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Escherichia coli O157:H7 is a human pathogen that can cause a wide spectrum of disease 

symptoms, such as bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome 

(HUS). Escherichia coli O157:H7 illness are mainly associated with undercooked beef; 

however, in recent years outbreaks have been linked to fresh produce such as spinach, 

lettuce, and sprouts. In 2009, flour was implicated as a contamination source in the 

consumption of raw cookie dough resulting in 77 illness-cases. The objective of this 

research was to determine the possible route of transmission of E. coli O157:H7 into the 

phyllo-plane of wheat using contaminated seed, soil or irrigation water. Levels of 

contamination were 6.88 log CFU/g, 6.60 log CFU/g and 6.76 log CFU/ml of Kanamycin 

resistant E. coli O157:H7. One hundred plants per treatment were sown in pots trays with 

50 g of sterile soil, watered every day with 5 ml of dilution water and harvested after 9 

days post-inoculation. In a fourth experiment, flowering wheat heads were spray-

inoculated with water containing 4.19 log CFU/ml of E. coli O157:H7 and analyzed for 

survival after 15 days, close to the harvest period. To detect low levels of internalization, 

BioTecon q-PCR detections assays were used to determine the presence of E. coli 



 

 

 

O157:H7 in the wheat plants using a Roche Applied Science LightCycler 2.0. Results 

showed that internalization was possible using contaminated seed, soil, and irrigation 

water in wheat seedlings with an internalization rate of 2%, 5% and 10% respectively. 

Even though this rate is low, this is the first study to demonstrate the ability of this strain 

to reach the phyllo-plane in wheat. In the head contamination experiment, all samples 

tested positive, showing the ability of E. coli O157:H7 to survive on the wheat head 

phyllo-plane. Although possible this research does not provide evidence for efficient 

uptake of E. coli O157:H7 into the internal tissue of wheat plants from a contaminated 

environment. However, surface contamination and the ability of E. coli O157:H7 to 

survive long-term on the wheat plants is an issue to be considered when addressing food 

safety issues in products derived from wheat.  
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Chapter 1. LITERATURE REVIEW 
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1. History and background  

 

Escherichia coli were discovered by a German scientist named Theodor Escherich, who 

identified, characterized and isolated these bacteria from neonate feces in 1885 (Meng 

and Schroeder 2007). This bacterium had been named Bacterium coli commune by the 

discoverer;  in 1911 the name was changed to Escherichia coli in honor of its discoverer 

(Meng and Schroeder 2007). Since then, investigations on this microorganism have been 

extensive, allowing a better understanding of the different features and implications that 

these microorganisms have in human life.  

 

According to O'Brien and Kaper (1998) these bacteria were first described by Gasser et 

al. in 1955 as illness-inducing with symptoms such as: renal failure, thrombocytopenia 

and microangiopatic hemolytic anemia. Interestingly, the cause of human Hemolitic 

Uremic Syndrome (HUS) was unknown until 1968, when Kibel and Bernard conducted a 

survey in South-Africa to better understand this disease. They found that a possible cause 

was the presence of an entero-pathogenic E. coli strain. It was not until 1977, when 

Knowalchuck and colleagues showed that certain diarrheagenic strains of E. coli can 

produce toxin (Shigatoxin) with the capacity to kill verocells. That the possibility that this 

bacteria could be involved in this disease was shown.  

 

In 1982, two outbreaks that occurred in Michigan and Oregon were linked to 

hemorrhagic colitis and caused abdominal cramps, mucosal edema, bloody stools, along 

with other symptoms (Mead and Griffin 1998; O'Brien and Kaper 1998). After these 
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outbreaks, E. coli O157:H7 was unmistakably linked to illness and was considered the 

first time a human pathogen capable of producing hemorrhagic colitis was discovered 

(Mead and Griffin 1998). 

 

Another, confirmatory investigation in 1983 showed that sporadic Hemolytic Uremic 

Syndrome (HUS) cases were linked to the presence of shigatoxin (sometimes called 

verotoxin) produced by E. coli strains; this conclusion resulted from the study of HUS 

patient stools (Mead and Griffin 1998; O'Brien and Kaper 1998). Those strains that were 

involved in the entero-hemorragic disease including E. coli O157:H7 and were 

categorized as the “Enterohemorragic Escherichia coli” group (known as EHEC) due to 

their production of toxin (Mead and Griffin 1998). Since then, scientists have been 

focusing on understanding, preventing and monitoring food-borne illness from these 

strains. 

 

In 1993, 700 foodborne illness cases were reported from a single outbreak and resulted in 

4 deaths; this outbreak triggered a demand to increase the food safety of some products. 

In 1994, E. coli O157:H7 was declared as an adulterant in raw ground beef 

(Hollingsworth and Kaplan 1998; Rangel J.M. 2005). In the following year, The Council 

of State and Territorial Epidemiologists established E. coli O157:H7 as a nationally 

notifiable disease and since then increased monitoring data has shown an increase in 

occurrence caused by this agent from 0.8 to 1.1 per 100,000 person until 2003 (Rangel 

J.M. 2005; Meng and Schroeder 2007). The government agency went further by 

conducting a survey of about five thousand samples with the purpose of motivating the 
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industry to act during the first two years after this regulation was approved 

(Hollingsworth and Kaplan 1998). 

 

Outbreaks associated with produce were first reported in 1991, and since then, scientists 

have determined that around 21% of all outbreak cases between 1982 - 2002 involved 

produce (Rangel J.M. 2005). The presence of E. coli O157:H7 in produce or other 

products (that are usually eaten raw) is seen as example of pathogen in a new food 

vehicle that has high risk of contamination (Matthews 2006) .  

 

2. Characteristics and classification of E. coli O157:H7   

Taxonomically, the genus Escherichia is part of Enterobacterieae family. This genus has 

six species described (E. adecarboxilata, E. blattae, E. fergusonni, E. hermanni, E. 

vulneris and E. coli) (Meng and Schroeder 2007). E. coli is a gram negative, non-

sporeforming, straight rod with size ranging between 1.1 – 1.5 µm x 2.0 - 6.0, arranged in 

pairs or single, may be motile (peritrichous flagella) and may have a capsule or 

microcapsules (Flatamico and Smith 2006). A facultative anaerobe, E. coli grows 

optimally at 37°C with a generation time of approximately 20 min in rich media (Meng 

and Schroeder 2007). It is catalase positive and oxidase negative (Flatamico and Smith 

2006; Meng and Schroeder 2007). E. coli strains do not grow under refrigeration 

conditions but can survive in temperatures of 4 or -20 °C for weeks, water activity (aw) of 

at least 0.95, and in NaCl concentration of 8.5% (Flatamico and Smith 2006).  
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E. coli strains can be differentiated using serological techniques based on three major cell 

surface antigens: O (somatic), H (flagella) and K (capsular) (Meng and Schroeder 2007). 

At least 167 O antigens, 53 H antigens and 74 K antigens have been described (Meng and 

Schroeder 2007). This is useful due to the distinguishing features between serotypes in E. 

coli species. In the case of E. coli O157:H7, the name is derived from the expression of 

somatic antigen (O) 157 and flagella (H) antigen 7. 

 

E. coli O157:H7 has some important characteristics that allow it to survive in the 

intestinal tract. The capability to survive in low pH is considered one of the most 

important characteristics due to high acid environment in the stomach. This also allows 

E. coli O157:H7 to cause infection with only a few cells in the human intestinal tract 

(Yuk and Marshall 2004). At least three different systems allow E. coli O157:H7 to 

survive the acid environment: 1) the oxidative system (required Rpos); 2) the arginine-

depending system; and 3) the glutamate-dependent system (Flatamico and Smith 2006). 

 

Another important characteristic is the pathogenicity of E. coli O157:H7. This is 

explained by two important features of this bacterial group. One of the key features is the 

presence of a gene island known as LEE (Locus of Enterocyte Effacement- with length of 

43 Kb) that encodes for attachment (type III secretion system- permitting bacteria to bind 

to intestinal cells) and production of diarrhea (Karmali 2004; Chahed et al. 2006; 

Flatamico and Smith 2006). In the same gene island, eae (which encodes for a bacterial 

adhesion protein known as Intimin) has been associated with the development of 

Hemorrhagic Colitis (HC) and Hemolytic Uremic Syndrome (HUS) (Blanco et al. 2003) 
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The second important key feature is the production of shigatoxins which are responsible 

for the production of hemolytic uremic syndrome (HUS) (Karmali 2004; Chahed et al. 

2006; Flatamico and Smith 2006). Moreover, Escherichia coli O157:H7 can produce at 

least one form of the two different types of shigatoxin. Shigatoxin 1 is practically 

indistinguishable from the Shigella dysenteriae type 1 with  only one amino acid 

difference in one of the sub-parts; shigatoxin 2 is similar to shigatoxin 1, sharing 56% 

amino acid homology (Mead and Griffin 1998; Melton-Celsa and O'Brien 1998). It is 

important to note that any stx- producing strains will be able of producing HUS and this 

is exclusive to the EHEC group, which includes the serogroups O26, O103, O111, O118, 

128, O145, O157  (Melton-Celsa and O'Brien 1998; Chahed et al. 2006). Shigatoxins are 

responsible for blocking the synthesis of proteins in the host cells; therefore eventually 

the cell will stop functioning due to this deficiency (Acheson et al. 1998). Moreover, 

shigatoxin 2 is 1000 fold more toxic than shigatoxin 1; this is an important feature 

because E. coli O157:H7, which has stx2, has been highly associated with the 

development of HUS (Melton-Celsa and O'Brien 1998).  

 

3. Infectious dose and disease characteristics 

The infectious dose necessary to cause illness is between 10 to 100 cells (Feng and 

Weagant 2011). This dose of this microorganism has been determined through analysis of 

the numerous outbreaks that have occurred. An outbreak of E. coli O157:H7 related to 

the consumption of salami was analyzed to measure the minimal dose necessary to 

produce a food-borne illness. Tilden et al. (1996) showed that, according to their 
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calculation, the infectious dose present in the salami was less than 50 cells of E. coli 

O157:H7 bacteria which was enough to produce 17 cases of illness. Other outbreaks 

related to the consumption of hamburgers patties showed that the infections dose could 

be even lower.  Investigators reported that in some cases the dose could be as low as 1.5 

microorganisms per gram or 67 microorganisms per patty were enough to cause illness 

(Tuttle et al. 1999). E. coli O157:H7 produces a higher hospitalization rate (47%) than 

any other pathogen (Griffi 1998). Due to this low infectious dose and the severity of the 

illness, E. coli O157:H7 is one of the most important human foodborne pathogens. 

Therefore, it is necessary to enforce zero tolerance for this microorganism in food (Tuttle 

et al. 1999).  

 

E. coli O157:H7 can produce an asymptomatic infection, but may manifest into more 

severe symptoms such a mild diarrhea or acute bloody diarrhea termed “hemorrhagic 

colitis” (Flatamico and Smith 2006). Incubation periods can range between 3 to 8 days, 

but in some cases can be as short as 1 or 2 days (Karmali 2004; Flatamico and Smith 

2006). Investigators found that after this incubation time, this strain can produce 

hemorrhagic colitis along with other characteristics, including the presence of necrotic 

cells in the stools. 

 

The process of developing HUS is not well understood but it is known that shigatoxins 

are produced in intestine and ultimately transferred into the bloodstream, where it binds 

the polymorphonuclear leukocytes which can be transported to vital organs, especially 

the kidney (Karmali 2004). The toxin can also be translocated to the lungs, or brain in 
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extreme cases (Karmali 2004). This disease produced by this type of bacteria, can be very 

serious for patients as around 70% need red blood transfusions, 50% need dialysis and 

around 25% have neurologic involvement, such as stroke, seizure and coma (Noris and 

Remuzzi 2005). Finally, in the worse cases, patient can die as a consequence of the 

production of the toxins.  

 

EHEC strains represented around 70% of the total development of diarrheic HUS; and 

80% of these HUS cases are produced from E. coli O157:H7 in recent years (Boyer and 

Niaudet 2011). Some investigators considered that E. coli O157:H7 has the strongest 

association worldwide with HUS (Tarr et al. 2005). It is considered one of the primary 

causes of renal failure in the western world with death rate about 5% (Delaquis et al. 

2007). The rate of renal failure in North America is around 15% of the cases (Wong et al. 

2000).  

 

Overall, HUS produced by Stx is estimated to be 2.1 cases per 100,000 persons per year. 

If this data is analyzed by age, the data shows a peak in younger children (1-5 years old) 

with a frequency of  6.1 per 100,000; and lower in adults (50-39 years old) at 0.5 per 

100,000 persons in recent years (Ruggenenti et al. 2001; Noris and Remuzzi 2005). In the 

United States around 60 deaths are attributed every year to the HUS caused by Stx-

producer E. coli  (Noris and Remuzzi 2005).  
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4. Detection of E. coli O157:H7 in food Matrix  

Using traditional methods, E. coli O157:H7 can be isolated using selective media that is 

based on some distinctive characteristics compared with other bacteria. Because 

traditional plating methods are labor-intensive and time-consuming, scientists have 

developed accurate and rapid methods to identify this strain. In recent years, the 

development of Polymerase Chain Reaction (PCR) methods for detecting microbial 

pathogens have been used extensively due to their precision and speed when compared to 

traditional methods. 

