University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Conference Presentations and White Papers: **Biological Systems Engineering**

Biological Systems Engineering

6-20-2007

Runoff Nutrient Concentrations Following Manure Application as Affected by Crop Residue

John E. Gilley University of Nebraska - Lincoln, john.gilley@ars.usda.gov

Jeffrey Nicolaisen Environmental Resources Management Inc., 4650 Spencer Street, Appleton, Wisconsin

Eghball Bahman USDA-ARS, Lincoln, NE

David B. Marx University of Nebraska-Lincoln, david.marx@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/biosysengpres

Part of the Biological Engineering Commons

Gilley, John E.; Nicolaisen, Jeffrey; Bahman, Eghball; and Marx, David B., "Runoff Nutrient Concentrations Following Manure Application as Affected by Crop Residue" (2007). Conference Presentations and White Papers: Biological Systems Engineering. 29.

https://digitalcommons.unl.edu/biosysengpres/29

This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Conference Presentations and White Papers: Biological Systems Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

An ASABE Meeting Presentation

Paper Number: 072122

Runoff Nutrient Concentrations Following Manure Application as Affected by Crop Residue

John E. Gilley, Agricultural Engineer

USDA-ARS, Room 251, Chase Hall, University of Nebraska, Lincoln, NE 68583-0934, jgilley1@unl.edu

Jeffrey E. Nicolaisen, Staff Engineer

Environmental Resources Management Inc., 4650 Spencer Street, Appleton, Wisconsin 54914

Eghball Bahman, Soil Scientist (deceased)

USDA-ARS, Lincoln, NE

David B. Marx, Professor

Statistics Department, University of Nebraska, Lincoln, NE, 68583-0963, dmarx1@unl.edu

Written for presentation at the 2007 ASABE Annual International Meeting Sponsored by ASABE Minneapolis Convention Center Minneapolis, Minnesota 17 - 20 June 2007

Abstract. Manure is applied to cropland areas managed under diverse conditions resulting in varying amounts of residue cover. The objective of this study was to measure the effects of crop residue on nutrient concentrations in runoff from areas where beef cattle or swine manure were recently applied but not incorporated. Plots 0.75 m wide by 2 m long were established at the study site. Existing residue materials were removed, and corn, soybean, or winter wheat residue was added at rates of 2, 4, or 8 Mg ha-1. Manure was applied at rates required to meet estimated annual nitrogen requirements for corn. Control plots with manure but no-residue, and plots with no-residue and no-manure were also established. Three 30-min simulated rainfall events, separated by 24-hr intervals, were conducted at an intensity of 70 mm hr-1. Dissolved phosphorus (DP), total phosphorus (TP), NO3-N, NH4-N, total nitrogen, runoff, and soil loss were measured for each rainfall event.

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural and Biological Engineers (ASABE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASABE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASABE meeting paper. EXAMPLE: Author's Last Name, Initials. 2007. Title of Presentation. ASABE Paper No. 07xxxx. St. Joseph, Mich.: ASABE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASABE at rutter@asabe.org or 269-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA).

When beef cattle or swine manure was applied to plots containing residue materials, nutrient concentrations in runoff were not affected by the amount of crop residue on the soil surface. Concentrations of DP and NO3-N in runoff from the plots with beef cattle manure were significantly greater on the residue than the no-residue treatments. No significant differences in runoff nutrient concentrations were found between the residue and no-residue treatments with swine manure. Concentrations of DP and TP were significantly less on the no-residue/no manure treatment than the plots with beef cattle or swine manure.

Keywords. Crop residue, Land application, Manure management, Manure runoff, Nitrogen movement, Nutrient losses, Phosphorus, Residue management, Runoff, Water quality.

