
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Publications from Nebraska Center for 
Materials and Nanoscience 

Materials and Nanoscience, Nebraska Center 
for (NCMN) 

12-29-2006 

Wave propagation in nanofibers Wave propagation in nanofibers 

Xiangfa Wu 
University of Nebraska - Lincoln, xwu3@unl.edu 

Yuris A. Dzenis 
University of Nebraska-Lincoln, ydzenis@unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/cmrafacpub 

 Part of the Nanoscience and Nanotechnology Commons 

Wu, Xiangfa and Dzenis, Yuris A., "Wave propagation in nanofibers" (2006). Faculty Publications from 
Nebraska Center for Materials and Nanoscience. 31. 
https://digitalcommons.unl.edu/cmrafacpub/31 

This Article is brought to you for free and open access by the Materials and Nanoscience, Nebraska Center for 
(NCMN) at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty 
Publications from Nebraska Center for Materials and Nanoscience by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cmrafacpub
https://digitalcommons.unl.edu/cmrafacpub
https://digitalcommons.unl.edu/materialsresearchanalysis
https://digitalcommons.unl.edu/materialsresearchanalysis
https://digitalcommons.unl.edu/cmrafacpub?utm_source=digitalcommons.unl.edu%2Fcmrafacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=digitalcommons.unl.edu%2Fcmrafacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cmrafacpub/31?utm_source=digitalcommons.unl.edu%2Fcmrafacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages


Wave propagation in nanofibers
Xiang-Fa Wua� and Yuris A. Dzenisb�
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Surface effect on the longitudinal and flexural wave propagation in straight nanofibers/nanowires is
studied within the framework of continuum mechanics. Modified Euler-Bernoulli and
Rayleigh-Love rod equations and modified Timoshenko beam equation were developed to take into
account the surface effect. It was found that surface tension/stress plays appreciable influence on the
wave propagation in nanofibers/nanowires at very small diameters. Wave dispersion relations were
presented in closed form, and numerical calculations were performed to show the variation of the
phase velocity with the wave number at varying surface property and fiber diameter. The given
results can be used as the theoretical basis of dynamic characterization of nanofibers/nanowires and
nanodevice design and analysis. © 2006 American Institute of Physics. �DOI: 10.1063/1.2403976�

I. INTRODUCTION

Surface has appreciable effect on material properties of
metallic and organic wires/fibers and films in nanoscale as
observed in experiments and predicted in theoretical
studies.1–7 For crystalline nanowires and ultrathin films sur-
face stresses may either increase or decrease the correspond-
ing surface moduli depending on the specific material types
and crystalline microstructures,4 and surface tension may
lead to rupture of ultrathin polymer films.8,9 As a result, these
unique surface properties may further influence other physi-
cal properties such as the surface wave speed, thermal and
electrical conductivities, etc. Therefore, the study of dynamic
properties of materials and structures in nanoscale will play
an important role in nanotechnologies, e.g., dynamic charac-
terization of nanofibers/nanowires, dynamic design, analysis,
and calibration of nanodevices and nanostructures, among
others. Dynamic properties of materials in nanoscale have
attracted significant attention in recent years. For one-
dimensional �1D� carbon nanotubes, recent increasing inves-
tigations have shown the size effect on their wave propaga-
tion within the framework of continuum elastic shell
theory,10–14 molecular dynamics,15,16 molecular structural
mechanics,17 etc. These investigations have indicated numer-
ous interesting phenomena of wave propagation in carbon
nanotubes that are different from those found in the classic
wave theories for elastic rods and beams. For example, by
means of modified elastic shell theory, Yoon et al.10 indicated
the transition of coaxial and noncoaxial modes of transverse
sound wave propagating in individual multiwall carbon
nanotubes at specific frequency thresholds within the tera-
hertz range. Using molecular structural mechanics based on
the classic finite element method formulation, Li and Chou17

found that the longitudinal wave speed in single-wall carbon
nanotubes is roughly doubled by comparison with that of the
torsional waves, and the transverse waves are dispersive and
dependent on the nanotube geometries. These wave motion

properties may be used for the purpose of carbon nanotube
alignment,18 nanotube-based nanodevice design and calibra-
tion, nonstructural analysis, etc.

