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In recent decades, noise levels in cities and the associated annoyance and health 

consequences have become regular topics of discussion. As a result, the assessment of 

environmental noise transmitting into buildings has received much attention. Current 

models of sound transmission through open windows have either neglected their 

thickness or the presence of a room behind on one side. The objectives of the present 

work were to (1) develop an accurate analytical model of sound transmission through an 

open window of finite thickness into a room, (2) verify the analytical model using a finite 

element model and experimental measurements, and (3) to express the various regions of 

the model in terms of impedance matrices. The motivation behind the third objective is 

that active noise control design based on the impedance-mobility approach has shown 

much promise, and the mathematical combination of impedance matrices representing 

two distinct regions linked by a finite aperture has not been considered. To better 

understand the mechanics by which sound transmits through the window, the present 

investigation developed an analytical model of a baffled rectangular aperture of finite 

thickness backed by a rigid walled cavity.  The effect of aperture thickness on the 

insertion loss and sound pressure levels inside the cavity was studied with the analytical 

model, which was validated by a finite element model of the system. Increasing window 



 

 

thickness decreases the amount of sound transmitted at frequencies below the (1,1) mode 

of the cavity. Using the impedance-mobility approach, the model can be extended to 

consider many noise control treatments to windows including active noise control. 
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Chapter 1 – Introduction 

 

1.1 Motivation 

In recent decades, noise levels in cities and the associated annoyance and health 

consequences have become regular topics of discussion (Amundsen et al., 2013; de 

Araújo and Bistafa, 2012; Naish et al., 2012; Kluizenaar et al., 2011). As a result, the 

assessment of environmental noise transmitting into buildings has received much 

attention, such as vehicle noise prediction methods (Asakura et al., 2013; Steele, 2001) 

and development of standards to evaluate the effectiveness of façades and windows at 

mitigating this noise (Buratti et al., 2013; Berardi, 2012; Sánchez Bote et al., 2012). As 

with any noise-related issue, three approaches can be taken: controlling the noise at the 

source, in the transmission, or at the receiver (Bies and Hansen, 2009). For the problem 

of noise transmission into buildings, controlling the transmission is often the most 

reasonable option. The best approach to reducing the noise transmission is to fortify the 

weakest element, which for building façades are normally windows, especially when they 

are open as is common in warmer climates.  

The objectives of the present work were to (1) develop an accurate analytical 

model of sound transmission through an open window of finite thickness into a room, (2) 

verify the analytical model using a finite element model and experimental measurements, 

and (3) to express the various regions of the model in terms of impedance matrices that 

are compatible with the mobility and impedance methods of structural dynamics used in 

the analysis of structural-acoustic systems (Gardonio and Brennan, 2002; Kim and 
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Brennan, 1999). The motivation behind the third objective is that active noise control 

design based on the impedance-mobility approach has shown much promise (Lau, 2003; 

Lau and Tang, 2001), and the mathematical combination of impedance matrices 

representing two distinct regions linked by a finite aperture has not been considered, e.g. 

an open window of finite thickness connecting a room to some other environment.  

  

1.2 Literature Review 

A literature review on apertures was conducted to understand the propagation of 

sound through open windows, and previous research on cavities was considered for the 

derivation of the sound field in a room. As the following development depends on modal 

analysis of the various regions (exterior, window/aperture, and room/cavity), studies 

related to duct acoustics are also relevant, as apertures may be analyzed as short ducts 

and cavities can be considered terminated ducts.  

 

1.2.1 Sound transmission into a cavity 

Previous research has considered the propagation of sound into cavities but 

treated the apertures as an open wall and neglected the finite thickness of the aperture 

(Jean, 2009; Zhang et al., 2002; Kropp and Berillon, 1998). Studies of sound propagating 

into a cavity have used the geometry pictured in Figure 1.1 consisting of a cavity with an 

opening   and thickness     in an infinite rigid baffle. At  , incident, reflected, and 

radiated waves are coupled to modes in the cavity.  
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Figure 1.1 – Sound transmission into a cavity (Sieck and Lau, 2011) 

 

Zhang et al. (2002) studied the coherence of acoustic pressure on either side of a 

window due to traffic noise. Results from his theoretical evaluation were well-matched to 

results from in-situ experiments indicating that it is reasonable to model noise control 

techniques for this situation. The focus of two other studies (Jean, 2009; Kropp and 

Berillon, 1998) was to model the sound field within an external balcony and propose 

techniques to decrease sound levels. At low and middle frequencies there were higher 

sound pressure levels at the back of the balcony due to resonance modes. Because the 

wall between a balcony and the interior of a building is often comprised of glass, which 

acts as a low pass filter, there would be an increase in sound transmission into the 

building at low and middle frequencies. Recent research has looked at more specifically 

at balcony design to reflect environmental noise (Ishizuka and Fujiwara, 2012) and the 

associated health benefits (Naish et al., 2012).  

 

1.2.2 Sound transmission through apertures of finite thickness 

Several studies have analyzed the radiation and transmission of sound by an 

aperture of finite thickness set in a rigid, infinite baffle with the sound as arriving from 
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and propagating into semi-infinite regions (Sgard et al., 2007; Horner and Peat, 2006; 

Pierce et al., 2002; Sauter, Jr. and Soroka, 1970). The radiation from an aperture is of 

particular interest because it is the most computationally difficult. Several 

approximations and numerical solutions have been proposed (Horner and Peat, 2006; 

Nelisse et al., 1998; Park and Eom, 1997), and an analytic solution has been developed 

by Pierce et al. (2002) for an aperture backed by an arbitrary acoustic system. Sauter, Jr. 

and Soroka (1970) developed a theoretical relationship for the transmission of sound 

between two reverberant rooms, and Sgard et al. (2007) developed a mathematical model 

for an aperture bounded on both sides by half-space. Experimental validation for this 

model was provided by Trompette et al. (2009). As shown in Figure 1.2, this model 

consisted of incident, reflected, and radiated waves existing in half-space coupled to 

aperture modes through the surface   ; the aperture modes were then coupled to a wave 

radiating into a second half-space through surface   . 

 

 

Figure 1.2 – Sound transmission through an aperture (Sieck and Lau, 2011) 
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1.2.3 Active noise control and the impedance-mobility approach 

One method that has been investigated to control sound in the systems introduced 

in the two previous sections is that of active noise control, generating sound to cancel out 

sound. This approach is particularly attractive because it works with the window open, 

thereby allowing airflow. Active systems have been proposed for sound transmission 

through an aperture in a rigid screen (Emms and Fox, 2001; Duhamel and Sergent, 1998), 

a transparent acoustic transducer as a window to cancel external noise but not internal 

sound (Hu et al., 2013), and an active window system for an open window with sensors 

exterior to the building and control sources on the window frame (Kwon and Park, 2013).  

The impedance-mobility approach was originally developed to study structural 

dynamics (Gardonio and Brennan, 2002), and has been recently been applied to the 

analysis of coupled structural-acoustic systems (Kim and Brennan, 1999). Lau and Tang 

(2001) used this approach to develop an active noise control system for structure-borne 

noise in a cavity. They showed that with this approach, the energy-density in a cavity can 

be significantly reduced. 

