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For over two decades, satellite sensors have provided the locations of global fire 

activity with ever-increasing accuracy.  However, the ability to measure fire intensity, 

know as fire radiative power (FRP), and its potential relationships to meteorology and 

smoke plume injection heights, are currently limited by the pixel resolution.  This 

dissertation describes the development of a new, sub-pixel-based FRP calculation (FRPf) 

for fire pixels detected by the MODerate Resolution Imaging Spectroradiometer 

(MODIS) fire detection algorithm (Collection 5), which is subsequently applied to 

several large wildfire events in North America.  The methodology inherits an earlier bi-

spectral algorithm for retrieving sub-pixel fire area and temperature, but also makes a 

new and important advancement for the derivation of FRPf by accounting for solar and 

atmospheric effects as a function of Earth-satellite geometry at the MODIS fire detection 

channels.  The retrieved fire (flaming) area is assessed using high-resolution airborne 

data (3-50 meters), and shows that the FRPf, in combination with retrieved fire area, 

allows a large fire burning at a low intensity to be separated from a small fire burning at a 

high intensity.  While variations in the atmospheric profile may increase the potential for 

error, the algorithm is much more sensitive to errors in 11 µm background brightness 

temperature, where an error of only 1.0 K may alter the retrieved fire area by an order of 



magnitude or more.  These sources of uncertainty can be reduced through the summation 

of individual pixel-level retrievals for large clusters of fire pixels, which can be defined 

based on the resolution of a mesoscale model grid.  An independent test reveals that 

unlike the standard MODIS pixel-based FRP, the flux of FRPf per fire pixel cluster, 

defined as FRPf divided by the retrieved fire area, has a stronger and statistically 

significant correlation with surface (10-meter) wind speed (R = 0.55) and air temperature 

(R = 0.77), especially for large fire events.  Comparisons between FRPf flux and smoke 

plume height data, provided by the Multi-angle Imaging SpectroRadiometer (MISR), also 

produce a much stronger correlation (R = 0.49) compared to the current MODIS FRP (R 

= 0.16).  These strong relationships, combined with additional applications in the North 

American boreal forest, uniquely demonstrate that FRPf flux not only provides an 

enhanced characterization of fire weather, but is also an improved quantitative tool for 

identifying the thermal buoyancy required to estimate smoke plume heights.  This 

information can be used to advance the prediction of smoke emissions and transport, 

especially when applied to the next generation of satellite sensors.  
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Chapter 1.   Background and Scope of the Dissertation 
 
 

1.1   Introduction and Motivation 

Observed in many regions of the globe, biomass burning is a key component to 

the Earth-atmosphere system, climate change, and operational forecasts of meteorology 

and air quality.  Individual fires can be ignited by natural causes, such as lightning strikes 

(e.g. Peterson et al., 2010) or by anthropogenic causes, such as agriculture and forest 

clearing (e.g. Koren et al., 2007; van der Werf et al., 2008).  Regardless of cause, these 

fires subsequently burn large tracts of land across the globe every year.  For example, 

Roy et al. (2008) estimated that nearly 3.7 million square kilometers burned globally 

from July 2001 to June 2002.  Wildfires also create concerns for air quality by releasing 

enormous amounts of aerosols and trace gases into the atmosphere (e.g. Spracklen et al., 

2007; Jordan et al., 2008).  Above the boundary layer, smoke particles can be transported 

thousands of miles (e.g. Westphal and Toon 1992; Damoah et al., 2005; Sapkota et al., 

2005; Duck et al., 2007) creating health concerns and interacting with meteorological 

processes a great distance from a fire (e.g. Wang et al., 2006; Wang et al., 2012).  In 

some cases, wildfires can even generate pyroconvection, which has been shown to inject 

smoke aerosols and trace gasses into the upper troposphere and even into the stratosphere 

(Fromm et al., 2010).  In addition, deposition of fire-generated black carbon particles on 

ice sheets (e.g. Figure 1.1) has been shown to reduce the surface albedo causing 

atmospheric warming and increased melting (Randerson et al., 2006; Kopacz et al., 

2011).  
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Figure 1.1:  MODIS true color image for a large fire event in central Alaska on 01 July 
2004.  MODIS fire detections (fire pixels or counts) are displayed in red. 

 
 

Over the past three decades, several satellite sensors have been able to provide 

observations of fire locations at different spatial scales and temporal frequencies.  These 

include the NOAA Advanced Very High Radiometer (AVHRR), Geostationary Orbiting 

Environmental Satellite (GOES), Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER), and the MODerate Resolution Imaging 

Spectroradiometer (MODIS).  Some of these sensors also map burned areas.  The 

MODIS sensor is especially important because (1) MODIS has the highest saturation 

temperature of ~500 K at its 4 µm fire detection channel (Justice et al., 2002; Kelha et al., 

2003; Gao et al., 2007), which allows a high percentage of detected fires to be 



 3 
characterized through fire radiative power (FRP) – a quantitative measure of fire 

intensity (Kaufman et al., 1998a), and (2) the twin MODIS sensors aboard the Terra 

(launched in 1999) and Aqua (launched in 2002) satellites allow wildfires to be observed 

globally up to four times each day; twice in the daytime and twice at night.  Figure 1.1 

shows an example true color MODIS image for a large fire event in central Alaska, 

highlighting fire pixel locations and their associated smoke plumes. 

Even though a large region may be burned by a fire over its lifetime, only a 

portion of the burn area is actually in flames (fire front) at any given observation time 

(Lee and Tag, 1990; Kaufman et al., 1998a).  Despite much advancement in fire remote 

sensing during the last couple of decades, all satellite sensors, including MODIS, provide 

fire locations as pixels that are flagged as containing fires (red dots in Figure 1.1).  

Unfortunately, the pixel resolution is usually too coarse to resolve the size of small fire 

hot spots that may be very intense relative to large, but low-intensity fires.  As mentioned 

above, fire intensity is currently quantified using MODIS FRP, which is also proportional 

to both the fire’s fuel consumption and smoke emission rates (e.g. Wooster et al., 2002, 

2003, 2005; Ichoku and Kaufman 2005; Roberts et al., 2005, 2009; Ichoku et al., 2008a, 

2008b; Jordan et al., 2008).  Direct derivation of smoke emissions from satellite-based 

FRP can overcome the spatial errors in the traditional estimate of fire emission, in which 

the variation of land surface types within the sensor pixel play an important role (Hyer 

and Reid, 2009).  Val Martin et al. (2010) further show that regions of intense burning 

(high FRP) commonly result in higher altitude smoke plumes and a greater chance of 

smoke transport into the free troposphere.  However, similar to fire detections, the 

primary drawback for current MODIS FRP data is that they are estimates of fire radiative 
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power released over a pixel area.  In reality, it is the rate of energy release over the fire 

area (the fire intensity, Byram, 1959) that is directly related to the thermal buoyancy 

(Lavoue et al., 2000; Kahn et al., 2007), which influences the smoke injection height and 

the transport of smoke plumes into the free troposphere.  Therefore, the primary goal of 

this dissertation is to develop a sub-pixel-based retrieval of FRP, which may serve as a 

valuable addition to the current suite of satellite fire products. 

1.1.1 The Need and Method for a Sub-Pixel-Based Calculation of FRP 

In contrast to earlier sensors, MODIS is currently the only operational satellite 

sensor designed to specifically measure FRP globally (e.g. Kaufman et al., 1998a, 1998b; 

Ichoku et al., 2008a).  Prior to MODIS Collection 5 (the current data version during this 

study), the MODIS fire detection algorithm retrieved FRP with respect to the individual 

pixel areas, or in units of Watts per pixel area (Kaufman et al., 1998a).  In Collection 5, 

FRP is multiplied by the pixel area (FRPp), and is provided in units of Megawatts.  The 

specific MODIS FRPp methodology dates back to the late 1990s (Kaufman et al. 1998a), 

and employs a best-fit equation for a wide variety of simulated burning scenarios (Figure 

1.2).  Drawing from this information, FRPp is calculated for all fire pixels (top-of-

atmosphere) using only the 4 µm channels: 

! 

FRPp = 4.34 "10#19 (T4
8 #T4b

8 )Ap       (1.1) 

where T4b is the background brightness temperature (in K), T4 is the brightness 

temperature of the fire pixel, and Ap is the area of the pixel (Kaufman et al., 1998a; 

1998b, 2003; Giglio, 2010).   Therefore, FRPp in Collection 5 is a function of satellite 

viewing zenith angle.  Regardless of data collection, FRPp is useful for estimating the 
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total radiation from the fire, and consequently, may be related to the total amount of 

trace gases and particles emitted by the fire, which is useful for mesoscale modeling with 

a large model grid (e.g. Wang et al., 2006).  In addition, FRPp is currently being used for 

near real-time emissions maps at a global scale (Kaiser et al., 2009).   

 

 
Figure 1.2:  Relationship between the total energy emitted from the fire (Etotal or FRPp) 
and the difference between the temperature of the fire pixel and the surrounding 
background region at the primary 4 µm MODIS fire detection channel (ΔT3.96).  This 
figure, adapted from Kaufman et al. (1998a), was constructed from thousands of fire 
simulations (denoted by each symbol) by varying the temperatures of the smoldering and 
flaming regions, as well as the fraction of the MODIS pixel covered by each of them.  
The solid black line indicates the resulting best-fit FRPp approximation (equation 1.1).  

 
 

While the use of FRPp for estimating the fire emissions is well recognized 

(Vermote et al., 2009), its potential use for other applications, such as estimating smoke 

injection heights and fire intensity, is limited by the lack of sub-pixel information for 
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fires (Eckmann et al., 2010).  This can be understood via a simple example in which the 

FRPp value is equal for two pixels covering the same area, but containing different 

burning scenarios: (1) a large fire with burning at a low intensity or (2) a small fire 

burning at a high intensity.  Not surprisingly, a large difference in fire behavior and the 

thermal buoyancy to drive the rise of smoke plumes can be expected between (1) and (2).  

However, it will not be discernable in the current MODIS FRPp product unless sub-pixel 

information of fire area and temperature is retrieved.  

In contrast to the current MODIS FRPp calculation (equation 1.1), retrieved sub-

pixel information (described in Chapter 2) can be used to produce the first direct fire area 

and temperature-based calculation of MODIS FRP for each sub-pixel fire (FRPf).  

Similar to Zhukov et al. (2006), the FRPf equation (units of Megawatts, above the mean 

background) uses the Stefan-Boltzmann relationship in the 4 µm channel 

! 

FRPf =" (T f
4 #T4b

4 )A f        (1.2) 

where σ is the Stefan-Boltzmann constant (5.6704 × 10-8 W m−2 K−4), Tf is the retrieved 

kinetic fire temperature at the surface (not the pixel temperature), T4b is the background 

brightness temperature, and Af is the retrieved fire area.  At cool 4 µm brightness 

temperatures, atmospheric effects, especially from water vapor content, are minor, which 

allows T4b to be used as an approximation of surface kinetic background temperature 

(Kaufman et al., 1998a, also explored in Chapter 4).  While each FRP method is different 

for the same fire, the FRPf (fire area and temperature-based FRP), in theory, should be 

strongly correlated to the pixel-based FRPp value.  This assumption can be used because 

at 4 µm, the radiative power from flaming usually overwhelms that from smoldering 

within any MODIS pixel  (Kaufman et al., 1998a).  However, an exact match is not likely 
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because FRPp (equation 1.1) is based on a best-fit curve from theoretic simulations of 

many sub-pixel fire scenarios, including variations in fire temperature, fire area, and 

smoldering or flaming regions (Figure 1.2).  FRPp also disregards the atmospheric 

attenuation of infrared radiation, and hence may contain relatively large uncertainties for 

individual fire events (Kaufman et al., 1998a).   

1.1.2 Satellite Observations of Fire Activity and Meteorology 

In addition to the estimation of smoke plume injection heights, satellite fire data 

can be used, in combination with meteorological data, for the analysis and prediction of 

changes in fire activity.  For example, Peterson et al. (2010) incorporated the number and 

location of MODIS fire pixels (also known as fire counts) to quantify the impact of the 

synoptic pattern and convective instability on dry lightning strikes and fire ignition.  

