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ABSTRACT 
pRPL is an open-source general-purpose programming library 
developed by the author to parallelize almost any raster-
processing algorithm with any arbitrary neighborhood 
configuration, and support any data type. This paper introduces 
the advanced features of pRPL, compares it with other similar 
programming libraries, and demonstrates the performance of a 
parallel geographic Cellular Automata (CA) model developed 
using pRPL with real-world datasets. In conclusion, pRPL 
effectively reduces the development complexity of parallel 
programming, and efficiently reduces the computing time. 

Categories and Subject Descriptors 
D.1.3 [Software, Programming Techniques]: Concurrent 
Programming – Parallel programming.  

General Terms 
Performance 

Keywords 
Parallel, raster, programming library 

1. INTRODUCTION TO pRPL 
From a parallel computing perspective, raster is born to be 
parallelized. A raster dataset is essentially a matrix of values, each 
of which represents the attribute of the corresponding cell of the 
field (e.g. land use type, elevation, etc). A matrix can be easily 
partitioned into sub-matrices and assigned onto multiple 
processors so that the sub-matrices can be processed 
simultaneously and a higher processing speed will be reached. 

pRPL was developed by the author to encapsulate complex 
parallel computing utilities and routines specifically for raster 
processing (e.g., raster data decomposition, distribution and 
gathering among multiple processors, inter-processor 
communication and data exchange), and provide an easy-to-use 
interface for users to parallelize almost any raster-processing 
algorithm with any arbitrary neighborhood configuration. pRPL 
greatly reduces the development complexity. Moreover, even 
though pRPL was developed for massive-volume geographic 
raster processing, it can also be used for other large-scale raster-
like computations such as image processing and Cellular 

Automata (CA).  

pRPL was written in C++ and built upon the Message Passing 
Interface (MPI), which is a de facto standard parallel 
programming library composed of a set of functions that enable 
and manage parallel computing by passing messages between 
processors [1]. Since MPI and C++ compilers are available on 
almost all parallel computing systems (e.g., massive parallel 
computers, and computer clusters), the portability of pRPL is 
guaranteed, and the applications built upon it will be portable 
across different parallel computing platforms as well. From a 
software architecture perspective, pRPL serves as a middleware 
connecting the general-purpose parallel programming library (i.e., 
MPI) and the application-specific raster-processing programs. It 
hides the complex technical details of parallel computing from the 
users, thus relieves them from the time-consuming parallel 
programming and lets them only focus on the algorithms 
themselves. Mineter and Dowers [2] referred to this kind of 
architecture as a layered approach to parallel processing for 
geographic applications (Figure 1). 

 
Figure 1 pRPL in a layered architeture 

2. FEATURES OF pRPL 
2.1 OOP library and class templates 
pRPL is an Object-Oriented programming library, and provides a 
set of classes1 for users as the interface to easily manage and 
control the underlying parallel processes. Also, pRPL is a 
template programming library, and supports any type of cell 
attribute values, e.g. integer numbers, single and double precision 
floating point numbers, and even more complex user-defined data 
structures.  

                                                                 
1  For more technical details of pRPL, see the user manual - 

Getting Started with pRPL [13] 
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2.2 General support for raster processing 
As a general-purpose library, pRPL was developed to parallelize 
most raster-processing algorithms as long as the transition 
computation is parallelizable, i.e., the computation for a certain 
cell (or pixel) within the output cellspace is independent of that 
for other cells. Thus, neighborhood-scope (or moving-window-
based) and local-scope (which can be seen as special cases of 
neighborhood-scope ones) algorithms are fully supported by 
pRPL, and some regional-scope and global-scope algorithms that 
meet the parallelizability criterion are also supported.  

pRPL supports any arbitrary neighborhood configuration (Figure 
2). The neighborhood can be either continuous or discontinuous 
(Figure 2d), either symmetrical or asymmetrical (Figure 2e). 
Furthermore, the cells within a neighborhood can be assigned 
with different weights for kernel-based local processing [3].  

 
Figure 2 Examples of neighborhood configuration 

Also, the transition algorithm to be parallelized can be either 
centralized or non-centralized. A centralized algorithm only 
evaluates and updates the central cell of the neighborhood, 
whereas a non-centralized algorithm may evaluate and update any 
cell(s) within the neighborhood. A finalizing process can be 
included in the algorithm, e.g., assigning a value to the cell based 
on an intermediate value of the cell calculated during the 
evaluation process.  