 

1.3 Thesis Outline 

Chapter 2 provides a description of the present model of a finite aperture backed 

by a cavity and contains the mathematical development to analytically model the sound 

fields. The details regarding simulations of the analytical model and finite element model 

and the experiment are contained in Chapter 3, and the results and discussion of these 
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studies are presented in Chapter 4. An impedance-mobility expression of the analytical 

model is developed in Chapter 5.  
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Chapter 2 – Theoretical Development 

 

2.1 Introduction 

2.1.1 Geometry of the model 

The geometry under consideration in this thesis is shown in Figure 2.1.  The 

geometry consists of a cavity with dimensions          with an opening in the    

plane notated in Figure 2.1 as   . The aperture between surfaces     and     has some 

finite thickness,  , and beyond surface    in the negative z-direction is infinite half-space. 

  

 

Figure 2.1 – Present model of sound transmission into a cavity through an aperture of finite thickness 

(Sieck and Lau, 2011) 

 

The coordinate systems and dimensions are displayed in Figure 2.2 which shows 

cuts along the planes      and    . The origin is centered on   , and this opening 

extends        and       . For generality, the aperture (i.e. the opening) may 
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not be centered on the cavity wall. Lengths   ,   ,   , and    were defined such that    

and    are the distances from the aperture to the cavity walls in the negative   and   

directions, respectively, and    and    are the distances from the origin to the cavity 

walls in the positive   and   directions, respectively. 

 

 
Figure 2.2 – Coordinate system and dimensions of present model 

             

The goal is to model the half-space, aperture, and cavity as acoustic and/or 

mechanical impedances such that the impedance-mobility approach (Kim and Brennan, 

1999) can be used to model noise control treatments, such as active control (Lau and 

Tang, 2001). There are three “impedance” terms that appear in the study of acoustics: 

mechanical impedance which maps a velocity to a force potential, specific acoustic 

impedance which maps particle velocity to acoustic pressure, and acoustic impedance 

which maps volume velocity to acoustic pressure (Kinsler et al., 2000). The following 

development will be performed in terms of mechanical and acoustic impedances. 

Certainly specific acoustic impedance could be used as well; see, for example, 

Muehleisen (1996).  However, in the interest of making the results compatible with the 
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impedance-mobility method, all impedances will be reported as mechanical or acoustic. 

The impedance-mobility method is addressed in Chapter 5. 

 

2.1.2 Notation 

Assuming a continuous, time-harmonic, acoustic pressure field, the following 

development will be presented in the frequency domain using the time convention in 

Equation (2.1) where   denotes the angular frequency of the sound,   is time, and   is the 

complex amplitude of acoustic pressure. Variables will be subscripted with either an   for 

aperture or   for cavity, and impedances will be superscripted with an   for mechanical 

or   for acoustic. 

 

                         (2.1) 

 

2.2 Regional Development 

2.2.1 Sound field in half-space 

The half-space region,    , can be replaced by an interface boundary condition 

written as the sum of an incident wave, reflected wave, and a wave radiated from the 

aperture:                    . According to the method of images, the reflected 

wave will have the same form as the incident wave except that the argument   is replaced 

by its negative (Kinsler et al., 2000). The surface boundary condition dictates the 

combination of incident and reflected on the surface    , here assumed to be rigid 

except on the aperture. The outward normal component (away from surface and into half-

space) of the particle velocity at    ,          , where the subscript n denotes surface 
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normal, will be zero everywhere except possibly on the aperture, a result of assuming 

rigid boundary conditions. Because there is non-zero particle velocity on the aperture, it 

can be regarded as the source of the wave that radiates from the aperture into half-space 

(Pierce et al., 2002). Therefore, the acoustic pressure on the interface of the aperture and 

the half-space region can be written as 

 

                                       (2.2) 

 

where the incident and reflected waves constructively interfere on the surface and the 

radiated acoustic pressure is given by the Rayleigh integral,  

 

                                              
  

 
   

  (2.3) 

 

(Sgard et al., 2007; Pierce et al., 2002; Zhang et al., 2002). Here,                     

          is the Green’s function for radiation from an aperture in a rigid baffle, and 

                   is the distance between two points on the surface    . 

The incident acoustic pressure wave can be generated by any source in the half-

space. Particular sources considered in the literature include an incident plane wave 

(Sgard et al., 2007), a point source (Jean, 2009; Kropp and Berillon, 1998), and an 

incoherent line source to model traffic flow (Zhang et al., 2002; Duhamel and Sergent, 

1998).  
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2.2.2 Sound field in aperture 

Equation (2.4) expresses the acoustic pressure within the aperture, notated by the 

subscript a, using a Fourier expansion of propagating and evanescent modes along the z-

axis (Sgard et al., 2007). 

 

                                        
                   

  

  

 (2.4) 

 

     
  and      

  are pressure amplitudes of the    mode for waves traveling in the    

directions where subscripts   and   are mode identifiers in the   and   directions, 

respectively. The modal wavenumbers are represented by      , while            are 

the transverse mode shapes for the aperture modeled as a rectangular waveguide. 

The transverse mode shapes for a rectangular waveguide with rigid walls and 

dimensions       can be written as 

 

                              
  

  
          

  

  
        (2.5) 

 

and by orthogonality 

 

                     
  

                        (2.6) 



12 

 

where               and       
     
     

   in Equations (2.5) and (2.6) is the Dirac 

delta function. From the transverse modes, the wavenumber in the    direction can be 

expressed as 

 

      

 
 
 

 
 

     
  

  
 

 

  
  

  
 

 

                   

    
  

  
 

 

  
  

  
 

 

                     

  (2.7) 

 

where        is the acoustic wavenumber in free space and the expression under the 

radical is real and positive. The z-component of the particle velocity, Equation (2.8), in 

the aperture can be calculated from the linear Euler’s equation (Kinsler et al., 

2000),              , for the time-harmonic assumption, where   is the mass 

density of the fluid in the aperture. In Equation (2.8), the particle velocity has been 

written in terms of the modal phase velocity, which is related to the wavenumber 

by              , which is either purely real or purely imaginary. 

 

                     
 

      
                   

                   
  

  

 

                                               

  

 

(2.8) 
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2.2.3 Sound field in cavity 

In the same manner as the aperture, the acoustic field within the cavity, indicated 

by subscript c, was expanded analytically in terms of propagating and evanescent modes 

along the z-axis. By solving for the rigid boundary conditions, at the back of the 

cavity,        , and around the aperture,  

 

    

  
 
   

    
     

 
     

  
 
   

    
     

 
     

  
 
      

  , (2.9) 

 

the acoustic pressure everywhere in the cavity can be expressed as  

 

                                            

  

 (2.10) 

 

where       is the pressure amplitude in the cavity for the    mode, and the wavenumber 

in the cavity is given in Equation (2.11).  

 

           
  

  
 

 

  
  

  
 

 

  (2.11) 

 

Transverse mode shapes are given by Equation (2.12), and as in the aperture 

development, the orthogonality condition and particle velocity are expressed in Equations 
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(2.13) and (2.14), respectively. Re-expressing Equation (2.14) with tangent and cosine 

functions rather than sine aids in combining the aperture and cavity equations at the 

boundary, and it also makes taking the low frequency limit more intuitive.  