Similarly, Peterson et al. (2012b) attempted to link day-to-day changes in MODIS fire 

counts to variations in several meteorological variables in the North American boreal 

forest during the large fire seasons of 2004 and 2005.  This analysis resulted in the 

development of a fire prediction tool that will forecast the growth, decay, or persistence 

of a given fire event (see Appendix).  It was also shown that the fire prediction model is 

an improvement over the forecast of persistence currently used in several smoke 

emissions inventories (e.g. Reid et al., 2009), but high levels of noise in the observed 

number of satellite fire pixels (or fire counts) limited the prediction skill.  FRPp data were 

not used due to the limitations described in the previous section.  Therefore, the 

incorporation of sub-pixel-based FRPf data may be very useful for fire weather analysis 

and prediction, especially when forecasting changes in fire intensity for ongoing events.  

In addition, an improved understanding of the mechanisms that produce large and intense 
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(high FRPf) fire events is directly related to improved estimates of smoke emissions, 

potentially improving smoke transport forecasts.  

 

1.2   Specific Objectives  

This dissertation is based on a sub-pixel retrieval of fire area and temperature that 

is used to calculate FRPf  (via equation 1.2) for fire pixels detected by the MODIS fire 

detection algorithm (Collection 5).  The following are key objectives: 

1) Drawing from previous studies, develop a sub-pixel retrieval of fire area and 

temperature that accounts for solar and atmospheric effects as a function of Earth-

satellite geometry at the MODIS fire detection channels. 

2)  Assess the retrieved fire area using high resolution (3-50 meters) airborne data 

collected near-coincident with the MODIS overpass times, and investigate several 

indirect effects on the retrieval that are difficult to characterize, including the 

point-spread-function and the distribution of sub-pixel hot spots. 

3) Examine the sensitivity of retrieved fire area and FRPf to potential errors in 

several direct input variables and assumptions, including the column water vapor 

amount, background emissivity, and background brightness temperature. 

4) Building upon (3), apply an operational version of the sub-pixel algorithm to an 

independent, large wildfire event to examine the overall performance, limitations, 

and utility of the retrieval. 

5)  Identify relationships between retrieved FRPf and smoke plume heights, as well 

as relevant fire weather variables and indices obtained from numerical weather 
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prediction.   Use this information to explore potential fire weather and smoke 

forecasting applications. 

 

1.3   Organization of this Dissertation  

In general, the structure of this dissertation follows the key objectives identified in 

the previous section.  Chapter 2 describes the history of sub-pixel retrieval 

methodologies, the potential sources of error, and the specifics of a modified sub-pixel 

retrieval methodology for MODIS.  The initial assessment of the sub-pixel retrieval, 

including a description of the impacts originating from several sources of indirect error, is 

provided in Chapter 3.  Chapter 4 is devoted to a sensitivity analysis based on several 

direct input variables and assumptions.  Chapter 5 describes the application of an 

operational version of the algorithm to a recent case study, and Chapter 6 explores 

potential applications in the context of smoke plume heights and fire weather.  The last 

chapter is dedicated to conclusions and suggestions of future work.  The Appendix 

describes a short-term predictor of satellite fire activity that is currently based on MODIS 

fire counts, but can be modified to incorporate the additional fire size and intensity 

information provided by the sub-pixel retrieval (described in Chapters 2-7). 
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Chapter 2.   Sub-Pixel Algorithm Development  
 
 

2.1   Introduction 

Prior to the calculation of FRPf the sub-pixel fire area and temperature must be 

retrieved, which is commonly accomplished via a bi-spectral approach (Dozier, 1981; 

Matson and Dozier, 1981; Flannigan and Vonder Haar, 1986; Prins and Menzel, 1992; 

Langaas, 1993; Peterson et al., 2012a) or a multispectral approach (Dennison et al., 2006; 

Eckmann et al., 2008, 2009, 2010).  Regardless of the methodology, a variety of potential 

error sources, such as improper background temperature selection and band-to-band 

coregistration issues, may impact the retrieved fire area and temperature (e.g. Giglio and 

Kendall, 2001; Shephard and Kennelly, 2003; Giglio and Justice, 2003).  As a result of 

these limitations, sub-pixel retrievals have been used sparingly over the past three 

decades, aside from those developed by Prins and Menzel (1992, 1994) for the 

Geostationary Operational Environmental Satellite (GOES).  However, the coarser 

resolution provided by the geostationary satellite sensor reduces the sensitivity to 

wildfires, making it difficult to use FRPf from GOES quantitatively. 

With many potential challenges to overcome in the development of a sub-pixel 

retrieval, this chapter focuses primarily on: (1) developing an algorithm to retrieve sub-

pixel fire information for MODIS with atmospheric and daytime solar effects taken into 

consideration and (2) calculating the sub-pixel-based FRP using this retrieved 

information.  Subsequent sections of this chapter describe the history of previous sub-

pixel retrievals, as well as the potential sources of error that must be considered in the 

unique methodology of the MODIS sub-pixel retrieval.   
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2.2   Background: Sub-Pixel Retrievals of Fire Area and 
Temperature 

Dozier (1981) made the first attempt to derive a sub-pixel fire (target) retrieval 

using a bi-spectral approach.  This “Dozier” method uses the spectral contrast between a 

sub-pixel hot target and the surrounding (presumably uniform) background of the pixel 

for the 3.8 µm middle infrared (MIR) and 10.8 µm thermal infrared (TIR) channels.  

Although originally developed for the AVHRR, the Dozier method, in principle, can be 

applied to any sensor having similar MIR and TIR channels.  Using MODIS fire 

detection as an example, the calculation is performed for each wavelength used in fire 

detection (~4 and 11 µm) providing two equations that can be solved for the fire 

temperature (Tf) and the fractional area of the pixel covered by the fire (P), where 0 < P < 

1, located within a uniform background at temperature Tb (surface kinetic temperature).  

The observed radiances at 4 and 11 µm (top-of-atmosphere), denoted by L4 and L11, 

respectively, are 

! 

L4 = PB("4 ,T f ) + (1#P)B("4 ,Tb )      (2.1) 

! 

L11 = PB("11,T f ) + (1#P)B("11,Tb )       (2.2) 

where B(λ,T) is the Planck function and Tb is estimated from a temperature dataset.  The 

fire (hot target) and background are assumed to be blackbodies with unit emissivity in 

both channels (Giglio and Kendall, 2001).  In addition, all atmospheric effects are 

neglected, allowing the computation of B(λ,T) to be considered a top-of-atmosphere 

value.  With these assumptions, the surface kinetic temperatures, Tf and Tb, can be 
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considered as brightness temperatures and can be used for both channels; otherwise 

equations (2.1) and (2.2) are not valid.  

Due to the small size of sub-pixel fires and the lack of high spatial and high 

thermal resolution data, the original Dozier retrieval is difficult to validate.  Nevertheless, 

it was applied to several satellite sensors in the 1980s and 1990s (e.g. Matson and Dozier, 

1981; Flannigan and Vonder Haar, 1986; Prins and Menzel, 1992; Langaas, 1993).   For 

example, Matson and Dozier (1981) found an absolute area of 847 m2 (fraction of 

~0.0007 for a 1.1 km pixel) for a gas flare in the Persian Gulf.  Prins and Menzel (1992) 

found fire absolute area values as large as 5x106 m2, which corresponds to a fraction of 

0.1 for a 7 km pixel from GOES VAS observations.  When considering all early 

application studies and their respective pixel resolutions, fire (target) temperatures were 

found to range from 401 to 790 K.  In addition, Langaas (1993) discovered that the 

retrieved fractional area and fire temperature are extremely sensitive to the selection of 

Tb.  From a validation standpoint, Green (1996) and Riggan et al. (1993) were able to 

measure fire area fraction and/or temperature using high resolution (~20 meter 

resolution), airborne instruments in Brazil.  However, detailed comparisons with Dozier 

retrievals from lower resolution satellite data were not undertaken.  A more extensive 

review of the Dozier method and its applications from 1981 to 200l can be found in 

Giglio and Kendall (2001).  The following sections highlight the modifications to the 

Dozier method over the last decade with a focus on the uncertainty analysis and 

challenges for validation.  This is subsequently followed by the description of the sub-

pixel methodology unique to this study. 
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2.2.1 Previous Modifications of Sub-Pixel Retrievals 

Not surprisingly, the assumptions used in the original Dozier retrieval can be 

unrealistic.  For example, atmospheric effects, such as water vapor content, undoubtedly 

have a major impact on the retrieval, and the fire and background are not perfect 

blackbodies.  Therefore, to create a more realistic retrieval, several studies modified the 

retrieval by adding relevant terms to the equations (e.g. Prins and Menzel, 1992; Giglio 

and Kendall, 2001).  With these modifications, the observed radiances at 4 and 11 µm, 

respectively, are 

! 

L4 ="4 PB(#4 ,T f ) + e4b (1$P)B(#4 ,Tb ) + (1$P)(1$ e4b )I4ref[ ]  (2.3)  

! 

L11 ="11 PB(#11,T f ) + e11b (1$P)B(#11,Tb )[ ]      (2.4)  

where e4b and e11b respectively denote the background emissivity at 4 and 11 µm, I4ref is 

the reflected solar radiance in the 4 µm channel at the surface (equal to zero at night), and 

τ4 and τ11 are the upward MIR atmospheric transmittance and the upward TIR 

atmospheric transmittance, respectively.  The relationships in equations (2.3) and (2.4) 

contain several unknowns, and therefore require the aid of a radiative transfer model for 

closure.  The emissivity of the fire is commonly assumed to be equal to one (e.g. Giglio 

and Kendall, 2001), which has been shown to be a reasonable assumption for most fire 

events with thick fire fronts.  As a result, equations (2.3) and (2.4) do not include 

emissivity in the fire term.   

By assuming identical surface and atmospheric conditions, the MODIS fire 

product estimates background brightness temperatures (or radiances at the top-of-

atmosphere) for the 4 and 11 µm channels by averaging several neighboring, fire-free 
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pixels (Justice et al., 2002; Giglio et al., 2003).  These background radiances, denoted 

by L4b and L11b, can be expressed respectively, as  

! 

L4b ="4 e4bB(#4 ,Tb ) + (1$ e4b )I4ref[ ]       (2.5) 

! 

L11b ="11e11bB(#11,Tb ).         (2.6) 

Substituting equations (2.5) and (2.6) into (2.3) and (2.4) produces  

! 

L4 ="4PB(#4 ,T f ) + (1$P)L4b       (2.7) 

! 

L11 ="11PB(#11,T f ) + (1$P)L11b       (2.8) 

where P and Tf are the only unknown variables.  Therefore, fire fraction and fire 

temperature can be retrieved simultaneously from a combined use of the MODIS-

observed background and fire pixel radiances. 

2.2.2 Sources of Error, Limitations, and Recent Improvements 

Even with improved calculations, two distinct hindrances to the Dozier retrieval 

have become obvious: (1) the validation difficulty and (2) the potential sources for error 

in the retrieval.  For proper validation, the sensor providing the ‘ground truth’ must do so 

at a relatively fine spatial resolution and the observation time must be very close to that 

of the satellite sensor under scrutiny.  Unfortunately, such measurements are typically not 

available in sufficient quantities to accomplish a significantly representative validation.  

While the validation issues are relatively straight forward, understanding the potential for 

error is much more complex.  Sources of error may include band-to-band coregistration 

issues, improper selection of background temperature and atmospheric transmittance, 

instrument noise, varying sub-pixel proportions of flaming, smoldering, and unburned 

areas, the solar contribution to the MIR, and the variation of surface emissivity between 
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MIR and TIR, etc. (e.g. Giglio et al., 1999; Giglio and Kendall, 2001; Shephard and 

Kennelly, 2003; Giglio and Justice, 2003).   

Due to the small size of the fire in comparison to the pixel, the potential impact 

from the 4 and 11 µm point-spread-functions (PSFs), including their coregistration, 

becomes a critical source of error for a bi-spectral retrieval, regardless of satellite sensor.  

For example, the MODIS PSF displayed in Figure 2.1 shows that the fire pixel brightness 

temperature, for a given sub-pixel fire size and temperature, will greatly decrease when 

the sub-pixel fire is located near the edge of the pixel, and increase for fires near the pixel 

center (Calle et al., 2009; Schroeder et al., 2010).  Additionally, the 4 and 11 µm PSFs 

may deviate near the pixel edge (misregistration), thereby increasing the potential error in 

retrieved fire area and temperature in these cases.   

