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Fig. 1. Transgenic strains of Cochliomyia hominivorax, the New World screwworm (NWS).
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The transposable element piggyBac has been used to

genetically transform several insect species of economic

importance. These include three species (of three genera)

of fruit flies (Family Tephritidae) (Handler & Harrell, 1998,

2001c; Handler & McCombs, 2000), two lepidopterans (the

pink bollworm and silkworm) (Peloquin et al., 2000;

Tamura et al., 2000), three mosquitoes (Grossman et al.,

2001; Kokoza et al., 2001; Lobo et al., 2002; Perera et al.,

2002), the house fly (Hediger et al., 2001), the sheep blowfly

(Heinrich et al., 2002), the red flour beetle (Berghammer

et al., 1999) and a sawfly (Sumitani et al., 2003). The most

closely related insect to have been transformed in the

manner described here is Lucilia cuprina (Weidemann), the

sheep blowfly (Heinrich et al., 2002). The transformation

frequency reported for L. cuprina was lower than in NWS,

but the number of surviving injected insects was much

higher than our results. Transgenics of both species express

EGFP in the embryo and larval stages, and in adult ovaries

(data not shown). A great concern with NWS was the rapid

embryonic development. The embryo hatches after 9 h at

37�C (standard mass-rearing protocol), and transformation

protocol dictates that the plasmids are delivered to the

developing embryo prior to cellularization of the syncitial

blastoderm. Therefore, every effort was made to inject

embryos as early as possible. We believe our injection tech-

nique improved over time (Table 1), as the number of

GFPþ first generation transgenics was much higher (> 50)

in the final successful injection, Z. This leads us to speculate

that an early germ line nucleus was transformed, which

successfully replicated into many gametes. The X and Y

transformation events may have occurred later in develop-

ment, resulting in fewer sibling transformants.

The variation in expression patterns made it possible to

isolate unique phenotypes associated with single transgene

inserts that were amenable to inverse PCR and sequencing.

Each of the insertions identified resulted in the canonical

piggyBac TTAA integration specificity. Examination of the

fluorescence expression can provide clues about the insertion

site. Expression in cells near the cuticle appeared in four

of the eight transgenic NWS strains, and was also described

in PUbnlsEGFP transgenic Anastrepha suspensa (Loew)

(Handler & Harrell, 2001b). This leads us to speculate that

epidermal fluorescence may be a default expression pattern for

PUbnlsEGFP in larval non-drosophilid dipterans. In adult

tephritids (Handler & Harrell, 2001b) and drosophilids

(Handler & Harrell, 1999) distinct fluorescence was noted in

the thoracic muscles, but the NWS adult’s opaque cuticle

made observation of fluorescence in live specimens impossible,

and although dissected flight muscles of transformed speci-

mens appeared fluorescent, similar fluorescence was observed

in wild-type individuals (data not shown). Position effects will

be analysed as more information about the insertion site

characteristics becomes available. For future NWS transform-

ations it would be useful to identify promoters expected to

actively express in the embryonic and/or larval stages to facili-

tate transgenic screening.

The lethal insert in the GIZA strain was clearly validated by

the ratios of GFPþ to wild-type larvae produced repeatedly

after selecting only GFPþ individuals at every generation

(Table 2). Although further sequencing will be required to

identify and characterize the insertion site, the similarity of

the genomic sequence surrounding the insertion site to a

myosin gene also supports the assumption that the vector insert

produced a lethal mutation. Myo28B1 in D. melanogaster is a

Table 2. Verification of lethal transgenic insertion (GIZA)

