for j = 1,2"" ,m. Here, we only consider the bivariate case. Let 
X = Ho + HI and Y = Ho + H2. Then, the claim amounts (X, Y) have a 
bivariate gamma distribution with joint density 

e-(X+Y) lmin(x,y) 
f( ) - 00- 1 ( )°1- 1 ( )°2- 1 Zd 

X,Y - r( 80)r(8Ilr(82) ° z x - z Y - z e z, 

with lE(X) = Var(X) = 80 + 81 , lE(Y) = Var(Y) = 80 + 82, Cov(X, Y) = 
80, and 

80 
p(X, Y) = -'/(eo + 8Il(eo + 82) 

It is clear that X and Yare positively correlated. Hence, the bivariate 
gamma random variables (X, Y) can be generated using the following 
steps: 

Step 1: Generate Ho, HI, and H2 from standard gamma distributions 
with means 80, 81 , and 82, respectively. 

Step 2: X = Ho +H1 and Y = Ho +H2. 

Step 3: Go to Step 1 for a new set of X and Y. 
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4.3.2 Simulation Results 

Similar to the simulation studies in Section 4.2, we set a = 0.4, 
b = 0.2, C = 0.2, and d = 0.4 for Models 1 and 3 and a' = d' = 0.6 
for Models 2 and 4. These parameter values imply that all the four 
models satisfy the stationarity condition. The parameters of the bivari­
ate gamma distribution are arbitrarily selected as eo = 1, el = 2, and 
e2 = 2 so that the means of X and Y and the asymptotic means of W 
and Z are the same as those in Section 4.2, that is, lE(X) = lE(Y) = 3 
and lE(W) = lE(Z) = 7.5. The correlation coefficient of X and Y is 
also 0.3333. The asymptotic variances 'Var(W) and 'Var(Z), the asymp­
totic covariance Cov(W, Z), and the asymptotic correlation coefficient 
p(W, Z) are shown in Table 5. 

Again, we let TJ = 0.05, TT = 15.75, U = 10, and w = z = 0. The num­
ber of simulations and the sample size are also 10,000 and 100, respec­
tively. Table 6 presents the finite-time ruin probability tfJN(U, TT, w, z) 
for various values of N. As expected, the observations made in Section 
4.2 from Table 2 also hold in this case. The values in Table 2, however, 
are generally higher than those in Table 6. It is mainly due to the fact 
that the asymptotic variances 'Var(W) and'Var(Z) are larger in Section 
4.2 (although the asymptotic means and the asymptotic correlation co­
efficients are the same in both sections). 

As shown in Table 6, the finite-time ruin probabilities with N = 

1,000 and N = 1,500 are the same. Therefore, we use N = 1,000 
to obtain approximations of the ultimate ruin probabilities. Table 7 
displays the ultimate ruin probabilities for U = 5,10,15,20,25,30,50 
with TT = 15.75 and W = z = 0 while Table 8 shows the ultimate ruin 
probabilities for eight values of TJ with U = 10 and W = z = 0. Not 
surprisingly, the patterns of Tables 7 and 8 are more or less parallel to 
those of Tables 3 and 4, respectively. Also, the empirical behavior of R 
in this case is similar to that in Section 4.2. 
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Table 2 
Finite-Time Ruin Probabilities !fJN(U, IT, w, z) and 

Upper Bounds for Ultimate Ruin Probabilities 
!fJUB (u, IT, w, z) with U = 10, IT = 15.75 and 

w = z = 0 for Bivariate Exponential Distribution 
Modell Model 2 Model 3 Model 4 

N !fJN !fJN !fJN !fJN 

50 0.3328 0.3187 0.2610 0.2394 
(0.0108) (0.0146) (0.0098) (0.0098) 

100 0.4148 0.4007 0.3416 0.3217 
(0.0098) (0.0143) (0.0080) (0.0091) 

150 0.4518 0.4362 0.3780 0.3592 
(0.0087) (0.0138) (0.0069) (0.0086) 

200 0.4708 0.4558 0.3982 0.3794 
(0.0081) (0.0135) (0.0066) (0.0081) 

500 0.5046 0.4918 0.4347 0.4154 
(0.0075) (0.0128) (0.0060) (0.0075) 

800 0.5105 0.4982 0.4407 0.4213 
(0.0073) (0.0127) (0.0060) (0.0074) 