 
Figure 2.1:  Three‐dimensional representation of the 4 µm point spread function for 
MODIS (adapted from Schroeder et al., 2010). 
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Daytime solar reflection in the MIR channel can also have an impact on sub-pixel 

retrievals.  Specifically, Li et al. (2001) showed that the contribution of reflected solar 

radiation in the AVHRR MIR channel increases as the surface temperature decreases.   

The solar contribution was also found to be highly dependent on the solar geometry and 

surface albedo.  When considering the potential error sources (aside from coregistration), 

Giglio and Kendall (2001) found that the Dozier retrieval is possible when the fraction of 

the pixel encompassed by fire is greater than ~0.005 (0.003 for MODIS).  Above this 

threshold, random retrieval errors will be within 50% and 100 K, at one standard 

deviation, for fire fractional area and temperature, respectively.  However, uncertainties 

increase rapidly below the threshold.  

Despite the potential for error, several advances have been made to sub-pixel 

retrievals over the past decade.  One example is the Bi-Spectral Infrared Detection 

(BIRD) small satellite mission (operational from 2001-2004).  The BIRD satellite had a 

pixel size of 185 meters, saturation temperature of ~600 K, and MIR and TIR channels of 

3.8 and 8.8 µm, respectively (Zhukov et al., 2006).  In contrast to MODIS, the BIRD fire 

detection algorithm specifically included a component for a modified Dozier retrieval.  

To avoid the potential error sources, especially coregistration errors, the BIRD algorithm 

created pixel clusters using any adjacent hotspot pixels (Zhukov et al., 2005, 2006; 

Wooster et al., 2003).  The modified Dozier retrieval was then performed on these 

clusters rather than individual pixels.  Ground validation tests for controlled fires were 

performed (e.g. Oertel et al., 2004; Zhukov et al., 2005), but detailed assessments of 

wildfires, using higher resolution sensors, were not undertaken.    
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In recent years, a modified approach, using multiple endmember spectral 

mixture analysis (MESMA) to retrieve sub-pixel fire properties, has been developed 

(Dennison et al., 2006; Eckmann et al., 2008, 2009, 2010).  MESMA assumes the 

radiative signature of each pixel is a result of a linear combination of sub-pixel features 

(or endmembers), and thus the radiances at multiple channels can be used to disentangle 

the area fraction of each end-member (such as fire and non-fire) provided that the number 

of channels is larger than the number of sub-pixel features to be retrieved.  The original 

method was used for classification of land surface type.  In that case, a finite number of 

endmembers, each having unique land surface characteristics, were incorporated into the 

analysis.  However, the application to wildfires is not straightforward because the number 

of fire classes can be infinite.  Nevertheless, Eckmann et al., (2008, 2009, 2010) produced 

fire endmembers for a variety of temperatures over a variety of wavelengths.  Therefore, 

the MESMA retrieval is essentially a Dozier retrieval over a variety of wavelengths 

instead of two channels.  Results from the MESMA and Dozier-type retrievals have been 

compared, but neither retrieval method could be shown to be superior with the available 

validation data (Eckmann et al., 2009).  

 

2.3   Developing a Sub-Pixel Retrieval for MODIS 

Since MODIS data became available from Terra in February of 2000, few 

attempts have been made to implement a MODIS sub-pixel retrieval, which is likely a 

result of the large potential for error, especially from atmospheric effects (Giglio and 

Kendall, 2001).  In this study, output from the Santa Barbara DISORT Atmospheric 
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Radiative Transfer (SBDART) model is uniquely incorporated to provide a 

representation of atmospheric effects prior to the calculation step, which avoids creating 

additional terms for atmospheric transmittance (as in equations 2.3 and 2.4).  Specifically, 

SBDART considers many processes known to affect the ultraviolet through the infrared 

wavelengths allowing for detailed computations of plane-parallel radiative transfer within 

the Earth’s atmosphere and at the surface (Ricchiazzi et al., 1998).  Therefore, SBDART 

also includes the solar reflectivity term (I4ref) in equations (2.3) and (2.4).  Based on 

previous studies, e4b and e11b are assumed to be respectively equal to 0.95 and 0.97 (e.g. 

Giglio et al., 1999; Petitcolin and Vermote; 2002; Tang et al., 2009), which is true for 

relatively dense, green vegetation, such as the temperate evergreen forests used in this 

study.  With this configuration and by including the MODIS spectral response function, 

SBDART is ready to incorporate all terms in equations (2.3) and (2.4) to simulate the 

MODIS observation at its two fire detection channels (3.96 and 11.0 µm).  

2.3.1 Lookup Tables 

As a preliminary step, SBDART is run repeatedly for different combinations of 

the possible geometry values, background temperatures, and sub-pixel fire temperatures, 

and the output results are saved together with the input parameters as a lookup table at 4 

and 11 µm.   The input temperature values are the kinetic temperatures (not brightness 

temperatures) at the bottom of the atmosphere and range from the lower limits for a 

background temperature (277 K) to the upper limit for a sub-pixel fire (1500 K).  Based 

on the analysis in subsequent chapters, the atmospheric profile is assumed to be a 

representative mid-latitude summer profile, which includes 2.9 g/cm2 of water vapor in 
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the atmospheric column.  However, the sensitivity to variations in the atmospheric 

profile is examined in Chapter 4.  

Additional key entries in the lookup tables include various sets of L4b and L11b, 

which can be used in place of Tb, e4b and e11b (equations 2.5 and 2.6) because the MODIS 

fire detection algorithm, under the assumption of identical surface and atmospheric 

conditions, provides an estimate of the top-of-atmosphere (TOA) brightness temperature 

for the surrounding fire-free (background) pixels that can be used to directly compute L4b 

and L11b (Giglio et al., 2003; Giglio, 2010).  Therefore, for any given MODIS fire pixel, 

Tf and P can be extracted from the lookup tables by matching the viewing geometries, 

incorporating L4b and L11b as entries, and using L4 and L11 as constraints.  While the 

MODIS fire product provides an estimate of L4b and L11b, the simulation of TOA 

radiance in the lookup tables requires the consideration of emissivity and atmospheric 

effects (e.g. τ4 and τ11) to ensure physical consistence in equations (2.3) - (2.6).  As a 

result, the retrieval may be sensitive to these parameters (see Chapter 4).   

The final SBDART output allows a lookup table, containing input surface 

temperature, solar zenith (SZA), viewing zenith (VZA), and relative azimuth (RAZ) 

angles, to be created as a function of TOA radiance.  An example is displayed in Figure 

2.2, corresponding to the sub-pixel retrieval’s lookup table for a single fire pixel when the 

VZA = 14o, SZA = 48o, and RAZ = 165o.  Each dashed curve represents the pixel 

temperatures at 4 and 11 µm that result from specified values of fire area fraction for 

varying fire temperatures.  Each solid curve, on the other hand, represents the pixel 

temperatures that result from specified values of fire temperature for varying fire area 

fractions.  These lookup tables are referenced repeatedly in the main retrieval process.  
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Figure 2.2:  Visualization of a lookup table for the input data shown in the black box.  
Each dashed curve represents the relationship between the 4 and 11 µm pixel brightness 
temperatures at specified values of fire area fraction for varying fire temperatures.  Each 
solid curve represents the relationship between the 4 and 11 µm pixel brightness 
temperatures at specified values of fire temperature for varying fire area fractions.  The 
superimposed red dot indicates a MODIS fire pixel corresponding to the input data. 

 

2.3.2 Retrieval Methodology 

The actual retrieval, which is summarized in Figure 2.3, implements the lookup 

tables to aid in solving equations (2.3) and (2.4) for each MODIS fire pixel in any given 

MODIS scene (granule).  However, the non-linear equations require the use of a 

multistep, iterative process to obtain fire area fraction and temperature.  To begin, the 

!"#$%&$'($#)*+#$

!
"#$
%,
#$
)%
!
#)
-*
".
/

!"#$%&'(%(
0)-12#.+/3%&$'(45

6%7'%8%9:;%<

==%7'%8%9::%<

>$.'$*#?5

@.A)#%B$/"*C%8%6D
.

E"$F"/2%B$/"*C%8%=6
.

G$AH%,I"'+*C%8%=JK
.



 21 
observed MODIS geometries and the first input temperature are matched to the lookup 

table to obtain the top-of-atmosphere radiance of the pixel containing the fire.  The 

algorithm then continues to cycle through all input temperatures (e.g. potential fire 

temperatures) and calculates the fire fraction using a variation of the method developed 

by Shephard and Kennelly (2003).  A residual calculation is used to keep track of the fire 

temperature and area fraction corresponding to the best fit in the observed radiances for 

the 4 and 11 µm channels and the final fire temperature and area fraction are selected 

based on the lowest residual.   

 

 
 

Figure 2.3:  Flowchart illustrating the MODIS sub-pixel retrieval and the subsequent 
calculation of FRPf. 

Predefined Lookup Tables: 
(4 and 11 !m) 

•  SBDART Model 
•  Atmospheric effects 
•  Geometry 
•  Surface temp. variations 

MODIS Inputs: 
1.  Geolocation data (solar/sensor zenith, azimuth) 
2.  Level 1B pixel radiances 
3.  Fire product background temperatures (4 and 11 !m) 

Match MODIS inputs to lookup tables and sub-pixel calculations (iterations) 

Pixel-Level Retrievals: 
One output per pixel 

Single Retrieval via Averages: 
•  Requires a fixed definition of a fire pixel cluster 
•  One retrieval for all fire pixels corresponding to the cluster 

Pixel-Level Output: 
•  Fire area fraction and retrieved fire area (in km2) 
•  Surface (kinetic) fire temperature 

Calculations of Sub-Pixel-Based FRPf: 
•  Standard FRPf (equation 1.2, units of MW) 

•  FRPf flux: FRPf/retrieved fire area (units of Wm-2) 

MODIS Pixel Overlap Correction (50% threshold) 

General Summation Method:  
•  Fire cluster is defined as needed 
•  All pixel-level fire area retrievals are summed 

Clustering-Level Retrievals: 

Calculations of Sub-Pixel-Based FRPf: 
•  Standard FRPf (equation 1.2, units of MW) 

•  FRPf flux: FRPf/retrieved fire area (units of Wm-2) 

Cluster-Level Output: 
•  Fire area fraction and retrieved fire area (in km2) 
•  Surface (kinetic) fire temperature 
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Drawing from the BIRD satellite methodology, two clustering methods are 

implemented to alleviate random errors within the pixel-level retrievals.  The first is a 

general summation method, where each individual pixel-level retrieved fire area is 

summed to obtain the area of an entire fire event.  The second clustering method is a 

single retrieval (via averaging), which performs a single retrieval for all MODIS fire 

pixels corresponding to a given fire cluster.  In this case, the sub-pixel calculations use 

the mean geometry values, mean pixel temperatures, and mean background temperatures 

of the fire pixel cluster.  Overlapping MODIS pixels are removed a priori to reduce the 

change of artificially large fire clusters, especially for the general summation method (see 

Chapter 3).  Following these pixel and cluster-level calculations, FRPf is calculated via 

equation (1.2).  Therefore, there are three major outputs from the retrieval at both the 

pixel and cluster-levels: fire area, fire temperature, and FRPf.  As mentioned in Section 

2.2.2, specific sources of error can stem from indirect effects (e.g. PSF coregistration) to 

the direct inputs and assumptions of background temperature, surface emissivity, and 

water vapor, etc.  Chapter 3 examines the uncertainties from indirect error sources, while 

a detailed examination of sensitivity to direct error sources is described in Chapter 4. 

 

2.4   Summary 

In an effort to provide a fire area and temperature-based FRP product, this chapter 

has developed the first MODIS sub-pixel retrieval algorithm for fire area and 

temperature, which are used to calculate FRPf.  The retrieval was designed such that it 

can be run on any MODIS granule across the globe, and a radiative transfer model was 
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used to account for atmospheric effects and variations in Earth-satellite geometry.  

