
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Geography Faculty Publications Geography Program (SNR)

2009

pRPL: an open-source general-purpose parallel Raster Processing pRPL: an open-source general-purpose parallel Raster Processing

programming Library programming Library

Qingfeng Guan
School of Natural Resources, University of Nebraska-Lincoln, qguan2@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/geographyfacpub

 Part of the Geographic Information Sciences Commons

Guan, Qingfeng, "pRPL: an open-source general-purpose parallel Raster Processing programming Library"
(2009). Geography Faculty Publications. 29.
https://digitalcommons.unl.edu/geographyfacpub/29

This Article is brought to you for free and open access by the Geography Program (SNR) at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Geography Faculty
Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/geographyfacpub
https://digitalcommons.unl.edu/geography
https://digitalcommons.unl.edu/geographyfacpub?utm_source=digitalcommons.unl.edu%2Fgeographyfacpub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=digitalcommons.unl.edu%2Fgeographyfacpub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/geographyfacpub/29?utm_source=digitalcommons.unl.edu%2Fgeographyfacpub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages

pRPL: an open-source general-purpose parallel Raster
Processing programming Library

Qingfeng Guan
Department of Geography

University of California, Santa Barbara
Santa Barbara, CA 93106, USA

01-805-893-2705

guanqf@gmail.com

ABSTRACT
pRPL is an open-source general-purpose programming library
developed by the author to parallelize almost any raster-
processing algorithm with any arbitrary neighborhood
configuration, and support any data type. This paper introduces
the advanced features of pRPL, compares it with other similar
programming libraries, and demonstrates the performance of a
parallel geographic Cellular Automata (CA) model developed
using pRPL with real-world datasets. In conclusion, pRPL
effectively reduces the development complexity of parallel
programming, and efficiently reduces the computing time.

Categories and Subject Descriptors
D.1.3 [Software, Programming Techniques]: Concurrent
Programming – Parallel programming.

General Terms
Performance

Keywords
Parallel, raster, programming library

1. INTRODUCTION TO pRPL
From a parallel computing perspective, raster is born to be
parallelized. A raster dataset is essentially a matrix of values, each
of which represents the attribute of the corresponding cell of the
field (e.g. land use type, elevation, etc). A matrix can be easily
partitioned into sub-matrices and assigned onto multiple
processors so that the sub-matrices can be processed
simultaneously and a higher processing speed will be reached.

pRPL was developed by the author to encapsulate complex
parallel computing utilities and routines specifically for raster
processing (e.g., raster data decomposition, distribution and
gathering among multiple processors, inter-processor
communication and data exchange), and provide an easy-to-use
interface for users to parallelize almost any raster-processing
algorithm with any arbitrary neighborhood configuration. pRPL
greatly reduces the development complexity. Moreover, even
though pRPL was developed for massive-volume geographic
raster processing, it can also be used for other large-scale raster-
like computations such as image processing and Cellular

Automata (CA).

pRPL was written in C++ and built upon the Message Passing
Interface (MPI), which is a de facto standard parallel
programming library composed of a set of functions that enable
and manage parallel computing by passing messages between
processors [1]. Since MPI and C++ compilers are available on
almost all parallel computing systems (e.g., massive parallel
computers, and computer clusters), the portability of pRPL is
guaranteed, and the applications built upon it will be portable
across different parallel computing platforms as well. From a
software architecture perspective, pRPL serves as a middleware
connecting the general-purpose parallel programming library (i.e.,
MPI) and the application-specific raster-processing programs. It
hides the complex technical details of parallel computing from the
users, thus relieves them from the time-consuming parallel
programming and lets them only focus on the algorithms
themselves. Mineter and Dowers [2] referred to this kind of
architecture as a layered approach to parallel processing for
geographic applications (Figure 1).

Figure 1 pRPL in a layered architeture

2. FEATURES OF pRPL
2.1 OOP library and class templates
pRPL is an Object-Oriented programming library, and provides a
set of classes1 for users as the interface to easily manage and
control the underlying parallel processes. Also, pRPL is a
template programming library, and supports any type of cell
attribute values, e.g. integer numbers, single and double precision
floating point numbers, and even more complex user-defined data
structures.