1,000 0.5ll8 0.4997 0.4420 0.4226 
(0.0073) (0.0126) (0.0060) (0.0074) 

1,200 0.5123 0.5003 0.4426 0.4231 
(0.0073) (0.0126) (0.0059) (0.0074) 

1,500 0.5134 0.50ll 0.4435 0.4241 
(0.0072) (0.0125) (0.0059) (0.0074) 

1,600 0.5136 0.5012 0.4436 0.4242 
(0.0072) (0.0125) (0.0059) (0.0074) 

1,800 0.5137 0.5013 0.4437 0.4244 
(0.0072) (0.0125) (0.0059) (0.0074) 

2,000 0.5137 0.5014 0.4438 0.4244 
(0.0072) (0.0125) (0.0059) (0.0074) 

!fJUB !fJUB !fJUB !fJUB 

0.8914 0.8833 0.8750 0.8717 
(0.0620) (0.0723) (0.0672) (0.0653) 



Table 3 ~ 
llitimate Ruin Probabilities ljJ (u, IT, W, z) and their Upper Bounds ljJUB (u, IT, W, z) 

::s 
(\) 

with IT = 15.75 and W = z = 0 for Bivariate Exponential Distribution 
.... 
~ 

Modell Model 2 Model 3 Model 4 
~ 

u ljJ ljJUB ljJ ljJUB ljJ ljJUB ljJ ljJUB s:: 
:sO 

5 0.5452 0.9436 0.5323 0.9391 0.4728 0.9347 0.4524 0.9330 'IJ 

(0.0070) (0.0329) (0.0135) (0.0387) (0.0057) (0.0360) (0.0078) (0.0350) cl 
~ 

10 0.5137 0.8914 0.5013 0.8833 0.4437 0.8750 0.4244 0.8717 !O:l 
~ 

(0.0072) (0.0620) (0.0125) (0.0723) (0.0059) (0.0672) (0.0074) (0.0653) 
:::.: 
;::;: 

'<:: 
30 0.4057 0.7186 0.3963 0.7030 0.3453 0.6817 0.3297 0.6736 C)' 

(0.0075) (0.1486) (0.0101) (0.1682) (0.0063) (0.1554) (0.0074) (0.1518) "" :::l 
50 0.3210 0.5902 0.3137 0.5735 0.2692 0.5432 0.2564 0.5321 3l 

(\) 

(0.0072) (0.2013) (0.0080) (0.2237) (0.0063) (0.2048) (0.0067) (0.2007) ~ 
(\) 

70 0.2541 0.4934 0.2490 0.4786 0.2105 0.4422 0.2002 0.4294 "" ~. 

(0.0066) (0.2333) (0.0067) (0.2561) (0.0059) (0.2320) (0.0058) (0.2280) '" ~ 
90 0.2013 0.4193 0.1973 0.4077 0.1644 0.3673 0.1563 0.3537 i;;' 

;>;;-

(0.0057) (0.2526) (0.0056) (0.2751) (0.0052) (0.2461) (0.0050) (0.2427) s:: 
0.3619 0.3107 

c no 0.1596 0.1567 0.3538 0.1283 0.1218 0.2971 s::t. 

(0.0057) (0.2640) (0.0045) (0.2862) (0.0049) (0.2527) (0.0046) (0.2500) 
~ 

150 0.0998 0.2809 0.0989 0.2792 0.0785 0.2335 0.0742 0.2208 
(0.0043) (0.2746) (0.0030) (0.2956) (0.0038) (0.2539) (0.0033) (0.2534) 

200 0.0556 0.2183 0.0556 0.2228 0.0422 0.1762 0.0401 0.1656 
(0.0028) (0.2780) (0.0021) (0.2970) (0.0024) (0.2468) (0.0023) (0.2495) N 

0 
'-l 



N 
0 
00 

Table 4 
Ultimate Ruin Probabilities tfJ (u, IT, W, z) and their Upper Bounds tfJUB (u, IT, W, z) 

with u = 10 and W = z = 0 for Bivariate Exponential Distribution 
Modell Model 2 Model 3 Model 4 

11 tfJ tfJUB tfJ tfJUB tfJ tfJUB tfJ tfJUB 

0.01 0.8488 0.9599 0.8347 0.9482 0.8175 0.9485 0.8111 0.9486 
(0.0024) (0.0465) (0.0052) (0.0574) (0.0031) (0.0524) (0.0025) (0.0509) 

0.03 0.6696 0.9282 0.6565 0.9174 0.6124 0.9139 0.5973 0.9111 
(0.0043) (0.0575) (0.0094) (0.0673) (0.0042) (0.0639) (0.0047) (0.0608) '--Cl 

s:: 
0.05 0.5137 0.8914 0.5013 0.8833 0.4437 0.8750 0.4244 0.8717 "" ::; 

(0.0072) (0.0620) (0.0125 ) (0.0723) (0.0059) (0.0672) (0.0074) (0.0653) ~ 
Cl 

0.08 0.3488 0.8389 0.3362 0.8314 0.2768 0.8184 0.2584 0.8156 -.... 
:t:. 