 

                              
  

  

             
  

  

          (2.12) 

                     
  

                        (2.13) 

                     
  

       
                       

  

 

            
                    

      
                       

  

          

(2.14) 

 

2.3 Solving Boundary Conditions 

 From now on, aperture modes will always be labeled as    or   , and cavity 

modes will be labeled   . For all three of the mode identifying pairs, the first letter 

corresponds to the   dimension, and the second corresponds to the   dimension. 

 

2.3.1 Development of modal radiation matrix 

The boundary conditions on surface   , the interface between the aperture and 

half-space (      ,        and    ), are continuity of acoustic pressure, 

    
        

     , and continuity of normal velocity,  
     

  
      

   

  
     . From 
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continuity of particle velocity,    in Equation (2.3) can be replaced with –    as in 

Equation (2.15). The surface    has area   , the cross-sectional area of the aperture. 

 

                                                 
  

 
   

  (2.15) 

  

Equation (2.16) is obtained from continuity of pressure and Equation (2.17) is the 

result of substituting the Green’s function and the expression for    into the Rayleigh 

integral. 

                         
                

  

  

                                                
  

 
   

  

(2.16) 

                         
                

  

  

 

                  
     

   
             

 

      
              

                
  

    
 

   
  

                   
     

   
            

  
 

   
 

 

      
              

                
  

  

 

(2.17) 

 

Multiplying Equation (2.17) by       and integrating over the surface    gives: 
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(2.18) 

 

Defining the incident force, or source term, as in Equation (2.19) and the mechanical 

radiation impedance in Equation (2.20), now Equation (2.18) can be expressed as a sum 

of forces as in Equation (2.21). 

 

                               
  

    (2.19) 

      
                     

     

   
            

  
 

   
 

  

    (2.20) 

                
                

  

                
      

      
              

                
  

  

 
(2.21) 

 

2.3.2 Development of cavity impedance matrix 

Applying the same boundary conditions as in the previous section to Equations 

(2.4), (2.8), (2.10), and (2.14) on the surface   , the interface between the aperture and 

the cavity (      ,        and    ) also with area   , produces Equation 

(2.22) from continuity of pressure and Equation (2.23) from continuity of particle 

velocity. 
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  (2.22) 

           
              

      

                 

  

            
 

      

      
       

  

  

       (2.23) 

 

Here                                where      is the Heaviside unit 

step function defined as       
     
     

 . 

Multiplying the continuity of pressure expression, Equation (2.22), by       and 

integrating over    results in 

 

                      
  

                    

  

         
       

    (2.24) 

 

Similarly, multiplying the particle velocity expression, Equation (2.23), by         and 

integrating over   , the cross-section of the cavity at     with area  , gives 

 

  

              

      
                 

                       
  

   

 

      
      

       
  

  

  

(2.25) 

 

which can be rearranged as 



18 

 

                  
      

               
                      

  

   

 

      

      
       

  

  

  (2.26) 

 

Equations (2.27) and (2.28) define the coupling coefficients, which map modes of 

one region to the other. The coupling of cavity modes to aperture modes is presented in 

Equation (2.27), and Equation (2.28) couples aperture modes to cavity modes. Although, 

they appear to be the same integral, and analytically they are, numerically they are 

represented as matrices and are the transpose of one another. The effort to keep these 

equations separate will become more apparent when they are cast into impedance 

matrices in Chapter 5.  

 

      
                         

  

    (2.27) 

      
                         

  

    (2.28) 

 

Combining Equations (2.24) and (2.26) to eliminate       results in the force-velocity 

relation given by Equation (2.29). Also, the notation in Equations (2.27) and (2.28) 

makes more sense if Equation (2.29) is worked from right to left as one would for matrix 

multiplication. Now, the modal impedance of the cavity, as seen by the aperture, can be 

expressed as in Equation (2.30), which maps aperture modes to aperture modes, notated 

by the subscript      , via cavity modes and the coupling coefficients. The 

superscript   identifies       
   

 as mechanical impedance, and superscript   indicates 

cavity. 



19 

 

        
       

           
         

                 

      
   

 

      
      

       
  

  

        
    

      
      

       
  

  

 

(2.29) 

      
           

         

                 

      
    (2.30) 

2.4 Numerical Implementation 

2.4.1 Implementation of boundary conditions 

With Equations (2.21) and (2.29), we now have sums of forces on surfaces    and 

    of the aperture. These equations have been rearranged to show this more clearly in 

Equations (2.31) and (2.32), respectively. The right-hand-side of Equation (2.31) is the 

force on    due to the incident acoustic wave. This is balanced on the left-hand-side by 

the force on the surface due to the field in the aperture (i.e. pressure multiplied by area) 

and the radiated force, particle velocity on the surface multiplied by the radiation 

impedance. Because there is no source in either the aperture or the cavity, the force at    

due to the acoustic pressure in the aperture is balanced by that of the particle velocity 

multiplied by the modal mechanical impedance of the cavity.  

 

                
                

  

        
      

      
              

                
  

  

         
(2.31) 
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   (2.32) 

The acoustic pressure amplitudes for each mode at a single frequency in the aperture can 

now be solved for by setting up Equations (2.31) and (2.32) as a system of equations as in 

Equation (2.33), where    are square matrices whose size is determined by the number of 

aperture modes kept in the calculation.   
   and      are vectors of values for each mode 

  .    terms are defined in Equation (2.34). 

 
  

  

  

  
  

  
 

  
    

    

 
  (2.33) 

                                
      

      
         

                                 
      

      
          

                        
    

      
 

                        
    

      
 

(2.34) 

 

2.4.2 Calculating insertion loss 

In order to quantify the difference in sound level in the cavity for apertures of 

different cross-sectional areas and depths, the average energy density in the cavity,     , 

was calculated as in Equation (2.35). Here,    is the volume of the cavity, and     is the 
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energy density at every point in the cavity as expressed in Equation (2.36). The average 

energy density of the incident plane wave is given in Equation (2.37) (Kinsler et al., 

2000). Now, the insertion loss of the system can be calculated using Equation (2.38).  

 

     
 

  
    
  

    (2.35) 

    
     

 

    
 

       
 

       
 (2.36) 

       
    

 

     
 (2.37) 

           
    

     
  (2.38) 

 

2.5 Summary 

The system of interest, an aperture of finite thickness set in a rigid baffle and 

backed by a cavity, was established. Using Fourier expansions, the acoustic pressure in 

the aperture and cavity were modeled, and the half-space was modeled as the sum of 

incident and reflected plane waves and the wave radiated from the aperture. By solving 

boundary conditions on surfaces    and   , as defined in Figure 2.1, the system of 

equations expressed in Equation (2.33) was established to solve for the acoustic pressure 

amplitudes in the aperture for a single frequency, which in turn can be used to solve for 

the acoustic variables in all three regions. The average energy density in the cavity can be 

calculated from the acoustic pressure as in Equation (2.35). Because the average energy 



22 

 

density of a plane wave is known, the insertion loss of the system can be calculated using 

Equation (2.38).  A new system of equations must be generated and solved for each 

frequency of interest. 