2.3 Multi-layer processing 
Multi-layer processing is commonly used in raster-based GIS and 
GeoComputation algorithms, as well as in other kinds of image 
processing, e.g., an AND operation on two binary-coded images. 
pRPL supports multi-layer algorithms by allowing users to 
associate multiple Layer objects to a Transition object which 
implements the raster-processing algorithm. Each Layer object 
can contain a cellspace (CellSpace object), and/or multiple sub-
cellspaces (SubSpace objects), and a Neighborhood object (Figure 
3).  
2.4 Regular and irregular decomposition 
pRPL provides both regular and irregular decomposition methods 
to divide the domain (Figure 4). Regular decomposition divides 

the cellspace by rows, or columns, or blocks, without considering 
the workloads associated with the cells, and produces equal-area 
sub-cellspaces. Irregular decomposition, on the other hand, takes 
account for the workloads of the cells, and is likely to produce 
unequal-area sub-cellspaces in order to divide the workloads more 
evenly among the sub-cellspaces. pRPL provides a quad-tree-
based (QTB) decomposition method. The QTB decomposition is 
an iterative process. At each iteration, the workloads associated 
with the leaves (i.e., sub-cellspaces) are calculated, and the leaf 
with the largest workload will be divided into 4 child leaves. The 
quad-tree will keep growing until the maximum number of leaves 
or the minimum workload associated with a sub-cellspace is 
reached. Caution must be taken when this decomposition method 
is to be used, because the extra computation required to construct 
the quad-tree and to calculate the workloads of the sub-cellspaces 
might outweigh the speed-up gained from the better workload 
distribution.  

 
Figure 4 Domain decomposition methods in pRPL 

2.5 “Update-on-Change” and the Value-
headed index stream for data exchange 
When a neighborhood-scope algorithm is used, the transition 
computation for a certain cell requires the values of its 
neighboring cells. In consequence, a sub-cellspace has to include 
not only the block of cells to be processed, but also a “halo” of 
cells surrounding the block [4], which can be seen as the replicas 
of the cells within the neighboring sub-cellspaces. The “halos” of 
the sub-cellspaces must be updated after each iteration, if an 
iterative algorithm is used. When the origins are updated, the 
replicas should be updated accordingly. This inevitably creates 
the communication overhead (i.e., messages in the MPI 
environment) between processors. However, not all the “halo” 
cells’ values are changed after a certain iteration, and it would be 
inefficient to refresh all the “halo” cells each time. pRPL uses a 
mechanism called “Update-on-Change”, and only updates the 
halo cells whose origins have been changed at an iteration, which 
significantly reduces the volume of the messages passed among 
processors. Also, the messages are constructed in value-headed 
global-index streams instead of arrays of coordinate-value pairs. 
A value-headed global-index stream contains the information of 
the “halo” cells to be updated within the sub-cellspace. It starts 
with an attribute value (any type) and an integer number 
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indicating the number of indices following this attribute value, 
followed by a string of global indices of the cells that are to be 
updated to this value; then another attribute value and an integer 
number, and a string of indices of cells updated to the second 
value; and so on so forth (Figure 5b). The indices are determined 
in the global spatial extent, and can be easily translated into/from 
local coordinates within sub-cellspaces. The value-headed global-
index stream is usually more efficient than an array of coordinate-
value pairs (Figure 5a) in terms of message volume. In many 
cases, there are only a limited number of attribute values that can 
be assigned to a cell, and many cells will be updated to the same 
values, thus there is no need to include every cell’s value in the 
messages. For example, if there are M integer values that the 
“halo” cells will be updated to, and N “halo” cells to be updated, 
then (2M+N)×sizeof(integer) bytes are needed for this message 
when the value-headed index stream is used, but 
3×N×sizeof(integer) bytes are needed when the coordinate-value 
pairs are used. Apparently, when M is small and N is big, the 
value-headed global-index stream will be much smaller than the 
array of coordinate-value pairs.  