1 For more technical details of pRPL, see the user manual -

Getting Started with pRPL [13]

The SIGSPATIAL Special, Volume 1, Number 1, March 2009

Copyright is held by the author/owner(s).

57

2.2 General support for raster processing
As a general-purpose library, pRPL was developed to parallelize
most raster-processing algorithms as long as the transition
computation is parallelizable, i.e., the computation for a certain
cell (or pixel) within the output cellspace is independent of that
for other cells. Thus, neighborhood-scope (or moving-window-
based) and local-scope (which can be seen as special cases of
neighborhood-scope ones) algorithms are fully supported by
pRPL, and some regional-scope and global-scope algorithms that
meet the parallelizability criterion are also supported.

pRPL supports any arbitrary neighborhood configuration (Figure
2). The neighborhood can be either continuous or discontinuous
(Figure 2d), either symmetrical or asymmetrical (Figure 2e).
Furthermore, the cells within a neighborhood can be assigned
with different weights for kernel-based local processing [3].

Figure 2 Examples of neighborhood configuration

Also, the transition algorithm to be parallelized can be either
centralized or non-centralized. A centralized algorithm only
evaluates and updates the central cell of the neighborhood,
whereas a non-centralized algorithm may evaluate and update any
cell(s) within the neighborhood. A finalizing process can be
included in the algorithm, e.g., assigning a value to the cell based
on an intermediate value of the cell calculated during the
evaluation process.

2.3 Multi-layer processing
Multi-layer processing is commonly used in raster-based GIS and
GeoComputation algorithms, as well as in other kinds of image
processing, e.g., an AND operation on two binary-coded images.
pRPL supports multi-layer algorithms by allowing users to
associate multiple Layer objects to a Transition object which
implements the raster-processing algorithm. Each Layer object
can contain a cellspace (CellSpace object), and/or multiple sub-
cellspaces (SubSpace objects), and a Neighborhood object (Figure
3).
2.4 Regular and irregular decomposition
pRPL provides both regular and irregular decomposition methods
to divide the domain (Figure 4). Regular decomposition divides

the cellspace by rows, or columns, or blocks, without considering
the workloads associated with the cells, and produces equal-area
sub-cellspaces. Irregular decomposition, on the other hand, takes
account for the workloads of the cells, and is likely to produce
unequal-area sub-cellspaces in order to divide the workloads more
evenly among the sub-cellspaces. pRPL provides a quad-tree-
based (QTB) decomposition method. The QTB decomposition is
an iterative process. At each iteration, the workloads associated
with the leaves (i.e., sub-cellspaces) are calculated, and the leaf
with the largest workload will be divided into 4 child leaves. The
quad-tree will keep growing until the maximum number of leaves
or the minimum workload associated with a sub-cellspace is
reached. Caution must be taken when this decomposition method
is to be used, because the extra computation required to construct
the quad-tree and to calculate the workloads of the sub-cellspaces
might outweigh the speed-up gained from the better workload
distribution.

Figure 4 Domain decomposition methods in pRPL

2.5 “Update-on-Change” and the Value-
headed index stream for data exchange
When a neighborhood-scope algorithm is used, the transition
computation for a certain cell requires the values of its
neighboring cells. In consequence, a sub-cellspace has to include
not only the block of cells to be processed, but also a “halo” of
cells surrounding the block [4], which can be seen as the replicas
of the cells within the neighboring sub-cellspaces. The “halos” of
the sub-cellspaces must be updated after each iteration, if an
iterative algorithm is used. When the origins are updated, the
replicas should be updated accordingly. This inevitably creates
the communication overhead (i.e., messages in the MPI
environment) between processors. However, not all the “halo”
cells’ values are changed after a certain iteration, and it would be
inefficient to refresh all the “halo” cells each time. pRPL uses a
mechanism called “Update-on-Change”, and only updates the
halo cells whose origins have been changed at an iteration, which
significantly reduces the volume of the messages passed among
processors. Also, the messages are constructed in value-headed
global-index streams instead of arrays of coordinate-value pairs.
A value-headed global-index stream contains the information of
the “halo” cells to be updated within the sub-cellspace. It starts
with an attribute value (any type) and an integer number