 

This method is based on the concept that all organisms (that includes bacteria) have 

sequences of DNA that are unique to their species. PCR is a DNA based method, which 

was developed in 1983 by Dr. Kary Mullis and colleagues (Fairchild et al. 2006). DNA is 

consisted of complementary oligonucleotide base pairs that are bound in a ladder 

configuration and twisted in a cork-shape. Based on the complementarity of the base 

pairs in the DNA, the PCR method uses just one oligonucleotide strand from DNA to find 

the complementary oligonucleotide. These short pieces of single strand of DNA are 

specific to a target section of DNA known as primers. These primers play a key role in 

the specificity and accuracy of this method due to complementary match with the target 

DNA. The PCR principle is based on making millions of copies of target DNA from a 

microorganism. According  to Roche (2012) for PCR reaction,  it is necessary to separate 

the two strands of the DNA helix and this is done by increasing the temperature to 95°C. 

The following step consists of decreasing the temperature of the mix to 55°C thereby 

allowing the primers to match with the DNA of the target microorganism (known as 
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annealing). Finally, the temperature is increased again to 72°C during which the 

polymerases attach the complementary nucleotides from the primer to the developing 

strand of DNA. After this cycle is done, the DNA copy is complete.  This process is 

explained in figure 1. This cycle is repeated between 35 and 45 times (cycles) to ensure 

the DNA amplification process is adequate for detection of the target DNA.  
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Figure 1. Procedure to perform PCR  (Fairchild et al. 2006) 

 

Real-Time or quantitative PCR (qPCR) consists of monitoring and quantifying the PCR 

products (or amplicon) as the reaction cycle progress (Fairchild et al. 2006). Different 

detection methods have been developed to monitor the PCR product.  For the 

experiments described in this thesis, the detection method utilized a “hybridization 

probe”. This detection method uses fluorescence resonance energy, from one probe to 

another, after annealing of the primers to the template strand of  DNA (Fairchild et al. 
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2006). One of the probes has a donor dye (located in the 3’ end) that will accept it by the 

other probe located on the 5’ end (Fairchild et al. 2006). When both probes anneal to the 

target sequence, the dyes are located adjacent one to one another, and the energy emitted 

by the donor probe dye excites the acceptor dye, which produces fluorescent light 

(Fairchild et al. 2006).  The ratio between the two fluorescent emissions increases as the 

PCR progresses and is proportional to the amount of amplifications produced from the 

PCR (Fairchild et al. 2006). This fluorescence is plotted in a graph showing the increase 

in fluorescence by the number of cycles. If this fluorescence increase seem that DNA is 

amplifying.  

 

5. E. coli O157:H7 in produce and actual issue 

A large survey conducted by the USDA (2004) analyzed both imported and domestic 

fresh produce including cantaloupe, celery, leaf lettuce, romaine lettuce, and tomatoes. 

Investigators found that around 0.62 % of the produce samples were contaminated with 

E. coli that possessed virulence genes. Even though this percentage is low, there is a high 

risk due to these products being consumed raw. According to Tyler and Triplett (2008),  

4.2% of outbreaks were from non-meat sources during the period of 1998-2002; these 

outbreaks caused 8.2 % of illness and 8% of deaths for all the outbreaks in the category 

of fresh fruits, nut and grains (Tyler and Triplett 2008).  

 

Scientists have been investigating the economic cost of foodborne-illnesses, and the 

results show that the cost of illness due to E. coli O157:H7 in United States (including 
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medical cost, and quality of life losses) represented around $993 million dollars per year 

(Scharff 2010). This investigator also analyzed the data collected from the period 2003-

2007 and categorized outbreaks according to different pathogens found in fresh, canned 

and processed produce. It was found that 39% of the outbreaks were attributed to E. coli 

O157:H7 establishing it as the primary pathogen causing illness in this period. The data 

further suggested that the cost of illnesses could reach about $ 15.21 billion dollars.  

 

6. Contamination routes in plant and produce 

Escherichia coli O157:H7 outbreaks have been reported in fresh produce since the 1990’s 

(Delaquis et al. 2007); although the transmission route has often been unclear, the 

contamination source appears to have come from the farm in which produce is grown 

(Solomon et al. 2002a). According to Brandl (2006) and Berger et al. (2010), the 

contamination source in fresh produce comes from different sources such soil, air or 

irrigation water; or possibly from more complex interactions such as insects that act as 

vectors for human pathogenic bacteria.  

 

To better understand the problem, it is necessary to examine the environment in which 

this pathogen is found. Cattle are considered the main reservoir for this pathogenic strain. 

The carriage rate has been reported to be around 8.3% with E. coli O157:H7 in an 

asymptomatic stage, which has been confirmed through analysis of cattle feces (Solomon 

et al. 2002b). Other surveys conducted on cattle indicate that this number is 

underestimated. It has been reported that animals have shed this strain with carrying rate 
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as high as 36.8% in summer months with an annual overall mean of 15.7% (Chapman et 

al. 1997). The organism survival time in these feces can be as long as 162 days (Avery et 

al. 2004; Looper et al. 2009). Usually cattle excrete around 20 to 50 kg of feces per day 

and when E. coli O157:H7 is present in the intestinal tract, they may shed a population 

between 101 to 107 CFU/g (Solomon and Sharma 2009). Therefore, a significant amount 

of bacteria could contaminate farmland. This leads to the conclusion that it is possible 

that the manure is a potential soil contaminant when used as a fertilizer.   

 

Manure incorporation is a routine practice in the production of some crops as fertilizer or 

soil amendment (Islam et al. 2005; Delaquis et al. 2007). This incorporation increases 

water holding capacity, improves aeration and provides beneficial microorganisms (Islam 

et al. 2005). The use of this practice has been increasing (nearly 20% per year) from 

2007-2012, mainly because of the trend toward organic produce (Laux 2012). Studies 

have shown when manure has been piled specific populations of bacteria can survive for 

long periods (Franz et al. 2008), but their survival is also dependent on which species the 

manure came from. For bovine manure, E. coli O157:H7 can survive for at least 47 days; 

in aerated ovine manure the survival can be as long as 4 months or 21 months when 

piling is specific for this species (Kudva et al. 1998) . This shows the possibility that 

manure or wild animal feces that has been improperly decomposed can contaminate crop 

fields and allow pathogenic bacteria to come in contact with produce (Brandl 2006).  

 

It is possible that manure or slurry manure can contaminate surface water sources or crop 

production soils during the rainy seasons. Survey data taken in 2005 showed that 58% of 
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the irrigation water came from surface water (USGS 2005) demonstrating a high risk that 

E. coli O157:H7 could reach water sources during the rainy season by runoff. According 

to this data, there is a high probability that surface water could end up in irrigation water 

for crops, a potential food source.  

 

Researchers report that the slurry manure survival is not shorter than soil survival, but 

variations due to soil type, bacterial strain, and experimental design cause slightly 

different results. In some cases the survival can range from weeks to more than 6 months 

(Franz et al. 2008). Even though composting is an ideal practice because increases in 

temperature may inhibit the presence of pathogenic bacteria, this method has been 

impractical for cattle manure due to the large amounts that this animal produces (Kudva 

et al. 1998). Slurry manure or solid manure has been used as a fertilizer without the 

proper decomposition procedure (Kudva et al. 1998). This could increase the risk of 

contamination on crops.  

 

According to current regulations for organic production by the United States Department 

of Agriculture (USDA 2012), raw manure can be applied to crops providing there is at 

least 90 days from the application to the harvested period where the edible parts are not in 

contact with soil. This regulation changes to 120 days when the edible parts are in direct 

contact with soil. Previous studies have been described that show survival of E. coli 

O157:H7 beyond 90 days, meaning this time period may be not enough to decrease levels 

of these bacteria in the soil. Investigators have found E. coli and Salmonella in detectable 

levels when manure was applied during warm weather after 119 days (17 weeks) of 
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application in washed radish and arugula (Natvig et al. 2002). Crops with production 

cycles more than 90 days, such as wheat -when allowed to use raw manure - may 

possibly become contaminated with E. coli O157:H7 from the soil during production. 

 

Other scientists have been found additional information about the survival of E. coli 

O157:H7 in soil. It can survive for at least two months in plain soil (Semenov et al. 2008; 

Zhang et al. 2009). Therefore, soil needs to be considered important source of 

contamination for plants (Mootian et al. 2009) along with irrigation water (Habteselassie 

et al. 2010). During winter, the survival of E. coli O157:H7 could increase due to the low 

temperature. One study demonstrated that E. coli O157:H7 can survive for at least 6 

months at 4°C, starting at a level of 106 CFU/g (Vidovic et al. 2007) or longer in frozen 

samples (around 500 days) (Gagliardi and Karns 2002). These temperatures could 

enhance survival in some crops that could handle the winter climate, such as wheat. 

Production cycles are short for some crops (around 3 months), therefore E. coli O157:H7 

could be present throughout the cycle and into the next one. This characteristic increases 

the possibility that plants could be infected by E. coli O157:H7. Islam et al. (2005) 

showed that E. coli O157:H7 can survive 168 days in a crop soil (manure soil amended or 

contaminated irrigation water) and therefore can reach the harvest period in carrots (126 

days). Also, this strain was present throughout the production cycle and may compromise 

the safety of vegetables growing in this soil.  

 

Some researchers believe that E. coli O157:H7 faces too many barriers to enter the edible 

parts using different ways of transmission. However, E. coli O157:H7 has the capacity to 
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manage different environments. According to Duffitt et al. (2011), E. coli O157:H7 has at 

least 18 different genes it can express as a response to environmental stress. These genes 

were expressed in higher proportion when E. coli O157:H7 was inoculated into sterile 

soil compared with enriched solution in just 14 days of incubation. This suggests that 

these genes increase this organism’s survival in inhospitable environments such soil.  

 

Many outbreaks of E. coli have been linked to the consumption of sprouts (Breuer et al. 

2001; Mohle-Boetani et al. 2001; Berger et al. 2010). According to Berger et al. (2010), 

the majority of these cases involved contaminated seeds as the source of contamination, 

and through their distribution this may explain the wide geographic area of the outbreaks. 

This type of contamination (by seeds) is also important to consider because seeds may 

become contaminated during agricultural production and could be a vector to 

contaminate other farms’ soil, thus perpetuating in the next generation of plants.  

 

Wang and Doyle (1998) found that E. coli O157:H7 can survive long period of time in 

water  (91 days in water at 8 °C and 49-84 days at 25 °C). This shows the possibility that 

this strain can be transmitted by the irrigation water due to the long survival period. 

Apparently, survival time in farm water could be less using real environment conditions. 

According to McGee et al. (2002), farm land water with 103 CFU/ml  of E. coli O157H7 

population  was tested during time in a crop field. They found that E. coli O157:H7 can 

survive around 12 to 18 days post-inoculation in the field conditions and 20 - 28 in 

laboratory conditions.  
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6.1 Via root  

Gagliardi and Karns (2002) found that E. coli O157:H7 can survive better when roots are 

present such as in rye and alfalfa. Moreover, E. coli O157:H7 has been shown to enter 

into the edible parts of the plant using the root as a way of transmission (Solomon et al. 

2002a; Solomon et al. 2002b; Warriner et al. 2003a; Sharma et al. 2009). This 

introduction of bacteria in plant tissue is called “internalization” and usually the 

bacterium is located in the intercellular space or the inside of the plant cells (Bartz 2006).  

 

Using the root as a way of internalization, lettuce could become contaminated with E. 

coli O157:H7 from soil or water fertilized with manure (Solomon et al. 2002a; Solomon 

et al. 2002b). It has been shown that after five days of inoculation with a population of 

107 CFU, E. coli O157:H7 become internalized (Solomon et al. 2002b). Other studies 

have shown that crops such as salad spinach can also become contaminated with E. coli 

O157:H7 (Warriner et al. 2003a). The organism was able to internalize into the edible 

parts of radish sprouts (hypocotyls and cotyledons) (Itoh et al. 1998). In alfalfa sprouts, 

E. coli O157:H7 colonized the emerging radicule along the root cell junction and on the 

second day were observed in developing hair root (Charkowski et al. 2002). In maize, E. 

coli O157:H7 can enter the vascular system via the root and become internalized in the 

leaves when the root tip is cut, thereby exposing the vascular system of the plants 

(Bernstein et al. 2007). This study showed the likelihood of E. coli O157:H7 to be 

translocated from the roots to the leaves  
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No study has been done describing the internalization of E. coli O157:H7 in wheat plants, 

although other members of the cereal family (barley) have been studied. Barley roots are 

susceptible to colonization by Salmonella enterica at high cell densities, where the 

bacterium become internalized by crossing the epidermis of the root and transferring to 

the edible part of the plant (Kutter et al. 2006). This study used a PCR method to 

determine that Salmonella could translocate from the soil (quartz sand) to the root (Kutter 

et al. 2006). Moreover, this result was confirmed by other investigators who showed that 

the root appears to be one of the main routes of contamination in other crops (Solomon et 

al. 2002a; Solomon et al. 2002b).  