Using a lookup table approach, the retrieval can be run at both the pixel and cluster levels 

and corrections are made for overlapping pixels.  Currently, fire pixel locations as well as 

the 4 and 11 µm background temperatures are direct inputs from the MODIS fire product 

(Collection 5).  However, the MODIS sub-pixel-retrieval can easily be applied to the next 

generation of satellite sensors, such as the Visible Infrared Imaging Radiometer Suite 

(VIIRS) on board the recently launched Suomi NPP satellite (Csiszar et al., 2011) and the 

Geostationary Operational Environmental Satellite – R Series (Schmidt et al., 2011, 

GOES-R, http://www.goes-r.gov), which will be described in Chapter 7. 
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Chapter 3.   Initial Assessment of Retrieved Fire Area and 
FRPf 
 
 

3.1   Introduction 

Validations of sub-pixel retrievals are difficult due to the need for high-resolution 

data that are coincident in time and space with observation of the satellite sensor (e.g. 

Dozier, 1981).  Fortunately, multispectral, high-resolution data (3-50 meters), obtained 

from the airborne Autonomous Modular Sensor (AMS) are now available for numerous 

fire events in the western United States (e.g. Ambrosia and Wegener, 2009).  In many 

cases, the AMS flight scan can be spatiotemporally collocated with MODIS scenes 

(Figure 3.1), allowing for an unprecedented representation of the flaming, smoldering, 

and background regions within a given MODIS fire pixel.  By using the collocated data, a 

quantitative assessment of a MODIS sub-pixel retrieval of fire information can be 

conducted for multiple fire events in various biomes.  The AMS data can also be used to 

validate background temperatures and to isolate the various sources of error known to 

affect sub-pixel retrievals.  This chapter is partially devoted to developing an AMS-

derived fire (hot spot) detection algorithm that is used to assess the accuracy of the 

retrieved sub-pixel fire area from MODIS.  The remainder of the chapter focuses on the 

comparison of MODIS retrieved fire area with AMS observations and comparisons 

between the MODIS FRPp and sub-pixel-based FRPf for several fire events occurring 

between August and October 2007 (Figure 3.1).   
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Figure 3.1:  Projections of the four MODIS scenes that contain the six AMS flight scans 
(details provided in Table 3.1).  Red dots denote the locations of MODIS fire pixels (not 
to scale) and arrows highlight the fire pixels that are collocated with at least one AMS 
scan. While two collocations may come from the same MODIS scene, steps are taken to 
minimize overlap. 

 

3.2   Data Sources: MODIS and the Airborne AMS 

MODIS sub-pixel fire information is retrieved from an integrated use of the 

following three data products, either from MODIS/Terra or MODIS/Aqua, at a spatial 

resolution of 1 km2 at nadir: (1) level 1B radiance data (MOD021KM/MYD021KM), (2) 
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geolocation data (MOD03/MYD03), and (3) level 2 fire product data 

(MOD14/MYD14).  Data sources (1) and (2) are used to provide the radiance of the 

entire pixel and all relevant geometry information, such as the SZA, RAZ, and VZA (e.g. 

Wolfe et al., 2002), while the fire product (3) provides information on fire locations, 

background temperature, and FRPp.  The sub-pixel retrieval is only applied to the pixels 

that are flagged as fire pixels by the standard MODIS fire product (3).  MODIS 

algorithms (including the fire algorithm) are periodically updated, producing different 

versions, which are used to generate a series of collections of the data products.  This 

study uses Collection 5 for data sources (1) – (3), which can be found at 

http://ladsweb.nascom.nasa.gov/data/search.html (obtained in June 2010). 

3.2.1 MODIS Fire Products: Fire Detection and FRPp 

MODIS is unparalleled in fire detection because of its ability to differentiate a 

wide range of fire intensities, as a result of the synergy between its two 4 µm (more 

precisely 3.96 µm) channels whose dynamic ranges are complementary (Justice et al., 

2002).  In the standard MODIS fire detection algorithm, fire pixels are retrieved using a 

hybrid, contextual process, which includes absolute and relative detection pathways.  For 

absolute detection, a set of thresholds for reflectance at 0.86 µm and brightness 

temperature at the 4 µm and 11 µm infrared channels are used.  The reflectance values of 

the 0.86 um channel are employed to reduce the “false-positive” effects of bright 

reflective surfaces and sun glint characteristics in a given scene that contains a mix of fire 

and those non-fire, highly reflective surface features.  The brightness temperature 

thresholds at the 4 µm and 11 µm infrared channels are used to identify potential fire 
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pixels (Justice et al., 2002; Giglio et al., 2003).  The relative detection check is then 

incorporated to compare a pixel’s spectral signature to surrounding background pixels.  

Finally, both checks are combined (as a Boolean union) to classify a potential pixel as a 

real fire pixel.  The MODIS FRPp (Collection 5) is subsequently calculated for all fire 

pixels via equation (1.1).  The higher saturation temperatures of MODIS allow for the 

derivation of FRPp for nearly every fire it detects, because 1 km2 pixels with T4 > 500 K 

seldom occur in nature (Ichoku et al., 2008a). 

The major sources of uncertainty in the current MODIS fire products are sun 

glint, coastal false alarms (water reflectance), and dense cloud cover, all of which may 

affect the accuracy of fire detections.  However, these potential impacts are usually 

identified a priori by applying water masks and cloud masks within the fire detection 

algorithm (Kaufman et al., 1998a; Giglio et al., 2003).  Using 30 m validation data (from 

ASTER and ETM+), Schroeder et al. (2008) show that the probability of detection 

approaches 80% when the number of 30 m fire pixels (contained within a MODIS fire 

pixel) approaches 75.  The smallest detectable fire size in any given MODIS fire pixel 

was found to be ~100 m2 (Giglio et al., 2003).   Though hard to validate directly and 

globally, MODIS FRPp was found to be in fair agreement with FRPp measurements by 

other sensors in several sub-global spatial domains (Wooster et al., 2003; Roberts et al., 

2005; Ichoku et al., 2008a).  The FRPp detection limits are about 9 and 11 MW for Terra 

and Aqua, respectively (Schroeder et al., 2010). 

3.2.2 Autonomous Modular Sensor (AMS) Observations 

 The AMS, flown aboard the NASA Ikhana Unmanned Airborne System (UAS) 

and additional piloted aircraft, provide the high-resolution data for the initial assessment 
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of the MODIS sub-pixel retrieval.  The AMS was put into operations in 2005 and 

offers pertinent spectral measurement capabilities, such as derivation of fire size, 

temperature, and serves as a potential airborne, higher spatial resolution FRP validation 

sensor.  Both NASA and the United States Forest Service (USFS) have collaborated on 

the use of the AMS for supporting wildfire observations.  The Ikhana UAS performance 

characteristics allow mission profiles that can extend from the Mexican border in the 

south to the Canadian border in the north and from the Pacific Ocean in the west to the 

Rocky Mountains in the east when operating out of it’s home base at NASA-Dryden 

Flight Research Center, Edwards, California (Ambrosia et al., 2011b; Ambrosia and 

Wegener, 2009).  In addition, the Ikhana is capable of supporting day and night 

operations with a  ~24 hour endurance, 150-200 knots airspeed, ~13720 meters (45,000 

ft) altitude, and flight legs of over 7408 km (4000 nautical miles).  A pilot located at a 

ground control station remotely controls the Ikhana.  Piloted operations on various 

aircraft (Beechcraft B200 King-Air, etc) have also been accomplished, though with 

shorter flight profile capabilities.   

The AMS spatial resolution is controlled by the platform altitude and commonly 

falls in a range from 3 to 50 meters.  The total field of view (FOV) can be set at 43o or 

86o, and the instantaneous field of view (IFOV) can be set at 1.25 milliradians (mrad) or 

2.5 mrad (Ambrosia and Wegener, 2009).  Both the FOV and IFOV are user selectable 

based on the mission requirements.  For example, an altitude of 7011 meters (23,000 ft) 

Above Ground Level (AGL), with a 2.5 mrad IFOV would provide a spatial resolution of 

15 meters (Ambrosia and Wegener, 2009).  The AMS is a multispectral instrument with 

12 spectral channels in the visible through thermal-infrared (Ambrosia et al., 2011a, 
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2011b).  Fire hot spots are detected near 4 and 11 µm using AMS channel 11 (3.75 

µm) and channel 12 (10.76 µm) (Ambrosia et al., 2011b; Ambrosia and Wegener, 2009).  

Originally applied to AVHRR imagery (Li et al., 2000a), the AMS fire detection 

algorithm is based on that developed by the Canadian Center for Remote Sensing 

(CCRS) and provides general hot spot information for each AMS scan (Li et al., 2000a, 

2000b, 2001; Flasse and Ceccato, 1996; Cahoon et al., 1992).   

In this chapter, a separate AMS fire detection algorithm, developed specifically 

for an initial assessment, is used to identify the individual flaming regions within a given 

MODIS fire pixel (see Section 3.4).  This new algorithm is based on the unique 

challenges encountered when applying the AMS to obtain the precise area of a sub-pixel 

fire.  For example, changes in flight altitude and surface topography can affect the AMS 

background temperature and fire detection thresholds within a scan or from scan-to-scan.  

Therefore, in the initial assessment algorithm, each threshold is image-based and allowed 

to vary within the boundaries of each MODIS fire pixel.  The AMS data collected in 

2007 are saturated in the 4 µm channel, with saturation temperatures varying from 510 to 

530 K, depending on the flight characteristics.  At spatial resolutions of 50 meters or 

larger, this saturation level means that many fire pixels are saturated, which precludes fire 

temperature or FRP investigations using these data.  Approximations of fire temperature 

can also be achieved using the unsaturated 11 µm channel, but limitations are introduced 

due to the lower sensitivity at higher temperatures.   

3.2.3 AMS and MODIS Collocation 

 Several AMS flight data scans, from August - October 2007, were available for 

this study (obtained in early 2010 from http://asapdata.arc.nasa.gov/ams/missions.html), 
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which include both single fires and multiple fire events.  The high spatial resolution 

(~15 m) AMS data, collected near-coincident with MODIS acquisitions, allow for a 

determination of the fire hot spots within the MODIS fire pixels corresponding to a given 

fire event (Figure 3.2).  With a wide range in topography and biomass type (Westerling et 

al., 2003), the western United States is known to experience a wide variety of burning 

conditions.  These variables affect the fire rate of spread, which can reach 34 meters per 

minute (~0.5 km per 15 minutes) in the chaparral of Northern California (Stephens et al., 

2008), suggesting that some fires may change drastically in a short time period.  The 

large Zaca Fire example in Figure 3.2, has a time lag of approximately an hour between 

the MODIS overpass and the AMS flight, which explains some fire location 

dissimilarities between the MODIS and AMS detections.  Therefore, to produce an 

accurate assessment, the temporal difference between AMS and MODIS was limited to a 

maximum of 15-17 minutes before or after the MODIS overpass, ensuring that MODIS 

and AMS are observing the same fire characteristics, near-simultaneously.  

After applying the temporal limitation, a total of six collocated cases (displayed in 

Figure 3.1) are available from the 2007 dataset, which include day, night, nadir, and off-

nadir MODIS observations.  Specifically, four MODIS scenes (granules) are used to 

provide the six collocations.  Of these, cases #1-4 are from a single Santa Ana burning 

event in Southern California (24-28 October 2007) and cases #5 and #6 are from a fire 

event in Northern California on 9 September 2007.  The Ikhana commonly flies over the 

same fire event multiple times on adjacent flight tracks, used to derive a “mosaic” of the 

total fire event region.  The AMS on the Ikhana has also been used to capture the same 

fire event during two (or more) time periods in a day to derive fire progression and some 
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AMS fire data scans can be as short as 3 minutes.  Therefore, by examining 

neighboring, short duration AMS scans, it is possible for a single MODIS scene to 

provide more than one collocation (e.g. cases #5 and #6 in Figure 3.1).  A spatial 

investigation is conducted to minimize any overlapping MODIS fire pixels between 

collocation cases.  Even still, three fire pixels overlap between cases #3 and #4 and one 

fire pixel overlaps cases #5 and #6.  The specific details for calculating MODIS pixel 

dimensions are provided in following section. 

Figure 3.2:  Example AMS and MODIS collocation map for the large Zaca Fire in 
August 2007.  There is approximately an hour time lag between the MODIS overpass and 
the AMS flight. 