58

indicating the number of indices following this attribute value,
followed by a string of global indices of the cells that are to be
updated to this value; then another attribute value and an integer
number, and a string of indices of cells updated to the second
value; and so on so forth (Figure 5b). The indices are determined
in the global spatial extent, and can be easily translated into/from
local coordinates within sub-cellspaces. The value-headed global-
index stream is usually more efficient than an array of coordinate-
value pairs (Figure 5a) in terms of message volume. In many
cases, there are only a limited number of attribute values that can
be assigned to a cell, and many cells will be updated to the same
values, thus there is no need to include every cell’s value in the
messages. For example, if there are M integer values that the
“halo” cells will be updated to, and N “halo” cells to be updated,
then (2M+N)×sizeof(integer) bytes are needed for this message
when the value-headed index stream is used, but
3×N×sizeof(integer) bytes are needed when the coordinate-value
pairs are used. Apparently, when M is small and N is big, the
value-headed global-index stream will be much smaller than the
array of coordinate-value pairs.

Figure 5 Coordinate-value pairs (a) and Value-headed global-

index stream (b)

2.6 Non-blocking communication and
“edgesFirst” for data exchange
When a transition process (i.e., the raster-processing algorithm) is
to be applied on a sub-cellspace, the sub-cellspace’s “halos”,
edges and interior (Figure 6) will be automatically determined by
pRPL according to the transition‘s characteristics, the
neighborhood’s configuration, and the sub-cellspace’s location
within the global spatial extent. Halos, as mentioned before, are
the replicas of the cells within the neighboring sub-cellspaces,
whereas edges are the origins of the “halo” cells in the
neighboring sub-cellspaces. The interior is the rest of the sub-
cellspace. When data exchange is needed, e.g., after an iteration
of an iterative algorithm, the changed edge cells will be
compressed into value-headed global-index streams and sent to
the neighboring sub-cellspaces, and also streams from the
neighboring sub-cellspaces will be received and the “halo” cells
whose origins have been changed will be updated accordingly.
Instead of blocking communication, pRPL uses non-blocking
communication routines, which allows message passing while the
processors are working on other tasks (e.g. computation, I/O
process), whereas blocking communication forces the processors
to wait until the communication is completed [5]. pRPL provides
an “edgesFirst” option for users, which forces the processors to
first process the sub-cellspace’ edges, then start exchanging the
“halo” information. During the data-exchange communication, the

processors continue working on the interiors of the sub-cellspaces,
and then finally complete the communications. The “edgesFirst”
provides a means to improve the performance by overlapping
communication and computation.

Figure 6 The structure of a 10×10 sub-cellspace with a 3×3
neighborhood

2.7 Processor grouping, data-parallelism and
task-parallelism
pRPL organizes processors in groups. The initial set of processors
(i.e., all the engaged processors) constitute the root group. The
root group can be divided into sub-groups, which can be further
divided into smaller groups. Each group has a master. Groups of
processors can be assigned with different datasets and transition
processes. Thus pRPL supports both data-parallelism and task-
parallelism. When a dataset is divided and distributed among the
processors within a group, or among the groups, data-parallelism
takes place. When different transition processes are assigned to
multiple groups, task-parallelism among groups takes place
(within groups, data-parallelism takes place because the dataset
will be divided and distributed among the processors).

2.8 Static and dynamic load-balancing
After a dataset is divided and distributed among the processors
within a group, the sub-cellspaces are statically assigned onto the
processors, and will not be re-allocated among the processors
once the computation starts, because moving the sub-cellspaces
among processors’ local memories could cause extreme
communication overheads, given that the sizes of the sub-
cellspaces are usually large. This load-balancing mechanism is
referred to as static load-balancing. However, in some cases, e.g.,
calibrating the transition parameters of a model, the same dataset
will be assigned to a set of processor groups, and a “task farm”
can be used to assign different tasks (e.g., transition parameters)
to the groups in respond to their requests. Thus, a dynamic load-
balancing mechanism can be implemented among the groups. In
one word, pRPL supports both static and dynamic load-balancing.