 

To understand how this happens, it is necessary to learn about the physiology of these 

plants. Roots are usually coated by mucilage (hemicellulose and pectin) that acts as a 

barrier to avoid interaction with bacteria, but physical or chemical damage can expose the 

root as well as its exudates. The exudate composition has some nutrients that work as 

chemo-attractants for bacteria (Mandrell et al. 2006).  

 

According to Jablasone et al. (2005), some root plant exudates are produced with the 

purpose of making symbiotic interactions with the endogenous microflora. The 

composition of plant exudates and external factors such as a poor nutrient environment 

which decreases the endogenous micro-flora, can affect the ability of the pathogen to 

colonize the root junction (Jablasone et al. 2005). Root exudates are species-specific 

metabolites of plants that affect the probability of internalization in each species (Bertin 

et al. 2003). Soil microorganisms or plants can be affected by the composition of the 
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exudates and their main components are sugars (mono, di and poly saccharides), organic 

compounds and phenolic compounds. These last compounds are the major cause of 

changes in the microflora and antagonistic characteristics (Bertin et al. 2003). Sugars 

present in this exudate can be used by microorganisms as a carbon source (Bertin et al. 

2003). Some wheat species can have allelophaty (capability to inhibit growth of other 

plants) due to the phenolic compounds (p-hydroxybenzoic, valic, p-coumaric, syringyc 

and hydroxamic acid) present in the exudates (Bertin et al. 2003).  

 

Onions, when sowed in manure-amended soil contaminated with E. coli O157:H7; 

However, this microorganism has less survival time than carrot when they were grown in 

the same soil matrix (Islam et al. 2005). These differences may be due to phenolic 

compounds in the exudates (present in edible and non-edible parts in onions) (Islam et al. 

2005). According to these studies, the survival and internalization of E. coli O157:H7 

could depend on plant composition and exudate produced during growth. There can be a 

variation between crop species, allowing differences in the survival of the bacteria. This 

difference also shows that even though internalization could occur in different crops, the 

specific factors involved are highly variable, thus making predictions about this 

phenomenon occurring in all crops difficult to determine.  

 

Human pathogens can grow using the nutrient sources present in the root exudate, 

allowing them to compete with the endogenous micro-flora (Jablasone et al. 2005). 

According to this study (Jablasone et al. 2005), the root junction subpart is responsible 

for secreting these exudates, and is also the part that E. coli O157:H7 prefers to colonize 
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thus becoming internalized into the complete plant. E. coli O157:H7 was found to grow 

strictly in the root of some plants; and studies also suggest that emerging seedlings are 

able to better support the growth of bacteria due to rich nutrients available during this 

stage (Jablasone et al. 2005). Although some pathogens (E. coli O157:H7, Salmonella 

spp.) are internalized in early stages (day 9) of certain crops, they were not found after 

day 49, close to end of cultivation of lettuce and radish (Jablasone et al. 2005).  

 

It is not completely understood exactly how internalization happens in the root, and it is 

not clear to which exact part bacteria is translocated. Other investigators are trying to 

explain this occurrence in other ways, and they suggest that them is a sequencial order of 

events that E. coli O157:H7 needs to accomplish to cross the root and mucilage barrier 

(Cooley et al. 2003). It is suggested that these bacteria will invade when the second 

(lateral) roots are forming, because during this stage the root layers that are surrounding 

the root are broken by expansion in order to allow the emerging of the second root 

(Cooley et al. 2003). This appears to be the window that E. coli O157:H7 can use to enter 

the root and finally reach the primary root. 

 

Another possible route for internalization is though the hair of the root. Rhizobial bacteria 

commonly attach to these sub-parts of the root, and therefore may be the site in which 

human pathogens can do it as well (Mandrell et al. 2006). In Figure 2, these authors 

explain the different interactions on epidermal cells that are present on root surface. 

According to figure 2, root hairs are modifying cells that are exposed on the root surface 

(A). A second layer is formed by cortex cells below this hair cell (G). Rhizobial bacteria 
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can infect the root hair cell making hair cells to be curly (D), but other bacteria also can 

attach using different patterns. Bacteria can attach between the epidermal cells root and 

hair root cell in some cases (H). Others possible patterns could be the attachment of 

bacteria biofilms or aggregates (C) or more complex systems in which bacteria attach 

itself directly on the root hair (I). Moreover in Figure 2, bacterial attachments are 

magnified (J) to show that at least three different methods for attachment are used by 

bacteria: 1) pilli or fimbriae bind to root cell (J-1); 2) lectins (sugar attached to proteins) 

bind sites with bacterial carbohydrates (EPS, LPS, etc.); or 3) bacterial flagellin 

interacting with the plant receptor. These attachments are believed to be the first step to 

internalization into the root of the plants.  

 

 

 

 

 

 

 

 



 

 

Figure 2. Graphical Explanation of 
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was also observed that internalization occurred in all the samples tested and that it occurs 

in undamaged parts of the roots showing that E. coli O157:H7 can internalize with the 

epidermal root surface intact.  

 

Usually, antimicrobial compounds are inside of plant cells or in specialized cells (Bartz 

2006). Nonpathogenic plant bacteria do not damage cells tissues of plant; therefore, their 

immune response does not attack these type of  bacteria (Bartz 2006). This observation 

that E. coli O157:H7 do not penetrate the cells were observed by Auty et al. (2005). In 

this study, E. coli O157:H7 was found in the intracellular space using scanning 

micrograph, in depth of 60-80 µm. This could be the same pattern described by Figure 2 

(H). Attachments could differ depending on the food matrix, making the internalization 

really specific for each produce (Auty et al. 2005). 

 

According to the literature, E. coli O157:H7 can attach and become internalized in the 

root.  However, it is still unknown if the bacteria can use the vascular tissue to migrate to 

the leaf tissue (Solomon and Sharma 2009). Even though this potential use of the 

vascular system as a transported system is not clear; some investigators suggest that this 

could happen primarily in seedlings rather than in mature plants (Jablasone et al. 2005). 

 

Arabidopsis thaliana (Thale cress) has been used as a plant model to observe the 

colonization by E. coli O157:H7 and Salmonella, and it has been found that E. coli 

O157:H7 can colonize the entire plant, including seeds and flowers, in the absence of 

competition using the roots as a way of infection (Cooley et al. 2003). One explanation is 
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that E. coli O157:H7 reaches the vascular system and spreads throughout the whole plant.  

This is an important fact because seeds are a known contamination vector (Berger et al. 

2010), extending the contamination cycle to the next generation. This also could explain 

the mechanism of contamination of alfalfa seeds previously described.   

 

When using contaminated soil and subsequent surface sanitization of lettuce (Zhang et al. 

2009), investigators have found that E. coli O157:H7 internalizes at a rate of 0.3%. In this 

study it is important to note that soil contains the original endogenous microflora which 

may have out-competed E. coli O157:H7 (Cooley et al. 2003; Zhang et al. 2009).Vidovic 

et al. (2007) found that E. coli O157:H7 survive better in autoclaved soils than in un-

autoclaved soils, apparently due to the low endogenous microflora of the soil which may 

have an antagonistic effect on the survival of E. coli O157:H7. These results were also 

supported by Cooley et al. (2003) who found that Enterobacter asburiaer out-competes 

E. coli O157:H7, resulting in a decrease of their internalization in the plants. Other 

bacteria, such as Pseudomonas can also inhibit the growth of E. coli O157:H7 when the 

pathogen is in small quantities (Johannessen et al. 2005). Studies conducted by Zhang et 

al. (2009) and Johannessen et al. (2005) in lettuce using soil with their natural micro-flora 

did not find a high transmission rate of E. coli O157:H7, apparently due to competition. 

Johannessen et al. (2005) found that contamination by E. coli O157:H7 could occur in 

prevalences ranging from 0 to 2.6% of the cases using a 95% confidence limit; but this 

contamination rate only applies when lettuce has reached the seedling stage, when they 

may be less susceptible to uptake of E. coli O157:H7. Even though these results are more 

conservative, it is important to note that E. coli has the tools to become internalized in 
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produce and therefore the possibility of causing disease exists. Rhizobial microflora 

appears to play a key role in the internalization of human pathogens in produce.  

 

6.2 Via leaves  

Other contamination sources include air movement during rainfall, in which floating 

bacteria can be transported to crop in the field (Bartz 2006). According to Mandrell et al. 

(2006) the phyllo-plane is the interface between the leaves and the environment. To 

understand how pathogenic bacteria interact with the leaves, it is necessary to understand 

the different parts the leaves that could influence the attachment or the survival of some 

bacteria in the phyllo-plane. Usually leaves are covered by a cuticle and other polymers 

or wax, the main purpose of which is to avoid the loss of water. Some bacteria such as 

ephiphytic strains can attach to this cuticle and obtain nutrients without damaging the 

surface (Mandrell et al. 2006). Also the microscopic topography of leaves or other aerial 

parts are irregular and epidermal cell junctions could produce hills and depressions that 

could help the bacteria survive in this environment (Solomon et al. 2006). 

 

E. coli O157:H7 can internalize via the stomata of the leaf and on shoots of other plants 

such as alfalfa (Jeter and Matthysse 2005).  Figure 3 represents the different subparts that 

leaves contain and the possible attachment of bacteria on surface of the leaves. As shown, 

it is believed that bacteria can form aggregates on the surface of leaves in different 

concentrations and commonly are reported at the base of the trichome structure, or near 

the stomata and epidermal cell grooves along the veins (Monier and Lindow 2004). This 
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could enhance the internalization of these bacteria due to their close distance and high 

concentrations near these natural openings.  

 

 

 

 

 

 

 

Figure 3. Graphical explanation of anatomy of leaves and microbial interactions 

(Mandrell et al. 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Cuticle Layer 
(B) Upper epidermis 
(C) Palisade Parenchyma  
(D) Vascular bundle (xylem and phloem) 
(E) Bacterial biofilm 
(F) EPS 
(G) Stomata 
(H) Trichomes 
(I) Cuticle 
(J) Bacteria in water droplet 
(K)  Recessed area between epidermal cells 
(L) Biofilm forming lesion into vascular system 
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During irrigation or pesticide application, water can be a source of contamination in the 

field. For some produce such as lettuce, spray irrigation is used in nearly 50% of these 

crops in United States (Matthews 2006), making this a potentially significance source of 

contamination. Research has shown that E. coli O157:H7 can be internalized via natural 

openings such as stomata of the leaves (pores for gas exchange) as they lack the ability to 

penetrate the plant epidermis (Bartz 2006; Melotto et al. 2006). Although this route of 

contamination is more complex for the bacteria, it has been shown to be possible (Monier 

and Lindow 2004; Bartz 2006).  

 

Other investigators have a slightly different theory. They believed that human pathogens 

and some epiphytic bacteria who are members of the family Enterobacteriaceae have 

certain attachment factors that are multifunctional depending on the host (Delaquis et al. 

2007) similar to the previous described in the root attachments.  To colonize and be 

transmitted to plants, bacteria first need to be attached in the root section (Berger et al. 

2010). The mechanism as to how these factors work in the attachment process are not 

well understood, but is believed that some of these mechanisms used to attach to animal 

cells have some role in attachment to plant cells.  
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According to Boyer (2006) and Berger et al. (2010), Shiga toxin-producing E. coli has at 

least 3 different ways to be attached to plant leaves: 

1. Curli mediated attachment  

2. Filamentous type III secretion system 

3. Flagellin  

4. Other (lipopolisacharides) 

 

Curli mediated attachment is described as an extracellular structure, very thin and oily, 

present on the surface of most E. coli (Patel et al. 2011). This method of attachment could 

be used for some crops such as Alfalfa roots, spinach leaves, lettuce, cabbage, and tomato 

skin (Jeter and Matthysse 2005; Patel et al. 2011; Macarisin et al. 2012). E. coli O157:H7 

can attach in a small period of time, such as five minutes, with increasing attachment 

occurring with more time (Patel et al. 2011).  As it was described, other attachments 

factors such as: Fimbriae (Pili) could play a role in the process. Fimbriae is a 

proteinaceous hair-like appendage that is common in gam-negative bacteria (Solomon et 

al. 2006).  Flagellin is conserved in many entero-pathogenic bacteria such as E. coli 

O157:H7 and Salmonella and could also have an effect in the attachment plants (Cooley 

et al. 2003). It is important to note that these methods of attachment are not only useful in 

leaves but also in other regions such as the root or fruit of the plants (Berger et al. 2010).  

 

Studies have shown that internalization in lettuce can occur when the surface of leaves 

are exposed to high concentrations of E. coli O157:H7 (greater than 4.4 log CFU) 

(Solomon et al. 2002b; Erickson et al. 2010a). Although the percentage is low (<1%), 
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when E. coli O157:H7 colonized alfalfa leaves by crossing the stomata, the bacteria could 

not be removed by washing (Jeter and Matthysse 2005).  