(0.0099) (0.0648) (0.0128) (0.0712) (0.0084) (0.0657) (0.0093) (0.0671) r, .... s:: 
0.1 0.2701 0.8065 0.2593 0.7992 0.2032 0.7840 0.1867 0.7811 !;:) 

"" (0.0110) (0.0643) (0.0120) (0.0684) (0.0093) (0.0638) (0.0094) (0.0658) ~ 
0.15 0.1442 0.7355 0.1386 0.7297 0.0962 0.7096 0.0849 0.7062 "\J 

"" !;:) 

(0.0108) (0.0611) (0.0092) (0.0631) (0.0084) (0.0593) (0.0075) (0.0625) r, .... 
0.2 0.0782 0.6775 0.0762 0.6728 0.0468 0.6487 0.0400 0.6448 

;::;. 
j1) 

(0.0095) (0.0596) (0.0068) (0.0601) (0.0066) (0.0571) (0.0053) (0.0608) ~ 0.3 0.0240 0.5883 0.0249 0.5853 0.0116 0.5546 0.0096 0.5503 -(0.0052) (0.0595) (0.0035) (0.0584) (0.0029) (0.0570) (0.0023) (0.0606) .1\; 

I\; 
a 
a 
VI 
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Table 5 
Asymptotic Variances, Covariances and Correlation 

Coefficients for Bivariate Gamma Distribution 
Model Var(W) Var(Z) Cov(W, Z) p(W, Z) 

1 4.1667 4.1667 2.0833 0.5000 
2 
3 
4 

4.6875 4.6875 
3.9062 3.9062 
4.6875 4.6875 

l.5625 
0.7812 
0.0000 

Table 6 

0.3333 
0.2000 
0.0000 

Finite-Time Ruin Probabilities t/JN(U, TT, w, z) and 
Upper Bounds for Ultimate Probabilities 

t/JUB (u, TT, w, z) with U = 10, TT = 15.75 ana 
W = z = 0 for Bivariate Gamma Distribution 

Modell Model 2 Model 3 Model 4 
N t/JN t/JN t/JN t/JN 

50 0.2174 0.1522 0.0964 0.0720 
(0.0053) (0.0092) (0.0039) (0.0026) 

100 0.2724 0.2058 0.1344 0.1077 
(0.0051) (0.0094) (0.0042) (0.0031) 

150 0.2931 0.2263 0.1489 0.1218 
(0.0052) (0.0095) (0.0044) (0.0030) 

200 0.3024 0.2360 0.1556 0.1286 
(0.0052) (0.0096) (0.0044) (0.0031) 

500 0.3140 0.2480 0.1618 0.1346 
(0.0052) (0.0097) (0.0045) (0.0031) 

800 0.3149 0.2489 0.1621 0.1349 
(0.0051) (0.0097) (0.0045) (0.0031) 

1,000 0.3150 ) 0.2490 0.1622 0.1349 
(0.0051) (0.0096) (0.0045) (0.0031) 

1,500 0.3150 0.2490 0.1622 0.1349 
(0.0051) (0.0096) (0.0045) (0.0031) 

t/JUB t/JUB t/JUB t/JUB 

0.7555 0.7508 0.6997 0.6961 
(0.0997) (0.0912) (0.0845) (0.0907) 
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N ...... 
0 

Table 7 
llitimate Ruin Probabilities </J (u, 1T, W, z) and their Upper Bounds </JUB (u, 1T, W, z) 

with 1T = 15.75 and W = z = 0 for Bivariate Gamma Distribution 
Modell Model 2 Model 3 Model 4 

U </J </JUB </J </JUB </J </JUB </J </JUB 

5 0.3643 0.8673 0.2866 0.8649 0.1963 0.8349 0.1632 0.8325 
(0.0058) (0.0578) (0.0108) (0.0529) (0.0050) (0.0505) (0.0033) (0.0544) 