3. COMPARING pRPL WITH OTHER
SIMILAR PROGRAMMING LIBRARIES
Several other parallel raster-processing programming libraries
similar to pRPL have existed. The Global Arrays (GA) toolkit,
developed by the Pacific Northwest National Laboratory,
provides a shared memory style programming environment in the
context of distributed array data structures for users to manipulate

59

2D arrays [6]. The Parallel Utilities (PUL), developed by the
Edinburgh Parallel Computing Centre at the University of
Edinburgh, was developed on top of MPI and provides a suit of
utilities to parallelize algorithms. PUL has been used to
implement several fundamental GIS operations, i.e., vector-to-
raster conversion, raster-to-vector conversion, and vector polygon
overlay, and some GIS applications, e.g., raster generalization [7].
The major differences between pRPL and these two parallel
programming libraries are the following.
1. GA and PUL were developed for experienced programmers
who wish to fully utilize the parallel computing systems and
develop portable high-performance programs without spending
too much time dealing with the underlying details. They are both
written in Fortran and C, and procedural-based programming
libraries. Users write GA-based and PUL-based programs by
calling the functions defined in the libraries. GA and PUL provide
many low-level functions for users to explicitly control the
processing, e.g., data exchange between data blocks, but lack of
high-level functions for easy programming (even though PUL
provides the skeleton interface which contains some high-level
functions).
In contrast, pRPL was developed primarily for the general
geographers (and other geospatial professionals) who wish to
speed up their raster-based processing and shorten the waiting
time but do not have much parallel programming experience.
Thus the simplicity of usage was given higher priority than
performance. It is written purely in C++, and is an object-oriented
library. A collection of C++ classes are provided as the interface
and hide the parallel processing details from users. Object-
oriented programming has the advantage over procedural-based
programming for its intuitiveness in the system design and
implementation processes.
The classes in pRPL provide high-level methods that combine
other low-level methods to perform some complicated processes.
For example, calling only one method of the Layer class, e.g.,
smplDcmpDstrbt(), performs the decomposition of the global
cellspace on the master processor and the distribution of the sub-
cellspaces to other processors. Then calling another method of the
Layer class, i.e., update(), applies the user-defined transition on
the sub-cellspaces, and pRPL automatically handles the necessary
data exchange without any other extra work from the user.
2. pRPL recognizes the spatial distribution of workload over the
space and provides the workload-sensitive QTB decomposition
method, i.e., the quadDcmp() method of the Layer class, to divide
the datasets in a better balanced way. Both GA and PUL provide
regular decomposition methods, but do not have any function to
directly produce irregular decomposition. In order to perform a
workload-based decomposition, users of GA and PUL have to
write their own functions which can be quite complex.

4. EXPERIMENTS AND PERFORMANCE
4.1 Introduction to pSLEUTH
To evaluate the performance of pRPL, the well-known urban
land-use change model, SLEUTH2, was parallelized using pRPL.
The SLEUTH model is a Cellular Automat (CA) model

2 For more information about SLEUTH, see the website of Project

Gigalopolis: http://www.ncgia.ucsb.edu/projects/gig/

developed at the University of California, Santa Barbara, to
simulate and forecast the spread of urbanization across the
landscape over time [8-10], and its name comes from the GIS
layers incorporated into the model: Slope, Landuse, Exclusion
(where growth can not occur, e.g., oceans, parks), Urban,
Transportation, and Hillshade [11].

The basic unit of a SLEUTH simulation is a growth cycle, which
usually represents a year of urban growth. A simulation (or a Run)
consists of a series of growth cycles that begins in the start year
and completes in the stop year. Four growth rules are applied on
the space during each growth cycle: Spontaneous growth rule,
New Spreading Centers rule, Edge growth rule, and Road-
Influenced growth rule. Five parameters (or coefficients) are
included in SLEUTH: Dispersion, Breed, Spread, Slope, and
Road Gravity. Their values range from 0 to 100, and determine
how the growth rules are applied. Also, a self-modification
process is embedded at the end of each growth cycle to modify
the parameter values according to the growth rate.

Calibration processes are needed to determine the appropriate
parameter values so that SLEUTH can produce more realistic
simulation results. The basic calibration procedure of SLEUTH is
to compare multiple testing results produced using a set of
parameter combinations with the goal dataset(s) that usually are
real historical geospatial data in order to determine the best-fit
parameter combination(s). In addition, to simulate the random
processes that happen during the urban growth, the Monte Carlo
method is used. For a single parameter combination, a simulation
may be executed multiple times with different Monte Carlo seed
values. In practice, 10~100 Monte Carlo iterations for each
parameter combination are suggested.

