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1. Introduction 

Due to their porous properties with high surface area to 
volume ratio and tensile strength, fibrous materials have 
found extensive applications in thermal and sound insu-
lators, gas and fluid filters, electromagnetic shields, chem-
ical carriers, tissue templates, paper products, fibrous rein-
forcement in composites, etc. The effective properties of a 
fibrous material are a result of the properties of individual 
fibers, fiber arrangement, and bonding strength between 
neighboring fiber segments in contact. By comparison with 
their bulk counterparts, fibers typically have higher tensile 
strength that can be further enhanced with decreasing their 
diameters under proper spinning conditions. As a result, fi-
ber networks made of ultrathin fibers (e.g., nanofibers) are 
expected to bear preferable chemophysical and mechani-
cal properties superior to those made of thicker fibers. Re-
cently, ultrathin continuous fibers with diameters ranging 
from hundreds of nanometers up to a few microns have 
been fabricated successfully by means of the electrospin-

ning technique [1–3]. As one of the novel nanomanufactur-
ing methods, electrospinning is capable of producing clean 
and uniform ultrathin fibers from various precursors (e.g., 
polymers, biomaterials, ceramics, etc). Figure 1 shows typi-
cal electrospun polyacrylonitrile (PAN) nanofibers with di-
ameters around 300 nm. Furthermore, ultrathin fibers with 
diameters lower than 5 nm have also been produced suc-
cessfully by electrospinning [4]. So far, continuous nanofi-
bers have found rapidly growing applications in nanofiber 
composites [5–8], ultrafine filtration, chemical carriers [9], 
biomedical engineering and biological technology [9–11], 
among others. 

In view of mechanics, fiber networks (assemblies) belong 
to heterogeneous material. Subjected to external loading, 
the global mechanical response of a fiber network depends 
upon the specific fiber arrangement, interaction between 
neighboring fibers (e.g., contact, adhesion, friction, etc.) and 
the mechanical properties of individual fibers. For effective 
stiffness of fiber networks, remarkable progress has been 
made since the pioneering work by van Wyk [12] and Cox 
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Abstract 
Continuous nanofibers fabricated by the electrospinning technique have found 
increasing applications (e.g., nanofiber composites, nanofiber devices, bioengineering 
tissue scaffolding, etc.). For a nanofiber network subjected to a small external 
perturbation, the fiber segments within the network may deflect and stick to each 
other under the condition that their surface adhesion energy overcomes the elastic 
strain energy induced by fiber bending. Therefore, this paper aims to study adhesion-
induced nanofiber collapse and relevant criteria. A simple fiber collapse model was 
proposed, which is based on the contact of two deflected elastic filaments under surface 
adhesion. Four fundamental fiber collapse modes (i.e., fiber-flat substrate, parallel fibers, 
orthogonal fibers and fibers at arbitrary angle) were considered, and corresponding 
collapse criteria were determined in explicit forms. Effects of fiber elasticity, surface 
adhesion and fiber geometries on the collapse criterion were explored in a numerical 
manner. Results show that for a fiber segment pair at a relatively large angle, the critical 
distance to induce the fiber collapse is independent of the fiber radius. This distance is 
a function of the fiber aspect ratio and the material intrinsic length (γ/E, where γ is the 
surface energy and E is Young’s modulus). The fiber collapse model developed in this 
study can be used as the theoretical basis for design and failure analysis of nanofiber 
networks and nanofiber devices, among others.
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[13]. Quite a few models [14–33] have been developed in 
the last two decades based on various assumptions of fiber 
deformations and fiber–fiber contacts. These models were 
largely validated in experiments and/or purely numerical 
simulations (e.g., FEA). On the other hand, with decreasing 
fiber diameters, fiber rigidity decays rapidly and the fiber 
surface effect may play an appreciable role in the mechan-
ical response of fiber networks such as effective stiffness, 
flexural rigidity, dynamic properties (e.g., wave dispersion 
[34]), among others. 