 

Related studies show that in lettuce leaves, Salmonella enterica can use the stomata as an 

effective portal to enter deep into the tissue; an observation that was detected by confocal 

microscopy (Kroupitski et al. 2009). Internalization of Salmonella will occur in higher 

rates when the stomata are open, an event that occurs when light is present due to the 

plant needing to undergo gas exchange, thereby allowing Salmonella to spread to nearby 

tissue (Kroupitski et al. 2009). It is interesting to observe that in some cases Salmonella 

spp. will make micro-colonies near the vein and base of leaves, and this could be 

explained by bacterial chemo-taxis because the glandular trichomes can exudate 

carbohydrates. Itoh et al. (1998) also found that radish was colonized by large numbers of 

E. coli O157:H7 apparently via the stomata of leaves.  

 

Moreover, it has been found that some bacteria (Pseudomona spp.) can move toward 

selected, opened stomata and the plant (Arabidopsis) reacts to this action by closing the 

stomata (Melotto et al. 2006). To test this hypothesis, E. coli O157:H7 was introduced to 

determine if this reaction can occur under controlled environment (Melotto et al. 2006). It 

was found that the closing of the stomata was indeed induced by E. coli O157:H7, 

showing the defensive reaction of the plant as soon as two hours of incubation (Melotto 

et al. 2006).  This is supported by other early studies that found E. coli O157:H7 to 

induce the stomata on lettuce leaves to close (Seo and Frank 1999).  
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This mechanism of internalization for E. coli O157:H7 has also been studied in spinach. 

In simulated irrigation experiments, although investigators could not detect 

internalization of bacteria immediately (day 0), they did find it was present internally in 

the leaves at day 7 post-inoculation with a rate of 20% (Mitra et al. 2009).  This level 

then declines to 0.5% at 14 days post irrigation with contaminated water (Mitra et al. 

2009).  

 

E. coli O157:H7 has the capacity to survive in harsh conditions such as UV irradiation, 

and low water availability (Barker-Reid et al. 2009). This allows it to compete with the 

epiphytic and phytobacteria present in the phyllospheres and rhizospheres (Fink et al. 

2012). Certain transcriptional genes are affected due to environmental stress, and this 

gene expression enhances the ability of E. coli O157:H7 to survive the stress condition in 

the leaves of lettuce (Fink et al. 2012). Heaton and Jones (2008) report that E. coli 

O157:H7 may have ability to survive some UV irradiation due to the presence of a gene 

homologue to rulAB; other studies have shown this gene to improve tolerance of UV 

irradiation in Pseudomonas syringe. 

 

In some studies, the survival of E. coli O157:H7 has been shown to be greater than 20 

days in lettuce after inoculation  (Solomon et al. 2002a). E. coli O157:H7 has a greater 

chance of surviving until harvest if contamination occurs in mature plants rather than in 

young, even in small concentrations (< 4 log CFU/ ml of soil or water) (Mootian et al. 

2009) (Solomon et al. 2003). E. coli O157:H7 and Salmonella Typhimurium persisted for 
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long periods (3-6 month) in phyllospheres after the seedling of parsley and lettuce were 

exposed to these pathogenic bacteria using manure and irrigation water (Bartz 2006).  

 

6.3 Via fruit and flowers  

Similarly, other studies show that fruit can be contaminated by E. coli O157:H7 both 

internally and externally. According to Burnett et al. (2000), contamination in fruit may 

occur as a consequence of rain, dew or irrigation systems. One particular study suggests 

that E. coli O157:H7 can be internalized in oranges using the stem scar as the route to the 

interior of the pulp at a rate around 2.5% (Eblen et al. 2004).  

 

E. coli O157:H7 has been detected inside parts of apples as a consequence of surface 

contamination (Burnett et al. 2000).  This strain could become internalized into core of 

the apple using the floral tube of the apple. As a result, the bacteria were found near the 

trichomes, crevices, cavities and seed locules of intact apples (Burnett et al. 2000).  

 

Doyle and Erickson (2008) suggest that these ways of internalization are not the only 

ones that have a key role on the possible infection. They suggest that bacterial 

contamination can persist depending on the time period from inoculation to harvest 

explaining that the longer times decrease the likelihood of survival and risk of 

contamination. 

 

In summary, the literature indicates that the possibility exists that E. coli O157:H7 can 

survive in different types of produce and become internalized via 3 different routes: by 
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the root, leaves or the fruit of some plants. It is critical to analyze the interaction between 

the pathogen and the plant environment in order to better understand the routes of plant 

contamination resulting in food borne illnesses.  

7.  Interventions strategies to control pathogens in produces  

Intervention strategies have been used to reduce bacteria in fresh produce and they may 

involve washing with 100-200 ppm of hypochlorite (Seo and Frank 1999) . This and 

other antimicrobial treatments need to be in contact with the bacteria in order to be 

effective. Therefore, if the bacteria are inside the plant structure the chemical agent 

cannot reach them and bacteria will survive. Also, when the contamination is present, the 

reduction at best is only around 2 log (Warriner et al. 2003a). Moreover, some products 

such as seeds will be difficult to decontaminate because the seed will increase in moisture 

and they will start to germinate.  

 

8. Wheat contamination  

Wheat is usually considered a low risk product for pathogens because the attributes of the 

grain are not suitable for the growth of E. coli O157:H7. The water activity is low in the 

kernels (0.40-0.65) and in flour (0.68-0.70), but that does not mean that E. coli O157:H7 

cannot survive in it (Berghofer et al. 2003). Wheat can be contaminated with E. coli, 

Salmonella spp. and Bacillus cereus (Kim et al. 2006). Furthermore, wheat flour can be 

contaminated if it is produced from contaminated grains. In the US, it was determined 

that 12.8% of flour and 22% of durum flour were contaminated with pathogenic bacteria 

(Aydın et al. 2009). In other countries as Turkey, 50.7% of the surveyed samples tested 
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positive for E. coli (Aydın et al. 2009), indicating a high probability of the presence of 

pathogenic strains as well. The Department of agriculture of the United States (USDA 

2010) reported that the United States is a major wheat-producing country, with output 

typically exceeded only by China, the European Union, and India. United States is also a 

major consumer of wheat.  

 

Microorganisms present on the wheat plant survive the milling process and ultimately 

could end up in the wheat flour. Surveys indicate that the normal load of microorganisms 

(aerobic plate counts) in white flour produced in North America has been almost the 

same from 4.17 log CFU/g in 1989 to an average of 3.79 log CFU/g in 2003-2005 

(Sperber 2007). However in whole wheat flour the microbial load is higher, with an 

average of 4.42 log CFU/g (Sperber 2007).  

 

Evidence from Australian, European and US studies indicates that some outbreaks can be 

linked to wheat as the source of contamination (Aydın et al. 2009). According to CDC 

(2009) and  Neil et al. (2012), E. coli O157:H7 was linked to a multistate outbreak for 

consumption of raw cookie dough producing 77 cases of illness and although 10 people 

developed HUS, none of them died. Historically, this is the first time that raw dough was 

reported as the vehicle of transmission of E. coli O157:H7. It is important to note that the 

people involved in the outbreak consumed the dough uncooked. Raw product 

consumption is not an unexpected behavior by the customers, in this outbreak around 

11% of patients declared they ate the cookie dough and some of them explained that they 

have the intention to eat it unbaked (Neil et al. 2012). According to this investigation, 
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around 3.5 million packages of cookie dough and reformulated products were subjected 

to a recall (Neil et al. 2012). At least 157 unopened samples tested negative for E. coli 

O157:H7. Although an extra two additional samples were positive according to 

company’s testing program, none of these products were shipped to the stores showing 

the possibility that flour could be a vector of transmission (Neil et al. 2012).  

 

Other outbreaks have also been associated with the consumption of raw flour. Salmonella 

spp. has been found in raw flour in New Zealand and was the cause of an outbreak 

resulting in 66 cases of illness (Eglezos 2010). Salmonella Typhimurium in cake batter 

ice cream caused a food borne outbreak in 2005 in the U.S. (FDA, 2005). Again, it was 

suspected that the cake batter being added to the ice cream was contaminated (Sperber 

2007). Gilbert et al. (2010) reported that Salmonella can be present in the range of 0.0% 

to 1.3% in flour based on surveys from Australia and North America. Although 

pathogens tend to have low counts in this kind of product; there is enough to cause illness 

when the flour is eaten raw.  

 

Contamination of flour by microorganisms is not historically significant, because 

traditionally flour or basic product are been baked. This heat treatment would normally 

eliminate any pathogenic bacteria. These outbreaks demonstrate that the food preparation 

behavior of the general public is changing; particularly in the way of flour is consumed. 

The consequence of this behavior is the increase of foodborne illnesses.  New legislation 

and guidelines were issued by the government after these outbreaks to try to reduce the 
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risk of illnesses by requiring the label of flour products to read, “Need to be baked for 

safety”. 

 

Peak water requirement in wheat is during the formation of the heads (Yonts et al. 2009); 

hence irrigation water seems necessary to achieve this requirement during drought. Yonts 

et al. (2009) suggest that this peak is equivalent to 2 inches of water per week in this 

stage, or in other words 254 m3 of water per hectare. According to the Environmental 

Protection Agency of the United States, western states use more water for irrigation 

(>50%) especially areas such as Nebraska, California, Great Plains and western Kansas 

(data from 1997). As it was discussed before, irrigation water can be contaminated with 

E. coli O157:H7 by runoff. Survey data taken in 2005 showed that 58% of the irrigation 

water came from surface water (USGS 2005) demonstrating a high risk that E. coli 

O157:H7 could reach water sources and may contaminate crops in the field.  

 

Summary  

The microbiological quality of water and soil is an important attribute that needs to be 

addressed when growing crops. Based on the literature, it is possible that E. coli 

O157:H7 can be internalized in some crops. Currently, no studies have been done 

demonstrating that wheat can be contaminated with E. coli O157:H7 by water or soil 

contamination. It is important to determine if this possibility exists to improve the safety 

of flour by understanding where the potential sources of contamination may occur. 

  



37 

 

 

 

Objectives  

This study was designed to determine if E. coli O157:H7 can be transmitted to the tissue 

or phylloplane of wheat, using contaminated soil or seed or irrigation water in four 

possible ways of contamination: 

1. Determination of E. coli O157:H7 transmission into wheat plants by contaminated 

seeds.  

2. Determination of E. coli O157:H7 transmission in wheat sowed in a contaminated 

soil.  

3. Determination of E. coli O157:H7 transmission using contaminated irrigation 

water  

4. Determination of E. coli O157:H7 survival in wheat heads contaminated by 

irrigation water 
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Chapter 2. MATERIALS AND METHODS 
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2.1 Bacterial strains and preparation of inoculum 

Five different strains of Escherichia coli O157:H7 with resistance to Kanamycin (516 T2, 

1181 lee3, 726 Lee2, 1809 Lee2, and Am 1882.3) were used for the experiments. A pure 

culture of each strain was stored in 10% glycerol at -80°C until needed. To generate the 

inoculum, 100 µl of each stock culture was transferred to test tubes containing 9 ml of 

Tryptic Soy Broth (Acumedia-Neogen corp.) with 50 µg/ml of kanamycin (Fisher 

BioReagents, N.J.) and incubated for 24 h at 37ºC. Three transfers were performed to 

allow recovery of the bacteria after frozen storage. E. coli O157:H7 were pelleted by 

centrifugation (Eppendorf 5810R, Eppendorf) at 5500 g for 10 min at 4 °C in 50 ml 

conical tubes and resuspended in Phosphate Buffer Solution (PBS) to a final cell density 

of ≥ 108 CFU/ml. Equal volumes of 5 strains (10 ml) of E. coli O157:H7 suspensions 

were then combined in a 50-ml conical tube to produce a single cocktail.  
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2.2 Sanitization procedures 

2.2.1 Seed and its sanitization  

Seeds of two different wheat varieties, COOKER9835 and VAO3W-433, were obtained 

from the Plant Pathology Laboratory at the University of Nebraska - Lincoln. The 

COOKER 9835 variety is classified as a soft red winter wheat with susceptibility to 

Fusarium head blight.  The VAO3W-433 variety is classified as a soft red winter wheat 

and also is resistant to Fusarium head blight. These two varieties were used in the seed, 

soil, and irrigation contamination experiments.  

Seed sanitization was performed using the protocol described by Mitra et al. (2009). This 

protocol was used to eliminate all endogenous micro-flora present in the seeds that may 

out compete E. coli O157:H7. Seeds were submerged in 70% ethanol (1 min), followed 

by submerging them in 6% sodium hypochlorite (1 min), and finally three rinses of sterile 

distilled water were done to remove any remaining sanitizer. Seeds were allowed to dry 

for at least two hours inside of the biosafety cabinet and stored aseptically in sterile bags 

for subsequent use. The storage time was no longer than one day after the sanitization 

procedure was done.  

For the head contamination experiment, the Wheaton variety was used. This variety is a 

hard red spring wheat that is also susceptible to Fusarium head blight (Zhang et al. 2008). 

For these experiments seeds were not sanitized and were cultivated with their natural 

microflora in the greenhouse.  
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2.2.2 Soil preparation and sanitization 

Soil mix (33% of clay loam soil, 33% peat soil, 16.5% sand, and 16.5% vermiculite) was 

passed through a 4 mm pore size sieve. This mixture was pasteurized using steam as a 

heating media similar to the method used on the farm or green houses for horticulture 

applications (82 °C for 30 min). In addition to this procedure, this soil was autoclaved 

twice during a period of 1 hour at 121 °C to assure lower bacterial counts. Soil was 

distributed in a pot tray with 50 g of soil per pot.  

