
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Papers in Behavior and Biological Sciences Papers in the Biological Sciences 

1981 

Spatial memory and the performance of rats and pigeons in the Spatial memory and the performance of rats and pigeons in the 

radial-arm maze radial-arm maze 

Alan B. Bond 
University of Nebraska - Lincoln, abond1@unl.edu 

Robert G. Cook 
University of California, Berkeley 

Marvin R. Lamb 
University of California, Berkeley 

Follow this and additional works at: https://digitalcommons.unl.edu/bioscibehavior 

 Part of the Behavior and Ethology Commons 

Bond, Alan B.; Cook, Robert G.; and Lamb, Marvin R., "Spatial memory and the performance of rats and 
pigeons in the radial-arm maze" (1981). Papers in Behavior and Biological Sciences. 29. 
https://digitalcommons.unl.edu/bioscibehavior/29 

This Article is brought to you for free and open access by the Papers in the Biological Sciences at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Behavior and 
Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/bioscibehavior
https://digitalcommons.unl.edu/bioscipapers
https://digitalcommons.unl.edu/bioscibehavior?utm_source=digitalcommons.unl.edu%2Fbioscibehavior%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/15?utm_source=digitalcommons.unl.edu%2Fbioscibehavior%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/bioscibehavior/29?utm_source=digitalcommons.unl.edu%2Fbioscibehavior%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages


Animal Learning & Behavior
1981, 9 (4), 575-580

Spatial memory and the performance of rats
and pigeons in the radial-arm maze

ALAN B. BOND, ROBERT G. COOK, and MARVIN R. LAMB
University of California, Berkeley, California 94720

The resource-distribution hypothesis states that the ability of an animal to remember the
spatial location of past events is related to the typical distribution of food resources for thee
species. It appears to predict that Norway rats would perform better than domestic pigeons
in tasks requiring spatial event memory. Pigeons, tested in an eight-arm radial maze, exhibited
no more than half of the memory capacity observed in rats in the same apparatus and may
not have used spatial memory at all. The results were interpreted as supporting the hypothesis.

The role of natural selection in shaping learning
processes in animals has long been recognized.
Studies of taste aversion and avoidance learning, for
example, suggest that the ease of acquiring certain as-
sociations and their resistance to interference and ex-
tinction can be thought of as adaptations to partic-
ular features of the animal’s natural environment
(Hinde & Stevenson-Hinde, 1973). In this paper, we
address the question of whether the mechanisms that
determine the processing and retention of spatial in-
formation are similarly susceptible to evolutionary
modification. Do animal species differ in their abilities
to encode and recall information about the location
of particular past events, and are the differences
predictable from a knowledge of the selective factors
involved?

If they are to forage optimally, animals in which
the primary food resources are diffusely distributed,
irregularly available, and readily depleted should sys-
tematically avoid regions that have previously been
exploited. Although there are several means of
achieving this end without the use of memory, any
ability to remember areas that were searched and ex-
hausted during the current feeding episode should be
of great selective advantage. We would therefore ex-
pect this type of resource to be commonly associated
with a memory for recent foraging locations (Olton
& Schlosberg, 1978).

On the other hand, animals whose food resources
are concentrated and dependable should tend to re-
turn repeatedly to the same location in successive
foraging episodes. This type of resource could be ex-
ploited successfully using only a memory for loca-
tions provided by longer term associations. As a con-
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sequence, no memory process for recently experi-
enced spatial locations would be selected for.

There is evidence for this hypothetical relationship
between memory and the distribution of food re-
sources. Norway rats appear to employ a memory for
spatial events in laboratory preparations that are pre-
sumed to mimic food distributions typically found in
the wild (Olton & Collison, 1979; Olton, Collison, &
Werz, 1977; Olton & Samuelson, 1976). Field studies
of the foraging behavior of nectar-feeding birds sug-
gest that they possess a similar capacity (Gill & Wolf,
1977; Kamil, 1978). In each of these cases, the
ecology of the animal is in line with the resource-
distribution hypothesis: an ability to remember re-
cent foraging locations is associated with the ex-
ploitation of diffuse, irregular, and slowly recovering
food resources. The hypothesis also requires, how-
ever, that we be able to demonstrate poor event
memory in an animal that feeds primarily on de-
pendably and abundant resources.