Consider a fiber network made of thin fibers subjected 
to small perturbation (e.g., air flow). Neighboring fibers in 
the network may deflect and stick to each other due to their 
low flexural rigidity and appreciable surface adhesion. As 
a result, fiber collapse and adhesion vary the connectivity 
and topology of the fiber network, and may further lead to 
nonlinear behavior and even global collapse (e.g., large area 
adhesion) of the fiber network. As a matter of fact, fiber col-
lapse and adhesion definitely degrade the superior proper-
ties of fiber networks that are based on their unique fibrous 
geometries. Furthermore, nanofiber collapse and adhesion 
may even lead to the catastrophic failure of single nanofi-
ber devices to be developed. Therefore, it is desired to ex-
plore the collapse mechanisms and relevant criteria in or-
der to predict and therefore avoid the catastrophic failure 
of nanofiber networks and nanofiber devices. Nevertheless, 
to the authors’ knowledge, no study has been reported yet 
in the literature to take into account nanofiber collapse. 

Thus, in this work we initiate the study to consider sur-
face adhesion-induced collapse and relevant criteria of thin 
fibers in a fiber network. A simple fiber collapse model is 
proposed, which is based on the contact of two deflected 
elastic cylindrical filaments involving surface energy. For the 
study of adhesion between elastic bodies, several pioneering 
models (e.g., DMT, JKR, Maugis–Dugdale, etc.) have been 
proposed and validated in experiments [35–39]. Compari-
son among these models and their applications in MEMS/
NEMS were reviewed in the recent literature [40, 41]. For 
our purpose, Bradley’s approach [35] is to be employed for 
determining the adhesive force between neighboring fiber 
segments sticking at one point. Four fundamental collapse 
modes (i.e., fiber-flat substrate, parallel fibers, orthogonal fi-
bers and fibers at arbitrary angle) are to be considered. For 
each case, corresponding collapse criterion is obtained in ex-

plicit form. Effects of fiber elasticity, surface energy, and fi-
ber geometries on the collapse criterion are explored in de-
tail using a numerical manner. Potential applications of the 
present model in design and failure analysis of fiber net-
works and nanofiber devices are further addressed. 

2. Problem statement and solutions 

In this work, we are going to focus on the fiber collapse 
in a fiber network induced by surface adhesion between 
neighboring fiber segments. The typical nanofiber network 
formed in electrospinning is shown in Figure 1, in which 
PAN nanofibers stick together at some locations due to 
surface adhesion. Without loss of generality, two assump-
tions will be implied in the upcoming derivation to sim-
plify the modeling process. First, each fiber segment is as-
sumed to be fixed between neighboring contacts, and the 
contacts have no displacements during the deflection of fi-
ber segments, i.e., each fiber segment is considered simply 
as a fixed beam. Second, surface adhesion between neigh-
boring fiber segments is assumed ideal, i.e., fibers are dealt 
with as ideal elastic cylinders and effects of surface rough-
ness and environmental factors (e.g., moisture) are ignored. 
Therefore, in the present case of typical electrospun nano-
fibers with diameters over hundreds of nanometers, clas-
sic adhesion theories can be safely used. In this study, four 
fundamental fiber collapse modes are to be considered (i.e., 
fiber-flat substrate, parallel fibers, orthogonal fibers and fi-
bers at arbitrary angle), respectively, in which surface ad-
hesion between fiber and flat substrate can be considered 
as the limiting case of the other three. 

2.1. Collapse of nanofiber segment on flat substrate 

First consider the adhesion-induced collapse of a fiber seg-
ment on flat substrate. The fiber segment is assumed to be 
fixed at a distance h evenly to the flat substrate, with length 
L and radius r, as shown in Figure 2(a). The fiber material 
is regarded as linearly isotropic elastic with Young’s mod-
ulus E. At sufficiently small distance h, subjected to small 
perturbation (e.g., air flow, dust collision, etc.), the fiber 
segment may collapse and stick to the substrate due to the 
adhesive force, as illustrated in Figure 2(b). At the critical 
condition of one-point contact, deflection of the mid-span 
of the fiber segment is h, as shown in Figure 2(c). Based on 
elementary Euler–Bernoulli beam theory, the deflection v 
and corresponding adhesive force P required in inducing 
the collapse can be expressed as 