 

3.3   Calculating Pixel Area and MODIS Pixel Overlap Correction 

Another MODIS characteristic affecting sub-pixel retrieval is the potential for off-

nadir fire detection errors (e.g. Giglio and Kendall, 2001).  The “bowtie” scanning 
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method of MODIS results in pixel overlap near the edge of the granule (e.g. Masuoka 

et al., 1998; Gomez-Landesa et al., 2004), which can result in the same fire being counted 

in more than one scan, effectively producing duplicated - though not identical - fire 

pixels.  Therefore, to retrieve accurate fire size, any pixel overlap must first be removed 

(shown in Figure 2.2), especially for the clustering analysis step.  To begin, the pixel 

corners are calculated by averaging the four pixel centroid points (provided by MODIS) 

surrounding each corner.  The pixel corners at the scan edges are then approximated 

using the dimensions of neighboring pixels.  This methodology is different than the 

MODIS pixel size approximation provided by Giglio (2010), which provides a 

standardized calculation for every MODIS scene based on the pixel’s VZA and 

recognizes that MODIS pixels realistically have soft, non-rectangular edges.  However, 

this study requires an approximation of the specific boundaries of each pixel to account 

for any potential variations in pixel size caused by variations in local topography and to 

facilitate the collocation of the AMS data.  As a result, the dimensions of each MODIS 

pixel are calculated on a scan-by-scan basis.  With this information, the area of each 

MODIS pixel is subsequently calculated, allowing the true area of a fire (in km2) to be 

calculated from each retrieved fire fraction (Section 2.3.2).  In general, the calculated 

pixel areas fall within 5-12% of the values obtained via the Giglio (2010) approximation. 

The actual overlap correction takes advantage of the similarities within every 

MODIS granule.  For example, every granule contains 204 scans comprised of 10 scan 

lines along-track (Wolfe et al., 2002), each with an along-scan width of 1354 pixels (one 

scan = 10 x 1354 pixels or about 10 x 2300 km).   While the average pixel size near-nadir 

is 1 km2, off-nadir pixel growth causes the total scan width to grow to 2300 km rather 
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than 1354 km.  Based on these similarities, any pixel that overlaps another pixel in one 

granule will overlap that same pixel in every granule.  Therefore, by assuming the Earth 

is a perfect sphere and topographic influences are minimal, a general overlap correction 

can be developed and applied to all MODIS granules.  For this study, a pixel is defined as 

an overlapping pixel if it overlaps a pixel in the previous scan by 50% of its total area.  

This overlap definition is then tested on every pixel on a scan-by-scan basis.  For 

example, the locations and dimensions of each individual pixel within the second scan are 

compared to the first scan’s pixel locations and dimensions.  The algorithm keeps track of 

the locations (index) of any pixels that overlap the first scan and the process repeats for 

each subsequent scan in the granule.  The end result is an index of pixel locations that 

must be removed from each scan in any MODIS granule.  

 While pixel overlap may allow for multiple vantage points of the same fire at the 

individual pixel level, future applications will not necessarily have high resolution data 

available to discern which of these vantage points is the best, and any overlap will also 

influence the cluster-level results.  Therefore, an overlap correction is used in each 

collocation case to reduce the chance of artificially large fire clusters, which is especially 

critical for the general summation clustering method (described in Chapter 2).  Even with 

the overlap correction, small instances of overlap and small gaps may still exist, but the 

pixel grid will become much more realistic, especially at larger VZAs.  As an example, 

the overlap correction was tested on one of the six collocation cases (case #4) with a 

mean VZA of 50o (Figure 3.3).  Without a correction, this case had a total of 17 MODIS 

fire pixels and displayed considerable pixel overlap.  However, when applying the 

correction to select only the non-overlapping pixels, the pixel grid clears up and the total 
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number of fire pixels is reduced to 11, which is a much more realistic value.  The 

specific details for each collocation case are presented in Table 3.1 and show that the 

overlap correction does little to alter the pixel grid when the VZA is less than ~35o (near-

nadir), but the number of fire pixels can decrease by more than 50% at large VZAs after 

the correction is applied. 

 

Figure 3.3:  An example MODIS and AMS collocation case (case #4) at a MODIS 
viewing zenith angle of 50.3o.  (Top) Without a pixel overlap correction and (Bottom) 
with a pixel overlap correction.  Black polygons denote the boundaries of the AMS scan 
and the pixels shaded in red are the MODIS fire pixels contained within the AMS scan.  

!"#$%%&#'&()*+,*-./01*23%&*435&67

8$%%&#'&()*++*-./01*23%&*435&67



 35 
Table 3.1:  Specifics of the case studies and results of the pixel overlap correction. 
 

Collocation Date Overpass Mean Viewing  # Fire Pixels # Fire Pixels 
Case #  Day/Night Zenith Angle Uncorrected Corrected 

1 10-28-2007 Day 13 7 7 
2 10-26-2007 Day 32 5 5 
3 10-24-2007 Day 50 10 9 
4 10-24-2007 Day 50 17 11 
5 09-08-2007 Night 64 7 3 
6 09-08-2007 Night 64 4 2 

 
 
 
 

3.4   AMS Fire Detection Algorithm and Background Temperature 

Similar to MODIS, AMS fire detection requires the use of thresholds, which can 

be somewhat subjective (Kaufman et al., 1998a; Justice et al., 2002; Giglio et al., 2003).  

Due to the shift in the peak of the Planck Function toward shorter wavelengths at high 

temperatures, fire detection thresholds are typically based on the 4 µm channel.  

However, detection algorithms for different sensors, such as MODIS and GOES, utilize 

the 11 µm channel to varying degrees (Giglio et al., 2003; Prins and Menzel, 1994).  For 

example, MODIS incorporates the temperature difference between 4 and 11 µm and the 

early GOES algorithm set a specific fire detection threshold for the 11 µm channel.  In 

the case of AMS, an 11 µm fire threshold is used as a secondary check when saturation is 

reached at 4 µm.  Through an automated process, the AMS fire detection thresholds are 

allowed to vary for each MODIS pixel and adapt to the unique characteristics of the AMS 

instrument.  The AMS algorithm is not meant for operational purposes and is specifically 

designed to process the AMS data points contained within a single MODIS pixel.  
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Figure 3.4:  Visualization of the variation in AMS pixel size (resolution in m2) based on 
the location within the scan and elevation.  Cool colors indicate regions of higher 
resolution and warm colors indicate the coarsest resolution. 

 
Within any MODIS pixel, there are between 4000 and 9000 AMS data points 

depending on the location relative to the AMS nadir and the flight altitude (Figure 3.4).  

These data points allow for a detailed investigation of the ‘mixed’ MODIS fire pixels, 

which commonly contain a background, smoldering, and actively burning region (e.g. 

Kaufman et al., 1998a; Eckmann et al., 2008).  However, it is assumed that the 

temperature difference between actively burning and smoldering regions is larger than 

the difference between background and smoldering.  Hence, AMS fire detection is 

currently aimed at obtaining the mean state of temperature and fire size of two groups: 

(1) the data points of actively burning fires, and (2) the data points of the remaining 

region (including smoldering and cooling). The smoldering region is largely neglected 

because the collocated cases (#1-6) are very intense fire events and the sub-pixel 
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calculation is likely weighted toward retrieving the flaming region (largest contribution 

to pixel MIR radiance).  Fire modeling studies have shown that the depth of a fire front 

commonly ranges from a few meters to ~30 meters for grassland fires (Mell et al., 2007) 

and can reach 400 meters in dense vegetation (Filippi et al., 2009).  Based on the 

potential fire front size, it is expected that the fire area fractions, obtained with the AMS 

algorithm, will typically fall below ~0.2 for any given MODIS pixel.    

3.4.1 Background Temperature and Minimum Thresholds 

The AMS fire detection process is based on the histogram at 4 and 11 µm and 

begins with background temperature selection.  In contrast to the neighboring pixel 

method for MODIS background temperature (Kaufman et al., 1998a), the histogram 

method for background temperature considers the temperature of the unburned AMS data 

points within the MODIS fire pixel (in-pixel background temperature).  This method is 

necessary because the AMS flying altitudes vary case by case, and hence any thresholds 

on temperature should be image based.  Due to the scanning method of AMS, 

topographic effects, and aspect, the cool region of the pixel can vary 5-10 K (Figure  3.5).  

However, this variation is not likely over a 1 km distance unless there is a rapid change in 

elevation.  Therefore, to account for any of these observational differences, the AMS 

background temperature calculation at 4 and 11 µm (dash-dotted blue lines in Figure 

3.5c,d) is a weighted average of all temperature bins (in the histogram) less than the 

median.  A visual inspection of each histogram is also undertaken to be certain that the 

calculated AMS background temperatures are representative of only the non-burning 

portion of the pixel.  The AMS background temperature can then be compared to the 

MODIS background temperature (green dashed lines in Figure 3.5c,d).  
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Following the background calculations, any AMS data points that are obviously 

not fire hot spots (blue dots in Figure 3.5b) are removed using an interchannel 

comparison test (ICT), which searches for any AMS data points that are cooler than the 

background temperature or display cold 11 µm temperatures at high 4 µm temperatures.  

The ICT is necessary because of variability in the AMS data from scan to scan that 

results from varying saturation levels, flight altitudes, and scan widths.  Specifically, the 

ICT calculation divides the range of the 4 µm temperature (~290-525 K) into ~10 bins 

and computes the 25% quartile of the 11µm temperature within each 4 µm bin.  Any 

temperatures that are less than the 11 µm 25% quartile are disregarded as potential fires 

(pink line in Figure 3.5b).  However, if the 25% quartile is above 350 K, then the ICT 

threshold is set to 350 K.  Any AMS data points above the resulting ICT minimum 

threshold line move on to be considered as fire hot spots (green triangles in Figure 3.5b). 

3.4.2 Daytime and Nighttime Fire Detection Thresholds 

The actual AMS fire detection thresholds (day and night) are calculated for both 

the 4 and 11 µm channels (orange lines in Figure 3.5) using the temperature histograms 

of each channel.  During the day, considerable variability is added to the histograms from 

uneven surface heating and solar effects, making it difficult to separate the data points of 

the actively burning region.  Even with this daytime noise, it is assumed that actively 

burning portions of a MODIS pixel will show some separation from the cooler portions in 

the histogram.  Therefore, several bins with a low density in the 4 or 11 µm histograms 

are the starting point for the fire detection thresholds.  At 11 µm, the histogram is 

searched, starting from the minimum threshold, for the first region with at least 5 bins 
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displaying a density less than two.  The fire threshold is then set to the lowest value 

within the region of low density.   

 

 
 
Figure 3.5:  Example of AMS daytime fire detection within a MODIS pixel.  (a) Map 
containing the AMS hot spot detections within a MODIS pixel.  (b) Scatterplot of AMS 4 
and 11 µm brightness temperatures.  Blue dots indicate AMS data points disregarded as 
fires, green triangles indicate the region to be examined as potential fires, and red squares 
indicate the final AMS fire detection.  Fire detection thresholds are displayed as solid 
orange lines and the minimum threshold is displayed as a solid pink line, with each dot 
corresponding to the center of an ICT test bin.  (c) and (d) Histograms used in AMS fire 
detection at 4 µm and 11 µm, respectively.  Fire detection thresholds are displayed as 
solid orange lines, and the MODIS and AMS background temperatures are respectively 
displayed as dashed green and dash-dotted blue lines.   
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The fire threshold method at 4 µm is slightly different due to saturation 

occurring between 510 and 530 K.  It is assumed that any AMS pixel at the saturation 

level is hot enough to be considered.  However, the remaining data between the ICT 

minimum threshold and the saturation level must also be investigated.  The procedure 

begins by calculating the high temperature median (HTM), defined as the median of all 

AMS data points above the ICT minimum threshold.  All AMS data points below the 

HTM are subsequently searched for a region of low density as in the 11 µm procedure.  

However, in this case, the region of low density is defined as a region with at least 4 bins 

displaying a density less than one.  The limits are stricter than for 11 µm because the 

region under consideration is at relatively low temperatures and in many cases, the fire 

threshold will not exist below the HTM.  In addition, the 4 µm data displays more 

variability at higher temperatures than 11 µm, which requires stricter limitations.   As 

with 11 µm, the fire threshold is then set at the bin with the lowest value within the 

region of low density.  If a region of low density is not found below the HTM, then the 

HTM itself is used as the 4 µm fire threshold.   

The region of low density definition is very strict because the emphasis is on 

retrieving the actively burning region.  If the density thresholds are increased, the 

retrieved fire area will be larger.  However, increasing the density threshold by one at 4 

and 11 µm will only produce a relative increase in fire area of approximately 10%.  In 

contrast, increasing the density thresholds by three will increase the retrieved fire area by 

40%.  In this case, the 11 µm (4 µm) region of low density would be defined as the first 

region with at least 5 bins displaying a density less than five (four).  Obviously, a much 
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larger region of the histogram would then be considered as fire.  Therefore, the region 

of low density is based on the area of minimum sensitivity. 