The domestic pigeon appears to fulfill this con-
dition. In the wild, pigeons feed on fallen grains in
agricultural areas or open grasslands, habitats that
are unlikely to be depleted within a single feeding
episode (Goodwin, 1967). They seldom venture to
forage solitarily in unknown regions, relying instead
on the presence of other birds to signal the occur-
rence of locally abundant resources. As a result, in-
dividual flocks develop traditional feeding sites, areas
that have proved in the past to provide abundant
food and safety from predation (Goodwin, 1967).
Pigeons have excellant long-term memory for the
locations of food sources and nest lofts, and they can
be remarkably persistent in returning to such places
months or even years after their last experience there,
and in the absence of maintained reward (Levi,
1974). The foraging ecology of pigeons therefore
contrasts sharply with that of rats and nectar-feeding
birds, and we might expect that pigeons would ex-
hibit greater difficulty in mastering a task that re-
quired spatial event memory.
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To evaluate the ability of pigeons to recall spatial
events, we used a modified version of the eight-arm
radial maze (Olton & Samuelson, 1976), an appara-
tus in which small quantities of food are placed at
each of eight separate spatial locations. Optimal per-
formance in the maze entails a search of all eight lo-
cations without repeating prior choices. Both rats
and pigeons were tested in this apparatus, and their
performance was compared with one another and
with the predictions of a series of memory hypotheses.

METHOD

Subjects
The subjects were 6 Silver King pigeons and 10 adult male

Long-Evans rats. Prior to this experiment, the pigeons had been
used in autoshaping, conditional discrimination, and diet selection
experimen~s. The rats were experimentally naive. The birds were
maintained at 75% of their free-feeding weights for the course
of the experiment, while the rats were kept at 80%-85%.

Apparatus
To accommodate the pigeons, the apparatus was about twice

the size of Olton and Samuelson’s 0976) original design. The
central platform was 54 cm in diameter. Eight arms, 160 cm long
and 22 cm wide, radiated out from the center at equal intervals.
The maze was constructed from white-enameled wood and ele-
vated 64 cm above the floor. Each arm was enclosed in a sleeve
of 1.3-cm aviary netting, approximately 34 cm high, to prevent
the escape of the birds. The central platform was covered with a
wire-mesh lid. A mesh door at the end of each arm allowed the
experimenter access to a half-circular green plastic food cup
(Planit), approximately 4.5 cm deep and 7 cm in radius. To im-
prove traction and facilitate cleaning, the floor of the maze
was covered with brown wrapping paper. The apparatus was
placed in a large, vacant classroom that contained abundant extra-
maze cues, such as desks, chairs, and windows, and had uniform
overhead ’.fluorescent lighting.

Proeedur~
Before *,ach session, the food cups were baited with 3-4 45-mg

Noyes peiilets, in the case of the rats, or 6-8 pieces of pigeon
:grain for the birds. Each animal was placed on the central plat-
form in a random orientation, and the experimenter then withdrew
to a distarace of about 7 m. The sequence of arms visited and the
direction af the turn made when exiting each arm were recorded.
The animal had to walk the entire length of an arm to determine
whether a bait was present, because the lip of the cup obstructed
a view of the contents at distances greater than about 20 cm. The
session was terminated when the animal had spent 30 min in the
maze, had made 16 choices, or had consumed all eight baits. The
pigeons e~hibited little spontaneous exploration early in training,
requiring an additional convention. If the animal had not moved
for 5 min, the experimenter slowly approached the maze and drove
the animal onto the central platform. Although recording was
continued after this forced movement, the results were considered
to have been contaminated, and that session was not included in
the analysis. The animals were tested daily for 3 weeks, of which
the last 10 days were used in the analysis. To avoid artifacts due
to the presence of the other species, the data were recorded in
separate blocks. The pigeon phase of the experiment was run
during Aagust 1979. The maze was then thoroughly cleaned, and
the rat phase took place the following December.

RESULTS

During the last 10 sessions, the rats required a
mean of 8.76 choices to remove the food from all

eight arms. On the average, 7.55 of their first 8
choices were "correct," in that they represented the
first visit to that arm during the given session. This
performance was significantly better than the ex-
pectation, assuming random, independent choices,
of 5.25 choices [t(9)--20.2, p< .001; Olton, 1978],
and consistent with those of earlier studies (Magni,
Krekule, & BureL 1979; Olton & Samuelson, 1976;
Olton & Schlosberg, 1978). The pigeons made an av-
erage of 13.33 choices per session, achieving a mean
of 6.28 correct choices out of the first 8. This was
also significantly better than random expectation
[t(5) = 11.3, p < .001], but it was inferior to the per-
formance of the rats It(14) = 7.7, p < .001].