2.3 Inoculation experiments  

2.3.1 Seed inoculation  

Sanitized wheat seeds were contaminated using two sterile aluminum pans containing 

pinhole perforations in the bottom and placed inside 200 ml beakers for containment. 

Two grams of seeds (around 30-35 seeds) were added to each pan inside the beakers.  

Seeds were submerged in the beaker containing 40 ml of phosphate buffered cell 

suspension (> 8 log CFU/ml) of the five-strain cocktail of E. coli O157:H7 for 40 

minutes in a biosafety cabinet. Using a forceps, the pan was lifted and the inoculum was 

drainage into the bottom of the beaker without losing the seeds. The seeds were air dried 

on a sterile filter paper in a petri dish inside the biosafety cabinet for 2 hours with air flow 

of 0.3 inches/W.C. One gram of the seeds was retained for plating on TSA + kanamycin 

(50µl/g) to determine the initial counts on inoculated seeds. The remaining inoculated 

seeds were cultivated and grown according to standard protocols described for wheat, 

following biosafety precautions. The pots with contaminated seeds were housed in a 

water-bath equipped with a fluorescent lamp and the whole unit placed in Biosafety level 



42 

 

 

 

II laboratory (BSL-2). For this experiment, seedlings were grown for 9 days after 

planting and subsequently analyzed using qPCR detection kits. 

2.3.2 Soil inoculation 

Previously sanitized soil mix was inoculated with at least 6 log CFU/g E. coli O157:H7. 

To spread the culture homogeneously, the soil was placed in a tray at a depth of 1 inch 

and sprayed evenly with the bacterial inoculum using an atomizer. This procedure was 

performed inside of a Type II Biosafety cabinet. To control the inoculum used in the 

atomizer, a known volume of inoculum was placed into a sterile tube used to feed the 

atomizer. The volume sprayed was calculated according to soil present in the tray to 

achieve the desired population level (6 log CFU/g). For this experiment, seedlings were 

grown in this soil until they reached 9 days after inoculation and subsequently analyzed 

using qPCR detection kits. 

2.3.3 Irrigation water inoculation 

The effect of contaminated irrigation water was also analyzed during the germination 

period. For this experiment, sterile seeds were planted in sterile soil. The contamination 

procedure took place once, when contaminated water was added in a circular area around 

the seeds during sowing. Using a pipet tip, water was added carefully into an area of 1 cm 

in diameter from the center of the seed. This water was slowly infiltrated through the soil 

until it reached the seed. After 9 days, seedlings were collected, enriched, and analyzed 

by qPCR.  
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2.3.4 Head Inoculation  

Plants were grown until they reached maturity for formation of heads, which is the 

flowering stage of wheat also known as 10.1. Using a laboratory atomizer similar to the 

soil contamination experiment, head were spray with 5 ml of culture (close to 4 log 

CFU/ml). Three different heads per plant were contaminated per pot assuring at least 3 

log CFU per head. Some heads were removed after 24 hours and analyzed to determine 

the inoculation level achieved. At least three heads were contaminated and analyzed per 

plant to determine the survival rate of E. coli O157:H7 in the heads after 15 days. The 

usual time period between flowering and harvesting is of 20 days.  

2.4 Growth conditions  

Seeds were planted at a depth of 15 mm in the soil and watered daily with 5 ml of 

Butterfield’s stock solution for germination of the seeds. The temperature ranged from 

23.5 - 25.5 °C for all the experiments. Soil was placed in black-cell trays with a size of 

5x4x5.7 cm. For the seedlings experiments (seed, soil, and irrigation experiments), 50 g 

of soil per cell was used to assure homogeneous conditions from one cell to another. The 

plants were grown by placing the cell-tray in a serological water bath (Bockel industries, 

Model 148007) retrofitted with a light supply (10-12 light hours per day).  

For the head experiments, four seeds were planted in each 6 inch-pot. Plants were 

allowed to grow in the plant pathology greenhouse at University of Nebraska-Lincoln for 

around 70 days until they reached stage 10.5. The temperature in the green house ranged 

from 21°C (night-time) to 27° C (maximum day-time). Plants were watered twice a day 

(morning and evening) and were fertilized with water soluble 20-10-20, N-P-K fertilizer 
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(Peter’s Professional Peat-Lite Special) at a concentration of 250 ppm, 5 days a week. 

Plants were transported to a BSL-2 laboratory for the inoculation experiments. After 

inoculation, plants were placed in a plant-growth incubator (Thermo-Scientific Precision) 

with a light that supplied 12 hours of light and a constant 23.7 °C temperature. These 

plants were watered every two days with 60 ml of potable water.  

2.5 Plants preparation E. coli O157:H7 before detection step 

2.5.1 Seed, Soil and irrigation experiments  

After seeds germinated under the growth conditions described, seedlings were collected 

after 9 day post-inoculation. Wheat seedlings (from both varieties) were cleaved from the 

pots with a sterile scalpel and forceps. Seedlings were sanitized following the protocol 

used by Mitra et al. (2009). This protocol was used to eliminate the presence of E. coli 

O157:H7 outside of the plants as well as other bacteria on the surface that could interfere 

with detecting any E. coli O157:H7 on the present in the phyllo-plane. This consisted on 

submerging seedlings in 70% ethanol (1 min), following by submersion in 10% sodium 

hypochlorite (1 min). Finally three rinses with sterile distilled water were done to remove 

any remaining sanitizer. The cleaved and sanitized seedlings from seed and soil 

experiment were cut into small pieces (1cm) inside of a sterile bag and diluted 

(approximately 1:10) using mTSB + Novobiocin as enrichment.  The bag was placed in a 

stomacher for 2 min and finally incubated for 48 hours at 37 ºC.   

For the irrigation water experiment, sanitization was performed as described for the seed 

and soil experiments. However, after sanitization the seedlings were macerated using a 
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tissue homogenizer. The macerated seedling was then diluted 1:10 with mTSB + 

Novobiocin as enrichment in a sterile bag and incubated at 37 °C for 48 hours as 

described in soil and seed experiment.  

2.5.2 Head contamination experiment 

For the experiment with wheat heads, the sanitization procedure previously described was 

not applied due to the interest in evaluating the survival of E. coli O157:H7 in the heads. 

After 15 days, heads were cleaved and broken into small pieces inside of a sterile bag and 

diluted (1:100) with mTSB + Novobiocin as enrichment media. The bag was then placed 

in a stomacher for 2 min. From this dilution, enumeration analysis was performed to 

determine the bacterial population on each wheat head.  Finally, the enrichments were 

incubated for 48 hours at 37ºC to confirm the presence of E. coli O157:H7 by qPCR.  

2.6 E. coli O157:H7 detection 

Following enrichment, samples were tested for E. coli O157 using the AOAC validated 

method known as Foodproof® E. coli O157 detection kits (Hybridization probes-LC 2.0) 

manufactured by Biotecon Diagnostic. All analyses were conducted using a Roche 

LightCycler® 2.0 carousel-based system. The reagents in the kit were stored at -20 °C 

and contained the polymerase enzyme, primers, templates, internal controls, master mix 

and purified water that was used as a negative control. To extract the DNA of the bacteria 

present in the enrichments, Foodproof® StartPrep kits containing a lysis buffer were 

used.  
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To avoid false positives, Ethidium Monoazide-Loop mediated isothermal amplification 

method (EMA-LAMP) was used to eliminate amplification of DNA from dead cells. This 

Ethidium Monoazide-Loop method is known by its commercial name “Reagent D” 

(Biotecon Diagnostic, Potsdam, Germany). This reagent has the ability to penetrate into 

Enterobacteria dead cells presented in 100 µl bacterial enrichment culture. In the 

presence of light, the substances present in this solution form a covalent bond with DNA 

of dead cell. This action prevents the DNA of dead cell from being amplified via PCR 

methods (Biotecon 2012). Moreover, the presence of light also inactivates the remaining 

compounds, thus eliminating the possibility that these substances could interfere with the 

DNA that is going to be extracted. After this step, DNA extraction of the live cells was 

performed for Escherichia coli O157:H7.  

The DNA procedure to avoid false positives and extraction of the DNA from live cells is 

described in the following steps: 

1. Enrichments were shaken gently and let settle for 5-10 min.  

2. 100 µl of enrichment cultures (supernatant) were transferred to 1.5 ml reaction 

tubes.  

3. 300 µl of “Reagent D” were pipet into 1.5 ml (transparent) reaction tube 

previously added with enrichment. 

4. This tube was incubated in the dark for 5 min at room temperature.  

5. A high power halogen lamp was used to expose the reaction tube to light. The 

tube needs to be placed 20 cm from the light (on ice) to minimize any increase of 
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temperature in the sample. The light needs to pass through the cap and reach the 

sample.  

6. Reaction tube was centrifuged for 5 min at 8,000 g. 

7. Supernatant was removed immediately after centrifugation and discarded. 

8. 200 µl of Lysis buffer were added. 

9. The pellet was resuspended by pipetting the contents of the reaction tube gently 

up and down.  

10. Tubes with suspension were incubated on heating units for 10 min at 95-100 °C 

using a heating block (Thermo mixer). 

11. Reaction tubes were carefully removed from the heating units and allow to sit.  

12. Tube was mixed by vortex for 2 seconds. 

13. Tube was centrifuged for 2 min at 13,000 g. The supernatant now containing the 

extracted DNA used directly for the qPCR reaction. The sediments may inhibit 

the PCR and must not be used for the reaction.  

14. Supernatant was transferred to a clean centrifuge tube, and cooled down to 4°C. 

This supernatant containing the DNA was stored for no longer than two hours at 

this temperature to assure better results.  

2.6.1   PCR preparation 

After the DNA extraction was done, samples were ready for qPCR analysis. The 

Foodproof ® E. coli O157 detection kits – hybridization probes (LC1.x, 2.0) - contains 5 

different centrifuge tubes:  
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• Master Mix: This solution is prepared by the kit manufacturer and contains ready-

to-use primers and hybridization probe mixes specific for E. coli O157 DNA and 

E. coli O157 Internal control (IC). 

• Enzyme Solution: FastStart Taq polymerase and Uracil-DNA Glycosylase for 

prevention of carry-over contamination. 

• Internal control: contains a stabilized solution of plasmid of DNA, for use as an 

internal amplification control only. 

• PCR-Grade H2O 

• Control Template: This solution contains the DNA of E. coli O157 for the 

positive control to assure the accuracy of the qPCR. 

To perform the qPCR, it was necessary to follow these instructions: 

1. Micro-centrifuge tubes were allowed to warm up room temperature. After the 

solutions were thawed, the five tubes were briefly spun in a micro-centrifuge 

before opening. Finally, the centrifuge tubes were opened and mixed carefully but 

thoroughly by pipetting the contents up and down.  

2. In a 1.5 ml reaction tube, PCR Mix was prepared by adding the following 

components described in the Table1. and then mixed gently by pipetting up and 

down. The volumes shown in Table 1. are based on a single 20 µl standard 

reaction.  

Table 1. Preparation of PCR mix 

Component  Volume  

Foodproof® E. coli Master mix   13 µl 
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Foodproof® E. coli Enzyme solution  1 µl 

Foodproof® E. coli O157 internal control  1 µl 

Total volume  15 µl 

 

3. Using a pipet, 15 µl PCR mix was transferred into each LightCycler capillary. For 

the samples of interest, 5 µl sample DNA were added to a capillary, which was  

sealed with a stopper. For the negative control, 5 µl of PCR-Grade H2O were 

added to capillary, which was sealed with stopper. For the positive control, 5 µl 

Foodproof® E. coli O157 control template were added to a capillary, which was 

sealed with stopper.  

4. Capillary tubes were placed into the adapters from the carousel Lightcycler®. 

This adapter was placed in a LC Carousel centrifuge for spinning the capillaries 

for 15 seconds.  

5. The adapter was placed into the LightCycler® and the lid was closed. 

Lightcycler® equipment was operated by the software Lightcycler® software 4.x.  Food-

proof E. coli O157:H7 detection kit recommended the following parameters described in 

Table 2 to perform this test. 

 

Table 2. Parameters required for analysis by the Food-proof® E. coli O157 detection kit 

Parameter  Setting  

Seek temperature  30 °C 

Default channel  

• During run  

• Analysis  
 

 
Fluorescence channel 640 nm or 705 nm  
640/back 530 nm 

Florescence gains  Not required  
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“Max. Seek pos” Enter the number of samples including 
controls  

“Instrument Type” 6 Ch.: LightCycler ® 2.0 

Capillary size  20 µl 

 
 
 
The PCR programs used for the amplification of DNA as well as the cooling program are 

shown in Table 3. 

