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2.1  Introduction

A model is a representation of an underlying physical–chemical phenomenon. 
In the pharmaceutical industry, mathematical‐based models can be applied at 
all stages of development, starting with formulation design, continuing through 
process development and scale‐up, and extending into process monitoring and 
control of the commercial process. Implementation of models offers many 
benefits. These include, but are not limited to, (i) enhanced process under-
standing, (ii) reduction of experimentation cost, and (iii) improvement of 
productivity and product quality.

2.2  Overview of Models

Models can be broadly categorized as either qualitative or quantitative. The 
focus of this chapter is quantitative models. These can be classified into three 
broad areas: mechanistic, empirical, and hybrid. As illustrated in the knowl-
edge pyramid in Figure 2.1, overall understanding and the information needed 
to derive from these models increases from empirical to mechanistic models.

Mechanistic models are based on first principles, capture the underlying 
physical/chemical phenomena through sets of equations, and can be time 
independent (i.e., steady‐state) or dynamic. As indicated by Singh et al. 
[1], mechanistic models can be an excellent way to represent process knowl-
edge. In such models, the input–output dynamics in a unit operation can be 
represented by a set of differential equations. Model building necessitates the 
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availability of balance equations (e.g., mass and energy balance equations), 
constitutive equations, and an understanding of the constraints. Since 
mechanistic models are a true representation of the underlying phenome-
non, predictions from these models can sometimes be extrapolated beyond 
the range covered by input data, depending on the validity of the underlying 
assumptions. Typically, the bottleneck in developing mechanistic models is 
coming up with equations as well as associated parameters that accurately 
represent the system.

Empirical modeling approaches also can be used to represent input–output 
dynamics. These models are particularly useful for complex systems where it is 
not feasible to develop mechanistic models. Empirical models treat a system as 
a “black box” and do not typically describe the underlying physical–chemical 
phenomena. These models represent input–output dynamics of a system 
solely in terms of observational data. One of the limitations of empirical models 
is that the range of applicability of these models is limited to the variation 
represented in the data that was used to derive the model. Hence, predictions 
from these models cannot be reliably extrapolated beyond the range covered 
by the input data. On the other hand, the advantage of empirical models is that 
they can be relatively easy to put together and solve, as compared with mecha-
nistic models.

In the pharmaceutical world, empirical models are typically used for process 
understanding and control, such as to program software sensors associated 
with process analytical technology (PAT)‐based tools. While mechanistic 
models have a distinct advantage of a wide range of predictive potential, not all 
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Figure 2.1  Knowledge pyramid for developing mathematical models.
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processes associated with the pharmaceutical industry are understood well 
enough to allow them to be modeled using first principles.

Philosophically, however, there are few true mechanistic or empirical 
models. All mechanistic models have a degree of empiricism in them (e.g., 
modeling assumptions), while all empirical models have a mechanistic 
element (e.g., rationale for selection of input parameters that are used to 
derive the models). In general, models are classified into either category 
depending on the preponderance of mechanistic or empirical components 
in the model. Following this philosophy, models can be classified as sem-
iempirical or hybrid if they have relatively equal proportion of mechanistic 
and empirical elements.

Hybrid models are a combination of mechanistic and empirical models. As 
elucidated by Gernaey et al. [2], the approach is to include all available process 
knowledge in a first‐principles‐based model, where the gaps in process knowl-
edge are then represented on the basis of empirical (i.e., data‐driven) approaches 
utilizing available experimental data. Examples of hybrid models are scale‐up 
correlations, where the form of the equation is derived from fundamental rela-
tions, while the constants are fit from experimental data.

As shown in Figure 2.2, each model category has several potential approaches 
and mathematical techniques.