INTRODUCTION

Manure contains nutrients that can serve as a substitute for inorganic fertilizer and organic matter that can improve soil characteristics including infiltration, porosity, and water holding capacity. However, nutrients in runoff from agricultural areas may cause adverse environmental impacts (Sharpley et al., 1994 and 2000; Andraski and Bundy, 2003). Source factors such as manure or fertilizer application method, loading rate and soil nutrient test level affect runoff nutrient concentrations (Sims, 1993; Daniel et al., 1994; McDowell et al., 2001). Transport factors including runoff and erosion may influence nutrient delivery by surface runoff (Lemunyon and Gilbert, 1993; Gilley et al., 2001). The length of time that has elapsed since manure application can also affect runoff nutrient concentrations (Gilley and Eghball, 2002). Soil nutrient values may not significantly impact runoff nutrient concentrations when rainfall occurs soon after manure application (Eghball et al., 2002).

Reduced tillage systems help to maintain crop residue on the soil surface. Doran and Linn (1994) cite several benefits of no-till farming systems including soil protection from erosion losses; conservation of soil water by increased infiltration and decreased evaporation; greater use of land too steep for conventional tillage; and reduction in fuel, labor, and machinery costs. The application of manure to a no-till system without incorporation can result in DP concentrations in runoff that exceed established water quality standards (Eghball and Gilley, 1999). Maintenance of residue cover is an important concern when reduced tillage systems are used. There have been few studies examining the effects of crop residue on runoff nutrient concentrations from sites on which manure was recently added. The objective of this study was to measure the effects of crop residue on nutrient concentrations in runoff from areas where beef cattle or swine manure were recently applied but not incorporated.

MATERIALS AND METHODS

STUDY SITE CHARACTERISTICS AND EXPERIMENTAL DESIGN

This field study was conducted from May to August 2001 at the University of Nebraska Rogers Memorial Farm located about 18 km east of Lincoln, NE in Lancaster County. The Sharpsburg silty clay loam soil (fine, smectitic, mesic Typic Argiudoll) at the site contained 11% sand, 54% silt, and 35% clay, and 18.5 g kg⁻¹ organic C in the top 15 cm of soil. The soil formed from loess under prairie vegetation and had a mean slope of 7%. Soil characteristics at the study site are shown in table 1. The site had been cropped using a grain sorghum (*Sorghum bicolor* (L.) Moench), soybean (*Glycine max* (L.) Merr.), winter wheat (*Triticum aestivum* L. cv. Pastiche) rotation, under a no-till management system, and was left undisturbed following soybean harvest

in the fall of 2000. Herbicide was applied immediately before and midway through the study to prevent weed growth.

Table 1. Soil characteristics before manure application.

Soil depth	WSP ^[a]	BKP	NO ₃ -N	NH ₄ -N	EC ^[b]	pН
cm		m	g kg ⁻¹		d S m ⁻¹	
0-5	9.4	72.5	8.4	5.0	0.4	6.6
5-15	0.7	7.1	4.7	4.9	0.3	5.3

[[]a] WSP is water soluble P and BKP is Bray and Kurtz No. 1 phosphorus.

Tests using beef cattle (*Bos taurus*) and swine (*Sus scrofa*) manure were conducted on separate blocks each containing 33 plots. The types and amounts of crop residue applied within each block varied in a randomized design. Each block included three replications of corn (*Zea mays* L.), soybean, or winter wheat residue applied at rates of 2, 4, or 8 Mg ha⁻¹ (27 plots). In addition, a treatment without crop residue but with manure (3 plots) and a treatment without crop residue or manure (3 plots) were included in the 33 plots contained in each block. Thus, a total of 66 plots were examined during this study.

Corn and soybean residue used in this investigation were collected in May 2001 at the Rogers Memorial Farm. The winter wheat straw was obtained from a commercial source and was bailed soon after harvest. The crop residue materials were dried in an oven at 60°C and then stored for future use. The drying process allowed the residue materials to be applied on a uniform dry weight basis.

Equations have been developed that allow surface cover to be estimated from residue mass. A residue mass of 2, 4, or 8 Mg ha⁻¹ provides approximately the following surface cover: corn - 20, 37 and 60% (Gilley et al., 1986b); soybean - 24, 42 and 66% (Gilley et al., 1986a); and wheat - 63, 86, and 98% (Gregory, 1982). Decomposition, residue weathering, and tillage cause residue cover to decrease. The residue rates used in this study (which include a no-residue condition) are representative of a broad range of tillage and management conditions found on cropland areas.