10 0.3150 0.7555 0.2490 0.7508 0.1622 0.6997 0.1349 0.6961 '-
0 
t:: 

(0.0051) (0.0997) (0.0096) (0.0912) (0.0045) (0.0845) (0.0031) (0.0907) "'" ~ 
15 0.2729 0.6610 0.2165 0.6541 0.1340 0.5884 0.1118 0.5845 ~ 

0 
(0.0050) (0.1299) (0.0083) (0.1185) (0.0039) (0.1065) (0.0028) (0.1140) -., 

~ 
20 0.2366 0.5807 0.1883 0.5720 0.1110 0.4967 0.0925 0.4928 ~ .... 

t:: 
(0.0046) (0.1513) (0.0073) (0.1375) (0.0035) (0.1199) (0.0024) (0.1280) I:) 

"'" 25 0.2056 0.5123 0.1637 0.5019 0.0921 0.4207 0.0764 0.4172 ~ 
(0.0042) (0.1663) (0.0063) (0.1503) (0.0031) (0.1270) (0.0021) (0.1354) "1J 

~ 
30 0.1785 0.4538 0.1424 0.4419 0.0763 0.3576 0.0632 0.3546 ~ .... 

(0.0037) (0.1763) (0.0053) (0.1584) (0.0029) (0.1298) (0.0018) (0.1382) 
;::;. 
~ 

50 0.1011 0.2901 0.0814 0.2745 0.0360 0.1931 0.0292 0.1924 ~ (0.0027) (0.1886 ) (0.0032) (0.1640) (0.0017) (0.1184) (0.0014) (0.1267) -~"v 
"v 
<:> 
<:> 
u, 



~ 
Table 8 ::s 

(\) 

Ultimate Ruin Probabilities tjJ (u, IT, W, z) and their Upper Bounds tjJUB (u, IT, W, z) 
..... 

with u = 10 and W = z = 0 Bivariate Gamma Distribution ~ 

Modell Model 2 Model 3 Model 4 
~ 
s::: 

tjJ tjJUB tjJ tjJUB tjJ tjJUB tjJ tjJUB 
Si· 

17 "\J 

0.01 0.7516 0.9173 0.7003 0.9142 0.6482 0.9193 0.6215 0.9103 d 
I:S"" 

(0.0036) (0.0898) (0.0078) (0.0868) (0.0057) (0.0806) (0.0031) (0.0890) ~ 

~ 
0.03 0.4988 0.8378 0.4286 0.8341 0.3331 0.8084 0.2992 0.8029 ;:.: 

'" (0.0055) (0.1029) (0.0103) (0.0988) (0.0052) ( 0.0943) (0.0035) (0.1023) CS' 
0.05 0.3150 0.7555 0.2490 0.7508 0.1622 0.6997 0.1349 0.6961 "" :::! 

(0.0051) (0.0997) (0.0096) (0.0912) (0.0045) (0.0845) (0.0031) (0.0907) ~ 
(\) 

0.08 0.1587 0.6491 0.1118 0.6451 0.0560 0.5695 0.0410 0.5676 ~ 
(\) 

(0.0048) (0.0870) (0.0063) (0.0770) (0.0026) (0.0716) (0.0019) (0.0743) "" ~. 

0.1 0.1012 0.5903 0.0667 0.5868 0.0282 0.5002 0.0186 0.4992 '" ~ 
(0.0039) (0.0805) (0.0047) (0.0700) (0.0018) (0.0654) (0.0013) (0.0661) 

<:;;. 
;0;;-

0.15 0.0332 0.4750 0.0193 0.4724 0.0053 0.3701 0.0030 0.3707 :s: c 
(0.0025) (0.0695) (0.0024) (0.0588) (0.0008) (0.0556) (0.0005) (0.0523) ~ 

~ 
0.2 0.0110 0.3913 0.0058 0.3892 0.0010 0.2814 0.0004 0.2831 

(0.0014) (0.0634) (0.0011) (0.0534) (0.0003) (0.0506) (0.0002) (0.0446) 
0.3 0.0014 0.2794 0.0006 0.2781 0.0000 0.1725 0.0000 0.1753 

(0.0004) (0.0584) (0.0003) (0.0508) (0.0000) (0.0460) (0.0000) (0.0371) 
N 
i-' 
i-' 
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