Mechanistic Empirical Semi
empirical/hybrid

Exact solution/
thermodynamic

Chemometric

Multivariate
models (MV)

Neural network

IV–IVC model

Regression model

Probability based

Scale-up equations

Property estimation

Computational
fluid dynamics

(CFD)

Discrete element
model (DEM)

Finite element
model (FEM)

Figure 2.2  Schematic of types of models.
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Mechanistic models can include, but are not limited to, (i) models that 
involve exact solution of equations representing the underlying physical–
chemical phenomena while treating the system as one entity; (ii) computational 
fluid dynamics (CFD) approach, where intensive computational techniques are 
used to simulate fluid movements while dividing the volume occupied by the 
fluid into discrete cells (or the mesh); (iii) discrete element modeling (DEM) 
approach, which involves rigorous computation to simulate the motion of 
a  collection of discrete particles of micrometer‐scale size and above; and 
(iv) finite element model (FEM) that involves solving constitutive equations for 
a domain by discretizing the domain into small elements or nodes.

Empirical models can include, but are not limited to, (i) regression correla-
tions (linear or nonlinear) derived between a dependent variable and one or 
more independent variables, (ii) statistically based latent variable (LV) models 
that relate a set of manifest variables to a set of LVs (multivariate models and 
chemometric models belong to this category), (iii) neural network models that 
utilize nonlinear statistical modeling tools to represent complex relations 
between inputs and outputs, (iv) probability‐based models in which the rela-
tionship between inputs and outputs is expressed in terms of probability 
theory, and (v) in vitro–in vivo correlation (IV–IVC) models that describe the 
relationship between an in vitro property of an extended release dosage form 
and a relevant in vivo response, for example, plasma concentration. IV–IVC 
models include regression correlation approach as well as principles of statisti-
cal moment analysis.

Scale‐up correlations based on dimensional analysis can be considered hybrid 
models. Dimensional analysis is based on characterization of a process in terms of 
dimensionless numbers. Dimensionless numbers involve a mechanistic com-
ponent in identifying the factors that constitute them; however, the method of 
derivation of these numbers may be regarded as empirical. The objective during 
scale‐up is to keep the dimensionless numbers constant at various scales to ensure 
consistency of product quality at all scales. An example of a hybrid modeling 
approach is the model described by Chen et al. [3]. This model is used for predict-
ing active pharmaceutical ingredient content uniformity for a drug product in 
which the active is coated onto a core tablet. The model is based on a mechanistic 
description of the spray coating process in a perforated coating pan and included 
a number of parameters that were measured from experimental runs.

2.3  Role of Models in QbD

An example of a QbD implementation approach as outlined in ICH Q8 (R2) [4] 
involves the following steps:

1)	 Identification of quality target product profile (QTPP), which ensures the 
finished product’s quality, safety, and efficacy
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2)	 Identification of critical to quality attributes (CQAs)
3)	 Risk assessment
4)	 Determination of design space
5)	 Implementation of the control strategy
6)	 Continual improvement

The following paragraphs describe how models can be used at every stage 
of the QbD implementation approach by citing examples from published 
literature. This compilation is not exhaustive of various types of models that 
can be implemented to support QbD‐based development. Instead, a few 
examples were selected from the literature to exemplify potential applicability 
for each step.

2.3.1  CQA

A CQA is a physical, chemical, biological, or microbiological property or char-
acteristic that should be within an appropriate limit, range, or distribution to 
ensure the desired drug product quality. CQAs are generally associated with 
drug substance, excipients, intermediates, and drug product. CQAs of typical 
drug substance include particle size, residual solvent level, impurity levels, 
crystal form, and so on. In general, CQAs of a drug product are similar to the 
attributes that are part of the specifications, such as assay, content uniformity, 
dissolution, and impurity level.

One example using these models to better understand a CQA is the use of an 
IV–IVC that can be used to establish the link between desired clinical perfor-
mances, that is, bioavailability and dissolution. IV–IVC has been defined as a 
predictive mathematical model describing the relationship between an in vitro 
property of a dosage form and its in vivo response [5]. In Rossi et al. [6], it is 
shown how IV–IVC data is used to develop and validate a dissolution test for 
immediate release ritonavir soft gel capsules (Norvir®). With ritonavir being a 
poorly soluble drug, dissolution is regarded as a predictor of in vivo perfor-
mance, hence may be classified as a CQA. As shown in this chapter, a meaning-
ful dissolution test (that includes test conditions as well as specification) for 
Norvir soft gelatin capsules was developed using in vivo data. A significant lin-
ear level A correlation between in vitro and in vivo parameters was established.