The complex transition rules, the multiple parameters, the Monte
Carlo method, and the potential vast volume of the datasets, make
the calibration of SLEUTH extremely computationally intensive.
“The model calibration for a medium sized data set and minimal
data layers requires about 1200 CPU hours on a typical
workstation” [12].

In this study, pSLEUTH3, the parallel version of SLEUTH, was
developed to improve the computational performance of the
SLEUTH model, especially the calibration processes, by fully
utilizing the advanced features of pRPL. The four growth rules of
the SLEUTH model were implemented using pRPL, thus the data
layers used in the model will be decomposed and distributed onto
multiple processors. Table 1 shows the centralization and scope
characteristics of the growth rules. The Transition classes that
implement the growth rules were developed according to these
characteristics. For example, the Road-Influenced growth rule
involves a random walk along the road network, thus the whole
road cellspace is required by this rule which makes it a global-
scope transition. In consequence, unlike other data layers, the
whole road cellspace has to be broadcasted to all the processor
(cellspace2 in Figure 3).

Growth Rule Centralization Type Scope Type

Spontaneous Centralized Neighborhood-scope

3 For more information about pSLEUTH, see the user manual –

Getting started with pSLEUTH [14]

60

New Spreading Centers Non-Centralized Neighborhood-scope

Edge Non-Centralized Neighborhood-scope

Road-Influenced Non-Centralized Global-scope

Table 1 Characteristics of the growth rules of SLEUTH

With pRPL, pSLEUTH organizes the processors in groups, and
assigns each group a subset of the parameter combinations to be
evaluated. Within a group, the data layers are divided and
distributed among the processors. In this way, the data-task hybrid
parallelism is realized.
In addition, pSLEUTH provides two options of load-balancing for
the task parallelism among the processor groups: static tasking
and dynamic tasking. When static tasking is used, the subsets of
the simulations (i.e., parameter combinations) are assigned to the
groups before the actual computation starts. When dynamic
tasking (Figure 7) is used, a master-worker organization will form,
which consists of a master processor (or the emitter processor),
and a set of worker-processor groups. Each worker group will be
initially assigned with a subset of simulations, and a task farm
that contains the remaining simulations will be created on the
emitter processor. When a group finishes its initial set of
simulations, it requests for a new task, i.e., a simulation, from the
task farm. The emitter processor keeps sending tasks to the
worker groups until the task farm is drained.

Figure 7 Dynamic tasking for pSLEUTH

4.2 Experiments and performances
A dataset of the continental US urban areas (4948×3108) was
used to conduct a series of experiments (Figure 8). A calibration
scenario was specified as follows: only two historical urban area
data (1980 and 1990) are used, only three values (0, 50, 100) will
be evaluated for each parameter, and only 1 Monte Carlo iteration
will be performed. Thus the total number of simulations is 243 (=
35), and each simulation includes 11 (= 1990-1980+1) years. The
experiments were conducted on a Dell cluster which is composed
of a Dell 1750 dual CPU 3.06GHz Xeon servers and a single Dell
1750 monitoring node. The head node has 4GB RAM, 2 mirrored
system disks, and a 2TB RAID array that is shared to the cluster.
The 128 compute nodes have 2GB RAM each.

When 32 processors were divided into 8 groups with dynamic
tasking, the column-wise decomposition was used, and each
processor held 8 sub-cellspaces, the speed-up reached 24 (Figure
9). Note that when dynamic tasking is used, the emitter processor
does not participate in the computation. In Figure 9, for dynamic
tasking experiments, the number of processors does not include
the emitter processor.