Continuous nanofibers produced by electrospinning
technique are emerging as a new type of 1D nano- and sub-
micron materials.19,20 Their continuity, super high surface
area to volume ratio, low-cost, and high flexibility in fabri-
cation have evoked increasing interest in producing nanofi-
bers from various precursor materials for broad applications
in filtration, chemical catalyst carriers, biomedical templates,
nanocomposites, etc.21,22 Continuous nanofibers with very
small diameter ��5 nm�, such as recently electrospun nylon-
4,6 nanofibers,23 have been fabricated successfully in labora-
tory, and mechanical properties of electrospun nanofibers
have attracted significant attention on their characterization
and modeling.24–26 Theoretically, early ab initio all-electron
calculations for carbon and oxygen chemisorbed on nickel
clusters indicated that the resulting surface stresses modified
the surface energy and surface wave propagation.27 How-
ever, no work has been reported yet regarding the wave
propagation in nanofibers/nanowires. Without a doubt, dy-
namic properties of nanofibers/nanowires may have some
unique characteristics closely related to their nanoscale ge-
ometries. Thus, in the present paper we first initiate the study
to consider the surface tension/stress effect on the longitudi-
nal and flexural wave propagation in nanofibers/nanowires
within the framework of continuum mechanics. Modified
Euler-Bernoulli and Rayleigh-Love rod equations and modi-
fied Timoshenko beam equation are developed to take into
account the effect of the surface tension/stress in the first
order. It is found that surface tension/stress plays appreciable
role in the wave propagation in the nanofibers/nanowires
with very small diameters. The corresponding wave disper-
sion relations are given in closed form. Numerical calcula-
tions are performed to show the variation of the phase veloc-
ity with the wave number at varying surface property and
fiber diameter.
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II. PROBLEM STATEMENT AND SOLUTION

A. Longitudinal wave propagation

Consider the longitudinal wave propagating in a straight
elastic nanofiber/nanowire with constant cross section. The
free body diagram of a representative element of the
nanofiber/nanowire is illustrated in Fig. 1, where the x axis is
selected along the nanofiber/nanowire axis. In this case, the
motion of the nanofiber/nanowire is axisymmetric. Though
prestress is commonly employed in measurement and nan-
odevices, its effect on the longitudinal wave propagation is in
the sense of a higher order term compared to that of the
surface tension/stress and therefore is ignored. The symbol �
used in Fig. 1 indicates either the surface tension for polymer
nanofibers or the surface stress for metallic nanowires. The
dynamic equilibrium of the nanofiber/nanowire element in
the first order leads to

�2u

�t2 = �c2 −
2��

�R0
� �2u

�x2 , �1�

where u�x , t� is the axial displacement, c=�E /� is the longi-
tudinal wave speed corresponding to the bulk material with �
mass density and E Young’s modulus, � is Poisson’s ratio,
and R0 is the radius of the nanofiber/nanowire at rest. Equa-
tion �1� is the modified Euler-Bernoulli rod equation. Fur-
thermore, since dynamic nanodevices potentially with
nanofibers/nanowires are expected to work in the high-
frequency range, the transverse inertia may have appreciable
effect on their dynamic responses. Thus, by taking into ac-
count the transverse inertia effect, the resulting modified
Rayleigh-Love rod equation reads

�2u

�t2 = �c2 −
2��

�R0
� �2u

�x2 +
�2R0

2

2

�4u

�t2�x2 . �2�

The wave equations �1� and �2� indicate that the longitudinal
wave propagation is closely related to the diameter of the
nanofiber/nanowire. At small diameters, the surface tension
has remarkable influence on the wave motion, while at great
diameters the transverse inertia has appreciable effect on the
wave motion at high frequencies. To derive the wave disper-
sion relation, consider the harmonic wave

u�x,t� = A exp�ik�x − Vt�� , �3�

where A is the wave amplitude, k the wave number, V the
phase velocity, and i=�−1. Substitution of �3� into �1� leads
to the phase velocity

V = �c2 − 2��/��R0� . �4�

The wave propagation in this case is nondispersive, and the
wave velocity decreases with the decrease of the nanofiber/
wire radius, especially at very small radius, i.e., it has the
size effect. With consideration of the transverse inertia effect,
substitution of �3� into �2� yields the wave dispersion relation
as