  



23 

 

Chapter 3 – Simulation and Experiment 

 

3.1 Model Dimensions 

Dimensions, as defined in Figure 2.2, were chosen to create model approximately 

one-fifth the size of an office or bedroom and are presented in Table 3.1.  To avoid 

degenerate acoustic modes in the cavity and aperture (Lau and Tang, 2001), the ratio of 

cavity dimensions,    (width)     (height)     (depth), were chosen such 

that                   , and the ratio of transverse aperture dimensions,    

(width)     (height), was            for both the small and large window. The 

effect of aperture thickness on the insertion loss into a cavity was investigated using six 

aperture arrangements. Apertures with the three thicknesses 0.03m (thin), 0.10m 

(medium), 0.20m (deep) were modeled for two different cross-sectional areas (small and 

large) as listed in Table 3.1. The large aperture corresponded to 20% of the cavity wall, 

and the small aperture corresponded to 5% of the wall. To study the effect of thickness on 

insertion loss, the aperture was intentionally not centered on the wall to guarantee that all 

cavity modes would be excited by an incident plane wave. Thus,       and      , 

which are defined in Figure 2.2. 

 

Table 3.1 – Model dimensions 

Dimensions (m) a a1 a2 b b1 b2 d Lx Ly Lz 

Small Aperture 0.10 0.35 0.45 0.08 0.26 0.21 0.03, 0.10, 0.20 1.00 0.63 0.86 

Large Aperture 0.20 0.20 0.40 0.16 0.18 0.13 0.03, 0.10, 0.20 1.00 0.63 0.86 
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3.2 Simulations 

3.2.1 Analytical model 

In all analytical calculations, a slight damping factor of 0.01Np/m was applied to 

the fluid in the cavity to maintain finite acoustic pressure levels at resonance frequencies.  

Low frequency finite element simulations (up to 500Hz) were used to verify the 

present analytical model and to determine the impact of keeping a finite number of 

evanescent modes in the cavity and aperture on the insertion loss calculation. For the low 

frequency studies, the large aperture was used and was centered on the wall in order to 

excite only the symmetric transverse modes in the aperture and cavity. This aided in 

verifying the model, which will be discussed in the next section. The source in these 

studies was a normally incident plane wave. All propagating modes were kept in the 

simulations.  

To determine the number of evanescent modes to be kept in the aperture and 

cavity for each frequency, the damping factor that would result in the sound pressure 

level of a wave decaying by a given decibel value (here 0dB, 5dB and 10dB were used) 

over the thickness of the aperture was calculated.  Evanescent modes in the aperture and 

cavity that had a wavenumber magnitude less than the calculated damping factor were 

kept in the calculation. Evanescent modes “make non-zero contributions to the mean 

square pressure averaged over the duct [or in this case aperture and cavity] cross-section, 

although their contributions to mean acoustic power are all identically zero” (Doak, 

1973a). Equation (2.36) calculates the energy density in the cavity from pressure squared 
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values. Modes that are near cut-on but evanescent can have large enough acoustic 

pressure values to impact this calculation.  

The broadband insertion loss of the aperture-cavity coupled system was calculated 

numerically using MATLAB for each aperture defined in Table 3.1 from the analytical 

expressions developed in Chapter 2. To understand the general effect of the aperture 

thickness up to 2000Hz, the apertures were simulated with radiation boundaries on both 

sides, which reduced the derived system of equations to that of Sgard et al. (2007). The 

effect of the aperture becomes apparent when plotted with the response of the present 

coupled system. For these and the remaining studies, the apertures are not centered on the 

wall as discussed in Section 3.1.  

The frequency response of the system was calculated for an obliquely incident 

plane wave, 45° from plan and section planes, up to 4400Hz with 2Hz steps from 2Hz to 

998Hz, with 5Hz steps from 1000Hz to 3525Hz, and with 10Hz steps from 3530Hz to 

4400Hz. One-third octave band sound pressure levels were evaluated from the frequency 

response at the four microphone positions used in the experiment, as described in Section 

3.3. The resulting number of calculation points for each 1/3
rd

 octave band are listed in 

Table 3.2. 

 

Table 3.2 – Number of points per 1/3
rd

 octave band 

1/3
rd

 octave band (Hz) 63 80 100 125 160 200 250 315 400 500 

Number of points 7 8 13 14 17 25 29 35 43 63 

 

1/3
rd

 octave band (Hz) 630 800 1000 1250 1600 2000 2500 3150 4000 
 

Number of points 71 86 86 57 69 98 115 141 87 
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3.2.2 Finite element model 

A finite element model (FEM) of the system was developed using the Acoustics 

Module for COMSOL 4.1 to verify the response calculated by the analytical model at low 

frequencies. Neither the radiation boundary condition nor the perfectly matched layer 

approximation in COMSOL could be used due to the non-ideal radiation condition of the 

aperture, i.e. not a simple plane wave. Therefore, the FEM was used only to verify the 

situation of a normally incident plane wave. A source waveguide was constructed to 

guarantee that the acoustic energy entered and exited the system as a plane wave, which 

also required that the aperture be centered on the cavity wall to prevent asymmetric 

modes in the waveguide. To avoid exciting the first symmetric mode in the waveguide, 

this study required two models with source waveguides of different cross-sections in 

order to maintain only plane waves in the waveguide. 

The mesh was constructed such that no element was larger than one-eighth of a 

wavelength (Herrin and Seybert, 2006). At very low frequencies a realistic model could 

be made as shown in Figure 3.1a, which consisted of a large source waveguide, 2m long 

with a square cross-section with 1.5m long sides. To sufficiently verify the analytical 

model, a smaller source waveguide also had to be used, which had stronger coupling to 

the cavity and looked less like a half-space, as shown in Figure 3.1b. The smaller source 

waveguide was 1m long and had a square cross-section with 0.5m sides. 
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a) 

 

 

b) 

Figure 3.1 – FEM model with the cavity on the right for a) large and b) small source waveguides  

 

3.3 Experiment 

3.3.1 Equipment 

Table 3.3 lists all sound generation and measurement equipment used in the 

experiment. 

 

3.3.2 Setup 

A schematic of the experimental setup is presented in Figure 3.2. Stars represent 

coordinate origins, and two coordinate systems were used, one for the source room and 

one for the cavity. In Figure 3.2, microphone positions are indicated by dots labeled LD# 

for Larson Davis 824 sound level meters and BK# for B&K microphone positions; the 

coordinates of these positions are listed in Tables 3.4 and 3.5, which provides the location 

of BK2 for all six aperture locations: thin-small (TS), medium-small (MS), deep-small 

(DS), thin-large (TL), medium-large (ML), and deep-large (DL). The numbers next to the 

microphone dots indicate the location of the microphone on the out-of-page axis,  . 