MANURE CHARACTERISTICS

Beef cattle manure was collected in May 2001 from a private confined livestock operation near Waterloo, Nebraska. To provide greater application uniformity, larger size materials were broken by hand and the manure was sieved through a screen with 12 mm openings. The beef cattle manure was then placed in plastic bags and stored at 4 °C until it was applied.

[[]b] EC is electrical conductivity; EC and pH were determined in 1:1 soil/water ratio (Smith and Doran, 1996).

Swine manure was obtained in June 2001 from the University of Nebraska Agricultural Research and Development Center near Ithaca, Nebraska. The liquid swine manure was collected from a pit located below a slatted floor and was stored in 19 L plastic pails. The plastic pails with lids were kept at air temperature in a shed until they were needed. The production unit had been in operation for two months and contained 100 swine weighing 36-45 kg that were fed a corn – soybean diet.

Beef cattle and swine manure were applied at rates of 32.3 and 66.5 Mg ha⁻¹, respectively, the approximate amounts required to meet estimated corn N requirements. Application rates were determined using 40% N availability for beef cattle manure (Eghball and Power, 1999) and 70% N availability for swine manure (Gilbertson et al., 1979). Manure characteristics reported from replicated samples sent to a commercial laboratory, and application rates of nitrogen (N) and phosphorus (P) are given in table 2.

RAINFALL SIMULATION PROCEDURES

Water used in the rainfall simulation tests was obtained from an irrigation system. Measured mean concentrations of DP, TP, NO₃-N, NH₄-N, and TN in the irrigation water were: 0.22, 0.22, 17.8, 0.02 and 17.8 mg L⁻¹, respectively. The irrigation water had a mean EC value of 0.73 dS m⁻¹ and a pH of 7.62. Reported nutrient concentrations represent the difference between runoff measurements and concentrations in the irrigation well water.

Table 2. Manure characteristics and application rates of nitrogen and phosphorus.

	Concentrations							Applied	
Manure	NO_3 - $N^{[a]}$	NH ₄ -N	Total N	Total P	Water Content	EC ^[b]	pН	Total N	Total P
			- g kg ⁻¹ -			d S m ⁻¹		——kg ha	-1
Beef Cattle	0.0047	0.12	8.16	3.22	302	5.6	8.4	264	104
Swine	0.0001	2.25	3.25	0.76	989	13.9	6.9	216	22

[[]a] Nutrient concentrations of the beef cattle and swine manure were determined on a dry and wet basis, respectively.

Paired 0.75 m wide by 2 m long plots were established. The plots were raked and any remaining plant material was removed by hand. Burlap material was placed on the plots to reduce surface disturbance during the prewetting process. To provide more uniform antecedent soil water conditions between treatments, water was applied to the plots with a hose until runoff began. Crop residue and then manure were added by hand following the pre-wetting process.

Rainfall simulation procedures adopted by the National Phosphorus Research Project (NPRP) were employed in this study (Sharpley and Kleinman, 2003). Two rain gauges were placed along the

[[]b] EC is electrical conductivity; EC and pH for beef cattle manure were determined in 1:5 manure/water ratio; EC and pH for swine manure were measured without dilution.

outer edge of each plot, and one rain gauge was located between the paired plots. A portable rainfall simulator based on the design by Humphry et al. (2002) was used to apply rainfall for 30 min at intensity of approximately 70 mm hr⁻¹. Two additional rainfall simulation runs were conducted at approximately 24-hr intervals. Plots were covered with tarps between simulation events to prevent the input of natural rainfall.

Sheet metal borders channeled runoff into a collection trough. The trough extended across the bottom of each plot and diverted runoff into aluminum washtubs. Runoff was agitated to maintain suspension of solids and then sampled. Centrifuged and filtered runoff samples were analyzed for DP (Murphy and Riley, 1962), NO₃-N, and NH₄-N using a Lachat system (Zellweger Analytics, Milwaukee, WI). Non-centrifuged samples were analyzed for TP (Johnson and Ulrich, 1959) and TN (Tate, 1994). Runoff samples were dried in an oven at 105°C and weighed to determine sediment content.