 
Figure 5 Coordinate-value pairs (a) and Value-headed global-

index stream (b) 

2.6 Non-blocking communication and 
“edgesFirst” for data exchange 
When a transition process (i.e., the raster-processing algorithm) is 
to be applied on a sub-cellspace, the sub-cellspace’s “halos”, 
edges and interior (Figure 6) will be automatically determined by 
pRPL according to the transition‘s characteristics, the 
neighborhood’s configuration, and the sub-cellspace’s location 
within the global spatial extent. Halos, as mentioned before, are 
the replicas of the cells within the neighboring sub-cellspaces, 
whereas edges are the origins of the “halo” cells in the 
neighboring sub-cellspaces. The interior is the rest of the sub-
cellspace. When data exchange is needed, e.g., after an iteration 
of an iterative algorithm, the changed edge cells will be 
compressed into value-headed global-index streams and sent to 
the neighboring sub-cellspaces, and also streams from the 
neighboring sub-cellspaces will be received and the “halo” cells 
whose origins have been changed will be updated accordingly. 
Instead of blocking communication, pRPL uses non-blocking 
communication routines, which allows message passing while the 
processors are working on other tasks (e.g. computation, I/O 
process), whereas blocking communication forces the processors 
to wait until the communication is completed [5]. pRPL provides 
an “edgesFirst” option for users, which forces the processors to 
first process the sub-cellspace’ edges, then start exchanging the 
“halo” information. During the data-exchange communication, the 

processors continue working on the interiors of the sub-cellspaces, 
and then finally complete the communications. The “edgesFirst” 
provides a means to improve the performance by overlapping 
communication and computation. 

 

Figure 6 The structure of a 10×10 sub-cellspace with a 3×3 
neighborhood 

2.7 Processor grouping, data-parallelism and 
task-parallelism 
pRPL organizes processors in groups. The initial set of processors 
(i.e., all the engaged processors) constitute the root group. The 
root group can be divided into sub-groups, which can be further 
divided into smaller groups. Each group has a master. Groups of 
processors can be assigned with different datasets and transition 
processes. Thus pRPL supports both data-parallelism and task-
parallelism. When a dataset is divided and distributed among the 
processors within a group, or among the groups, data-parallelism 
takes place. When different transition processes are assigned to 
multiple groups, task-parallelism among groups takes place 
(within groups, data-parallelism takes place because the dataset 
will be divided and distributed among the processors).  

2.8 Static and dynamic load-balancing 
After a dataset is divided and distributed among the processors 
within a group, the sub-cellspaces are statically assigned onto the 
processors, and will not be re-allocated among the processors 
once the computation starts, because moving the sub-cellspaces 
among processors’ local memories could cause extreme 
communication overheads, given that the sizes of the sub-
cellspaces are usually large. This load-balancing mechanism is 
referred to as static load-balancing. However, in some cases, e.g., 
calibrating the transition parameters of a model, the same dataset 
will be assigned to a set of processor groups, and a “task farm” 
can be used to assign different tasks (e.g., transition parameters) 
to the groups in respond to their requests. Thus, a dynamic load-
balancing mechanism can be implemented among the groups. In 
one word, pRPL supports both static and dynamic load-balancing. 

3. COMPARING pRPL WITH OTHER 
SIMILAR PROGRAMMING LIBRARIES 
Several other parallel raster-processing programming libraries 
similar to pRPL have existed. The Global Arrays (GA) toolkit, 
developed by the Pacific Northwest National Laboratory, 
provides a shared memory style programming environment in the 
context of distributed array data structures for users to manipulate 
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2D arrays [6]. The Parallel Utilities (PUL), developed by the 
Edinburgh Parallel Computing Centre at the University of 
Edinburgh, was developed on top of MPI and provides a suit of 
utilities to parallelize algorithms. PUL has been used to 
implement several fundamental GIS operations, i.e., vector-to-
raster conversion, raster-to-vector conversion, and vector polygon 
overlay, and some GIS applications, e.g., raster generalization [7]. 
The major differences between pRPL and these two parallel 
programming libraries are the following. 
1. GA and PUL were developed for experienced programmers 
who wish to fully utilize the parallel computing systems and 
develop portable high-performance programs without spending 
too much time dealing with the underlying details. They are both 
written in Fortran and C, and procedural-based programming 
libraries. Users write GA-based and PUL-based programs by 
calling the functions defined in the libraries. GA and PUL provide 
many low-level functions for users to explicitly control the 
processing, e.g., data exchange between data blocks, but lack of 
high-level functions for easy programming (even though PUL 
provides the skeleton interface which contains some high-level 
functions). 
In contrast, pRPL was developed primarily for the general 
geographers (and other geospatial professionals) who wish to 
speed up their raster-based processing and shorten the waiting 
time but do not have much parallel programming experience. 
Thus the simplicity of usage was given higher priority than 
performance. It is written purely in C++, and is an object-oriented 
library. A collection of C++ classes are provided as the interface 
and hide the parallel processing details from users. Object-
oriented programming has the advantage over procedural-based 
programming for its intuitiveness in the system design and 
implementation processes.  
The classes in pRPL provide high-level methods that combine 
other low-level methods to perform some complicated processes. 
For example, calling only one method of the Layer class, e.g., 
smplDcmpDstrbt(), performs the decomposition of the global 
cellspace on the master processor and the distribution of the sub-
cellspaces to other processors. Then calling another method of the 
Layer class, i.e., update(), applies the user-defined transition on 
the sub-cellspaces, and pRPL automatically handles the necessary 
data exchange without any other extra work from the user.  
2. pRPL recognizes the spatial distribution of workload over the 
space and provides the workload-sensitive QTB decomposition 
method, i.e., the quadDcmp() method of the Layer class, to divide 
the datasets in a better balanced way. Both GA and PUL provide 
regular decomposition methods, but do not have any function to 
directly produce irregular decomposition. In order to perform a 
workload-based decomposition, users of GA and PUL have to 
write their own functions which can be quite complex. 