The nighttime fire thresholds are more straightforward than the daytime 

thresholds.  Reduced background noise allows for a detection approach similar to 

MODIS, where separation is obtained by selecting pixels with temperatures that are a few 

standard deviations from the mean (Justice et al., 2002; Giglio et al., 2003).   Specifically 

for AMS, the fire thresholds at 4 and 11 µm are set at two standard deviations from the 

mean (Figure 3.6).  Regardless of daytime or nighttime, the 4 and 11 µm fire thresholds 

are not allowed to fall below 380 K and 340 K, respectively.  These minimum values are 

rarely reached, but are necessary for MODIS pixels containing only a few hot AMS data 

points (very small fire fractions).  Any AMS data points with a temperature greater than 

the 4 and 11 µm fire thresholds are flagged as fire hot spots (red squares in Figures 3.5b 

and 3.6b).  The area of these AMS pixels is then summed to calculate the fire hot spot 

area within the MODIS pixel under consideration (assessment data, displayed in Figures 

3.5a and 3.6a).  In some cases, negative radiance values will occur adjacent to a region of 

hot, saturated AMS pixels.  However, negative AMS radiance values usually comprise a 

very small faction of the total number of AMS pixels within a MODIS fire pixel 

footprint, and are currently disregarded. 
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Figure 3.6:  Same as Figure 3.5, but for AMS nighttime fire detection within a MODIS 
pixel.    

 
 

3.5   Comparing the MODIS Retrieved Fire Area with AMS 
Observations 

The ~15 meter resolution AMS fire data provide a direct ground assessment (in 

km2) for the retrieved fire areas within each MODIS fire pixel.  From a spatial 

perspective, Figure 3.7 shows that 12 of the 37 MODIS fire pixels have retrieved fire 

areas within 50% of the AMS value, while the fire area for 3 of the MODIS pixels cannot 

be retrieved due to background temperature mischaracterization.  These 3 pixels have an 

11 µm background temperature that is warmer than the fire pixel temperature, which 
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stems from the current MODIS fire detection algorithm and may be caused by 

heterogeneities (noise) in the region of background pixels (e.g. Kaufman et al., 1998a; 

Zhukov et al., 2006).  Interestingly, there is a MODIS fire pixel in case #1 that does not 

contain any AMS fire hot spot detections, and is therefore the largest error displayed in 

Figure 3.7.  This pixel was not flagged as high confidence by the MODIS fire detection 

algorithm and may be a MODIS false detection (described in the following section).  The 

remaining 21 valid fire pixels display significant deviations in retrieved fire areas from 

the counterparts of the AMS observations, which is expected based on the large potential 

for pixel-level errors highlighted in earlier studies (e.g. Giglio and Kendall, 2001).  

Therefore, the following sections focus on the analysis of several indirect, random 

processes than can partially explain the large differences between the MODIS and AMS 

pixel-level fire areas. 

3.5.1 Specifics of Pixel-Level Comparisons 

For all MODIS fire pixels, AMS and MODIS fire area comparisons (Figure 3.8a-

d) have shown promise for a fire area greater than ~0.001 km2 (1000 m2), which 

corresponds to a fire area fraction of 0.001 in a 1 km2 MODIS pixel.  While the overall 

bias is low, pixel-by-pixel differences in AMS-MODIS fire areas are significant, 

producing a modest correlation (R = 0.59).  It is also interesting that all 33 fire pixels 

displayed in Figure 3.8a-d have an AMS observed fire area greater than 0.001 km2 (1000 

m2), which is above the lower limit of MODIS fire detection for a reasonable retrieval 

accuracy (Giglio et al., 2003).  Even though few fire pixels have an AMS fire area 

between 0.0001 km2 and 0.003 km2, a range that is expected to have the greatest potential 

for error in the retrieval, it is still generally observed that the relative variation in 
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retrieved fire area is smaller for larger fires ( > 0.015 km2) and larger for AMS fire 

areas below 0.01 km2.  

 

 
 
Figure 3.7:  Spatial representation of all six case studies in California.  The large black 
polygons denote the boundaries of the AMS scan and smaller grey polygons represent the 
MODIS pixel mesh (corrected for overlap). The MODIS fire pixels are shaded in color 
based on the percent difference between the AMS observed and the MODIS retrieved fire 
area.  The three pixels shaded in black and corresponding to a brown “E” indicate where 
the MODIS background temperature was higher than the fire pixel temperature (retrieval 
error).  The viewing zenith angle increases from case #1 (13o) to case #5 and #6 (64o). 
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Figure 3.8:  Pixel-level comparisons between retrieved MODIS fire area and AMS 
observed fire area from all six collocated cases.  (a) Color scheme indicates the fire 
detection confidence level provided by the MODIS fire product.  (b) Color scheme 
indicates the viewing zenith angle (distance from nadir).  (c) Color scheme indicates the 
variation in AMS pixel size (based on Figure 3.4).  (d) Color scheme separates the pixels 
with distinct sub-pixel hot spots located on the pixel edge from the remaining pixels.  The 
statistics corresponding to the color schemes in (a-d) are presented in Table 3.2.  For 
display purposes, (a-d) use a log vs. log scale.  However, the statistics reflect the linear 
regression. 

 
 

The MODIS fire product provides detection confidence levels for each fire pixel 

(Giglio, 2010), which can be investigated in the context of the sub-pixel results (Figure 

3.8a, Table 3.2).  For example, the majority of fire pixels in the six case studies are 
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flagged as high confidence with only eight pixels flagged as medium or low 

confidence.  AMS observations show that the high confidence pixels contain the largest 

mean fire area (0.043 km2).  In contrast, the medium confidence pixels have a much 

smaller mean fire area (0.015 km2), which is expected because the smaller sub-pixel fire 

area likely produces a fairly small increase in mean pixel brightness temperature.  

Therefore, the current MODIS algorithm may reduce the confidence level for these 

pixels.  The two low confidence pixels actually have rather large fire areas, but also have 

a very large bias in retrieved fire area.  In contrast, the bias is greatly reduced with the 

high confidence pixels (-11.62%), suggesting that the results from higher confidence 

pixels show stronger agreement with the AMS observations (Table 3.2).  This 

observation suggests that the MODIS low and medium confidence levels generally 

represent the small fires or the outliers in the retrieved sub-pixel areas, at least for the 

pixels used in this study. 

Surprisingly, the location relative to nadir has a minimal effect on the retrieved 

fire area bias (Table 3.2), but pixels with larger VZAs have a large mean retrieved fire 

area of 0.102 km2, while the pixels with small VZAs have a lower mean retrieved fire 

area of 0.009 km2.  This observation is expected because the MODIS pixel size increases 

dramatically with large VZAs, resulting in an increase in the smallest detectable (and 

retrievable) fire area (Giglio, 2010).  However, all cases, regardless of pixel location, 

display considerable variability at the pixel-level with some retrieved fire areas matching 

the AMS observations and other pixels deviating from AMS by an order of magnitude or 

more (Figure 3.8b).  Therefore, it is likely, and will be shown below, that other indirect 

factors, such as the size and location of the fire within the pixel, have the greatest impact 
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on the retrieval results.  The potential impacts from variations in AMS pixel geometry 

(as displayed in Figure 3.4) are considered in Figure 3.8c, but this does not seem to have 

a major impact on the assessment results.   

 
Table 3.2:  Statistics corresponding to the color scheme used in Figure 3.8a-d1 

 

Variable # Pixels Mean AMS Fire Area Mean MODIS Fire Area      Bias 
(Indirect Effect) Out of 33 km2 km2      km2    % 

MODIS Confidence Level (Figure 3.8a)     
Low 2 0.034 0.070 0.036 105.88 
Medium  6 0.015 0.011 -0.004 -26.67 
High  25 0.043 0.038 -0.005 -11.62 
Viewing Zenith Angle (Figure 3.8b)      
VZA < 40 Deg. 9 0.013 0.009 -0.004 -30.77 
VZA = 50 Deg. 19 0.035 0.029 -0.007 -20.00 
VZA = 64 Deg. 5 0.085 0.102 0.017 20.00 
AMS Pixel Size (Figure 3.8c)       
> 200 m2 3 0.028 0.046 0.018 64.29 
150 - 200 m2 10 0.046 0.047 0.001 2.17 
100 - 149 m2 16 0.032 0.025 -0.007 -21.88 
< 100 m2 4 0.043 0.035 -0.009 -20.93 
Location of Sub-Pixel Hot Spots (Figure 3.8d)     
Center  25 0.037 0.034 -0.003 -8.11 
Edge  8 0.037 0.036 -0.001 -2.70 
      

1. Negative bias indicates the mean AMS fire area is greater than the mean MODIS 
retrieved fire area. 
 

Drawing from earlier studies (e.g. Calle et al., 2009), the impacts from the 4 and 

11 µm PSFs (e.g. Figure 2.1) must be investigated by examining the sub-pixel physical 

disposition of fire.  For example, sub-pixel fire hot spots near the edge of a pixel will 

likely result in an underestimated fire pixel brightness temperature, while fires near 

center of a pixel may overestimate the pixel’s brightness temperature.  Similarly, a fire 

located on the boundary between pixels, will likely increase the brightness temperature of 

both pixels.  This may help to explain the probable MODIS false detection in case #1 
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because the pixel boundaries (on two sides) are located near the sub-pixel fire hot spots 

contained within the adjacent pixels.   

A closer examination of the AMS fire data, displayed in Figure 3.9, indicates that 

there are three major distributions of fire hot spots within the MODIS fire pixels used in 

this study: (1) center hot spot pixels, (2) edge hot spot pixels, and (3) a long fire front, 

which bisects the pixel.  By using similar visualization methods, it was discovered that 8 

of the 33 MODIS fire pixels contain pixel-edge fire hot spots (Figure 3.8d).  The center 

and edge hot spot pixel samples have nearly identical mean observed and retrieved fire 

areas with a very low bias (Table 3.2), but 6 of the 8 edge cases show significant 

deviations in retrieved fire area from the AMS observations and the pixel with the largest 

error in retrieved fire area is an edge case.  The low bias in Table 3.2 results from similar 

magnitudes of overestimated and underestimated retrieved fire areas for the 8 pixels 

containing edge hot spots.  In the non-edge hot spot cases, especially those with distinct 

center hot spots (e.g. Figure 3.9a), it is possible that error may be introduced from a pixel 

brightness temperature that is overestimated (a potential bias).  However, the edge cases 

are more likely to suffer from inter-channel, PSF coregistration errors (Shephard and 

Kennelly, 2003; Calle et al., 2009), and are therefore more likely to increase the potential 

for error in the sub-pixel retrieval output.  
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Figure 3.9:  Spatial display of the sub-pixel fire region within four MODIS fire pixels 
showing (a) center hot spots, (b) edge hot spots, and (c), (d) long fire front situations.  
Black polygons indicate the boundaries of the MODIS fire pixels and red shading 
indicates the locations of fire hot spots as observed by the AMS.  

 

Along with PSF effects, the combination of sub-pixel fire size, temperature, and 

the overall distribution of sub-pixel hot spots can affect the retrieved fire area.  For 

example, Figure 3.9a,b shows a somewhat counterintuitive result where the center hot 

spot case has a larger error in retrieved fire area (70.71%) than the edge hot spot case 

(42.52%).  The 11 µm AMS channel, though limited by reduced sensitivity at high 
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temperatures, shows that the edge case has a much higher mean fire temperature 

(443.94 K) than the center case (410.88 K) and both cases are very heterogeneous (large 

standard deviation).  Hot spots occupy about the same fractional area of each pixel (~0.01 

for the 1 and 3 km2 pixels), but the edge hot spot case contains an organized, large cluster 

of hot spots and the center hot spot case contains a more diffuse hot spot cluster spread 

over a large portion of the pixel.  Therefore, it is possible that the pixel brightness 

temperature of the edge hot spot case is more representative of the observed sub-pixel fire 

properties than the center hot spot case, even when considering PSF effects.  Similarly, 

the fire front case in Figure 3.9c has a larger error in retrieved fire area (72.66%) than 

Figure 3.9d (50.00%), but, unlike Figure 3.9a,b, the fire fronts in Figure 3.9c,d do not 

occupy the same area fraction of the ~3 km2 pixels.  Figure 3.9c contains a small and 

very narrow fire front with a low 11 µm mean fire temperature (407.28 K), while the fire 

front in Figure 3.9d is much larger and highly concentrated, with a higher 11 µm mean 

fire temperature (469.64 K).  Therefore, this analysis confirms that fire pixels containing 

high temperature, large, and highly concentrated regions of sub-pixel fire hot spots are 

likely to produce the most accurate retrieved fire areas, especially when located near the 

center of the pixel. 