�c2 − 2��/��R0��k2 = �2�1 + �2R0
2k2/2� , �5�

where �=kV is the circular frequency. In this case, the wave
propagation is dispersive. Relation �5� can be rewritten such
that

�

k
=

�c2 − 2��/��R0�
�1 + �2R0

2k2/2
. �6�

For small wave number k, relation �6� can be expanded in
terms of a Taylor series with respect to k2. The first two
terms of this series form the modified Pochhammer fre-
quency equation as

�

k
= �c2 − 2��/��R0��1/2�1 − �2R0

2k2/4� . �7�

B. Flexural wave propagation

Now let us further consider the flexural wave propaga-
tion in prestressed nanofibers/nanowires. In this case, the
free-body diagram of a representative element is illustrated
in Fig. 2. The transient deflection w�x� is measured from the
neutral axis of the nanofiber/nanowire at rest to that at the
transient position. Hereafter, we derive the wave equation
based on the Timoshenko beam that takes into account the
shear effect. Besides the surface tension/stress, the nanofiber/
nanowire is also assumed being prestressed at prestrain �0.
To set up the flexural wave equation of the microbeam, we
need the bending formula,

M = EI� , �8�

where M =�A�xydA is the bending moment, I=�Ay2dA
=	R0

4 /4 is the moment of inertia of the nanofiber/nanowire
cross section with respect to the neural axis, and �=1/�
=d
 /ds is the curvature of the neutral axis after bending.
Here 
 is the angle due to the pure bending moment. In the
case of small deflection, the beam curvature can be approxi-
mated as

FIG. 1. Representative nanofiber element in longitudinal wave propagation.

FIG. 2. Representative nanofiber element in flexural wave propagation.
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� =
d


ds
	

d


dx
. �9�

Furthermore, the assumption of Timoshenko beam says that
the total slope �=�w /�x of the beam is the sum of the slope
by the pure bending and the slope by the shear force,

�w

�x
=

�wb

�x
−

�ws

�x
, �10�

i.e.,

� = 
 − � , �11�

where 
=�wb /�x and �=�ws /�x, and the subscripts b and s
indicate the beam deflections due to pure bending and shear
deformation, respectively. Thus, the force-deformation rela-
tions can be expressed as

M = EI
�


�x
, �12�

Q = 
AG�
 −
�w

�x
� , �13�

where 
 is the shape coefficient of the Timoshenko beam
with circular cross section,28


 =
6 + 12� + 6�2

7 + 12� + 4�2 , �14�

A=	R0
2 is the cross-sectional area, and G is the shear modu-

lus. Consequently, with consideration of prestrain �0 and sur-
face tension/stress �, relations �12� and �13� lead to the dy-
namic equations for the nanofiber/nanowire based on the
element of length dx �see Fig. 2� subjected to the bending
moment M and shear force Q,

�A
�2w

�t2 +
�Q

�x
− �EA�0 + 2	R0��

�2w

�x2 = 0, �15�

�I
�2


�t2 + Q − �EA�0 + 2	R0��
�w

�x
−

�M

�x
= 0. �16�

Substitution of �12� and �13� into �15� and �16� leads to a set
of dynamic equations governing the wave motion,

�
�2w

�t2 + 
G� �


�x
−

�2w

�x2 � − �E�0 +
2�

R0
� �2w

�x2 = 0, �17�

�I
�2


�t2 + 
AG�
 −
�w

�x
� − �EA�0 + 2	R0��

�w

�x
− EI

�2


�x2 = 0.

�18�

By assuming the wave motion of the nanofiber/nanowire as

w�x,t� = Â exp�ik�x − ct��, 
�x,t� = B̂ exp�ik�x − ct�� ,

�19�

substitution of �19� into �17� and �18� yields a set of charac-
teristic equations,

�− �c2 + 
G + E�0 +
2�

R0
�k2Â + i
GkB̂ = 0, �20�

− iA�
G + E�0 +
2�

R0
�kÂ + �− �Ik2c2 + 
GA + EIk2�B̂ = 0.