4. EXPERIMENTS AND PERFORMANCE 
4.1 Introduction to pSLEUTH 
To evaluate the performance of pRPL, the well-known urban 
land-use change model, SLEUTH2, was parallelized using pRPL. 
The SLEUTH model is a Cellular Automat (CA) model 
                                                                 
2 For more information about SLEUTH, see the website of Project 

Gigalopolis: http://www.ncgia.ucsb.edu/projects/gig/ 

developed at the University of California, Santa Barbara, to 
simulate and forecast the spread of urbanization across the 
landscape over time [8-10], and its name comes from the GIS 
layers incorporated into the model: Slope, Landuse, Exclusion 
(where growth can not occur, e.g., oceans, parks), Urban, 
Transportation, and Hillshade [11]. 

The basic unit of a SLEUTH simulation is a growth cycle, which 
usually represents a year of urban growth. A simulation (or a Run) 
consists of a series of growth cycles that begins in the start year 
and completes in the stop year. Four growth rules are applied on 
the space during each growth cycle: Spontaneous growth rule, 
New Spreading Centers rule, Edge growth rule, and Road-
Influenced growth rule. Five parameters (or coefficients) are 
included in SLEUTH: Dispersion, Breed, Spread, Slope, and 
Road Gravity. Their values range from 0 to 100, and determine 
how the growth rules are applied. Also, a self-modification 
process is embedded at the end of each growth cycle to modify 
the parameter values according to the growth rate.  

Calibration processes are needed to determine the appropriate 
parameter values so that SLEUTH can produce more realistic 
simulation results. The basic calibration procedure of SLEUTH is 
to compare multiple testing results produced using a set of 
parameter combinations with the goal dataset(s) that usually are 
real historical geospatial data in order to determine the best-fit 
parameter combination(s). In addition, to simulate the random 
processes that happen during the urban growth, the Monte Carlo 
method is used. For a single parameter combination, a simulation 
may be executed multiple times with different Monte Carlo seed 
values. In practice, 10~100 Monte Carlo iterations for each 
parameter combination are suggested. 

The complex transition rules, the multiple parameters, the Monte 
Carlo method, and the potential vast volume of the datasets, make 
the calibration of SLEUTH extremely computationally intensive. 
“The model calibration for a medium sized data set and minimal 
data layers requires about 1200 CPU hours on a typical 
workstation” [12].  

In this study, pSLEUTH3, the parallel version of SLEUTH, was 
developed to improve the computational performance of the 
SLEUTH model, especially the calibration processes, by fully 
utilizing the advanced features of pRPL. The four growth rules of 
the SLEUTH model were implemented using pRPL, thus the data 
layers used in the model will be decomposed and distributed onto 
multiple processors. Table 1 shows the centralization and scope 
characteristics of the growth rules. The Transition classes that 
implement the growth rules were developed according to these 
characteristics. For example, the Road-Influenced growth rule 
involves a random walk along the road network, thus the whole 
road cellspace is required by this rule which makes it a global-
scope transition. In consequence, unlike other data layers, the 
whole road cellspace has to be broadcasted to all the processor 
(cellspace2 in Figure 3). 