2.3.2  Risk Assessment

As outlined in ICH Q9 [7], risk assessment consists of the identification of haz-
ards and the analysis and evaluation of risks associated with exposure to those 
hazards. Quality risk management is a systematic process for the assessment, 
control, communication, and review of risks to the quality of the drug (medici-
nal) product across the product life cycle. During development, risk assessment 
can be carried out to identify unit operations or drug substance synthetic steps 
as well as material/process parameters that have an impact on the finished 
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product attributes. The identified parameters can then be further evaluated via 
either experiments or mathematical models or a combination of both.

Various quantitative or semiquantitative approaches can be used for risk 
assessment. ICH Q9 lists several tools that can be used for risk assessment, 
such as failure mode effects analysis (FMEA), failure mode effects and critical-
ity analysis (FMECA), fault tree analysis (FTA), hazard analysis and critical 
control points (HACCP), hazard operability analysis (HAZOP), preliminary 
hazard analysis (PHA), and risk ranking and filtering.

Out of the listed tools, FMEA and FMECA can be regarded as semiquantita-
tive approaches. These tools are commonly used for quality analysis of pro-
cesses, such as those covered in six‐sigma approaches. In FMEA, the risk of 
failure of each parameter is evaluated on the basis of frequency of occurrence 
(O), probability that the failure would remain undetected (D), and its severity 
(S). Each mode is then ranked by a group of cross‐functional experts on a linear 
scale (e.g., a scale of 1–10), with a higher number representing a higher risk. 
Once the occurrence, detection, and severity are determined, the net risk is 
then estimated by calculating the risk priority number (RPN), which is a product 
of the scores for O, D, and S. A high RPN implies a greater risk.

A review of the literature showed an example where FMEA technique was 
implemented to improve the efficiency of a near‐infrared (NIR)‐based analytical 
procedure [8]. In this chapter, an NIR analytical procedure that was used for 
screening drugs for authenticity was subjected to an FMEA analysis. Each failure 
mode was ranked on estimated frequency of occurrence (O), probability that the 
failure would remain undetected later in the process (D), and severity (S), each 
on a scale of 1–10. Failure risks were calculated by RPNs = O × D × S. Failure 
modes with the highest RPN scores were subjected to corrective actions and the 
FMEA was repeated. Human errors turned out to be the most common cause of 
failure modes. Based on their findings, the authors recommended that for ana-
lytical method validation, risk analysis, for example, by FMEA, be carried out in 
addition to the usual analytical validation, to help in detecting previously uni-
dentified risks. In another case, FMEA was used to identify critical formulation 
and process variables for a roller compaction process, and the information from 
FMEA was then used to build a design space by Design of Experiment (DOE) [9].

2.3.3  Design Space

As defined in ICH Q8 (R2) [4], a design space is a multidimensional combina-
tion and interaction of input variables (e.g., material attributes) and process 
parameters that have been demonstrated to provide assurance of quality. 
Often, risk assessment techniques are used to identify parameters that define a 
design space by identifying parameters that have a potential to impact the 
CQA of a drug quality. A design space can be determined via experiments and 
modeling at laboratory, pilot, and/or commercial scale. Design spaces can be 
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defined for both drug substances and drug products. Modeling approaches 
such as mechanistic, empirical, or hybrid can be used for design space develop-
ment wherein as discussed in the following examples, models can be used to 
support its various facets, including defining a design space at pilot scale based 
on DOE data, scaling up pilot scale design space to commercial scale, and 
understanding the limitations of the proposed design space.

a)	 Design space based on DOE data: As presented by Verma et al. [10], the 
effects of key formulation process variables for a microfluidization unit 
operation was investigated via fractional factorial statistically based DOE. 
Microfluidization was used in the preparation of nanosuspensions for 
poorly water‐soluble drugs. Multiple linear regression and ANOVA tech-
niques were employed to analyze the data from the DOE, in order to iden-
tify and estimate the effect of important factors, to establish their 
relationship with CQAs, and to create a design space and a predictive model 
of the microfluidization unit operation. Interactions between the variables 
were also depicted using contour plots.