STATISTICAL ANALYSIS

Physical and chemical characteristics of the beef cattle and swine manure were substantially different. As a result, separate statistical analyses were preformed on data collected from the beef cattle and swine manure treatments. Measurements from the three rainfall simulation runs were treated as repeated measures. Analysis of variance was performed to identify the effects of residue type, residue amount, and manure application on selected water quality, runoff and erosion characteristics. The least significant difference test was used to determine statistical significance among treatment means. A probability level < 0.05 was considered significant.

RESULTS AND DISCUSSION

BEEF CATTLE MANURE TREATMENTS

The residue type x residue amount interaction was not significant for any of the water quality, runoff or erosion characteristics measured on the plots with beef cattle manure (table 3). For the plots containing residue and manure, the amount of residue on the soil surface did not significantly affect nutrient concentrations in runoff (table 3). However, significant differences in concentrations of DP and NO₃-N were found between the residue and no-residue treatments with beef cattle manure (figs. 1a and 1c). Concentrations of DP, TP and NO₃-N in runoff were significantly less on the plots with no-residue and no-manure than the treatments with beef cattle manure (figs. 1a, 1b and 1c). Runoff concentrations of NH₄-N and TN for the 33 plots on the beef cattle manure experimental block averaged 0.70 and 55.3 mg L⁻¹, respectively.

Hydraulic roughness coefficients are greater on areas containing crop residue (Gilley et al., 1991). As a result, overland flow runoff velocities may be reduced on sites with substantial residue cover. In addition, small ponds created by crop residue serve to store water on upland areas (Gilley and Kottwitz, 1994). The cumulative volume of water generated by a large number of ponds can be substantial. The reduced runoff velocity and ponding of water caused by crop residue could have increased leaching of DP and NO₃-N from the beef cattle manure.

Water was added to the plots before initiation of the rainfall simulation tests to provide more uniform antecedent soil water conditions among plots. Since soil near the surface was close to saturation when the rainfall simulation tests were initiated, no significant differences in total runoff were measured between the residue and no-residue treatments (table 3). Consequently, results related to nutrient concentration should also be applicable to nutrient load. A mean runoff value of 18 mm was measured for the 33 plots on the beef cattle manure experimental block.

No significant differences in soil erosion measurements were found among the experimental treatments on the beef cattle manure experimental block. The reduced erodibility expected under no-till conditions appears to have been maintained even after the existing residue materials had been removed. For the 33 plots on the beef cattle manure experimental block, a mean soil erosion value of 0.29 Mg ha⁻¹ was measured. Gilley and Eghball (1998) also found that runoff and erosion from simulated rainfall were not significantly influenced by the single application of beef cattle manure.

Table 3. Analysis of variance showing the effects of residue type, residue amount, and manure application on water quality, runoff and erosion characteristics.

Variable	DP	Total P	NO ₃ -N	NH ₄ -N	Total N	Runoff	Erosion
-				-PR>F			
-		Cattle					
Residue Type	0.04	0.64	0.72	0.49	0.60	0.14	0.94
Residue Amount	0.30	0.30	0.12	0.66	0.73	0.06	0.43
Residue Type x Amount	0.82	0.58	0.47	0.77	0.90	0.71	0.55
No Residue - Manure	0.05	0.65	0.04	0.16	0.83	0.72	0.48
No Residue - No Manure	0.01	0.01	0.01	0.66	0.41	0.70	0.80
	Swine						
Residue Type	0.44	0.09	0.56	0.05	0.48	0.49	0.41
Residue Amount	0.80	0.08	0.21	0.51	0.33	0.04	0.09
Residue Type x Amount	0.23	0.06	0.28	0.15	0.13	0.35	0.57
No Residue - Manure	0.71	0.01	0.76	0.15	0.56	0.48	0.01
No Residue - No Manure	0.01	0.01	0.17	0.01	0.14	0.29	0.27