Because the experimental design entails sampling
without replacement, however, the foregoing analy-
sis is unable to provide a direct estimate of the mag-
nitude of the memory task involved. It is not the
case, for example, that the pigeons’ performance im-
plies that they remember all of the arms they chose
correctly (6.28) or even that they remember the num-
ber of arms in excess of the random expectation (6.28
-5.25 = 1.03). In addition, the number correct out
of the first eight choices is clearly affected by more
than just a memory for spatial events. As has been
observed in several earlier studies (Olton, 1978), ani-
mals in the radial maze tend to make turns of fairly
constant magnitude and direction when leaving an
arm. A response bias of this sort can, of itself, yield
a better than random performance, since it causes the
animal to move away from arms that have already
been searched. The number of correct choices is,
therefore, contaminated, as a measure of spatial
memory, with an unknown component attributable
to the bias in the distribution of turns.

To begin to deal with these problems, we devised
two novel and complementary approaches to the
analysis of radial-arm maze performance. The first
involved a Monte. Carlo simulation of choice behav-
ior, based solely on the empirical distribution of turn
probabilities, to estimate that portion of the observed
performance that could be accounted for by response
bias alone. The second consisted of a simple memory
model which assumes that the animal remembers
some subset of its previous choices and selects ran-
domly from among the remaining arms. By varying
the size of the remembered set and comparing the
predictions of the model to the empirical results, we
obtained a rough estimate of the actual memory
capacity required.

In both of these analyses, the probability of a cor-
rect choice as a function of choice number was used
as the principal analytical measure. Curves of this
measure averaged across all subjects for each species
are indicated by filled triangles in Figure 1. The ex-
pected value of this function, under the null hypoth-
esis of independent, random choices, can be ex-
pressed as [(n-1)/n]r-~, where n is the number of
arms in the maze and r is the number of choices
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Figure 1. Probability o! choosing a correct arm, as a/unction
o! choice sequence. Filled triangles indicate mean observed perfor-
mance; filled circles indicate simulated performance, with choices
selected randomly from the empirical probability distribution of
turn magnitude. The expected value, under the assumption of
random, independent choices, is shown with a dashed line and
open circles, while perfect performance is indicated by open
squares.

(Parzen, 1960, p. 368). The expected probability of a
correct choice thus declines as a power function of
the number of choices, asymptotically approaching
the x-axis. This function is indicated by a dashed line
and open circles in Figure 1.

To estimate the proportion of each animal’s per-
formance that could be attributed to turning bias
alone, we performed a Monte Carlo simulation. We
first quantified the degree of bias for each animal
by determining the number of turns of each mag-
nitude and direction for each session. By our conven-
tion, a turn of magnitude zero represented a return to
the same arm from which the animal had just emerged.
A turn of +2 was an entry, via a right turn, into an
arm two doors to the right of the point of emergence.
A turn of -4 represented an entry into the arm di-
rectly opposite the point of emergence, via an initial
left turn. Note that, with these conventions, +6 was
not equivalent to -2, since the initial turn direction
was recorded independently from the succeeding arm
choice.

These turn categories were then summed across
sessions to produce an aggregate probability distribu-
tion for each animal. The predominant direction of
turning upon leaving an arm differed among ses-

sions, so the degree of asymmetry in the aggregate
distribution was preserved by reversing, from left to
right, those distributions with a predominance of left
turns before taking the sum. The pooled distributions
for each species are displayed in Figure 2. The per-
formance of an animal that relied only on this prob-
ability distribution to determine the sequence of its
choices was simulated by generating sequential, ran-
dom selections from the empirical distributions. For
each animal, 200 simulated sessions of 16 choices
were produced. Curves of the average simulated per-
formance of each species, based on turn bias alone,
are indicated by filled circles in Figure 1.

The curves of observed and simulated performance
were compared using their proportional deviation
from an expectation of random, independent choices.
If the task had been performed without error, the
correct choice probabilities would be 1 for choices 1
through 8 and 0 for all others. The deviation from
chance thus has a maximum value: the area between
the curve for perfect performance, shown with open
squares in Figure l, and the random expectation,
shown with open circles. We therefore characterized
the performance of each animal by calculating the
area between its empirical curve and the curve of ran-
dom expectation and dividing by the maximum pos-
sible area. This ratio, which we term "efficiency,"
is mathematically equivalent to Olton and Samuelson’s
(1976) relative probability measure, summed across
the first 16 choices. It can take any value between
100070 and -88.6°70, a negative value indicating per-

50"
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Figure 2. Probability histogram, pooled acro~ animals, for turn
magnitude.
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formance at less than random levels, due to repeated
searching of the same arm.