Figure 2.3 shows a general approach for defining a design space based on 
DOE data. A DOE is initially carried out in terms of multiple independent 
input variables (i.e., inputs variables are all orthogonal to each other). Input 
variables are selected on the basis of the magnitude of their potential impact 
to product quality. Various options are available for DOE design, for exam-
ple, full factorial and d‐optimal. Experiments are carried out in a random 
fashion and response(s) is measured. Typically identified CQAs are meas-
ured as responses in a DOE. Data from the DOE is analyzed using statistical 
approaches such as Pareto charts to identify the statistical significance of 
input variables and their interactions to product quality. A regression cor-
relation is then derived from the DOE data in terms of the significant input 
variables. Design space can then be represented mathematically in terms of 
the regression correlation or graphically, for example, as a contour surface.

b)	 Design space based on hybrid model: In this example, two mechanistic tab-
let film coating models were used for scale‐up of tablet film coating of an 
established commercial immediate release product [11]. The models were 
the following: (a) a thermodynamic film coating model based on the first 
laws of thermodynamics and mass and energy balance principles that pre-
dicted exhaust air temperature and relative humidity on the basis of input 
conditions and (b) a physics‐based film coating atomization model that 
described the performance of atomizers utilized in the tablet coating pro-
cess. The models were used to establish an acceptable range of process 
parameters in a new film coater to match the proven acceptable range of 
operating conditions in the existing pan coaters. These are considered as 
hybrid models, since each model included some empirical parameters that 
were fitted using experimental data, to minimize the residual sum of 
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squared error between experimental data and model prediction. The estab-
lished process parameters were then used to prioritize the experimental 
design to minimize the number of required trial runs and to support opti-
mization. The recommendations were then provided to the commercial site 
to guide the design of scale‐up trials.

c)	 Design space based on integrated multivariate approach: In another case, a 
design space was defined on the basis of DOE, optimization, and multivari-
ate analysis (MVA) [12]. Initially, a screening DOE was carried out to iden-
tify the parameters that have an impact on the finished product’s CQA. 
Following the screening DOE, an optimization DOE was carried out to 
evaluate the effects of the design factors on manufacturability and final 
product’s CQA such as tablet blend flow and tablet dissolution and to 
establish a design space to ensure CQAs. Figure 2.4 is a schematic rendition 
of the methodology for design space development and implementation, as 
presented by Huang et al. [12].

As illustrated in Figure 2.4, design space was established as a response 
surface model based on DOE data. In addition, an MVA using principal 
component analysis (PCA) and partial least squares (PLS) was also carried 
out using all the variables from the DOE campaigns, to study multivariate 
relationships between all variables that include raw materials, intermedi-
ates, various unit operations, and final product. The multivariate tech-
niques were complementary to DOE analysis and provided a representation of 
all multivariate interactions in the process, based on the combinations 
of all raw materials and process parameters. Findings from both DOE and 
MVA were then used to define a control strategy for the product. As elu-
cidated by Huang et al., the combined use of DOE and MVA offers a 
robust mechanism to explain complex multivariate relationships. Since 
DOEs in general deal with a limited number of experiments (due to prac-
tical limitation in the number of experiments), MVA can be considered as 
complementary to DOE, providing additional information about the 
product and processes.

d)	 Mechanistic model for scale‐up: In an example by Pandey et al. [13], a DEM 
was developed to study the particle motion in pan coating. DEM simulates 
the prediction of individual trajectories of particles using constitutive equa-
tions. By this approach, movement due to the contact forces from neigh-
boring particles is accounted for. An advantage of this approach is that it 
allows to study the changes in particle motion due to changes in operating 
conditions (e.g., pan speed and pan load) as well as particle properties such 
as tablet size, shape, and density. On the basis of DEM analysis, a modified 
scale‐up relationship for the pan coater was proposed.

e)	 Monte Carlo‐based models for understanding uncertainty in design space: A 
Monte Carlo‐based method was applied to simulate the propagation of 
uncertainty in predictions performed with DOE‐based design space models 
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by Kauffman et al. [14]. In this study, the design space was represented by a 
polynomial model. The results of the simulations presented in this work 
highlighted two major benefits from the application of Monte Carlo simula-
tion for the propagation of uncertainty in design space models. First, the 
simulations provided estimates of both the means and standard deviations 
for the predicted values of CQA. With these quantities in hand, design 
space was then specified on the basis of model predictions and product 
quality specifications with statistically meaningful confidence levels. 
Secondly, the simulations identified the process variable variances that have 
the greatest influence on the product quality variance, which can be used to 
prioritize control strategy and process improvement plans.