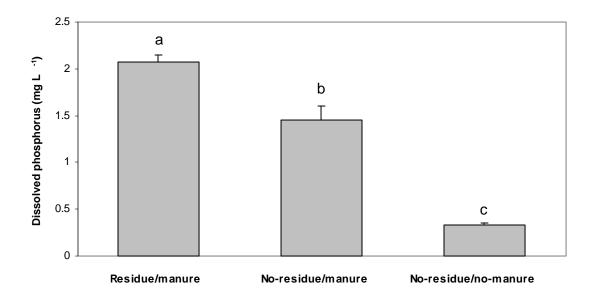


Figure 1a. Dissolved phosphorus in runoff as affected by crop residue and cattle manure. Vertical bars are standard errors. The letter above each bar indicates statistical significance at P < 0.05 using the least significant difference test.

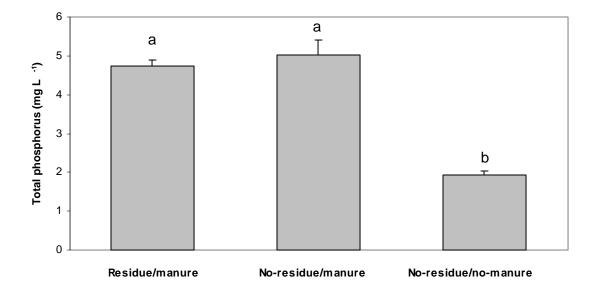


Figure 1b. Total phosphorus in runoff as affected by crop residue and cattle manure. Vertical bars are standard errors. The letter above each bar indicates statistical significance at P < 0.05 using the least significant difference test.

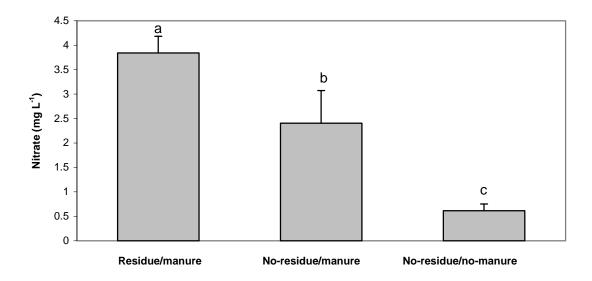


Figure 1c. Nitrate in runoff as affected by crop residue and cattle manure. Vertical bars are standard errors. The letter above each bar indicates statistical significance at P < 0.05 using the least significant difference test.

SWINE MANURE TREATMENTS

For the plots with swine manure, the residue type x residue amount interaction was not significant for any of the measured water quality, runoff or soil erosion characteristics (table 3). The amount of residue on the soil surface did not significantly affect nutrient concentrations in runoff on the plots containing residue and manure (table 3). No significant differences in nutrient concentrations were found between the residue and no-residue treatments with swine manure (table 3; figs. 2a, 2b, 2c and 2d). Concentrations of DP, TP and NH₄-N in runoff were significantly less on the plots with no-residue and no-manure (figs. 2a, 2b and 2c). For the 33 plots on the swine manure experimental block, mean concentrations of NO₃-N and TN were 0.55 and 106 mg L⁻¹, respectively.

No significant differences in total runoff amounts were measured between the residue and noresidue treatments (table 3) on the swine manure experimental block. A mean runoff value of 22 mm was measured. For the plots with residue and manure, a mean erosion value of 0.48 Mg ha⁻¹ was obtained compared to 0.95 and 0.68 Mg ha⁻¹ on the no-residue/manure and no-residue/no-manure treatment (fig. 2d).

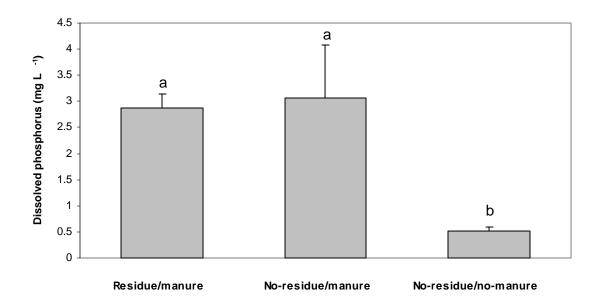


Figure 2a. Dissolved phosphorus in runoff as affected by crop residue and swine manure. Vertical bars are standard errors. The letter above each bar indicates statistical significance at P < 0.05 using the least significant difference test.