The comparisons in Figures 3.8a-d and 3.9a-d show the individual indirect effects 

(not originating from input variables) on the sub-pixel retrieval.  These results suggest 

that multiple factors, such as a lower confidence fire pixel with pixel-edge hot spots, 

contribute to the large variability observed in the retrieved pixel-level fire area.  

Therefore, to visualize an ideal situation for the sub-pixel retrieval, the low and medium 

confidence fire pixels are removed (Figure 3.10a) and the resulting correlation between 
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MODIS and AMS shows a slight increase (R = 0.67).  When the fire pixels with pixel-

edge hot spots are also removed (Figure 3.10b), the correlation becomes much stronger 

(R = 0.84) and the variability between MODIS and AMS is reduced.  This suggests that 

the combination of lower confidence fire pixels, typically from small sub-pixel fires 

(Figure 3.8a) and PSF effects (Figure 3.8d), including the distribution of sub-pixel hot 

spots (Figure 3.9a-d), have the largest indirect impact on the accuracy of the retrieval.  

Similar to Figure 3,8a-d, the results in Figure 3.10b show a relatively low bias, but this 

accuracy is obtained by excluding 45% of the available fire pixels.  When considering 

global fire observations, many cases of low confidence pixels are likely to exist, 

especially in regions with agricultural burning, and real-world applications would not be 

able to separate pixel-center from pixel-edge sub-pixel fires.   

 

 

 
 
Figure 3.10:  Idealized pixel-level comparisons between retrieved MODIS fire area and 
AMS observed fire area using all six collocated cases, but showing only (a) the high 
confidence fire pixels and (b) the combination of high confidence and center hot spot fire 
pixels.  For display purposes, (a) and (b) use a log vs. log scale.  However, the statistics 
reflect the linear regression. 
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3.5.2 Clustering-Level Comparisons 

While the AMS initial assessment algorithm enables the identification of fire 

pixels that have the greatest uncertainty in the retrieval, the majority of the future 

applications of the sub-pixel algorithm will not have these data available.  Therefore, the 

sub-pixel retrieval will have to rely on a clustering methodology to increase the accuracy 

of the retrieved fire area.  The results from the two clustering methods (Figure 3.11) show 

stronger agreement than the pixel-level results.  The clustering sum method of pixel-level 

retrievals produces the highest correlation (R = 0.91) suggesting that the random 

variation can be reduced by averaging, when looking at a fire event as a whole.  The 

single retrieval method from averages also produces a high correlation (R = 0.84), but 

may be limited by the larger surface area used in the retrieval, where the contrast between 

fire and background may be reduced.  Regardless, comparisons between the clustering 

and pixel-level results highlight the importance of averaging to reduce errors that are 

difficult to characterize on a per-pixel basis, such as the distribution of sub-pixel fires 

(Figure 3.9a-d), general PSF effects (Figure 3.8d), and PSF coregistration errors.   

The fire clusters in Figure 3.11 are currently defined as all MODIS pixels within 

an AMS scan, allowing for only six fire clusters and creating difficulty when discerning 

any impact from VZA and day/night cases.  However, as with the pixel-level results, the 

larger VZA clusters generally display larger retrieved fire areas than the small VZA cases 

with a small bias toward larger AMS fire areas.  Both clustering methodologies will 

likely improve estimates of retrieved fire area for large fire events, but future 

implementation of the single retrieval from averages method will require a strict 

definition of what constitutes a cluster in any given MODIS granule.  Therefore, the sum 
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of pixel-level retrievals method may be more advantageous because the definition of a 

cluster can be changed as needed.  Unfortunately, isolated, small fires may only include 

one or two fire pixels and will not benefit from either clustering methodology.   

 
Figure 3.11:  Cluster-level comparisons between retrieved MODIS fire area and AMS 
observed fire area for all six collocated cases.  (Top) Clustering using the sum of pixel-
level retrievals method. (Bottom) Clustering using the single retrieval from averages 
method.  Solid line corresponds to the linear fit equation and collocation case labels 
correspond to the first column of Table. 3.1.  The color scheme is based on the viewing 
zenith angle (distance from nadir). 
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3.6   Comparing the Sub-Pixel-Based FRPf with the Current 
MODIS FRPp  

With saturation occurring at higher temperatures in the AMS 4 µm channel, and 

thus providing very little data to validate retrieved fire temperatures, the comparison 

between the current MODIS FRPp and FRPf is the only available method to assess the 

overall consistency of MODIS sub-pixel fire retrievals.  The pixel-level comparisons 

from all 6 collocation cases (Figure 3.12a) produce a strong correlation (R = 0.93), which 

suggests that the sub-pixel retrieval can generate acceptable fire temperatures, even at the 

pixel level.  However, the sensitivity analysis for the BIRD satellite (e.g. Zhukov et al., 

2006) showed that the errors in retrieved fire area and temperature may counteract each 

other in a sub-pixel-based FRP calculation (equation 1.2).  As a result, fire temperature 

errors may be present regardless of the accuracy in the retrieved fire area.  When 

considering this dilemma and the lack of accurate 4 µm temperature validation data, the 

retrieved fire temperature should be used with caution, and only when FRPf is not 

sufficient to examine the problem of interest.  

In contrast to the fire area results in the previous sections, Figure 3.12b shows that 

the off-nadir pixels (large VZAs) commonly have a much larger difference between FRPp 

and FRPf than cases close to nadir (small VZAs).  The reason stems from the best-fit 

methodology of the MODIS FRPp in combination with off-nadir pixel growth.  For 

example, the size of the MODIS pixels displayed in Figure 3.7 can grow to over 8 km2 

near the edge of the satellite ground swath (cases #5 and #6).  In these cases, the 

background region of the pixel becomes very large, suggesting that the flaming region 

will contribute less to the observed pixel radiance.  The FRPp is also based on a top-of-
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atmosphere observation and the longer path lengths at large VZAs may mask the signal 

of fires.  As a result, FRPp will likely be much lower than FRPf, which is indeed observed 

in most off-nadir pixels in Figure 3.12a,b.  Similarly, when FRPp is divided by the pixel 

area, lower values (large-area pixels) will result in a greater potential for error in the 

MODIS FRPp estimate.  Therefore, with atmospheric effects taken into consideration, 

FRPf is likely an improved methodology for off-nadir fire pixels, but produces results 

similar to FRPp for the remaining pixels. 

The real motivation for choosing FRPf over FRPp becomes obvious when FRPf is 

used in combination with the retrieved fire cluster area.  This can be illustrated by 

comparing the cluster-level FRPp flux to the FRPf flux, given by   

FRPpFlux =
FRPpi
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i=1
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       (3.1) 
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!
       (3.2) 

where the output is provided in units of Wm-2 per fire pixel cluster (Figure 3.12c,d).  The 

FRPf flux and FRPp flux are strongly correlated for both the sum method (R = 0.83) and 

the single retrieval method (R = 0.89).  Furthermore, a strong rank correlation (Rrank sum = 

0.89 and Rrank single = 0.66) suggests there is a strong monotonically increasing 

relationship between the FRPf and FRPp fluxes.  While limited by a small sample size, 

Figure 3.12c,d shows that the magnitude of FRPf flux ranges from ~3000 to 10000 Wm-2, 
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and the FRPP flux ranges from ~20 to 80 Wm-2.  Obviously, the magnitude of the FRPf 

flux (based on retrieved fire area) is more realistic for the large fire clusters used in this 

study.  

 
 
Figure 3.12:  (a) Pixel-level comparison between FRPp (current MODIS pixel-based 
FRP) and FRPf (sub-pixel-based FRP) for all six cases.  Solid line corresponds to the 
linear fit equation.  (b) FRPf – FRPp as a function of viewing zenith angle.  (c) Cluster-
level comparison between FRPp per cluster area (FRPp flux) and FRPf per fire area (FRPf  
flux) for all six cases using the sum of pixel-level retrievals method.  (d) Same as (c) but 
for the single retrieval from averages method.  Solid line corresponds to the linear fit 
equation and collocation case labels correspond to the first column of Table. 3.1.  The 
color scheme is based on the viewing zenith angle (distance from nadir). 
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Along with an improved quantification of fire intensity, FRPf flux can be used to 

examine the basic properties of a fire event by differentiating large fires burning at a low 

FRPf from small fires burning at a high FRPf.  For example, the cluster fire area in case 

#5 is one of the largest (~0.38 km2), while the FRPf flux is one of the smallest (~3900 

Wm-2).  In fact, both large VZA cases (#5 and #6) have the smallest FRPf fluxes, which 

are expected because they are nighttime cases.  Therefore, the general fire evolution and 

smoke plume characteristics in case #5 may be considerably different than case #1, which 

contains a relatively small fire cluster area (~0.01 km2) with a much larger FRPf flux 

(~10000 Wm-2).  These types of comparisons demonstrate the potential utility of the sub-

pixel retrieval for providing a detailed characterization of any given fire event, and show 

that FRPf flux may be useful for providing improved estimates of initial smoke plume 

buoyancy and injection heights.  However, more observational analysis is needed to 

support this hypothesis (see Chapter 6). 

 

3.7   Summary  

For the first time, the near-coincident observations obtained from the AMS, flown 

aboard the NASA Ikhana UAS, allowed the retrieved MODIS sub-pixel fire area results 

to be assessed with unprecedented accuracy (3-50 meter resolution).  This initial 

assessment showed that pixel clustering should be implemented to reduce errors that are 

difficult to characterize on a per-pixel basis, such as those from PSF differences, and the 

clustering sum of individual retrievals method may have the greatest relevance to future 
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operational algorithms.  Comparisons between the AMS and MODIS fire areas 

revealed the impacts from several indirect effects on the retrieval that are difficult to 

characterize, such as PSF effects, location relative to nadir (viewing zenith angle), and 

the overall distribution of sub-pixel hot spots within the fire pixel.  In addition, a strong 

correlation (R = 0.93) was found between the fire area/temperature-based FRPf and the 

current pixel-based MODIS FRPp.  This suggests that the sub-pixel-based calculation of 

FRPf has the same merit as the current FRPp, but contributes information that the current 

MODIS product is lacking.  For example, retrieved cluster fire area, along with the sub-

pixel-based FRPf, allowed a large fire burning at a low intensity to be separated from a 

small fire burning at a high intensity, and also facilitated calculations of FRPf flux over 

the retrieved fire area. 
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Chapter 4.   Sensitivity Analysis  
 
 

4.1   Introduction  

In Chapters 2 and 3, a modified sub-pixel retrieval was developed to account for 

atmospheric effects and variations in Earth-satellite geometry for MODIS fire pixels, 

with the goal of application to future satellite sensors (e.g. NPP VIIRS and GOES-R).  

Since the algorithm development and initial assessment have been accomplished, this 

chapter focuses on the uncertainty introduced to the sub-pixel retrieval algorithm from 

errors in the estimated or assumed values of three primary direct input variables: (1) 

background brightness temperature, (2) background emissivity, and (3) the atmospheric 

column water vapor amount.   

These variables may introduce uncertainty into the retrieval outputs because they 

are required for the creation of the lookup tables (equations 2.3 - 2.6).   In addition, the 

sub-pixel retrieval is only applied to the pixels that are flagged as fire pixels by the 

standard MODIS fire product, and is therefore subject to any limitations from the MODIS 

fire detection algorithm.  Several earlier studies (e.g. Giglio and Kendall, 2001; Zhukov 

et al., 2006) have shown that temperature variations (noise) within the background 

region, especially at 11 µm, have the potential to dramatically affect the output of a sub-

pixel retrieval.  However, the potential impacts resulting from an improper assumption of 

background emissivity or the atmospheric column water vapor amount (used for 

atmospheric correction) have not been quantitatively analyzed, and are paramount to 

understanding the overall sensitivity of this sub-pixel retrieval.   
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With the recent aid of high-resolution AMS observations, deviations in 

retrieved fire area resulting from errors in these direct input variables and the subsequent 

effects on FRPf can be assessed in great detail.  Therefore, this chapter builds upon earlier 

sub-pixel sensitivity studies by providing a detailed quantitative assessment of the current 

retrieval’s sensitivity to variables (1) - (3), which are described in Sections 4.2, 4.3, and 

4.4, respectively.  As displayed in Figure 4.1, this chapter incorporates the same 

California test cases and AMS data used to assess the sub-pixel algorithm in Chapter 3, 

but also requires information on local vegetation type and topography.  