Observed Expected 2 : 1

Count GFPþ wt GFPþ wt

1 107 43 100 50

2 79 46 83 42

3 502 218 480 240

4 303 148 301 150

Total 991 455 964 482

w2 (P> 0.25) 0.628 0.323

wt¼wild type.
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Fig. 2. (A) Hybridization of vector probe to genomic Southern

blots of restriction enzyme digested transgenic NWS. Lanes: 1,

CLIX; 2, 4, GIZA; 3, 10, GARY; 5, P95 (wild type); 6, J1 (wild

type), 7, CLAY, 8, COTY, 9, CLOX. (B) Diagrammatic

representation of pB[PUbnlsEGFP] in transgenic NWS, showing

location of restriction sites and probe. Single insertions should give

single hybridization products larger than the vector lengths shown.
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single copy gene that encodes four isoforms of an unconven-

tional myosin motor (FlyBase CG6976) (Yamashita et al.,

2000). If this myosin motor is a component of basic cellular

functions such as vesicle transport or actin organization, as has

been suggested (Titus, 1999; Tuxworth & Titus, 2000), then

insertional mutation would logically be lethal.

The genomic sequences identified through inverse PCR

showed varying degrees of homology with closely related

blowfly species. Clearly in the two primer sets tested, inter-

species variation in homology was present (Fig. 4). Based on

the translated BLASTx sequence homologies we predicted

that both primer sets would amplify from closely related

flies. It was unexpected that the more apparently conserved

(79% identical residues) of the two translated sequences,

CLAY, did not amplify products from C. macellaria or

Lucilia. We intend to define and characterize these

sequences further, and anticipate that they will be useful

to identify and delineate populations of NWS.

The NWS eradication programme could benefit greatly

from utilization of transgenic technology. The initial goal

of producing genetically marked strains of NWS has been

achieved as described here. Of the strains produced, one

contains a lethal insertion, but other colonies appear vig-

orous. In-depth fitness comparisons of the new strains will

elucidate both the appropriateness of transgenic strains

for use in mass-rearing, and the potential for a genetically

modified organism to persist, as it pertains to risk assess-

ment (Ashburner et al., 1998). The production of genetic-

ally sterile strains or genetic sexing strains will depend

on the availability of new transgenic tools such as indu-

cible/repressible promoter systems, lethal (but environmen-

tally safe) genes, and sex-specific genes and promoter systems.

In conclusion, the New World screwworm is an insect

that lends itself well to piggyBac-mediated transformation.

Laboratory colonies exist and rearing methods are well

established in well-equipped biosecure facilities. With some

effort even a single marker insertion can be utilized as an

enhancer detection tool, in a similar fashion as methods used

with D. melanogaster (O’Kane & Gehring, 1987; Bellen

et al., 1989, 1990). Any use of transgenic insects in SIT or

other pest control programmes will require the permission

and cooperation of international regulatory agencies. Both

the benefits to industry and wildlife, and environmental risks
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Sequence Alignments, New World screwworm (NWS) piggyBac junctions:

61R 380F

Sau3A Sau3A Sau3ASau3A5′ 3′

5′ PiggyBac 3′ PiggyBac

Sau3A

pUBnls:EGFPNWS genomic NWS genomic

1514R 2385F

PRIMERS: 61R :

380F :
1514R :
2385F :

ACG GAT TCG CGC TAT TTA GA

GAT GAC GAG CTT GTT GGT GA
GTA AGG GGT CCG TCA AAA CA
CCT CGA TAT ACA GAC CGA TA

Fig. 3. Inverse PCR model used to identify sequences of piggyBac insertion sites in transgenic NWS strains.

---------------CLAY--------------- --------------GIZA-------------- ladder

P95      Cm  J5       L       J14
P95      Cm  J5       L       J14

Fig. 4. Primers designed from genomic NWS junction sequences

amplify appropriately from wild-type strains and other species of

Calliphoridae. CLAY primers were used in lanes 1–5. GIZA

primers were used in lanes 6–10. Ladder markers are (top to

bottom) 2000, 1200, 800, 400 and 200 bp. Expected amplicon size

for GIZA primers is 350 bp, for CLAY primers 200 bp. P95, J5

and J14 are strains of NWS (Cochliomyia hominivorax),

Cm¼ C. macellaria, Ph¼Lucilia (Phaenicia) sp.
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should be thoroughly evaluated before mass release is imple-

mented. Benefits of NWS SIT are well documented, and it is

imperative that further benefits of transformation technology

and associated risks be analysed carefully and rationally.
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