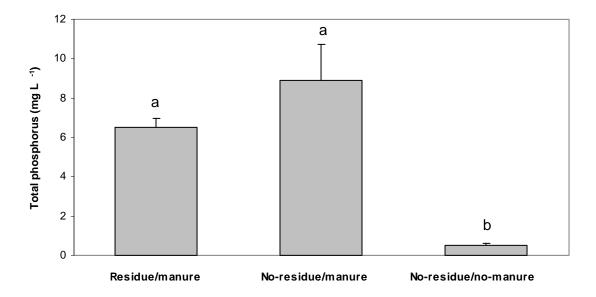


Figure 2b. Total phosphorus in runoff as affected by crop residue and swine manure. Vertical bars are standard errors. The letter above each bar indicates statistical significance at P < 0.05 using the least significant difference test.

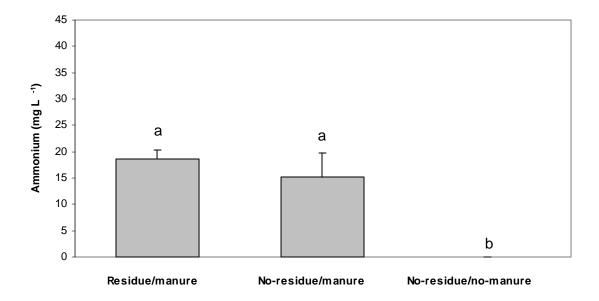


Figure 2c. Ammonium in manure as affected by crop residue and swine manure. Vertical bars are standard errors. The letter above each bar indicates statistical significance at P < 0.05 using the least significant difference test.

.

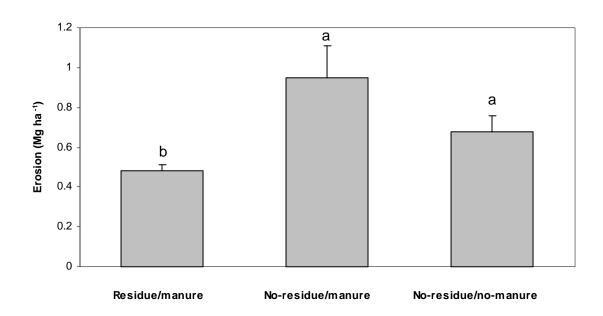


Figure 2d. Erosion as affected by crop residue and swine manure. Vertical bars are standard errors. The letter above each bar indicates statistical significance at P < 0.05 using the least significant difference test.

ADDITIONAL CONSIDERATIONS

The rainfall simulation and data collection protocols adopted by the NPRP (Sharpley and Kleinman, 2003) were used in this study. However, it is recognized that these procedures represent an extreme condition. Three consecutive high intensity storms, each for a 30-min duration, would not be expected to occur over a 72-h period under natural rainfall conditions. Adding water to the plots prior to the tests to provide more uniform antecedent soil water conditions enhanced the opportunity for runoff.

Rainfall simulation tests were conducted soon after manure was applied. In this study, manure was not incorporated or injected. The incorporation of manure following application can significantly reduce the concentration of nutrients in runoff (Eghball and Gilley, 1999). Little information is currently available concerning temporal changes in nutrient transport following the addition of beef cattle or swine manure to cropland areas.

Manure has been effectively used to improve crop production and soil properties because it contains nutrients and organic matter. In his study, runoff and erosion were measured soon after manure application. For selected locations on which manure was added annually, runoff was reduced from 2 to 62%, and soil loss decreased from 15 to 65% compared to non-manured sites (Gilley and Risse, 2000).