 (1)

(2)

In the above, due to the symmetry of the fiber deflection, x 
can be understood as the distance from an arbitrary point 
on the fiber segment to the fixed support or equivalently 
the distance from that to the contact point, as shown in Fig-
ure 2(c). Relation (2) is to be used in determining the crit-
ical collapse distance hc once the adhesive force P is esti-

Figure 1. Adhesion between nanofibers within PAN nanofiber 
network (nanofiber diameter ~300 nm, circles indicate the ad-
hesion zones). 
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mated. As we know, the adhesive forces between two fiber 
segments are actually distributed. However, they can be 
replaced by their resultant P due to the rapidly decaying 
characteristic of the adhesive force with increasing gap be-
tween two fibers near the contact point. Furthermore, the 
adhesive force P can be directly calculated using Bradley’s 
approach [35], which is based on the long-range Lennard-
Jones force between two unit areas [42], i.e., 

(3)

Here, ε is a phenomenological distance between two at-
oms/molecules; z is the distance between two unit areas; 
and Δγ is the Dupré adhesion energy [43] that is defined 
as 

Δγ  = γ1 + γ2 – γ12,                               (4) 

where γ1 and γ2 are, respectively, the surface energies of 
the nanofiber and the substrate and γ12 is the interface en-
ergy between the nanofiber and the flat substrate. Accord-
ing to Bradley’s approach [35], the deflected nanofiber seg-
ment can be regarded as rigid at the critical condition of 
one-point contact (see Figure 2(c)). Therefore, with the aid 
of the deflection shape (1), the asymptotic distance between 
the deflected fiber segment and the flat substrate near the 
contact point can be expressed as 

 (5)

where h0 is the minimum gap at the contact point after col-
lapse, which can be selected as h0 = ε according to Bradley’s 
approach [35]. x and y are the coordinates of an arbitrary 
point on the substrate with x axis along the fiber axis and y 
axis perpendicular to the fiber axis in the horizontal plane. 
As a result, the adhesive force P can be determined: 

 

(6)

where geometrical symmetry of the contact zone and h0 = ε 
have been implied. Substituting (6) into (2) yields the criti-
cal collapse distance hc: 

 (7)

The above relation has a size effect due to the material in-
trinsic length Δγ/E involved. 

2.2. Collapse of parallel nanofiber segments 

In this case, a pair of uniform fiber segments is considered. 
Similar to the above derivation, the asymptotic distance be-
tween deflected fiber segments (see Figure 3) near the con-
tact point can be expressed as 

 

(8) 

where the (x, y)-coordinate system is selected following 
that in Section 2.1. By using the adhesive force (6), it is 

 (9) 

Substituting (9) into (2) leads to the critical collapse dis-
tance hc : 

 (10)

For uniform fiber segments (i.e., γ1 = γ2 = γ and γ12 = 0), the 
Dupré adhesion energy is reduced to Δγ = 2γ and relation 
(10) becomes 

 (11)

Figure 2. Adhesion between fiber segment and flat substrate. 

Figure 3. Adhesion between parallel fiber segments. 
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2.3. Collapse of orthogonal nanofiber segments 

In this case, two fiber segments are still considered with 
the same geometries and material properties. Thus, the de-
flection shape (1) still holds for each fiber segment as illus-
trated in figure 4. Based on the derivation in Section 2.1, the 
asymptotic distance between deflected fiber segments near 
the contact point is 

(for x/L  1 and y/L   1).                                  (12) 

Substituting (12) into (6) yields the adhesive force: 

 (13) 

In the limiting case of two long, straight, rigid cylinders 
(i.e., L  r or L  h), relation (13) covers those estimated 
using the Derjaguin approximation [44]. Consequently, 
plugging (13) into (2) leads to the quadratic characteristic 
equation of the system such that 

 (14)