�21�

Nontrivial solution of the set of linear algebraic equations
above leads to the wave dispersion relation as

�2Ik2c4 − �
�
G + E�0 +
2�

R0
�Ik2 + �
GA + EIk2��c2

+ �
G + E�0 +
2�

R0
�EIk2 = 0. �22�

The phase velocity c can be extracted by solving the qua-
dratic equation above with respect to c2,

c =�− a12 ± �a12
2 − 4a11a13

2a11
, �23�

where a11=�Ik2, a12=−���
G+E�0+2� /R0�Ik2+ �
GA
+EIk2��, and a13= �
G+E�0+2� /R0�EIk2. It can be found
that Eq. �23� usually yields two phase velocities for each
wave number, of which the lower one corresponds to the
flexural wave, and the upper one accords to the transverse
shear wave. In the limiting case of �0→0 and �→0, the
results above recover those given by the traditional Timosh-
enko beam theory.29

C. Numerical examples

In Secs. II A and II B wave equations have been derived
for determining the dispersion relations of the longitudinal
and flexural waves propagating in straight nanofibers/
nanowires. In this section, based on the wave dispersion re-
lations �5� and �23�, numerical calculations are conducted to
examine the variation of the phase velocity versus the
wave number at varying nanofiber/nanowire diameter. Spe-
cifically, the material used is assumed as typical isotropic
elastomer with the physical properties: Young’s modulus
E�100 MPa, Poisson’s ratio ��0.5, mass density
��2000 kg/m3, and surface tension �surface energy�
��0.05 N/m. For an isotropic material, the shear modulus
is G=E / �2�1+����33.33 MPa, and the longitudinal wave
speed in bulk material is c=�E /��223.6 m/s. In the calcu-
lation, the prestrain is simply assumed as zero, i.e., �0=0.

Figure 3 shows the longitudinal wave dispersion rela-
tions for nanofibers of radii of 1, 5, 10, 100, and 200 nm. It
can be found that surface tension remarkably influences the

FIG. 3. Variation of the phase velocity vs the wave number at varying
nanofiber radius �longitudinal wave propagation�.
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dispersion relation at small fiber diameters. In the range of
small nanofiber diameters, e.g., �20 nm, the phase velocity
decreases rapidly with the decrease of the nanofiber diam-
eter, and in this range the phase velocity is almost indepen-
dent of the wave number, i.e., nondispersive. By comparison
with those calculated without the surface effect �see Fig.
3�a��, it can be observed that at great fiber diameters, surface
tension does not have appreciable effect, i.e., the present re-
sults recover those predicted by the classic Rayleigh-Love
rod equation.

By using the wave dispersion relation �23�, Fig. 4 shows
the numerical results for the elastomer nanofibers with vary-
ing radius aforementioned. It can be found that the wave
dispersion curves for nanofibers with and without surface
effect have the similar growth trend. However, at very small
fiber diameters, nanofibers with surface effect tend to have
much greater phase velocities at fixed wave numbers. For
example, in the case of nanofibers with a radius of 10 nm at
the wave number of 108 m−1, the corresponding phase veloc-
ity with surface effect is about 10% higher than that without
surface effect. However, when the nanofiber radius decreases
to 1 nm, the phase velocity with surface effect is about 100%
higher than that without surface effect at the wave number of
108 m−1. Therefore, when dealing with the wave propagation
in nanofibers and nanowires at very small diameters, surface
effect should be taken into account in order to accurately
describe these unique dynamic phenomena.

III. SUMMARY

In this study we have developed the elastic wave equa-
tions governing the longitudinal and flexural waves propa-
gating in nanofibers and nanowires within the framework of
continuum mechanics. Modified Euler-Bernoulli and
Rayleigh-Love rod equations and modified Timoshenko
beam equation have been obtained to take into account the

effect of the surface tension/stress in the first order. Wave
dispersion relations have been obtained in closed form. Nu-
merical calculations have been performed to show that sur-
face tension/stress has appreciable influence on the wave
propagation in nanofibers and nanowires at small diameters.
For longitudinal waves, surface tension/stress results in ap-
preciable decrease of the phase velocity at fixed wave num-
ber, while for flexural waves, the surface tension/stress leads
to observable increase of the phase velocity at given wave
number. The present study first indicated the surface effect
on the wave propagation in nanofibers and nanowires that
can be employed as the theoretical basis of dynamic charac-
terization of nanofibers/nanowires and nanodevice design
and analysis.
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