Crop residues on the soil surface subjected to rainfall have been found to be a significant source of soluble nutrients in agricultural runoff (Schreiber, 1985). As residue decomposed, the fraction of water-soluble NO₃-N in plant material that was leached under rainfall was reported to increase (Havis and Alberts, 1993). Significant amounts of PO₄-P and NH₄-N were also found in leachate from corn residue (Schreiber, 1999). Nutrient concentrations in leachate were greater at lower rainfall intensities and higher corn residue loading rates. For individual storms, NO₃-N concentrations in leachate rapidly decreased with either time or cumulative leachate volume to a near constant value. Little information is currently available concerning temporal changes in the leaching of nutrients from crop residue materials.

Concentrations of human health-related microorganisms in runoff from the experimental plots established in this study were also measured. Additional details concerning the microbial tests is provided by Thurston-Enriquez et al. (2005).

CONCLUSIONS

The amount of crop residue found on a site cropped under no-till conditions did not significantly affect nutrient concentrations in runoff on the treatments with residue and beef cattle manure applied directly on the surface. However, significant differences in concentrations of DP and NO₃-N were found between the residue and no-residue treatments with beef cattle manure. Concentrations of DP, TP and NO₃-N in runoff were significantly less on the plots with no-residue and no-manure than the treatments with beef cattle manure. Runoff concentrations of NH₄-N and TN for the 33 plots on the beef cattle manure experimental block averaged 0.70 and 55.3 mg L^{-1} , respectively.

On the plots containing residue and swine manure and cropped under no-till conditions, the amount of residue on the soil surface did not significantly affect nutrient concentrations in runoff. No significant differences in nutrient concentrations were found between the residue and no-residue treatments with swine manure. Concentrations of DP, TP and NH₄-N in runoff were significantly less on the plots with no-residue and no-manure. For the 33 plots on the swine manure experimental block, mean concentrations of NO₃-N and TN were 0.55 and 106 mg L⁻¹, respectively.

REFERENCES

- Andraski, T.W., and L.G. Bundy. 2003. Relationship between phosphorus levels in soil and in runoff from corn production systems. *J. Environ. Qual.* 32(1):310-316.
- Daniel, T.C., A.N. Sharpley, D.R. Edwards, R. Wedepohl, and J.L. Lemunyon. 1994. Minimizing surface water eutrophication from agriculture by phosphorus management. *J. Soil Water Conserv.* 49(2):30-38.
- Doran, J.W., and D.M. Linn. 1994. Microbial ecology of conservation management systems. p. 1-27. *In* J.L. Hatfield and B.A. Stewart (ed.) Soil Biology: Effects on Soil Quality. Advances in Soil Science. Lewis Publ., Boca Raton, FL.
- Eghball, B., and J.E. Gilley. 1999. Phosphorus and nitrogen in runoff following beef cattle manure or compost application. *J. Environ. Qual.* 28(4):1201-1210.
- Eghball, B., and J.F. Power. 1999. Phosphorus and nitrogen-based manure and compost applications: corn production and soil phosphorus. *Soil Sci. Soc. Am. J.* 63(4):895-901.
- Eghball, B., J.E. Gilley, D.D. Baltensperger, and J.M. Blumenthal. 2002. Long-term manure and fertilizer application effects on phosphorus and nitrogen in runoff. *Trans. ASAE* 45(3):687-694.
- Gilbertson, C.B., F.A. Norstadt, A.C. Mathers, R.F. Holt, L.R. Shuyler, A.P. Barnett, T.M. McCalla, C.A. Onstad, R.A. Young, L.A. Christenson, and D.L.Van Dyne. 1979. Animal waste utilization on cropland and pastureland: A manual for evaluating agronomic and environmental effects. Utilization Res. Rep. 6. USDA, Washington, DC.
- Gilley, J.E., and B. Eghball. 1998. Runoff and erosion following field application of beef cattle manure and compost. *Trans. ASAE* 41(5):1289-1294.
- Gilley, J.E., and B. Eghball. 2002. Residual effects of compost and fertilizer applications on nutrients in runoff. *Trans. ASAE* 45(6):1905-1910.
- Gilley, J.E. and E.R. Kottwitz. 1994. Maximum surface storage provided by crop residue. *Journal of Irrigation and Drainage Engineering* 120(2):440-449.
- Gilley, J.E., and L.M. Risse. 2000. Runoff and soil loss as affected by the application of manure. *Trans. ASAE* 43(6):1583-1588.
- Gilley, J.E., S.C. Finkner, and G.E. Varvel. 1986a. Runoff and erosion as affected by sorghum and soybean residue. *Trans. ASAE* 29(6):1605-1610.
- Gilley, J.E., E.R. Kottwitz and G.A. Wieman. 1991. Roughness coefficients for selected residue materials. *Journal of Irrigation and Drainage Engineering* 117(4):503-514.
- Gilley, J.E., B. Eghball, B.J. Wienhold, and P.S. Miller. 2001. Nutrients in runoff following the application of swine manure to interrill areas. *Trans. ASAE 44*(6):1651-1659.
- Gilley, J.E., S.C. Finkner, R.G. Spomer, and L.N. Mielke. 1986b. Runoff and erosion as affected corn residue: Part I. Total losses. *Trans. ASAE* 29(1):157-160
- Gregory, J.M. 1982. Soil cover prediction with various amounts and types of crop residue. *Trans. ASAE* 25(5):1333-1337.