Table 3. Program cycles for Food-proof® E. coli O157 detection kit 

Pre-incubation  

Programs/ cycle program data  Value 

Cycles  1 

Temperatures targets  Segment 1 Segment 2 

Target/ Target temperature (°C) 40 95 

Hold/ Incubation time [h:min:s] 00:02:00 00:10:00 

Ramp rate/ temperature transition rate 
[°C/s] 

20 20 

Sec target/ secondary target temperature 
[°C/s] 

0 0 

Step size [°C] 0.0 0.0 

Step delay [cycles] 0 0 

Acquisition mode  None None  

Amplification (of the target DNA) 

Programs/ Cycle program data  Value  

Cycles  45 

Analysis mode  Quantification  

Temperature targets  Segment 1 Segment 2  Segment 3  

Target/ target temperature (°C) 95 59 72 

Hold incubation time [h:min:s] 00:00:00 00:00:30 00:00:05 

Ramp rate [°C/s] 20 20 20 

Sec target [°C/s] 0 0 0 

Step size [°C] 0.0 0.0 0.0 

Step delay [cycles] 0 0 0 

Acquisition mode  None Single  None 

Cooling (the rotor and thermal chamber ) 

Programs/cycle program data  Value  

Cycles  1 

Analysis mode  None  

Temperature targets  Segment 1  

Target temperature (°C) 40  
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Hold/incubation time  00:00:30 

Ramp rate [°C/s] 20 

Sec target temperature [°C/s] 0 

Step size [°C] 0.0 

Step delay [cycles] 0 

Acquisition mode  None 

 

After the cycles are completed, a positive or negative result is displayed based on the 

amplification signals given by the amplification curves. Moreover, all positive 

enrichments were streaked in TSA + kanamycin to assure viable E. coli O157:H7 was 

recovered. If the sample was not recognized as a positive by the the qPCR method, also 

traditional isolated techniques were used to confirm the results as negative.  

2.7 Experimental and statistical design 

E. coli O157:H7 internalization has never been studied before in wheat. Therefore, the 

first step in this process was to determine the probability of internalization in wheat in the 

different experiments (soil, seed or irrigation water). Each pot was an experimental unit 

(with one seed, soil and water during the growing period); which was assumed to be 

completely independent from each other. The target number of samples per experiment 

was 100 seedlings divided in two varieties; every variety with 50 samples tested. In each 

variety, seeds were planted in at least two different batches of 35 plants or more because 

of space limitations. From the seedlings that germinated, 25 were analyzed after 9 days of 

plating as previously described. A total of 50 negative control samples were included 

with these seedlings experiments. 
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For the wheat head inoculation experiment, 100 contaminated heads divided into three 

different batches were done using a single wheat variety. For this experiment, three heads 

were contaminated per plant, and at least 12 plants were used per batch. Thirty-three 

heads per batch were analyzed, along with 10 negative controls heads (without 

contamination).  

 

After all of the experiments were performed, statistical evaluation of the data was done 

using Chi-squared analysis to determine of the samples from the different experiments 

were any different from the control samples. .  
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Chapter 3.  RESULTS 
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3.1 Seed Contamination Experiment 

 

Sterile seeds were inoculated with E. coli O157:H7 using the protocol described under 

material and methods. Analysis of bacterial contamination was performed using TSA + 

Kanamycin medium. Table 4 shows the contamination levels achieved for each batch. 

The results are expressed as the average in CFU log per gram of seeds. 

 

Table 4. Levels of E. coli O157H7 in contaminated seed in Log CFU/g 

Sample ID Log CFU/g 

VAO3W-433- Batch 1 6.16 

VAO3W-433-Batch 2 6.60 

COOKER9835-Batch 1  6.75 

COOKER9835- Batch 2  7.22 

Average ±  standard deviation  6.68 ± 0.44 

 

After seeds were contaminated, they were planted and analyzed after 9 days by qPCR to 

detect internalization in the seedlings.  During the experiments, seedlings were cleaved 1 

cm above the soil level to avoid contamination from the soil. After sanitizing these 

samples, they were enriched with mTSB as previously described (selective media for 

Enterohemorragic E. coli). Using these enrichments, amplification curves using qPCR 
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were generated as result (Figure 4). It is important to note that only when E coli O157 

DNA is present, the fluorescence will be detected by the qPCR method.  

The qPCR results are explained in Figure 4.Graphs A and B show amplification curves of 

qPCR for seedlings of the variety COOKER9835. Graph (A) presents 24 plant samples 

that were analyzed during this batch. Graph (B) shows the amplification curves for 26 

samples tested for the second batch. Four negative controls (none inoculated seeds) are 

presented in these amplification curves. Moreover, positive controls (template control) 

and negative controls were performed to assure the accuracy of the qPCR reaction. A 

positive result (peak line) is present in each graph to indicate the correct performance of 

the method. From both graphs, it was observed only one positive result (graph B) out of 

50 plants analyzed. Graphs C and D show amplification curves by qPCR for seedlings of 

the variety VAO3W-433. Graph (C) shows the analysis of 21 samples of this variety; 

while graph (D) shows the amplification curves of 25 samples. Four negative controls 

(non-inoculated) were tested during these experiments. Control positive (template 

control) and negative for the PCR reaction were also analyzed to determine the accuracy 

of the PCR reaction kit, as previously described. A positive result is present in Graph (D) 

showing that E. coli O157:H7 was present in the enrichments analyzed.  
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A total of 96 plants were analyzed, including both varieties.  COOKER9835 and 

VAO3W-433 showed one positive result for E. coli O157:H7 transmission. Negative 

control plants (un-inoculated) were analyzed during this experiment and E. coli O157:H7 

was not found in any of them (Figure 4).  

E. coli O157:H7 strains used in these experiments are kanamycin resistant that enabled 

the isolation of only the test strains from the enrichment broth. To perform this method, 

enrichments were plated out on Tryptic Soy Agar (TSA) supplemented with 50 µg/ml of 
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Kanamycin used as a selective medium allowing the growth of only E. coli O157:H7. 

This method was used to confirm the PCR results in all enrichments.  

Enrichments that were positive for E. coli O157:H7 by qPCR matched the results on TSA 

+ Kanamycin resistant, showing presence and survival of viable cells of E. coli O157:H7. 

The presence of viable cells indicated the possibility and risk for product contamination 

with pathogenic bacteria. 

According to the data collected, the probability that E. coli O157:H7 to be present or may 

become internalized in the phylloplane, is around 2% (2 positive samples found in both 

varieties tested). To confirm that E. coli O157:H7 was still present in the soil pot, a small 

samples of the complete pot contents (containing individual pot, soil and root) were 

analyzed. For this soil analysis, all of the samples were positive (3 samples), showing the 

ability of E. coli O157 to survive after 9 days post inoculation in the soil.  

 

 

3.2 Soil Contaminated Experiment  

 

Sterile seeds were sampled to confirm that the population of endogenous bacteria was 

eliminated after the sanitization process. During this procedure, seeds were submerged in 

alcohol and sodium hypochlorite, which allowed the removal of most of the initial 

microbial contamination. The final population on the seeds were below the detection 

limit (<10 CFU/g) (Data do not shown).  
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Sterile soil was contaminated to achieve at least 6 log of E. coli O157:H7 per gram. 

Enumeration of the organisms in the soil was done to assure that the target population of 

E. coli O157:H7 was reached. The results of this analysis are showed by replication and 

variety on table 5.  

 

Table 5. Levels of E. coli O157:H7 in contaminated soil in Log CFU /g 

 

Seeds were planted and after 9 days and they were cleaved (as described before) and 

sanitized. Seedlings were then enriched for 48 hours and analyzed by qPCR. Results of 

the soil contamination experiments are shown in Figure 5.    

 

In Figure 5, Graphs A and B show amplification curves of qPCR for seedlings of the 

variety COOKER9835 using contaminated soil. Graph (A) represents 25 plant samples 

that were analyzed during this batch. Graph (B) shows the amplification curves for 25 

samples tested for the second batch. In both graphs, positive and negative controls for 

PCR were run to assure the accuracy of the qPCR reaction. In total 6 negative controls 

from wheat samples were tested. One extra positive control was run to ensure the 

accuracy of the DNA extraction used (control W+). According to the result of the 

Sample ID Log CFU/ g 

VAO3W-433-Batch 1 6.08 

VAO3W-433-Batch 2 7.08 

COOKER9835-Batch 1  6.11 

COOKER9835-Batch 2  7.13 

Average ± standard deviation 6.60 ± 0.58 
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experiment, one positive result was observed in the first 25 samples (Graph A) and 2 

positive results were found in the second replication. For the control samples, all of them 

were negative. 

 

In the same figure, Graphs C and D show amplification curves by qPCR for VAO3W-

433 Variety. Section (C) shows the analysis of 25 samples of this variety. Graph (D) 

represents the second replication of samples for this variety and in this case 25 samples 

were analyzed for the first batch. In both amplification curves, both positive (template) 

and negative controls were analyzed to determine the accuracy of the PCR reaction kit. 

To test the DNA extraction procedure, one extra control positive was run in each 

replication to demonstrate the extraction procedure was performing correctly. Graph C 

showed one positive result from 25 samples analyzed as well as one in Graph D. 

Therefore, two positive results were observed from 50 plants analyzed by the variety 

VAO3W-433. Six negative controls were tested, all of them were negative. 
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Figure 5. 

Amplification 

curves for 

contaminated soil 

experiment with E. 

coli O157:H7 

 

(*) Samples tested 
positive in the q-

PCR reaction. 
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Amplification curves showed that three samples from the variety COOKER9835 were 

positive for E. coli O157:H7 in a total of fifty samples analyzed. For the VAO3W-433 

variety, two samples were positive from fifty samples analyzed.  Therefore, the total 

number of positives was 5 out of 100 plants analyzed. A total of 12 negative controls 

(non-inoculated) were evaluated, all of them were negative as expected. 

 

Moreover, according to the plating results using TSA with 50 µg/ml of Kanamycin, all of 

the positive results indicated by qPCR were positive as well on the TSA+ Kanamycin 

agar. This confirms that the bacteria were viable in the samples collected after the 

sanitization treatments. 

 

In this experiment, E. coli O157:H7 appears to internalize at a higher rate than in the seed 

experiments. The rate of internalization in this experiment was close to 5% (3 positive 

samples found in the variety COOKER9835 and 2 positive samples found in the variety 

VAO3W-433 during this experiment) in comparison with the 2% observed in the 

experiment with contaminated seeds.  

 

3.3 Irrigation Water Experiment  

The irrigation experiment consisted of water application in the surrounding soil area 

where the seeds were located. Usually infiltration through the soil is necessary when the 

seeds are irrigated. Therefore, the importance of this irrigation experiment is critical to 

understand contamination routes through normal crop production. Using contaminated 
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water, E. coli O157:H7 were introduced into 50 g soil pots in which seeds were planted. 

For this experiment, three batches were performed due to low germination of wheat in 

one of the batches. Table 6 shows the contamination levels of E. coli O157:H7 in 

irrigation water used during this experiment in log CFU/g.  

Table 6.  Levels of E. coli O157:H7 in water used for irrigation in Log CFU/ml 

 

During this procedure, the sterile seeds were planted into sterile soil and the 

contamination occurred when 5 ml of contaminated water was pipetted onto the soil 

surface of each pot into a circular area. It is important to note that the addition of this 

contaminated water performed an extra 10-fold dilution, resulting in an actual 

contamination level about 6 log of E. coli O157:H7 in the soil.  

With the same principle as the previous experiment, samples were analyzed after 9 days 

using the sanitization procedure previously described. The amplification curves are 

shown in Figure 6, indicating that five positive results were found in each variety from 

100 plants analyzed. 

Sample ID Log CFU/ml  

VAO3W-433-Batch 1 6.82 

VAO3W-433- Batch 2 6.83 

VAO3W-433- Batch 3  6.77 

COOKER9835- Batch 1  6.59 

COOKER9835-Batch 2  6.92 

COOKER9835- Batch 3  6.65 

Average ± standard deviation  6.76 ± 0.11 
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Moreover, TSA + Kanamycin analysis showed that all of the positive results determined 

by qPCR were confirmed by the plating method.  The ratio of internalization of this 

experiment was 10% (10 positive samples from 100 samples analyzed during this 

experiment).  

Figure 6 shows the amplification curves for irrigation water experiment. Graphs A, B, C 

and D shows the results for COOKER9835 variety using irrigation water as a source of 

contamination. Graph (A) represents 18 plant samples that were analyzed during the first 

batch. Graph (B) shows the amplification curves for 7 samples tested as a continuation of 

this batch. Graph (C) shows 15 samples tested in the second batch. Graph (D) shows 10 

samples tested in the third batch. In all of the graphs, positive controls and negative 

controls for PCR were performed to assure the accuracy of the qPCR reaction. Nine 

negative controls were analyzed. According to these amplification curves, five positive 

results were found in 50 samples for the variety COOKER9835 analyzed. All of the 

negative controls were negative.  

In the same figure, Graphs E, F, G and H shows the qPCR amplification curves for the 

VAO3W-433 variety using irrigation water as a contamination source. Graph (E) 

represents 25 plant samples that were analyzed during this replication. Graph (F) shows 

the amplification curves for 12 samples tested. Graph (G) shows results from 3 samples 

tested. Graph (H) contains 10 samples tested. In all of the graphs, positive and negative 

controls for PCR were performed to assure the accuracy of the qPCR reaction. A total of 

nine negative controls were tested. As a summary of these amplification curves, 5 

samples tested positive (three for the variety COOKER9835 and two for the Variety 
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VAO3W-43) out of 50 samples analyzed and all of the nine negative controls were 

negative. 
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Figure 6. 