Growth Rule Centralization Type Scope Type 

Spontaneous Centralized Neighborhood-scope 

                                                                 
3 For more information about pSLEUTH, see the user manual – 

Getting started with pSLEUTH [14] 
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New Spreading Centers Non-Centralized Neighborhood-scope 

Edge Non-Centralized Neighborhood-scope 

Road-Influenced Non-Centralized Global-scope 

Table 1 Characteristics of the growth rules of SLEUTH 
 
With pRPL, pSLEUTH organizes the processors in groups, and 
assigns each group a subset of the parameter combinations to be 
evaluated. Within a group, the data layers are divided and 
distributed among the processors. In this way, the data-task hybrid 
parallelism is realized.  
In addition, pSLEUTH provides two options of load-balancing for 
the task parallelism among the processor groups: static tasking 
and dynamic tasking. When static tasking is used, the subsets of 
the simulations (i.e., parameter combinations) are assigned to the 
groups before the actual computation starts. When dynamic 
tasking (Figure 7) is used, a master-worker organization will form, 
which consists of a master processor (or the emitter processor), 
and a set of worker-processor groups. Each worker group will be 
initially assigned with a subset of simulations, and a task farm 
that contains the remaining simulations will be created on the 
emitter processor. When a group finishes its initial set of 
simulations, it requests for a new task, i.e., a simulation, from the 
task farm. The emitter processor keeps sending tasks to the 
worker groups until the task farm is drained.  

 
Figure 7 Dynamic tasking for pSLEUTH 

4.2 Experiments and performances 
A dataset of the continental US urban areas (4948×3108) was 
used to conduct a series of experiments (Figure 8). A calibration 
scenario was specified as follows: only two historical urban area 
data (1980 and 1990) are used, only three values (0, 50, 100) will 
be evaluated for each parameter, and only 1 Monte Carlo iteration 
will be performed. Thus the total number of simulations is 243 (= 
35), and each simulation includes 11 ( = 1990-1980+1) years. The 
experiments were conducted on a Dell cluster which is composed 
of a Dell 1750 dual CPU 3.06GHz Xeon servers and a single Dell 
1750 monitoring node. The head node has 4GB RAM, 2 mirrored 
system disks, and a 2TB RAID array that is shared to the cluster. 
The 128 compute nodes have 2GB RAM each. 

When 32 processors were divided into 8 groups with dynamic 
tasking, the column-wise decomposition was used, and each 
processor held 8 sub-cellspaces, the speed-up reached 24 (Figure 
9). Note that when dynamic tasking is used, the emitter processor 
does not participate in the computation. In Figure 9, for dynamic 
tasking experiments, the number of processors does not include 
the emitter processor. 

 
Figure 8 The 1980 urban areas (in blue) and the simulated 

1980-1990 expansions (in red) 

5. CONCLUSIONS 
pRPL can be used to parallelize almost any raster processing 
algorithm with any arbitrary neighborhood configuration. pRPL 
supports multi-layer algorithms and provides different data-
decomposition methods for users. Especially, a spatial-adaptive 
decomposition method (i.e., the QTB decomposition) is provided 
for the cases when the computational intensity is extremely 
heterogeneous over the space. The “Update-on-Change” and 
Value-headed global-index stream techniques help reduce the 
communication overhead for data exchange among the processors, 
hence reduce the computing time. Furthermore, the “edgesFirst” 
and non-blocking communication techniques overlap the 
computation and communication, which also helps reduce the 
computing time. pRPL organizes processors in groups, and 
supports both data-parallelism and task-parallelism. With grouped 
processors, dynamic load-balancing can be implemented with 
ease.  
Experiments with real-world datasets shows that pRPL yields 
satisfyingly high speed-ups and efficiencies. In conclusion, as a 
generic parallel library, pRPL effectively reduces the 
development complexity of parallel programming, and efficiently 
reduces the computing time. 
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Figure 3 Multiple layers can be used in pRPL 

Efficiencies of static and dynamic tasking with column-wise

decomposition

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

Number of processors

Ef
f
ic
i
en
c
y Static

Dynamic - 2 groups

Dynamic - 4 groups

Dynamic - 8 groups

Speed-ups for static and dynamic tasking with column-wise

decomposition

0

5

10

15

20

25

30

1 2 4 8 16 32

Number of processors

S
pe
e
d-
up

Static

Dynamic - 2 groups

Dynamic - 4 groups

Dynamic - 8 groups

Figure 9 Performances for static and dynamic tasking with column-
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