- Havis, R.N. and E. E. Alberts. 1993. Nutrient leaching from field-decomposed corn and soybean residue under simulated rainfall. *Soil Sci. Soc. Am. J.* 56(1):211-218
- Humphry, J.B., T.C. Daniel, D.R. Edwards, and A.N. Sharpley. 2002. A portable rainfall simulator for plot-scale runoff studies. *Applied Engineering in Agriculture* 18(2):199-204.
- Johnson, C.M., and A. Ulrich. 1959. Analytical methods for use in plant analysis. p. 26-78. Univ. of California, Berkeley, Agric. Exp. Stn. Bull. 766.
- Lemunyon, J.L., and R.G. Gilbert. 1993. The concept and need for a phosphorus assessment tool. *J. Production Agric.* 6(4):483-486.
- McDowell, R.W., A.N. Sharpley, and G.F. Folmar. 2001. Phosphorus export from an agricultural watershed: Linking source and transport mechanisms. *J. Environ. Qual.* 30(5):1587-1595.
- Murphey, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. *Anal. Chem. Acta.* 27:31-36.
- Schreiber, J. D. 1985. Leaching of nitrogen, phosphorus, and organic carbon from wheat straw residues II. Loading rate. *J. Environ. Qual.* 14(2):256-260
- Schreiber, J. D. 1999. Nutrient leaching from corn residues under simulated rainfall. *J. Environ. Oual.* 28(6):1864-1870.
- Sharpley, A. N., and P. J. A. Kleinman. 2003. Effect of rainfall simulator and plot scale on overland flow and phosphorus transport. *J. Environ. Qual.* 32(6):2172-2179.
- Sharpley, A.N., S.C. Chapra, R. Wedepohl, J.T. Sims, T.C. Daniel, and K.R. Reddy. 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options. *J. Environ. Qual.* 23(3):437-451.
- Sharpley, A.N., B.H. Foy, and P.J.A. Withers. 2000. Practical and innovative measures for the control of agricultural phosphorus losses to water: An overview. *J. Environ. Qual.* 29(1):1-9.
- Sims, J.T. 1993. Environmental soil testing for phosphorus. J. Prod. Agric. 6(4):501-507.
- Smith, J.L., and J.W. Doran. 1996. Measurement and use of pH and electrical conductivity for soil quality analysis. p. 169-185. *In*: J.W. Doran and A.J. Jones (ed.) Methods for assessing soil quality. SSSA Spec. Publ. 49. SSSA, Madison, WI.
- Tate, D.F. 1994. Determination of nitrogen in fertilizer by combustion: Collaborative study. *J. AOAC Int.* 77:829-839.
- Thurston-Enriquez, J.A., J.E.Gilley, and B. Eghball. 2005. Microbial quality of runoff following land application of cattle and swine slurry. *J. Water and Health* 3(2):157-171.