Figure 3.3 displays the microphone arrangement in the cavity.  
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Table 3.3 – Equipment used in experiment 

Equipment Model Number Description 

Sound Level Meter Larson Davis 824 ANSI/IEC Type 1 Sound level meter 

Larson Davis PRM902 General-purpose microphone 

preamplifier 

Larson Davis 2560 random incidence, ½ inch microphone 

designed with high sensitivity for low 

level measurements 

Larson Davis CAL200 Class 1 Sound Calibrator for 

microphones 

Signal Generator Larson Davis SRC20 Hand-held digital signal generator  

Omni-directional 

Sound Source 

Provided by Larson Davis Six-sided loudspeaker assembly 

Power Amplifier Lab.gruppen LAB 500 500 watt 2-channel power amplifier 

Data Acquisition 

System 

B&K 3050-A-060 PULSE data acquisition hardware, 

multipurpose input/output LAN-XI 

module with 6-channel input 

B&K 4231 Class 1 and LS sound calibrator for 

microphones 

B&K 2671 DeltaTron
®
 ½ inch microphone 

preamplifier 

B&K 4189 Free-field, ½ inch microphone for high 

precision measurements 

 

The source room was 2.57m by 3.04m by 3.30m with thin carpet flooring, 

gypsum walls, a drop ceiling made with acoustical tiles, and an assortment of items being 

stored that acted as diffusers and additional absorption. The door of the source room was 

covered by a sheet of 15cm thick plywood, except for the aperture (see insert near 

aperture in Figure 3.2). Apertures and the cavity were also constructed of 15cm thick 

plywood. As shown in Figure 3.4, the cavity was placed on rollers for support and to 

easily move it to and from the door frame to change apertures. The cavity was bolted to 

the door sheet during measurements to prevent it from rolling away. 
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Figure 3.2 – Experimental setup. Two coordinate systems were used with origins indicated by stars, 

one for the source room and one for the cavity. Dots labeled BK# and LD# indicate microphone and 

sound level meter locations, respectively 

 

Table 3.4 – Microphone locations in test room and cavity 

Coordinate system Microphone x (m) y (m) z (m) 

Test Room 

Coordinates 

LD2 1.72 2.54 1.38 

LD4 1.47 0.75 1.35 

BK1 1.24 1.70 1.97 

     

Cavity 

Coordinates 

BK3 0.11 0.51 0.38 

BK4 0.31 0.34 0.58 

BK5 0.57 0.26 0.47 

BK6 0.81 0.40 0.19 
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Table 3.5 – Microphone BK2 location for each aperture setting and setting identifier 

 Thin (m) Medium (m) Deep (m) 

Small -0.03, 0.04, 0.00 (TS) -0.04, 0.04, 0.03 (MS) -0.04, 0.04, 0.04 (DS) 

Large 0.02, 0.10, 0.00 (TL) 0.01, 0.11, 0.03 (ML) 0.01, 0.08, 0.06 (DL) 

 

 

Figure 3.3 – Microphone setup in cavity 

 

 

Figure 3.4– Cavity connected to test room and sitting on rollers 
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3.3.3 Procedure 

First, all microphones were calibrated. B&K microphones were calibrated to 94 

dB (re 20µPa), and Larson Davis SLMs were calibrated to 114dB (re 20µPa). Next, 

background noise level measurements were taken at all microphone locations. Then, for 

each insertion loss measurement, the room was excited by approximately 90dB (re 

20µPa) of pink noise, and measurements were time averaged over 10s. Each 

measurement consisted of a fast Fourier transform (FFT) analysis up to 6400Hz with a 

resolution of 1Hz and a 1/3
rd

 octave band central pass-band (CPB) analysis for each of 

the six B&K microphones and 1/3
rd

 octave band measures at each Larson Davis SLM. 

Three  measurements were taken for each aperture setting. Figure 3.5 shows the door 

sheet with three of the aperture inserts, thin/small, deep/small, and deep/large, from left 

to right, respectively. 

 

 

Figure 3.5 – View of aperture and BK2 placement. From left to right, thin/small, deep/small, and 

deep/large aperture from test room 
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3.4 Summary 

The analytical model derived in Chapter 2 was solved numerically. A finite 

element model was developed to verify the analytical model at low frequencies, and an 

experiment was performed to verify the higher frequencies. From low frequency studies 

(up to 500Hz), the frequencies at which various modes occurred could be verified, and 

the impact of keeping a finite number of evanescent modes in the cavity and aperture on 

the insertion loss calculation could be determined. Six apertures were used to study the 

effect of thickness on insertion loss. Apertures of three different depths were made for 

two aperture cross-sectional areas. The aperture connected the cavity, all made from 

plywood, to a source room. Two sound level meters and one measurement microphone 

were placed in the test room, which was excited by an omni-directional sound source. To 

measure the effect of the aperture on sound pressure levels in the cavity, four 

microphones were placed in the cavity and one in the aperture. 

 

  



33 

 

Chapter 4 – Results and Discussion 

 

4.1 Verification of Analytical Model 

The first fifteen transverse modes for both aperture cross-sections (large and 

small) and the cavity were calculated using Equations 2.7 and 2.11, respectively, and are 

presented in Table 4.1. Note that the lowest modes for the large and small apertures are 

429Hz and 858Hz, respectively. For frequencies above the first cavity mode and lower 

than the first aperture mode, transmission was dominated by the response of the cavity 

and the fluid in the aperture appeared as an entrained mass. 

 

Table 4.1 – Transverse Modes in the Cavity and Aperture 

Cavity Modes Large Aperture Modes Small Aperture Modes 

r s Freq. (Hz) m n Freq. (Hz) m n Freq. (Hz) 

1 0 172 1 0 429 1 0 858 

0 1 272 0 1 536 0 1 1072 

1 1 322 1 1 686 1 1 1373 

2 0 343 2 0 858 2 0 1715 

2 1 438 2 1 1011 2 1 2022 

3 0 515 0 2 1072 0 2 2144 

0 2 544 1 2 1154 1 2 2309 

1 2 571 3 0 1286 3 0 2573 

3 1 582 2 2 1373 2 2 2745 

2 2 643 3 1 1393 3 1 2789 

4 0 686 0 3 1608 0 3 3216 

4 1 738 1 3 1664 1 3 3328 

3 2 749 3 2 1674 3 2 3349 

0 3 817 4 0 1715 4 0 3430 

1 3 834 4 1 1797 4 1 3594 

5 0 858 2 3 1822 2 3 3644 
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4.1.1 Model verification by FEM 

In Figure 4.1, the present analytical model developed in Chapter 2 is compared to 

the results of the finite element model (FEM). For this comparison, evanescent modes 

which decay less than 5dB over the aperture thickness were kept in the analytical model 

(see Section 3.2.1 for an explanation of how the number of evanescent modes to be kept 

in the calculation was determined). The present model has very good agreement with the 

FEM model with the large source waveguide, which as described in Chapter 3, provided 

a good free space approximation. They both captured the abrupt drop in insertion loss at 

the Helmholtz resonance of the system at 45Hz, as shown in Figure 4.1.  At the 

Helmholtz resonance, the fluid in the aperture oscillates as an entrained mass in series 

with the cavity acting as a lumped spring (Kinsler et al., 2000). All models captured the 

first on axis resonance at 207Hz due to depth of the cavity in series with the thickness of 

the aperture, which adds apparent distance to the depth of the cavity lowering this 

resonance frequency.  

Due to the requirement that only plane waves propagate in the waveguide, the 

FEM with the large source waveguide could only be used up to 200Hz. Above this 

frequency, the present model was compared only to the FEM with the small source 

waveguide. The next drop in insertion loss was due to the first transverse symmetric 

mode in the cavity. Both the FEM and present models showed that this occurred at 

346Hz, which is very close to the value listed in Table 4.1 of 343Hz. Because the FEM 

with the small source waveguide did not approximate the half-space as well, it was not 
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expected to be in exact agreement with the present model; however, it did confirm that 

the present model was correctly capturing the response of the cavity at low frequencies. 