Amplification 

curves for 

irrigation water 

experiment 

(*) Samples tested 
positive in the q-

PCR reaction.   
     Nine negative 
controls were 
performed along to 
these samples. 
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(*) Samples tested 
positive in the q-

PCR reaction.   
      Nine negative 

controls were 

performed along to 

these samples 
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3.4 Control samples  

 

Negative control samples were distributed in all of the experiments (seed, soil of 

irrigation water) and all of them where negative as expected. The numbers of controls 

presented in the amplification curves are:  8 control samples tested in seed experiment, 12 

in the soil experiment and 18 during the irrigation water experiment. As previously 

described in the experimental design, 50 negative controls were tested; the remaining 12 

samples are presented in the following graph. All of the negative controls were negative 

as expected. Positive controls were performed to assure the accuracy of the qPCR and it 

is shows as a single peak in the chart.   

 

Figure 7. Amplification curves for remain control samples  
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3.5 Head contamination experiment 

The Wheat variety used was Wheaton. This variety does not require vernalization 

(process in which the seed is kept in cold temperature, usually 4 °C, in the early stages of 

germination) to produce heads since it is a spring wheat. During the contamination 

procedure, heads were sprayed with a known population of E. coli O157:H7 and the 

source was contaminated water. Analysis was performed using TSA+ Kanamycin. The 

results obtained from contaminated water are shown in Table 7 in Log/g.  

Table 7.  Levels of E. coli O157:H7 in the contaminated water in Log CFU/ml used 

in the head experiment  

 

To determine the initial contamination level in the heads, analysis was conducted after 24 

hours. It is important to note that the levels of contamination were at least 100 times 

higher than the levels in the irrigation water experiments (Table 8). This contamination 

difference showed that after 24 hour E. coli O157:H7 may grow on the surface of the 

heads of wheat plant. During the head contamination procedure, 5 ml were sprayed to 

each head, but not all were absorbed by the head. It was determined that was close to 

120-200 µl collected by the heads. It is important to remark with this inoculum 

concentration used is 4.19 as showed in the Table 7. With this amount of inoculum is no 

way that E. coli O157:H7 could reach 6 log CFU/g in the head after 24 hours without 

Sample ID Log CFU/ml  

Water spray irrigation- Batch 1 4.9 

Water spray irrigation- Batch 2 3.81 

Water spray irrigation-Batch 3 3.85 

Average ± standard deviation 4.19 ± 0.61 
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growth of E. coli O157H7 in the head during this time (Table 8). Therefore, this showed 

that E. coli O157:H7 could multiply during this first 24 hours.  

Table 8. E. coli O157:H7 counts in log CFU/ml after 24 hours of inoculation  

 

After 15 days post-inoculation, E. coli O157:H7 still had high counts showing that this 

strain has the ability to survive in ambient conditions provided by in this experiment. 

Enumeration of E. coli O157:H7 on the heads using TSA + Kanamycin after 15 days of 

inoculation are shown in Table 9.   

Table 9. Counts of E. coli O157:H7 in Log CFU/g in wheat heads after 15 days of 

inoculation  

  (*) Average and standard deviation were obtained from counts in samples in every batch.  

These results indicate that E. coli O157:H7 can survive for long time (at least for 15 

days) on the wheat heads in optimum conditions. The number of bacteria is surprisingly 

high, showing the possibility that these bacteria can survive until harvesting. Wheat heads 

samples were also analyzed as described before using qPCR. Amplification curves from 

the enrichments samples are showed in the Figure 8.  

Sample ID Log CFU/g 

Head irrigated Batch 1 6.33 

Head irrigated Batch 2 6.25 

Head irrigated Batch 3 6.95 

Average ± standard deviation 6.51± 0.38 

Sample ID Log/g (*) 

Head- Batch 1  5.89 ± 0.61 

Head- Batch 2 5.98 ± 0.38 

Head- Batch 3  5.69 ± 1.13 
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Graphs A, B, C shows qPCR amplification curves for the Wheaton variety in the head 

contamination experiment. Graph (A) represents 29 plant samples that were analyzed 

during this replication. Graph (B) shows the amplification curves for 25 samples tested as 

a continuation of this replication. Five positive controls were tested. Graph (C) shows 

four samples tested. All samples tested positive. Negative controls were negative as is 

showed in the graph B, showing there was no cross contamination between the samples. 

Section (D) presented 25 plant samples were analyzed during this batch as well as 5 

controls. Section (E) shows the amplification curves for samples fifteen samples tested. 

For both graphs showed that a positive control and a negative control. Results showed 

that E. coli O157H7 was presented in all of the case. Just one of the samples was tested 

negative for the qPCR. This sample was tested again using TSA+ Kanamycin and SMAC 

to assure that E. coli O157:H7 was presented and this media result showed positive 

results. Moreover, these samples were tested positive previously in the enumeration after 

15 days. 
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Figure 8. 

Amplification 

curves for 

irrigation head 

contamination 

experiment 
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3.5 Statistical analysis  

 

Data from all of the experiments were summarized in the Tables 10, 11 and 12, along 

with the results of the statistical analysis. Three different experiments with seedlings 

were analyzed using Chi square to evaluate if there were any statistical differences 

between the two varieties tested. Results showed that there was not a statistical 

internalization difference between varieties for the internalization of E. coli O157:H7.  

Table 10. Results of internalization of E. coli O157:H7 in the experiments with 

seedlings along with statistical analysis by varieties   

Experiment  Variety Positive samples/Total of 

samples 

% infection 

Seed contamination  COOKER9835 1/50 (a) 2.0 

VAO3W-433 1/46 (a) 2.1 

Soil contamination  COOKER9835 3/50 (a) 6.0 

VAO3W-433 2/50 (a) 4.0 

Irrigation water 

contamination  

COOKER9835 5/50 (a) 10.0 

VAO3W-433 5/50  (a) 10.0 
(a, b, c ) Varieties with the same letter did not show statistical differences using Chi square.  

 

Since there were no statistical differences found between varieties, results from different 

varieties were combined to detect the differences between contamination methods and the 

control samples. The results of this analysis showed that irrigation water showed an 

internalization rate of E. coli O157:H7 that was higher than the control experiment (Table 

11). 
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Table 11. Results of internalization of E. coli O157:H7 in the experiments with 

seedlings along with statistical analysis by contamination treatment and comparison 

with control samples 

Experiment  Variety Positive samples/Total of 

samples 

% infection 

Seed contamination  Both  2/96 (2) 2.1 

Soil contamination  Both  5/100 (2) 5.0 

Irrigation water Both  10/100 (1) 10.0 

Total Controls Both 0/50 (2) 0.0 

 (1, 2) Treatment with the same numbers as the control, did not showed statistical differences using Chi square 

 

Statistical analysis of the data from the experiment with heads, the results indicated that 

the survival of E. coli O157H7 was statistically different than the control (Table 12).  

Table 12. Results of internalization of E. coli O157:H7 in the experiments with 

seedlings along with statistical analysis by head experiment 

Experiment  Variety Positive samples/Total of 

samples 

% infection 

Head contamination  Wheaton  98/98 (1) 100.0 

Control  Heads  0/10 (2) 0.0 

(1, 2) Treatment with the same numbers as the control, do not showed statistical difference using Chi square 
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Chapter 4. DISCUSSION 
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E. coli O157:H7 has been linked to the consumption of wheat flour in recent years. To 

date, no study has been conducted to determine the probability of E. coli O157:H7 

internalizing into the phyllo-plane or vegetative tissue from possible contamination 

sources (seed, soil or irrigation water) in wheat plants. This research is the first attempt to 

answer this question.  

According to the data collected, results showed that E. coli O157:H7 could be 

internalized into wheat seedlings at different rates, depending upon the contamination 

source. When seeds were contaminated, E. coli O157:H7 was internalized and translocate 

after 9 days post-inoculation into the wheat seedlings at a rate of 2%.  

This is not an isolated observation; this behavior has been observed in different plant 

varieties and produce with E. coli O157:H7 and related microorganisms. In previous  

studies, E. coli O157:H7 was able to internalize into Arabidopsis Thaliana (Cooley et al. 

2003), lettuce sprouts (Habteselassie et al. 2010) and bean sprouts contaminated with E. 

coli P36 (Warriner et al. 2003b).  

Salmonella enterica and E. coli O157:H7 were shown to internalize in the root tip of 

Arabidopsis thaliana and move through veins of leaves and stems, using contaminated 

seed (Cooley et al. 2003). This seems possible for wheat; although the root was not tested 

during this experiment, E. coli O157:H7 was found in the tissue above the surface soil, 

meaning it had to arrive there using the root system. Unfortunately, the exact location 

where E. coli O157:H7 entered the plant was not determined during this experiment. 

Investigators have also suggested that E. coli may enter the root due to active motility or 
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simple diffusion. Once inside, bacteria will move up through the stem of the plant and 

finally into the leaves and flowers (Cooley et al. 2003). Seeds from contaminated 

Arabidopsis plants were tested and the recovery of E. coli O157:H7 after the complete 

cycle of production was around 26.7%, much higher than the rate reported in this study.  

It is not well understood; however, E. coli O157:H7 becomes internalized and it is 

believed that these bacteria could reach the vascular system of the plant and produce a 

systemic infection without any plant response (Itoh et al. 1998; Bartz 2006). Researchers 

suggested that young plants could be internalized more efficiently by E. coli due to low 

plant defenses that are not well developed during germination when seed breakage occurs 

(Habteselassie et al. 2010). This may explain the occurrence of this internalization in 

wheat seedlings from contaminated seeds, soil or water.  

E. coli O157:H7 also reached the internal parts of the plant through contaminated soil, 

with a slightly higher internalization rate (5%) observed in wheat seedlings after 9 days. 

A similar study showed that internalization can occur in produce as well using a similar 

method. Mootian et al. (2009) analyzed the internalization of E. coli O157:H7 in lettuce 

using low contamination levels (<4 log CFU/g) in soil after 12 and 30 days-old seedlings. 

For 12 day-old lettuce seedling, results showed no internalization from any of the 

samples tested after 10, 20, 30 days post-inoculation using contaminated manure or soil. 

For 30 day-old lettuces were contaminated at day 15th and results showed 4 out of 36 

samples tested positive for the different levels of contamination. This represents an 

internalization level that could vary between 0% for 12 day-old lettuce to 11% for 30 

day-old lettuce using contaminated manure or soil. This range seems in agreement with 
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the observations of internalization of E. coli O157H7 in wheat seedlings in this research 

when the soil was contaminated.  

Solomon et al. (2002b) found that E. coli O157:H7 could be transmitted to the plant 

tissue and internalized (1 cm above the soil surface). Their results showed that E. coli 

O157:H7 was presented in 3 samples out of 16, when population of 6 log CFU/g was 

applied to the soil after 6 days post-inoculation. This result shows an internalization rate 

of around 18.75%. Similar results were found when the samples were tested at day 9 pos-

inoculation. These experiments established that E. coli O157:H7 could become 

internalized (sub-surface tissue) using contaminated soil as a vector. 

Looper et al. (2009) used slurry manure to contaminate tall-fescue (175 days old) using a 

population of 5 log CFU/g of E. coli O157:H7 in soil and similar results were found. For 

this study, inoculation of E. coli O157:H7 was done at the soil surface level. Samples 

were collected from the top (10 cm) of the plant tissue and disinfected with alcohol prior 

to analysis. The results showed E. coli O157:H7 translocated on 18% of the cases (9 out 

of 50 plants analyzed) after 14 days post-inoculation.  

Other studies have showed the internalization of E. coli O157:H7 using contaminated soil 

(6 log CFU/ml) in spinach (Mitra et al. 2009). Leaves were analyzed 7 days post-

inoculation using three different varieties of spinach and 1 positive sample out of 20 was 

detected in one of the varieties. This showed a relatively low rate of infection when soil 

or water were the source of contamination in spinach after 7 days. E. coli O157:H7 was 

found after 7 days at a rate of 5% using the BAX PCR method (without root inclusion) 
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and at 10% after 14 days using enrichments of the plants with root inclusion (Mitra et al. 

2009).  

The data from the experiments described in this research indicate that E. coli O157:H7 

may have the ability to internalize and translocate from a contaminated soil matrix into 

the wheat plants. The internalization rate is much lower in the wheat experiment varying 

from the 5% reported by contaminated soil experiment in compared to 18% found in the 

literature. It is important to note that the studies with higher internalization rates tested 

plants 15 days post-inoculation, and this maybe a source of the difference in the results 

because E. coli O157:H7 may have had more time to translocate from the root to the 

stem. Even though the internalization rate showed by this research seems low, it is 

important to note that the seedlings had only 9 days and if more time was allowed the rate 

may have been increased.  

Other factor that could make a difference in the internalization rate is the composition of 

the exudates in the rhizospheres microbiota (Jablasone et al. 2005). It has been showed 

that wheat exudates has some phenolic compounds (Bertin et al. 2003) that may inhibit 

the attachment and internalization of E. coli O157:H7, which could explain the lower 

internalization rate found in wheat in compared to produce.  