Figure 8 The 1980 urban areas (in blue) and the simulated

1980-1990 expansions (in red)

5. CONCLUSIONS
pRPL can be used to parallelize almost any raster processing
algorithm with any arbitrary neighborhood configuration. pRPL
supports multi-layer algorithms and provides different data-
decomposition methods for users. Especially, a spatial-adaptive
decomposition method (i.e., the QTB decomposition) is provided
for the cases when the computational intensity is extremely
heterogeneous over the space. The “Update-on-Change” and
Value-headed global-index stream techniques help reduce the
communication overhead for data exchange among the processors,
hence reduce the computing time. Furthermore, the “edgesFirst”
and non-blocking communication techniques overlap the
computation and communication, which also helps reduce the
computing time. pRPL organizes processors in groups, and
supports both data-parallelism and task-parallelism. With grouped
processors, dynamic load-balancing can be implemented with
ease.
Experiments with real-world datasets shows that pRPL yields
satisfyingly high speed-ups and efficiencies. In conclusion, as a
generic parallel library, pRPL effectively reduces the
development complexity of parallel programming, and efficiently
reduces the computing time.

6. REFERENCES
[1] W. Gropp et al., MPI: The Complete Reference (Vol. 2),

Cambridge, MA, USA: The MIT Press, 1998.
[2] M.J. Mineter and S. Dowers, “Parallel Processing for

Geographical Applications: A layered Approach,” Journal
of Geographical Systems, vol. 1, 1999, pp. 61-74.

[3] C.D. Lloyd, Local Models for Spatial Analysis, Boca Raton,
FL, USA: CRC Press, 2007.

[4] M.J. Mineter, “Partitioning Raster Data,” Parallel
Processing Algorithms for GIS, Bristol, PA, USA: Taylor
& Francis, 1998, pp. 215 - 230.

[5] M. Cosnard and D. Trystram, Parallel Algorithms and
Architecture, Boston, MA: International Thomson
Computer Press, 1995.

[6] J. Nieplocha et al., “Global Arrays User Manual,” 2007;
http://www.emsl.pnl.gov/docs/global/um/GA.pdf.

61

[7] R. Healey et al., Parallel Processing Algorithms for GIS,
Bristol, PA: Taylor & Francis, 1998.

[8] K.C. Clarke, S. Hoppen, and L. Gaydos, “A Self-modifying
Cellular Automaton Model of Historical Urbanization in
the San Francisco Bay Area,” Environment and Planning B:
Planning and Design, vol. 24, 1997, pp. 247-261.

[9] K.C. Clarke and L.J. Gaydos, “Loose-coupling a Cellular
Automaton Model and GIS: Long-term Urban Growth
Prediction for San Francisco and Washington/Baltimore,”
International Journal of Geographical Information Science,
vol. 12, 1998, pp. 699-714.

[10] E.A. Silva and K.C. Clarke, “Calibration of the SLEUTH
Urban Growth Model for Lisbon and Porto,” Computers,
Environment and Urban Systems, vol. 26, 2002, pp. 525–
552.

[11] N.C. Goldstein, J.T. Candau, and K. Clarke, “Approaches to
Simulating the "March of Bricks and Mortar",” Computers,
Environment and Urban Systems, 2004, pp. 125-147.

[12] K.C. Clarke, “Geocomputation's Future at the Extremes:
High Performance Computing and Nanoclients,” Parallel
Computing, vol. 29, 2003, pp. 1281-1295.

[13] Q. Guan, “Getting started with pRPL,” 2008;
http://www.geog.ucsb.edu/~guan/pRPL/Getting_started_w
ith_pRPL.pdf.

[14] Q. Guan, “Getting started with pSLEUTH,” 2008;
http://www.geog.ucsb.edu/~guan/pRPL/Getting_started_w
ith_pSLEUTH.pdf.

Figure 3 Multiple layers can be used in pRPL

Efficiencies of static and dynamic tasking with column-wise

decomposition

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

Number of processors

Ef
f
ic
i
en
c
y Static

Dynamic - 2 groups

Dynamic - 4 groups

Dynamic - 8 groups

Speed-ups for static and dynamic tasking with column-wise

decomposition

0

5

10

15

20

25

30

1 2 4 8 16 32

Number of processors

S
pe
e
d-
up

Static

Dynamic - 2 groups

Dynamic - 4 groups

Dynamic - 8 groups

Figure 9 Performances for static and dynamic tasking with column-
wise decomposition (each processor holds 8 sub-cellspaces)

62

	pRPL: an open-source general-purpose parallel Raster Processing programming Library
	

	tmp.1288636754.pdf.461uw