 

 

Figure 4.1 – Comparison of FEM model and present model including some evanescent modes 

 

4.1.2 Effect of evanescent modes on calculations 

In Figure 4.1, the number of evanescent modes kept in the present model, those 

that decayed less than 5dB, resulted in very good agreement with the FEM. In addition to 

5dB, the response was calculated for evanescent modes which decayed up to 0dB (i.e. 

keeping only propagating modes in the calculation) and 10dB, as shown in Figure 4.2. 

When only the propagating modes were kept in the insertion loss calculation (black solid 

line), the present model captured the on axis modes of the system but showed extremely 

steep dips in insertion loss near transverse modal resonances such as at 344Hz. Just 

before this resonance, keeping only propagation modes in the calculation overestimates 
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the insertion loss by 5dB. When evanescent modes that decayed up to 10dB over their 

respective length scales were kept, very strong coupling resulted between some 

evanescent modes in the aperture and propagating modes in the cavity. A nice example of 

this occurred at 178Hz, the first asymmetric resonance of the cavity. Because the first 

asymmetric mode in the aperture was kept in the calculation (although very weak), the 

first asymmetric mode in the cavity was excited due to strong coupling between these two 

modes. The excitation of the first asymmetric mode in the cavity is not physically 

possible since the system was driven symmetrically, as was verified by the FEM (Figure 

4.1). One can predict that if many more modes had been used in the calculation, this 

anomaly would be canceled out. As a result of this study, evanescent modes that decayed 

up to 5dB were kept in the remaining calculations. 

 

 

Figure 4.2 – Effect of including evanescent modes 
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4.2 Effect of Aperture Thickness 

4.2.1 Low frequency effect of aperture thickness 

Figures 4.3 and 4.4, large and small aperture, respectively, show the insertion loss 

for the present model for the dimensions presented in Table 3.1. Recall that in these 

models the aperture was not centered on the wall in order to excite all cavity modes in the 

frequency range of interest. The insertion loss was calculated from the ratio of the 

average acoustic energy density in the cavity and the average energy density of the 

incident plane wave, Equation (2.38). For both aperture cross-sections, insertion loss 

increased with increasing aperture thickness up until the (1,1) mode in the cavity at 

321Hz. For frequencies above 321Hz, increasing the aperture thickness did not improve 

the insertion loss. At low frequencies, 3dB of insertion loss was gained by increasing the 

thickness of the large aperture from 0.03m to 0.2m as shown in Figure 4.3, and 8dB was 

gained in the case of the small aperture as shown in Figure 4.4. The abrupt drop in 

insertion loss at approximately 300Hz in Figures 4.3 and 4.4 is an artifact of keeping a 

finite number of evanescent modes in the calculation. (For the small aperture, this 

resulted in overestimating the insertion loss by more than 5dB, Figure 4.4.) At this 

particular drop, had the (1,1) cavity mode been included in calculations for a few 

frequencies below this dip, which indicates its introduction, the curve would be smoother. 
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Figure 4.3 – Insertion loss of present model with large aperture, effect of aperture thickness 

 

 

Figure 4.4 – Insertion loss of present model with small aperture, effect of aperture thickness 
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4.2.2 Broadband effect of aperture thickness 

Figures 4.5 – 4.7 present the broadband frequency effect of the large aperture. 

First the insertion loss of the aperture bounded by half space on both sides was calculated 

for all three thicknesses using the method described in Sgard et al. (2007) (Figure 4.5). 

For the deep (0.2m) and medium (0.1m) thickness apertures, the insertion loss was highly 

dependent on the modes in the aperture; however, there was little variation in insertion 

loss for the thin (0.03m) aperture from 0Hz to 2kHz. The frequency response of the 

aperture alone was plotted with the response for the whole system, aperture backed by the 

cavity, for the deep and medium apertures in Figures 4.6 and 4.7, respectively. Notice 

that, particularly in Figure 4.6 which displays the effect of the thick aperture, the 

response of the aperture acts as a filter for the total response. 

 

 

Figure 4.5 – Insertion loss of large aperture bounded on both sides by half-space 
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Figure 4.6  – Comparison of present model and aperture only for large, deep aperture 

 

 

Figure 4.7 – Comparison of present model and aperture only for large, medium aperture 
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The broadband frequency response of the small apertures was also studied, and 

results are presented in Figures 4.8 – 4.10. First, using the procedure from Sgard et al. 

(2007), the insertion loss of the small apertures bounded by half space on both sides was 

calculated for all three thicknesses (Figure 4.8). As for the large aperture, the insertion 

loss of the deep (0.2m) and medium (0.1m) thickness apertures was highly dependent on 

the modes in the aperture, and there was little variation in insertion loss for the thin 

(0.03m) aperture from 0Hz to 2kHz. The frequency response of the aperture alone was 

plotted with the response for the whole system for the deep and medium apertures in 

Figures 4.9 and 4.10, respectively. The filtering effect of the small aperture was more 

defined than in the case of the large apertures, especially for the deep aperture (Figure 

4.9). 

 

 

Figure 4.8 – Insertion loss of small aperture bounded on both sides by half-space 
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Figure 4.9 – Comparison of present model and aperture only for small, deep aperture 

 

 

Figure 4.10 – Comparison of present model and aperture only for small, medium aperture 
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4.2.3 One-third octave band measurements and simulations 

To determine the decrease in sound pressure level (SPL) that one might 

experience in the cavity due to increasing the thickness of the aperture, the SPL was 

measured and simulated at the four microphone positions listed in Table 3.3 for thin and 

deep apertures. Figures 4.11 – 4.14 present the difference in SPL at each microphone 

location for 1/3
rd

 octave bands 63Hz to 4kHz as a result of increasing the aperture 

thickness. Positive values indicate that increasing the aperture thickness resulted in lower 

SPLs in the cavity. The results shown are the numerical average of the three SPLs 

measured for each aperture setting at each microphone location. As mentioned in Chapter 

3, the system in the simulations was excited by a plane wave 45° from the plan and 

section planes; whereas, in the experiment, the excitation was based on the general 

response of the test room, which could be assumed to be diffuse above the Schroeder 

frequency, 217Hz. The averaged SPLs at the three microphones in the test room were 

within 4dB down to the 80Hz 1/3
rd

  octave band other than in the 200Hz octave band in 

which averaged SPLs varied by as much as 6dB.  

The measured and simulated results for the large aperture are presented in Figures 

4.11 and 4.12, respectively. Except for the 160Hz band, the experiment and calculation 

had good agreement. Both show that the aperture thickness had a positive although 

decreasing effect moving from the 63Hz band to the 160Hz band and then had an 

increased effect in the 200Hz and 250Hz octave bands. As predicted by the insertion loss 

calculations, increasing the aperture thickness resulted in lower sound pressure level for 

frequencies below the (1,1) cavity mode, which occurs in the 315Hz band, and had little 
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effect at frequencies above this mode. The first asymmetric mode in the cavity occurs in 

the 160Hz mode. Notice in Figure 4.3, that due to the frequency resolution of the present 

model, the insertion loss of the deep aperture was 5dB less than was calculated for the 

other due to aperture thicknesses. The drastic difference in the experiment and simulation 

results in the 160Hz band can be attributed to aforementioned issue of numerical 

resolution and the difference in excitation. The measured results showed little change in 

SPL due to increasing aperture thickness in the 315Hz to 800Hz bands and slight 

decrease in SPL beginning in the 1kHz band, which is where higher order modes in the 

aperture appear. 