The positive root of (14) gives the critical collapse distance 
hc : 

(15)

With the Dupré adhesion energy Δγ = 2γ in this case, rela-
tion (15) can be recast into 

 (16)
 

Furthermore, for relatively large fiber radius, there exists a 
limiting critical collapse distance dependent only of the fi-
ber aspect ratio L/r and the material intrinsic length (usu-
ally γ/E < 1 nm) such that 

(17)

2.4. Collapse of fiber segments in arbitrary angle 

Now let us consider two uniform fiber segments located in 
two parallel horizontal planes with distance h. The spatial 
angle between the fiber axes is denoted as θ. Simple rela-
tionships exist between two coordinate systems attached to 
the fiber axes as adopted in Figure 5: 
                                   x′ = x cos θ + y sin θ, 

y′ = -x sin θ + y cos θ.                           (18) 
Obviously, in the first-order approach, the deflection 

shape (1) still holds for each nanofiber segment after col-
lapse. By using the derivation in Section 2.1, the asymptotic 
distance between deflected fiber segments near the contact 
point is 

(for x/L  1  and x′/L  1)                       (19) 

Substituting (18) into (19) yields the asymptotic distance in 
the (x, y) system such that 

(for x/L  1  and x′/L  1)                       (20) 

In the above, if letting θ = 0° and θ = 90°, the asymptotic 
distance (20) recovers the ones given by (8) and (12), re-
spectively. Furthermore, by using (20) to replace the dis-
tance z in (6), one can obtain the adhesive force: 

 (21) 

where D is the determinant of a positive-defined matrix re-
lating the fiber aspect ratio L/r, fiber distance hc and angle 
between fibers θ, i.e.,

 

(22) 

Figure 4. Adhesion between orthogonal fiber segments. 

Figure 5. Geometries of fibers at arbitrary angle. 
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Plugging (21) into (2) leads to the characteristic equation of 
the system such that 

(23) 

Again, with the Dupré adhesion energy Δγ = 2γ in this case, 
relation (23) can be rewritten as 

 (24) 

In the above, except for the special cases of θ = 0° and 90° 
as discussed in Sections 2.2 and 2.3, for an arbitrary angle θ, 
it is unable to extract the critical collapse distance hc in ex-
plicit form from (24). In this case, the numerical method for 
searching roots of polynomials has to be evoked. 

3. Numerical results and discussions 

With critical collapse criterion (24) involving the mate-
rial intrinsic length γ/E or Δγ/E, we can draw the conclu-
sion that the size effect of fiber radius on nanofiber collapse 
does exist. Hereafter, we evaluate the variation of the crit-
ical collapse distance hc versus the fiber angle θ at varying 
surface energy γ, fiber aspect ratio L/r and fiber radius r. 
For convenience, relation (24) is recast into 

 (25) 

During the numerical process, fiber surface energies are 
selected as γ = 0.05 N m–1 and γ = 0.1 N m–1, respectively, 
and Young’s modulus is chosen as E = 2 GPa. These values 
are close to those of typical polymer fibers. Therefore, once 
parameters L, r and θ are given, equation (25) can be solved 
numerically for hc. The hc values for fiber segments of ra-
dii 100 nm, 200 nm, 500 nm, 1 µm, and 10 µm, respectively, 
are plotted in Figure 6, from which it can be found that the 
size effect of fiber radius exists. For a given fiber pair, the 
critical collapse distance hc decreases rapidly with increas-
ing angle θ, and simultaneously it also decreases with the 
increase of fiber surface energy. At fixed fiber aspect ratio 
L/r, at small angle θ, hc increases with increasing fiber ra-
dius; however, at relatively large angle θ, hc tends to a con-
stant as given in (17), e.g. (1/12) (L/r )3 γ/E. This constant 
depends only upon the aspect ratio L/r and the material in-
trinsic length γ/E = 0.025 nm for γ = 0.05 N m–1, and γ/E 
= 0.05 nm for γ = 0.1 N m–1. This parameter is expected to 
be very useful for collapse analysis and design of nanofiber 
networks and nanofiber devices. Furthermore, at fixed fi-
ber radius, hc grows significantly with increasing aspect ra-
tio L/r. This is because the bending stiffness of a fiber seg-
ment decreases rapidly with the increase of fiber segment 
length following a reciprocal cubic law. 