The efficiencies for each animal and for its Monte
Carlo simulation are listed in Table I. All treatment
means were significantly greater than zero (t > 5.3,
p < .0!f, indicating that both observed and simu-
lated performance were superior to random expecta-
tion. Rats were significantly more efficient than
pigeons at clearing the maze It(14) = 5.47, p < .001].
In both species, the observed performance was sig-
nificantly better than that generated by the simula-
tion model [for rats, t(18)=7.44, p < .001; for pi-
geons, t(10)= 1.84, p < .05; one-tailed tests], im-
plying that turning bias alone could account for only
a portion of the deviation from chance.

A bias in turn magnitude and direction is the
easiest alternative response strategy to describe and
test. There are, unfortunately, an unlimited number
of other possible strategies, incorporating different
pattern~ and degrees of correlation among sequential
arm choices, that are less easily diagnosed. The evi-
dence for spatial-event memory is, therefore, neces-
sarily equivocal, and inferences concerning memory
capacity must be made with caution. This limitation
aside, kowever, it is possible to obtain an estimate of
the maximum memorial demand consistent with a
particutar level of performance using a simple mem-
ory model that assumes that the animal remembers
some subset m, termed the "memory set," of its pre-
vious arm choices. In making the next choice, it
avoids the members of the memory set and selects
randomly among the remaining arms.

The expected values for the correct choice prob-
abilitie:~ in this model follow from the expression for
the random expectation given previously. On a maze
with n arms, the probability of a correct choice is
1 for all choices ~ m; for each choice r > m, the
expectation is [(n-m- 1)/(n-m)]r-m-l. We gen-
erated a predicted probability curve for each memory
set size between 0 and n- 1 and compared the pre-
dictions to the observed functions for each animal.
That value of m that minimized the squared differ-
ence fi’om the empirical curve was considered the

Table 1
Searching Efficiencies

Rats Pigeons

Animal Observed Simulated Observed Simulated

1 82.4 12.0 46.1 23.7
2 95.6 21.0 36.3 8.8
3 91.0 64.3 14.3 23.2
4 91.2 14.7 49.5 20.8
5 42.9 14.0 47.3 21.3
6 91.2 31.5 25.3 41.6
7 69.3 33.7
8 95.6 21.6
9 69.3 27.9

10 73.7 30.3
~ 80.2 27.1 36.5 23.2

Table 2
Memory Set Size

Anhnal Rats Pigeon,,;

1 6 4
2 7 2
3 7 2
4 7 4
5 3 4
6 7 3
7 6
8 7
9 6

10 6
~ 6.2 3.2

best-fit estimate of the size of the memory set. These
values for each animal are listed in Table 2. The dif-
ferences among treatment means paralleled those for
the efficiency measure. Again, all means were sig-
nificantly greater than zero (t > 6.2, p < .001). The
mean size of the best-fit memory set in rats was 6.2,
significantly higher than the pigeon’s value of 3.2
[t(14) = 5.12, p < .001].

The correct choice data were analyzed a third time
to evaluate the possibility that the poorer perfor-
mance of the pigeons was due to their not having
reached an asymptotic level of performance prior to
testing. The probability of a correct choice was
pooled across animals within each of the 10 sessions
for both species. Efficiency measures extracted from
these curves were subjected to a nonparametric trend
analysis (Kendall’s rank correlation coefficient) to
test for the occurrence of significant changes over the
experimental period. There was some evidence of an
improvement in performance across sessions in the
rat data [tau(10)= .42, p= .054], but no trend was ap-
parent in the pigeons [tau(10) = .04, p > .45].

DISCUSSION

Rats rapidly acquired the strategy of searching
each arm once, rarely repeating visits. Their perfor-
mance was, therefore, consistent with the results of
previous studies, in spite of the differences in the
maze apparatus, such as the increase in arm length
and the presence of wire-mesh barriers. Although
they exhibited nonrandom turn biases, these alone
were not sufficient to account for the magnitude of
the effect. Our design does not eliminate other non-
memorial explanations, such as the use of odor trails,
but the evidence from other studies suggests that they
are not required (Olton & Collison, 1979; Zoladek &
Roberts, 1978). Our simple memory model suggests
that a capacity of about six arms would be sufficient
to reproduce the rats’ performance. They might well
be managing with less, if one takes their response
biases into account. Since half of our animals reached
a performance ceiling on this task, we agree with
Olton et al. (1977) that, whatever memory strategy
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rats employ in the eight-arm maze, it is by no means
the limit of their abilities.