 

 

Figure 4.11 – 1/3
rd

 octave band difference in SPL for large aperture experiment 
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Figure 4.12 – 1/3 octave band difference in SPL for large aperture calculation 

 

The measured and simulated results for the small aperture are presented in Figures 

4.13 and 4.14, respectively. The experimental and simulated results also had good 

agreement. In the 160Hz band, the simulated effect was less than what was measured; 

although the difference was much less drastic than for the large aperture. This 

discrepancy was primarily due to not having identical sources for the experiment and 

simulation. Note in Figure 4.4 that the insertion loss at the (1,1) cavity mode was the 

same for the deep and small apertures, as opposed to the large aperture study. Both 

experiment and simulation showed that increasing the aperture thickness decreased the 

SPL in the cavity below the (1,1) mode and had less effect above this mode. The 

measured results for the small aperture, Figure 4.13, reveal the filtering effect of the 
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aperture as predicted in Figures 4.8 and 4.9. The minimum insertion loss for the small, 

deep aperture by itself (half-space on both sides, Figure 4.8) occurred near 500Hz and the 

second maximum around 800Hz. The dip is mimicked by the response in the 315Hz to 

630Hz bands, and the second maximum in the 800Hz and 1kHz bands.  

 

 

Figure 4.13 – 1/3
rd

 octave band difference in SPL for small aperture experiment 
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Figure 4.14 – 1/3 octave band difference in SPL for small aperture calculation 

 

4.3 Summary 

The analytical model developed in Chapter 2 was calculated numerically and was 

successfully verified at low frequencies by FEM. It was shown that including only a 

finite number of evanescent modes in the cavity and aperture in the calculation introduces 

irregularities. Broad frequency simulations showed that increasing the thickness of the 

aperture improved the insertion loss by up to 6dB but only for frequencies below the (1,1) 

cavity mode. This was also consistent with 1/3
rd

 octave band measurements and 

calculations. Futhermore, the filtering of the aperture that appeared in the frequency 

response occurred in the measurement results as well and was particularly well defined 

for the small aperture.  
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Chapter 5 – Extending Model to Impedance-Mobility Approach 

 

5.1 Impedance-Mobility Approach 

5.1.2 Introduction 

The third goal of this work was to re-express the results of Chapter 2 in matrix 

form such that they could be used with the impedance-mobility approach to apply active 

noise control to a space. From just a simple computation standpoint, the impedance-

mobility approach is beneficial because it reduces the large system of equations in 

Equation (2.33) to the manipulation of matrices a quarter of the size, many of which are 

diagonal matrices. 

Frequencies of interest require the consideration of multiple modes in the aperture 

and cavity. The three regions (half-space, aperture, and cavity) cannot be simply 

represented with the long wavelength approximation as one dimensional circuit elements 

like a Helmholtz resonator, which can be represented as a series, mass-spring-damper 

circuit. (The Helmholtz resonance of the system is discussed in Section 4.1.1.) However, 

the elements can be considered in terms of complex acoustic or mechanical impedance 

matrices or complex mechanical mobility matrices (inverse of mechanical impedance). 

The mobility representation is useful when the source has a defined velocity or when one 

is interested in the vibration of an object (Lau and Tang, 2001; Kim and Brennan, 1999). 

There are only acoustic domains in this study, i.e. all rigid boundaries, so the following 

expressions will contain only acoustic and mechanical impedance, which are related 

by         .  
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5.1.2 Matrix representation of boundary equations 

For this chapter, bold letters and square brackets represent matrices, regular print 

letters are vectors, and italicized letters are scalars. Equation (2.31) can be written in 

matrix form as in Equation (5.1), where   is a diagonal matrix containing the complex 

exponentials that define the propagation of each mode in the    direction at     in the 

aperture.   is the matrix of reflection coefficients at     defined as   
     

 , 

where   
  and   

  are vectors containing the pressure amplitudes for each mode in the   

and    directions, respectively. (In Chapter 2, acoustic pressure in the aperture and 

cavity was defined such that it had zero phase at the plane    .)   
  is the diagonal 

matrix containing the characteristic acoustic impedance of each mode in the aperture, 

which in algebraic terms from Chapter 2 can be expressed as      
           .  

 

            
     

      

  

   
              

         
(5.1) 

 

All other notation is consistent with Chapter 2, although written in matrix or 

vector form rather than sums of modes. Superscripts imply impedance type, mechanical 

or acoustic, which are related by area squared         . Subscripts indicate whether 

the variable is in terms of aperture modes or cavity modes. For instance,    is the scalar 

cross-sectional area of the aperture,        is a vector of incident force values for each 

aperture mode as defined in Equation (2.19), and    
      is a square matrix of the 

mechanical radiation impedance as in Equation (2.20). 
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By using the property that a matrix multiplied by its inverse is the identity matrix, 

Equation (5.1) can be rewritten in terms of the particle velocity amplitudes at     as in 

Equation (5.2), where      
     

              
  and   

    
   

 
.  

 

                     
       

               (5.2) 

 

In the same manner, Equation (2.32) can be written in matrix form as in Equation 

(5.3), where   is the identity matrix.   
   

 is the acoustic impedance of the cavity  in terms 

of aperture modes. The reflection coefficient matrix   can now be solved for only in 

terms of impedances. 

 

         
      

       
           

     
(5.3) 

      
       

       
  

    
       

        (5.4) 

 

At the cut-on frequency for any particular mode in the cavity or aperture, the 

phase speed for that mode approaches infinity, which implies that      
    at cut-on in 

the aperture and       
      at cut-on in the cavity. A quick analysis of the expression 

above for the reflection coefficient at    reveals that it tends to -1 (pressure release) when 

the aperture is excited at a cut-on frequency, 1 (rigid boundary) for a cut-on frequency in 

the cavity, and 0 (no reflection) if modes in the aperture and cavity have the same cut-on 

frequency.  
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5.2 Input Impedance 

5.2.1 Input impedance of load at the end of a transmission line 

Figure 5.1 contains a simple electrical transmission line with a source voltage    , 

source impedance   , transmission line characteristic impedance   , and load 

impedance   . The source sees the load impedance as translated along the transmission 

and in series with   . This translated impedance is known as the input impedance,    , 

which can be calculated using Equation (5.5), where   is the length of the transmission 

line and        is the wavenumber in the transmission line.     is the ratio of total 

voltage to total current at the location      along the transmission line.  

 

 

Figure 5.1 - Example of replacing a load impedance at the end of a transmission line with an input 

impedance at near the source (Ulaby, 2006, p. 62) 

 

      

             

             
 (5.5) 
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The reflection coefficient, or energy ratio of the wave traveling in the    

direction to the wave traveling in the    direction, at     is             

             in terms of the line impedance and load impedance. Now,     can be 

expressed in terms of  . 