2.3.4  Control Strategy

In ICH Q10 [15], a control strategy is defined as a set of controls, derived from 
current product and process understanding, that assure process performance 
and product quality. ICH Q10 is a model for the pharmaceutical quality system 
that can be implemented throughout the life cycle of the product. The objec-
tive of the control strategy is to ensure that desired quality product will be 
manufactured. In general, a control strategy includes the following compo-
nents: specifications for incoming materials and critical intermediates, ranges 
for process parameters, in‐process monitoring and control, end‐product test-
ing at release, and other elements as described in Q10 such as change manage-
ment. Furthermore, a control strategy can evolve/change during the life cycle 
of a product. Management of these changes is typically handled by the firm’s 
change management procedures.

Models can be used in the implementation of a robust and efficient control 
strategy. In general, such models have to be updated throughout the life cycle 
of the product, and procedures for maintenance of these models are typically 
captured in the firm’s change management system. Some examples of these 
models to support control strategy are presented as follows:

a)	 LV‐based models for process control: In the example by Kourti [16], an LV 
approach is used to support a feed‐forward control strategy. Using this 
approach, when a deviation is detected in the measured quality of an inter-
mediate that could affect finished product quality, a feed‐forward control 
strategy could be used to adjust manufacturing parameters to produce the 
desired quality of the finished product. An example of this approach is 
adjustment of tablet compression parameters based on granule bulk 
density. An LV model is built from multiple batch data to relate the finished 
product quality in terms of compression parameter settings and interme-
diate material attributes, for example, granule density. This LV model, as 
illustrated in Figure  2.5, shows the interaction between compression 
process parameters and intermediate material attributes [17].
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In another example by García‐Munoz et al. [18], LV models were used to set 
quality‐driven specifications for incoming raw materials. Such specifica-
tions accounted for the inherent variability in the process and the combined 
effect of materials with process conditions onto product quality. Additionally, 
Rathore et al. [19] demonstrated the usefulness of multivariate data analysis 
techniques for optimizing biopharmaceutical manufacturing, process 
scale‐up, process comparability, and process optimization.

b)	 Multivariate statistical process control (MSPC) model to support real‐time 
release testing (RTRT): In ICH Q8 (R2), RTRT is defined as the ability to 
evaluate and ensure the quality of in‐process and/or final product based on 
process data, which typically include a valid combination of measured 
material attributes and process controls. Skibsted et al. [20] have demon-
strated how two MSPC‐based models derived from data measured by two 
NIR instruments were used to provide an early warning during granulation 
and to separate good batches from potentially bad batches.

2.4  General Scientific Considerations 
for Model Development

Model building typically includes the following steps [21]. These steps are usu-
ally executed in a sequential manner, but many times it may be necessary to 
return to an earlier step, thus imparting an iterative nature of this process. The 
overall steps are as follows:

●● Defining the purpose/objective of the model.
●● Deciding on the type of modeling approach (e.g., mechanistic, empirical, or 

hybrid) and the experimental methodology that would be used to support 

Raw material Granule density Finished product
quality

Process

Figure 2.5  Approach for developing LV models for feed‐forward control. Source: Kourti [17]. 
Reproduced with permission of John Wiley & Sons.
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the model development. Since any model is based on a number of assump-
tions, it is important to understand at this stage the limitations of these 
assumptions in order to correctly design the experiments and to interpret 
the model results.