Pigeons, on the other hand, displayed only a mini-
mal gain in performance over what could be attrib-
uted to the effects of persistent turn asymmetry. The
best-fit memory set size for pigeons was about three
items. Since this inferred capacity is about half of
what was obtained from rats in the same apparatus,
the results are in agreement with the resource-
distribution hypothesis. The estimate of a memory
set of three, furthermore, is a maximum value. Given
the turning bias, the birds had no need to recall the
most recent arms they had visited.

Furthermore, our subjective impression, while re-
cording the behavior of the birds, was that their turn-
ing bias disappeared after the first unrewarded
choice. Olton and Samuelson (1976) have reported
results from rat studies that are open to a similar in-
terpretation. Because the turn probability distribu-
tions used as input for the simulation were derived
from performance on all 16 choices, rather than
merely those that preceded the first error, the simula-
tion could have overestimated the randomness of the
animals’ movements in the first 8 or 9 choices and
underestimated the explanatory strength of the turn
bias. This systematic effect of choice number on the
distribution of turn probabilities might be enough
to account for the superiority of the observed per-
formance to the simulation, at least in the pigeons.
At best, therefore, the birds were using only half the
memory capacity of the rats; at worst, they might not
have been using spatial memory at all.

One must be cautious in interpreting negative re-
suits in studies of this kind, since it is never possible
to be certain that they do not reflect a design artifact,
a consequence of some feature of the apparatus that
unintentionally prevents the animal from displaying
its true abilities. The task appears to place roughly
comparable demands on rats and pigeons, in terms
of both sensory capabilities and characteristic forag-
ing behavior, but there may be less obvious species
differences that could have influenced the birds’ per-
formance. In short-term memory experiments using
conditional discriminations, pigeons appear to en-
gage in behavioral "rehearsal" (Blough, 1959; Cook,
1980). The extensive movements the maze requires
appear to be incompatible with this memorial strat-
egy. If these behaviors are essential to effective recall
of recent stimuli, a poor performance on this task is
inevitable. In addition, there was some suggestion
that the birds tended to orient toward unsearched
arms while they were at the end of an adjacent arm.
The wire mesh constrained the bird from moving
directly to the visible food dish, forcing it instead to
walk away from the goal and back to the central plat-
form. It seems possible that such a forced detour
could have disrupted memory for the most recent arm.

Other features of the experimental design could
also have contributed to the poor performance of the
pigeons. It is conceivable that the difference between
pigeons and rats is not one of memory capacity, but
of the amount of experience required to attain a
particular level of competence. If rate of learning
were the critical variable, however, we might expect
to see a gradual improvement in the birds’ perfor-
mance across the 10 sessions, and this was not the
case. It is also possible that they were not stffficiently
motivated to learn the task (Bitterman, 1960). The
motivational level we used is fairly standard for pro-
ducing reliable learning in an operant chamber, but it
might have been inadequate for a design that re-
quired extensive locomotion and long intervals be-
tween arm choice and reward.

As Hailman (1976) makes clear, an ideal design for
strong inference in comparative psychology requires
more than a two-species comparison. Rats and pi-
geons differ from one another on many grounds.
They are but distantly related phylogenetically, their
neuroanatomy is dissimilar, and there are substantial
differences in their natural history, differences other
than just the characteristic distribution of their food
resources. To bolster the resource-distribution ar-
gument, the radial maze procedure must ultimately
be applied to at least two other species: a rodent,
such as a guinea pig or vole, that customarily ex-
periences reliable, abundant food resources and a
bird that is ecologically analogous to the Norway rat,
perhaps a crow or blackbird. Again, care must be
taken to insure that the performance requirements of
the task place comparable demands on each of the
species chosen. The comparison conducted in the
present experiment is a useful first step, however. It
provides the best extant evidence bearing on the as-
sumption, often made by researchers in spatial
memory (Olton & Schlosberg, 1978), that the radial-
arm maze taps an ability that is innate and particular
to the Norway rat. At the very least, our results con-
firm that the rat’s performance is not universal
among vertebrates and suggest the usefulness of
evolutionary arguments in the development of a com-
parative psychology of cognitive processes.
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