 

      

           

           
 (5.6) 

 

5.2.2 Input impedance in present model 

Noting the similarities between Equation (5.6) and the left-most term in Equation 

(5.2), the input impedance at surface   , or impedance seen by the incident wave looking 

into the aperture backed the cavity, is expressed by Equation (5.7). Equation (5.8) 

demonstrates that the incident wave sees the series combination of the radiation 

impedance and the input impedance. The equations below are expressed in units of 

mechanical impedance simply due to convention (Sgard et al., 2007; Pierce et al., 2002; 

Nelisse et al., 1998), and could be easily converted to acoustic impedances or mechanical 

mobililties.  

 

     
                        

  (5.7) 

     
        

               (5.8) 
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5.2.3 Deriving the cavity impedance using input impedance approach 

In Equation (5.3),   
   

 was introduced as the matrix rendition of the acoustic 

cavity impedance as seen from the aperture as defined in Equation (2.30). The cavity can 

be considered a terminated waveguide. Therefore, the cavity impedance can be derived 

by simply mapping the back wall to the aperture, which is more concise than the 

derivation in Chapter 2. The reflection coefficient of a rigid wall is 1. Therefore from 

Equation (5.7), the cavity impedance in terms of cavity modes can be expressed as in 

Equation (5.9), where    is the diagonal matrix containing the propagation terms 

               and   
  is the diagonal matrix of characteristic acoustic impedance in the 

cavity          , where    is the cross-sectional area in the cavity. Both matrices on the 

right hand side of (5.10) are diagonal so their product can be easily calculated, which is 

expressed in Equation (5.11). Equation (5.11) now represents the acoustic impedance of 

the cavity as seen at the plane     in terms of the cavity mode pairs   . 

       
          

         
       

  (5.9) 

        
     

   
               

   

 

  

   
  (5.10) 

  
     

   

 
      

               
 

   

  (5.11) 

 

To convert Equation (5.11) to mechanical impedance at the boundary, it must be 

multiplied by something with units of m
4
.  Multiplying by the squared area   

  keeps the 
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impedance in terms of cavity modes. However, multiplying the right side by   and the 

left side by    maps the impedance to the aperture, where   is the coupling coefficient 

defined in Equation (2.27) and    is its transpose given by Equation (2.28). Since the 

coupling coefficients have units of m
2
, the expression given in Equation (5.12) is 

mechanical impedance and is the matrix expression of the cavity impedance given in 

Equation (2.30).  

 

  
       

        

   

 
      

               
 

   

    (5.12) 

 

5.2.4 Solving for acoustic pressure 

Using the input impedance method, the load on any source placed anywhere in the 

system can be determined; all impedances just need to be mapped to the source. A similar 

method was used by Doak (1973b) to determine sound fields inside and outside of a finite 

duct containing an arbitrary source distribution. 

 For the geometry under investigation, the reflection coefficient and input 

impedance were calculated from the point of view of the aperture because the source was 

being applied at    , which made   
  the logical choice to solve for first. Substituting 

pressure into Equation (5.8) for the particle, Equation (5.13) can be used to evaluate   
  

for any incident force. With   
  solved for, all other acoustic variables in the system can 

be calculated. Equation (5.14) provides the relationship between   
  and   , the pressure 

amplitudes in the cavity.   
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       (5.13) 

  
   
              

   

             
  (5.14) 

 

5.3 Thin Aperture Limit 

For an aperture thin enough such that                        and 

wavelengths of interest short enough to excite multiple modes, the input impedance can 

be approximated by Equation (5.15), where           is the diagonal matrix of 

propagation exponents. Equation (5.16) was obtained by using the relation in Equation 

(5.3). 

 

     
                                          

  
  

  (5.15) 

     
       

       
                           

       
     

  
  

  (5.16) 

 

Now, if the aperture is thin enough such that             
   -   

    , then the 

input impedance becomes the series combination of cavity impedance and a positive 

imaginary term that represent the contribution of the mass of the fluid in the aperture. 

 

     
      

              
  (5.17) 
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5.4 Summary 

Frequencies of interest require the consideration of multiple modes in the aperture 

and cavity. Thus, the three regions cannot be simply represented by one dimensional 

circuit elements. However, the elements can be considered in terms of complex acoustic 

or mechanical impedance matrices or complex mechanical mobility matrices, which 

make them compatible with the impedance-mobility approach used in structural-acoustic 

interactions. Using the input impedance method, the load on any source placed within the 

system can be determined, and by extension, the fields everywhere. Future work may 

consider how to incorporate the effects of fully or partially open windows into active 

noise control systems using the impedance-mobility method. This approach also reduces 

the matrices to be solved to one fourth of the size of the matrices associated with the 

system of equations in Chapter 2, making the impedance-mobility approach potentially 

faster computationally.   
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Chapter 6 – Conclusions 

An analytical model of an aperture of finite thickness set in a rigid baffle and 

backed by a cavity was developed. Using Fourier expansions, the acoustic pressure in the 

aperture and cavity were modeled, and the half-space was modeled as the sum of incident 

and reflected plane waves and the wave radiated from the aperture.  

The analytical model developed in Chapter 2 was implemented numerically and 

was successfully verified at low frequencies by FEM. An experiment was also performed 

wherein the aperture connected the cavity, all made from plywood, to a source room.  It 

was shown that including only a finite number of evanescent modes in the cavity and 

aperture in the calculation introduces irregularities. Six apertures were used to study the 

effect of thickness on insertion loss. Apertures of three different depths were made for 

two aperture cross-sectional areas. Broad frequency simulations showed that increasing 

the thickness of the aperture improved the insertion loss up to 6dB for the small aperture 

and up to 4dB for the large aperture for frequencies below the (1,1) cavity mode. This 

was also consistent with 1/3
rd

 octave band measurements and calculations. Also, the 

filtering of the aperture that appeared in the frequency response occurred in the 

measurement results as well and was particularly well-defined for the small aperture.  

Therefore as the cross-sectional area of the aperture approaches that of the cavity, 

the aperture thickness has less effect. For the aperture-cavity systems analyzed, the (1,1) 

mode of the cavity appeared to be a significant limit on the effect of thickness. However, 

this may just be a coincidence of the geometries chosen. The simulated and experimental 
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models were created at one-fifth scale. Therefore, much of the benefit seen by simply 

increasing the thickness would occur below 50Hz in full scale. 

Frequencies of interest require the consideration of multiple modes in the aperture 

and cavity. Thus, the three regions cannot be simply represented by one dimensional 

circuit elements. However, the elements can be considered in terms of complex acoustic 

or mechanical impedance matrices or complex mechanical mobility matrices, which 

make them compatible with the impedance-mobility approach used in structural-acoustic 

interactions. This approach also reduces the matrices to be solved to one fourth of the size 

of the matrices associated with the system of equations in Chapter 2, making the 

impedance-mobility approach potentially faster computationally.  Using the input 

impedance method, the load on any source placed within the system can be determined, 

and therefore, the fields everywhere as well. This development is the primary 

significance of this work. Now, future work may consider how to incorporate the effects 

of fully or partially open windows into active noise control systems using the impedance-

mobility method.  
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