In reality, nanofiber segments within a fiber network 
usually have very high aspect ratio. Due to the small diam-
eter of nanofibers, the above analysis implies that nanofiber 
networks are generally more unstable than those made of 
thick fibers. Numerical simulation also indicates that paral-
lel fibers have the maximum hc value due to their greatest 

Figure 6. Variation of the critical collapse distance hc between fiber segments versus angle θ at varying fiber radius r and aspect ra-
tio L/r : (a) L/r = 10, γ = 0.05 N m–1; (b) L/r = 20, γ = 0.05 N m–1; (c) L/r = 10, γ = 0.1 N m–1; and (d) L/r = 20, γ = 0.1 N m–1. 
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adhesive force, while orthogonal fibers have the minimum 
hc value. This is a reasonable explanation of the nanofiber 
collapse phenomena observed in experiments. 

Nevertheless, it should be mentioned that surface adhe-
sion in a real fiber network is much more complex. In par-
ticular, near the fiber contacts where two or more fibers 
intersect, the adhesion calculation would be more compli-
cated. Fixed boundary conditions adopted above are also 
a strict assumption. Consequently, all the above calcula-
tions of adhesive force are based on a modified Bradley’s 
approach; therefore the adhesion energy of post-collapse 
(with greater contact areas) is much greater than the initial 
adhesion energy in inducing the initial nanofiber collapse 
(adhesion) of nanofibers as considered in this work. 

4. Conclusions 

In this paper, adhesion-induced micro/nanofiber collapse 
has been studied. The critical collapse distance between 
neighboring fiber segments has been derived for typically 
four fiber collapse modes. Relation (24) is the general crite-
rion for adhesion-induced collapse of fibers. Based on this 
relation, effects of fiber elasticity, surface adhesion and fi-
ber geometries on the critical collapse distance have been 
explored. Due to the involvement of the material’s intrin-
sic length Δγ/E or γ/E in (23) and (24), the fiber collapse 
condition has a size effect. The calculation of the adhesive 
force in the present study is based on Bradley’s approach, 
which does not consider the deformation induced by adhe-
sion. However, this approach did not affect the present re-
sults for only considering the critical condition of initial fi-
ber collapse. 

Furthermore, although the present study is based on 
two uniform micro/nanofiber segments, the method de-
veloped above can be naturally extended in examining the 
collapse mechanisms and criteria of micro/nanofiber net-
works made of dissimilar fibers (e.g., with dissimilar mate-
rial properties, geometries, etc) and other microstructures 
such as MEMS/NEMS and slender rubber stamps used in 
soft lithography. 

Acknowledgments 

Partial support of this study by the U.S. NSF, AFOSR, and 
ARO/ARL is gratefully acknowledged. The authors would 
like to thank the anonymous reviewers from Nanotechnology 
for their enlightening comments and helpful suggestions to 
improve the paper. 

References 

[1] Reneker D H and Chun I 1996 Nanotechnology 7 216  
[2] Dzenis Y 2004 Science 304 1917 
[3] Li D and Xia Y N 2004 Adv. Mater. 16 1151

[4] Huang C B, Chen S L, Lai C L, Reneker D H, Qiu H, Ye Y, and Hou 
H Q 2006 Nanotechnology 17 1558 

[5] Kim J S and Reneker D H 1999 Polym. Compos. 20 124 
[6] Dzenis Y A and Reneker D H 2001 US Patent Specification 626533 
[7] Dzenis Y A and Wen Y K 2002 Mater. Res. Soc. Symp. Proc. 702 173 
[8] Wu X F 2003 Fracture of advanced polymer composites with nano-

fiber reinforced interfaces PhD Thesis University of Nebraska–Lin-
coln, Lincoln, NE, U.S.A. 