For the last seedling experiments, irrigation with contaminated water was used as a 

source of E. coli. In these experiments, E. coli O157:H7 had an internalization rate of 

10% in wheat seedlings at 9 days post-inoculation. This experiment showed the highest 
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internalization rate of among the different methods of contamination under evaluation. 

This was the only contamination method that was statistical different from the control. 

The literature reports that E. coli O157:H7 can be internalized in plant tissue via 

contaminated water. Habteselassie et al. (2010) found that contaminated irrigation water 

(6 log CFU/ml population of E. coli O157:H7) resulted in contaminated lettuce after 10 

days post-inoculation. E. coli O157:H7 was translocated to the leaves without direct 

contact with the irrigation water.  

E. coli O157:H7 became internalized in lettuce at low levels (2 positive samples out of 24 

at the day 10 post-inoculation) when this produce were contaminated at the time of 12 

days-old (Mootian et al. 2009). This represents an internalization rate of 8.33%.  This 

study also evaluated internalization of E. coli O157:H7 when contamination occurred 

after 30 days from germination. These plants were then tested after 15 days post 

inoculation, and in this case E. coli O157:H7 was internalized at a rate around 12.5 % (3 

plants out of 24).   

The internalization rates described in the literature when water was the source of 

contamination agrees with the observations made during the wheat irrigation experiment 

described here (10% internalization rate). The slight variations between the results 

described here and the values previously described in the literature could be attributed to 

different inoculation levels, different plant species or even different days of inoculation 

or protocols used of each experiment (size of samples). 
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For the last experiment, wheat heads were contaminated with irrigation water and the 

results showed that this strain could grow and survive in the wheat heads even after 15 

days post-contamination in all tested samples. It is important to note that this experiment 

was done with the presence of the natural microflora of the wheat heads. The results of 

this experiment are interesting, because even though slightly less inoculum was added 

(around 3 log CFU per head), it was observed that E. coli O157:H7 can permit in the 

wheat heads at the levels of 6.51 log CFU/g after 24 hours post-inoculation. Considering 

that each wheat head weighted around 1 gram (data not shown), the levels of E. coli 

O157:H7 in the head expected to be around 3 log CFU/g after inoculation. This growth 

observed may increase the survival time of E. coli O157:H7 in wheat heads and also the 

probability of kernel contamination. After 15 days E. coli O157:H7 survival on wheat 

heads was 100% at this time, wheat plants are close to their harvest period, demonstrating 

the possibility that E. coli O157:H7 could contaminate the wheat kernels. 

Field experiments have found survival of E. coli O157:H7 in the phyllo-plane on lettuce 

for more than 5 days when contaminated water was used for irrigation just  before harvest 

(Barker-Reid et al. 2009). Erickson et al. (2010b)  has also found that irrigation water 

could be a source of contamination. In their study, they found that inoculation levels play 

a key role in the internalization of E. coli O157:H7 (shigatoxin negative strains) in 

spinach. Three levels of contamination: low-dose (2 log CFU/ml), medium-dose (4 log 

CFU/ml) and high dose (6 log CFU/ml) were applied using a spray irrigation method. 

The results showed that immediately after contamination low inoculation levels showed 

no internalization of bacteria, but for high-doses (6 log CFU/ml) the internalization rate 
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was 25% of the samples immediately after contamination. This study showed that 

attachment to the phyllo-plane (surface of the leaves) can occur mostly immediately 

when high doses are applied (Erickson et al. 2010b). Moreover, they tested the survival 

of the bacteria on the leaves using high inoculum concentrations (108 CFU/ml) and it was 

observed that E. coli O157:H7 can survive until day 14 post-inoculation.   

Other studies showed longer survival times for E. coli O157:H7 (non-shigatoxin producer 

strain); as long as 77 days on lettuce and 177 days on parsley (Islam et al. 2004). Similar 

results have been found in related studies using other produce. Solomon et al. (2003) 

found that sprayed populations (2 log CFU/ml) of E. coli O157:H7 could increase the 

population with each watering on the phyllo-plane of lettuce. Moreover, this study 

showed that even with low dose (2 log CFU/ml), E. coli O157:H7 can survive for at least 

10 days on the leaves of lettuce after inoculation.  

Produce leaves were believed to be a harsh environment for E. coli O157:H7; but as the 

evidence shows, E. coli O157:H7 can survive quite well. Comparing this environment to 

wheat heads would be appropriate since they are both under similar environmental 

conditions. Usually heads at the flowering stage (as was used in this experiment), are 

starting to open their hulls in order to produce the kernels. Therefore more cavities are 

exposed, in which E. coli O157:H7 could hide from light or dehydration, allowing these 

bacteria to survive well for 15 days after inoculation as showed in these experiments.  

Important observations were gathered during these experiments, such as the ability of  E. 

coli O157:H7 to increase their numbers during the first 24 hours post-inoculation in 
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wheat heads. This ability to grow on the plant surface has been seen previously by 

Solomon et al. (2003). This observation is remarkable because it may lead to internalize 

in wheat kernel as was previously discussed by Cooley et al. (2003).  

Even though during this study the survival of E. coli O157:H7 after 15 days was 

determined in all of the heads, one of the experimental limitations was that kernels 

themselves were not analyzed. The quality of irrigation water plays a key role in the 

transmission E. coli O157:H7 into wheat kernels during the agricultural cycle production.  

Future studies need to be done to determine the possibility that this strain could reach the 

kernel and potentially contaminated products such as flour. During wheat harvesting, 

combines harvester are used to de-hull the grains form the spikes by friction. Hence 

during this process, E. coli O157:H7 that may be contaminating the hulls could be 

transferred to the surface of the kernels, thereby increasing the risk that E. coli O157:H7 

may reach the milling process. 
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Chapter 5. CONCLUSION AND FUTURE RESEARCH 
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Wheat is a cereal grain that is commercialized as a raw agricultural product and 

consumed by large populations as wheat flour. Recently E. coli O157:H7 has been linked 

to the consumption of wheat based products. However, no studies have been done to 

determine the probability of E. coli O157H7 to be internalized into wheat plants. This 

research is the first report analyzing the possible route of transmission of E. coli O157H7 

into wheat phyllo-plane or vegetative tissue form possible contamination sources (seed, 

soil or irrigation water). 

According to the data collected, E. coli O157:H7seems to have a the ability to be 

internalized into the tissues of wheat seedlings. Irrigation water experiments showed the 

highest frequency with 10% of internalization rate, followed by soil contamination 

experiment with internalization rate of 5% and seed contaminated with 2% of 

internalization. The experiment with irrigation water were significantly different from the 

control, while experiment with seed and soil were not significantly different. Literature 

has been found a slightly higher internalization rate in some cases using different crops; 

but since these experiment are really complex, they are really hard to make a judgment 

between them.  

Researchers have reported internalization rates that vary from 0% to 18% in certain type 

of produce. However, comparisons are difficult due to their complexity. Small difference 

in strains (hydrophobicity, flagella, etc.), amount of inoculum, root exudate, sanitization 

and protocol procedure and inoculation time could make a difference in the 

internalization rate. Even though these differences can influence the outcome, most of 
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these studies assure that internalization of E. coli O157:H7 can occur even in low levels; 

in some cases similar or close to wheat experiments.  

More investigation is necessary to determine the survival of E. coli O157:H7 internally in 

the wheat plant environment. No information is available showing the ability of E. coli 

O157:H7 could the vascular system yet in close related crops; therefore, the capacity of 

this strain internalized in the kernel of the wheat producing a contaminated seed is 

uncertain. Even though this experiment is not conclusive about if this route can reach the 

kernels in the maturity plants, it was demonstrated that E. coli O157:H7 could internalize 

in seedlings showing a possible window to investigate.  

Surface head contamination was more relevant than internalization in seedling at day 9, 

since the survival rate and contamination were higher. Moreover, this experiment was 

conducted using lower levels of E. coli O157:H7 (4 log CFU/g) as well as the natural 

microflora, being most significant findings due to the similarities to the real environment. 

E. coli O157:H7 showed excellent survival on wheat heads, with a high probability of 

reaching the kernel. All samples were positive after 15 days, meaning 100% survival and 

recovery after this period. Head contamination seems to be the most likely route to reach 

the kernel, thus giving a possible opportunity to reach the milling process and ultimately 

reach the consumers. Crop management or good agricultural practices are important to 

control the microbial quality of the irrigation water due to the risk of contamination of E. 

coli O157:H7 based on the results found in this research.  
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In conclusion, the present study demonstrates that internalization of E. coli O157:H7 in 

wheat plant can occur using the conditions applied (sterile soil, absence natural 

microflora, ambient lighting, temperature, etc.) but it was rare. These conditions may not 

simulate the environmental conditions present in real-world crop production, hence this 

information may not be directly transfer to the field. The most important finding was that 

irrigation water on wheat heads (surface contamination), in which E. coli O157:H7 

showed a high survival rate, is the most likely route of contamination in wheat plant in 

real environmental conditions. Furthermore, this study provided important information on 

understanding the possible routes of contamination of E. coli O157:H7 in wheat. 

While these initial findings suggest that E. coli O157:H7 can be internalized into wheat at 

low levels, future research is necessary to understand if this could happen in the natural 

environment. A number of new approaches to address this issue are outlined below:  

• Analysis and determination of internalization rate of E. coli O157:H7 in different 

stages of the wheat plant 

• Determining the ability of E. coli O157:H7 to reach the vascular system in wheat 

and the possibility of reaching the kernel using the vascular system 

• Determining  the internalization during environmental conditions on-farm by 

applying a surrogate organism  

• Using non-sterile soil  as a possible variable to understand the effect the rhizobial 

microflora in the internalization rate in these plants  
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To analyze further the surface contamination on heads, more research is necessary to 

address to determine if this E. coli O157:H7 can reach the flour chain. New research 

addressing this possible contamination route of the flour could be include such as: 

• Determination of the level of contamination on the kernel alone using real 

environmental conditions 

• Determination of the attachment location of E. coli O157:H7 in the heads to 

determine if the kernel is contaminated. 

• Determination of the ability of E. coli O157:H7 to survive during storage in wheat 

and whether it can survive the milling process and flour production 

• Finally, if these contamination routes seems possible, intervention strategies and 

solutions to increase food safety in this products should be developed.  
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1. Statistical analysis 

 

 

1.1 Statistical Analysis by Variety using the same contamination method 

 

Seed contamination experiment 

 
Data contaminationSeed; 

input Variety$ result$ count; 

datalines; 

Cooker positive 1 

Cooker negative 49 

Vao negative 45 

Vao positive 1 

; 

PROC FREQ DATA=contaminationSoil; 

WEIGHT count; 

TABLES Variety*result/NOPERCENT NOROW NOCOL 

EXPECTED CHISQ; 

RUN; 
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Soil contamination Experiment  
 

 

Data contaminationSoil; 

input Variety$ result$ count; 

datalines; 

Cooker positive 3  

Cooker negative 47 

Vao negative 48 

Vao positive 2 

; 

PROC FREQ DATA=contaminationSoil; 

WEIGHT count; 

TABLES Variety*result/NOPERCENT NOROW NOCOL 

EXPECTED CHISQ; 

RUN; 
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Irrigation contaminated experiment  

 
 

Data contaminationIrrigation; 

input Variety$ result$ count; 

datalines; 

Cooker positive 5  

Cooker negative 45 

Vao negative 45 

Vao positive 5 

; 

PROC FREQ DATA=contaminationIrrigation; 

WEIGHT count; 

TABLES Variety*result/NOPERCENT NOROW NOCOL 

EXPECTED CHISQ; 

RUN; 
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1.2 Statistical Analysis respect to the control 

Statistical analysis using Head experiment and Control 

 

Data contamination; 

input method$ result$ count; 

datalines; 

head positive 98 

head negative 0 

control positive 0 

control negative 50 

; 

PROC FREQ DATA=contamination; 

WEIGHT count; 

TABLES method*result/NOPERCENT NOROW NOCOL 

EXPECTED CHISQ; 

RUN; 
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Statistical analysis using Soil and Control 
 

Data contamination; 

input method$ result$ count; 

datalines; 

soil positive 5 

soil negative 95 

Control negative 50  

Control positive 0 

; 

PROC FREQ DATA=contamination; 

WEIGHT count; 

TABLES method*result/NOPERCENT NOROW NOCOL 

EXPECTED CHISQ; 

Run;  
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Statistical analysis using seed and Control 

 

Data contamination; 

input method$ result$ count; 

datalines; 

seed positive 2 

seed negative 94  

Control negative 50  

Control positive 0 

; 

 

PROC FREQ DATA=contamination; 

WEIGHT count; 

TABLES method*result/NOPERCENT NOROW NOCOL 

EXPECTED CHISQ; 

RUN; 
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Statistical analysis using seed and Control 
 

Data contamination; 

input method$ result$ count; 

datalines; 

 

control positive 0 

control negative 50 

Irrigation positive 10 

Irrigation negative 90 

; 

PROC FREQ DATA=contamination; 

WEIGHT count; 

TABLES method*result/NOPERCENT NOROW NOCOL 

EXPECTED CHISQ; 

RUN; 
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