●● Collecting experimental data to support model development.
●● Developing model relationships, based on the scientific understanding of the 

process and the collected experimental data.
●● Assessing the validity of the model prior to implementation, by both internal 

metrics and external validation.
◦	 Internal validation involves comparing model prediction with the actual 

values, using the same data set that was used to build the model. Various 
techniques such as cross‐validation, random (Monte Carlo) resampling, 
and boot strapping can be used for internal validation [20].

◦	 External validation involves verification of model results with independ-
ent data set(s), that is, data that was not used to build the model. Verification 
of the model with an appropriate data set is especially important for 
empirical models to demonstrate the robustness of such models. Model 
validity is typically measured in terms of goodness of fit.

●● Documenting model results including initial assumptions and developing 
plans for maintaining and updating the model throughout the life cycle of 
the product.

Additionally, some specific considerations are warranted when considering 
the implementation of models for specific purposes, as discussed in the follow-
ing text.

2.4.1  Models for Process Characterization

Process characterization models can include models for process optimization 
(e.g., reaction kinetics model), design space determination, and scale‐up. Since 
the term design space in general refers to a multidimensional hyperspace, it is 
important that models defining a design space consider multivariate interac-
tions. In addition, for both mechanistic and empirical models, significant 
uncertainty can exist in the model predictions, due to the underlying assump-
tions and simplifications used in model derivation, variabilities in measure-
ments in the supportive data, and error in the model fit. Evaluation of 
uncertainty in a design space model can lead to a more robust design space and 
can help identify appropriate risk mitigation steps when moving to areas of 
uncertainty.

Typically, if a model to define design space is developed based on laboratory 
or pilot scale data, it is then verified at commercial scale. Verification approaches 
in general consider the scale dependencies of the model parameters, the mod-
eling approach (i.e., mechanistic or empirical), and the control strategy.
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2.4.2  Models for Supporting Analytical Procedures

This category includes models used to support various PAT‐based methods. 
In general, these are data‐driven chemometric models such as PCA or PLS. 
These models often have the flexibility to handle noisy measurements, miss-
ing data sets, and highly correlated variables. A primary consideration when 
developing such models is the quality of data used to derive and to validate the 
model. To make a robust chemometric model, the data set should include an 
appropriate range of variability. For example, chemometric models meant to 
span a design space should contain data representative of variations within the 
design space.

2.4.3  Models for Process Monitoring and Control

When developing models for process monitoring and control, it is important 
to consider all pertinent quality attributes and in‐process measurements using 
techniques such as risk assessment. For example, if prediction from an empiri-
cal model (e.g., LV model) is used to ensure that the process is manufacturing 
desired quality product when operating within the design space, it is desired to 
include all expected sources of variability during the model‐defining stage. 
Including variations helps ensure that the model would be applicable to all 
regions within the entire design space for occurrences of material and process 
parameter variability. Alternatively, if the objective is to control the process in 
a narrow range near the target operating condition using an LV model, the 
model could be constructed using batches manufactured only near the target 
condition.

2.5  Scientific Considerations for 
Maintenance of Models

Typically, models may need to be updated due to an instrument or process 
drift. Additionally, unaccounted for variability (e.g., changes in raw material) 
could result in out‐of‐spec predictions from the model. Consequently, it can 
be valuable to monitor the performance of the model over the life cycle of the 
product. An approach for monitoring model performance could include peri-
odic comparison of model prediction with a reference method. This approach 
would allow making adjustments to the model (e.g., recalibration) before fail-
ures occur.

The approach of model maintenance and update is relative to the model 
implementation strategy (i.e., importance of the model in the control strategy 
and its potential to affect product quality). Clear metrics for model update can 
be established depending on the level of risk of the model.
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2.6  Conclusion

In the QbD paradigm, mathematical models can be an important tool for 
leveraging pharmaceutical process understanding and can be applicable 
throughout development and manufacturing including process development, 
scale‐up, process monitoring, and continual improvement. Use of models can 
support efficient development and implementation of a robust process that 
ensures consistent manufacture of desired quality product. Although many 
such models have been implemented in pharmaceutical process development 
and manufacture, by and large these modeling approaches are still evolving 
and more understanding is expected to be garnered in the coming years.
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