[9] Huang Z M, Zhang Y Z, Kotaki M, and Ramakrishna S 2003 Com-
pos. Sci. Technol. 63 2223 

[10] Zhang Y Z, Lim C T, Ramakrishna S, and Huang Z M 2005 J. Ma-
ter. Sci. Mater. Med. 16 933 

[11] Chew S Y, Wen Y, Dzenis Y, and Leong K W 2006 Curr. Pharm. 
Des. 12 4751

[12] van Wyk C M 1946 J. Textile Inst. 37 T285 
[13] Cox H L 1952 Brit. J. Appl. Phys. 3 72 
[14] Pan N and Carnaby G A 1989 Textile Res. J. 59 285 
[15] Carnaby G A and Pan N 1989 Textile Res. J. 59 275 
[16] Komori T and Itoh M 1991 Textile Res. J. 61 420
[17] Komori T and Itoh M 1991 Textile Res. J. 61 588 
[18] Komori T, Itoh M, and Takaku A 1992 Textile Res. J. 62 567 
[19] Lee D H and Carnaby G A 1992 Textile Res. J. 62 185 
[20] Niskanen K J and Alava M J 1994 Phys. Rev. Lett. 73 3475 
[21] Astrom J, Saarinen S, Niskanen K, and Kurkijarvi J 1994 J. Appl. 

Phys. 75 2383
[22] Pan N, Chen J, Seo M, and Backer S 1997 Textile Res. J. 67 907 
[23] Wang C, Cheng X, Sastry A M, and Choi S B 1999 ASME J. Eng. 

Mater. Technol. 121 503 
[24] Narter M A, Batra S K, and Buchanan D R 1999 Proc. R. Soc. A 455 

3543 
[25] Astrom J A, Makinen J P, Alava M J, and Timonen J 2000 Phys. 

Rev. E 61 5550 
[26] Astrom J A, Makinen J P, Hirvonem H, and Timonen J 2000 J. 

Appl. Phys. 88 5056 
[27] Wang C W, Berhan L, and Sastry A M 2000 ASME J. Eng. Mater. 

Technol. 122 450 
[28] Wang C W and Sastry A M 2000 ASME J. Eng. Mater. Technol. 122 

460 
[29] Sastry A M, Wang C W, and Berhan L 2001 Key Eng. Mater. 200 

229 
[30] Berhan L, Yi Y B, and Sastry A M 2004 J. Appl. Phys. 95 5027 
[31] Berhan L, Yi Y B, Sastry A M, Munoz E, Selvidge M, and Baugh-

man R 2004 J. Appl. Phys. 95 4335 
[32] Wu X F and Dzenis Y A 2005 J. Appl. Phys. 98 093501 
[33] Chatterjee A P 2006 J. Appl. Phys. 100 054302 
[34] Wu X F and Dzenis Y A 2006 J. Appl. Phys. 100 124318 
[35] Bradley R S 1932 Phil. Mag. 13 853
[36] Johnson K L, Kendall K, and Roberts A D 1971 Proc. R. Soc. A 324 

301 
[37] Derjaguin B V, Muller V M, and Toporov Y P 1975 J. Colloid Inter-

face Sci. 53 314 
[38] Tabor D 1977 J. Colloid Interface Sci. 58 2
[39] Greenwood J A 1997 Proc. R. Soc. A 453 1277 
[40] Zhao Y P, Wang L S, and Yu T X 2003 J. Adhes. Sci. Technol. 17 519 
[41] Shi X H and Zhao Y P 2004 J. Adhes. Sci. Technol. 18 55
[42] Muller V M, Yushchenko V S, and Derjaguin B V 1980 J. Colloid In-

terface Sci. 77 91 
[43] Maugis D 1992 J. Colloid Interface Sci. 150 243
[44] Israelachvili J 1992 Intermolecular and Surface Forces 2nd edition 

(New York: Academic) 


	Collapse analysis of nanofibers
	

	tmp.1229370386.pdf.6LlAg