 
 

4.2   Atmospheric Profile 

Considering that the AMS fire data used in this study are for California fire events 

occurring in the late summer or early fall (Figure 4.1), the atmospheric profile in 

SBDART is assumed to be a representative, climatologically based mid-latitude summer 

profile (default profile) for the Continental United States, which includes 2.92 g/cm2 of 

water vapor in the atmospheric column (McClatchey et al. 1972; Ricchiazzi et al., 1998).  

However, the day-to-day relative change of water vapor will likely have an effect on the 

retrieval, and therefore the sensitivity of the 4 and 11 µm channels to water vapor amount 

must be examined. 
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Figure 4.1:  Map showing the locations of the six California test cases as red circles 
(daytime) or a blue box (nighttime).  The specifics of each MODIS and AMS collocation 
are provided in the side panel, with the viewing zenith angle (VZA) corresponding to the 
mean VZA for all MODIS fire pixels in each test case.  Green shading indicates regions 
where evergreen, needle-leaf forest is the dominant vegetation type and black contours 
indicate variations in topography, with a contour interval of 500 meters.  In addition, the 
locations of the two relevant radiosonde stations are displayed as brown triangles (see 
Section 4.2.1 for details). 
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4.2.1 Variations in Water Vapor Amount and Temperature 

 As shown by Kaufman et al. (1998a), water vapor absorption is minimal in the 

primary (3.96 µm) MODIS fire detection channel, but the impact at 11 µm is less certain.  

Figure 4.2a,b is based on the column water vapor amount, and shows comparisons 

between the surface kinetic temperature (Tsfc) and the TOA brightness temperature 

(BTTOA) for a test case near nadir (case #1, mean VZA = 13o) and a test case at the edge 

of a given scene (cases #5 and #6, mean VZA = 64o).  From this display, it is 

immediately evident that an atmospheric correction is required for the 11 µm channel, 

evidenced by 11 µm BTTOA values that are at least 100 K cooler than Tsfc (when Tsfc > 

~700 K), especially when the VZA is 64o (longer path length).  At the 4 µm background 

BTTOA range, commonly 290 - 315 K, the difference between Tsfc and BTTOA is very 

small (< 10 K), and is the primary reason for not correcting the MODIS 4 µm background 

temperature (T4b) in the FRPf equation (1.2).  However, an atmospheric correction does 

become necessary as the 4 µm surface temperature increases (presumably from fire) 

because the relative change between Tsfc and BTTOA remains approximately the same.  

For example, a Tsfc of 400 K will produce a 4 µm BTTOA that is ~8 K (16 K) cooler when 

the VZA is 13o (64o), but this change grows to ~80 K (160 K) when the surface 

temperature warms to 1400 K.  
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Figure 4.2:  Comparisons between Tsfc and BTTOA using the mid-latitude summer 
column water vapor amount (2.92 g/cm2) for the 4 µm channel (a) and the 11 µm channel 
(b).  This case corresponds to a fixed SZA of 48o and RAZ of 165o.  VZAs of 13o and 64o 
are respectively denoted by the solid green and dashed red lines.   

 

 The deviations in BTTOA relative to the values obtained in Figure 4.2a,b are 

displayed in Figure 4.3a-d as a function of Tsfc and several potential column water vapor 

amounts.  At 4 µm (Figure 4.3a,c), a large increase or decrease in column water vapor 

(from the mid-latitude summer value) will produce small changes in BTTOA, falling 

within the ranges of ±14 K and ±26 K when the VZA is respectively 13o and 64o, for any 

given Tsfc value.  In contrast, the steep slope and tight gradient of the contours in Figure 

4.3b,d shows that the 11 µm BTTOA is much more sensitive to small changes in column 

water vapor than 4 µm, especially when Tsfc is high (e.g. > 1000 K).  In these cases, the 

11 µm BTTOA can change by more than ±100 K.  The impact of water vapor absorption is 

even more significant at the VZA of 64o (Figure 4.3d), where deviations in BTTOA of 

more than ±200 K can occur for relatively small changes in column water vapor amount, 

especially for high values of Tsfc.    

!"#!$#
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Figure 4.3:  Sensitivity to variations in atmospheric column water vapor amount 
displayed as the change in BTTOA relative to the values obtained using the mid-latitude 
summer column water vapor amount (Figure 4.2) as a function of Tsfc and column water 
vapor amount.  The 4 and 11 µm channels are respectively displayed in (a) and (b) for the 
viewing zenith angle of 13o.  Similarly, (c) and (d) correspond to the viewing zenith angle 
of 64o.  The solid, black contour indicates the mid-latitude summer column water vapor 
amount and dotted blue, dashed green, and solid red contours indicate a positive (or 
negative) change in BTTOA of < 50 K (> -50 K), 50 to 149 K (-50 to -149 K), and ≥ 150 K 
(≤ -150 K), respectively.  This case corresponds to a fixed SZA of 48o and RAZ of 165o. 

 

The larger impact of column water vapor amount on the 11 µm BTTOA partially 

results from a relatively large reduction in atmospheric transmission (as compared to the 

counterparts at 4 µm).  For example, the mid-latitude summer water vapor profile (2.92 

g/cm2) produces a transmissivity of about 0.96 and 0.87 at 4 and 11 µm, respectively.  

However, a modified profile, containing 1.1 g/cm2 of column water vapor, produces 4 
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and 11 µm transmissivities of 0.98 (2% change) and 0.93 (7% change), respectively.  

In addition, the BTTOA of a fire pixel may increase relatively less at 11 µm when 

compared to 4 µm because the wavelength of peak emission shifts toward shorter 

wavelengths as the temperature increases (e.g. Wein’s Law).  Therefore, the combination 

of increased water vapor absorption and lower sensitivity to warm temperatures likely 

explains the large surface to TOA temperature differences observed at 11 µm in Figure 

4.3b,d, which may ultimately affect the accuracy of the bi-spectral, sub-pixel retrieval.  

In many California fire events, the atmospheric water vapor amount will be low, 

especially near the surface, ultimately resulting in a lower column water vapor amount 

than the mid-latitude summer profile.  In fact, most of the test cases are associated with a 

Santa Ana synoptic pattern and cloud cover effects are minor, even in the northern 

California test cases (#5 and #6).  MODIS level-2, Collection 5 water vapor data 

(MOD05_L2/MYD05_L2, http://ladsweb.nascom.nasa.gov/data/search.html, King et al., 

2003) show that the column water vapor in the vicinity of the six test cases ranges from 

about 0.75 to 1.70 g/cm2, which is a considerable deviation from the mid-latitude summer 

value of 2.92 g/cm2 and falls near the minimum value considered in Figure 4.3a-d.  Any 

impacts from variations in the temperature profile are also uncertain.   

Based on the potential for large, regional deviations in the atmospheric profiles, a 

mean observed sounding from all six test cases was derived and compared to the mid-

latitude summer SBDART profile.  For the southern California test cases (#1-4 in Figure 

4.1), observed soundings were obtained from San Diego, California (station KNKX, 

#72293), while Reno, Nevada (station KREV, #72489) was used for the Northern 

California test cases (#5-6 in Figure 4.1).  With the MODIS overpass occurring near the 
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midpoint between the 12:00 Z (day 1) and 00:00 Z (day 2) sounding times for test 

cases #1-4 (between 00:00 Z and 12:00 Z on day1 for test cases #5-6), the sounding at the 

time of the MODIS overpass is simply the mean of the a priori and a posteriori 

soundings.  The observed atmospheric profile (to be compared with the mid-latitude 

summer profile) can then be produced by calculating median of the four mean water 

vapor and temperature profiles coincident with the four MODIS overpasses.  Figure 

4.4a,b shows that the mid-latitude summer temperature profile falls within the observed 

range of temperature at many levels, but there are differences of 2-5 K near the surface 

(inversion effects) and differences approaching -10 K near the tropopause.   

The observed profile is computed using only the mandatory pressure levels, which 

are subsequently interpolated to the levels of the SBDART input sounding.  As a result, 

the column water vapor amount may have a dry bias, but the impact could be mitigated if 

more levels were considered or if the local sounding observation times were closer to the 

MODIS overpass times.  For example, the total column water amount of the observed 

profile ranges from 0.59 to 1.35 g/cm2, which is lower than the range of 0.75 to 1.70 

g/cm2 provided by MODIS water vapor data.  However, both techniques show there is a 

considerable deviation from the mid-latitude summer value, resulting from reduced 

mixing ratios in the lowest 75% of the sounding (Figure 4.4c,d).  A large range in mixing 

ratio values also exists below 5 km due to the potential for marine influences (e.g. 

afternoon sea breeze), primarily from test cases #1-4, impinging on these otherwise dry 

regions of the western United States.  However, the observed range commonly falls 

below the mid-latitude summer values and suggests that uncertainty may be introduced in 

the sub-pixel retrieval, primarily from the increased 11 µm transmissivity. 
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Figure 4.4:  Atmospheric profile comparisons.  (a) Comparison between the observed 
(dashed red) and the default mid-latitude summer (solid black) temperature profiles.  Red 
error bars indicate the range of observed temperatures at each height AGL, with each red 
data point corresponding to the median.  (b) The observed temperature profile 
(interpolated to match the height levels of the default mid-latitude summer profile) 
subtracted from the default profile (absolute change).  (c) and (d) Same as (a) and (b), 
respectively, but for the moisture profiles (mixing ratio), with the relative change 
(observed/default) in mixing ratio used in (d).  
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4.2.2 Retrieval Uncertainty Associated with the Atmospheric Profile  

While earlier studies on sub-pixel retrievals did incorporate an atmospheric 

correction (e.g. Giglio and Kendall, 2001; Zhukov et al., 2005, 2006), few, if any, of 

these studies show the effects originating from an improper assumption of the 

atmospheric profile.  In this study, modified 4 and 11 µm lookup tables were produced 

using the observed temperature and water vapor profiles described in the previous 

section, allowing the theoretical relationships between the 4 and 11 µm pixel temperature 

to be examined for each atmospheric profile.  Specific examples are presented in Figure 

4.5a-d, corresponding to the sub-pixel retrieval’s lookup table for a single fire pixel in 

test case #1 when the VZA = 14o, SZA = 48o, and RAZ = 165o (same as Figure 2.2).  As 

described in Chapter 2, each dashed curve represents the pixel temperatures at 4 and 11 

µm that result from specified values of fire area fraction for varying fire temperatures.  

Each solid curve, on the other hand, represents the pixel temperatures that result from 

specified values of fire temperature for varying fire area fractions.  From this display, it is 

immediately evident that the 4 µm channel is more sensitive to changes in fire 

temperature and the 11 µm channel is more sensitive to changes in fire area fraction.  

Therefore, drawing from the water vapor effects at 11 µm (Figure 4.3b,d), changes in the 

atmospheric profile are likely to have the largest impact on retrieved fire area because for 

the same fire area fraction and fire temperature, less water vapor will greatly increase the 

brightness temperature at 11 µm. 



 69 

 
 
 
Figure 4.5:  Theoretical relationships between the 4 and 11 µm pixel temperature for 
various values of fire temperature and fire area fraction when using the input data for 
California test case #1 (displayed in Figure 4.1).  (a) and (c) respectively show the lookup 
tables needed for the sub-pixel retrieval using the climatologically based mid-latitude 
summer water vapor profile (2.92 g/cm2) and the observed water vapor profile (1.06 
g/cm2).  Each dashed curve represents the relationship between the 4 and 11 µm pixel 
brightness temperatures at specified values of fire area fraction for varying fire 
temperatures.  Each solid curve represents the relationship between the 4 and 11 µm pixel 
brightness temperatures at specified values of fire temperature for varying fire area 
fractions.  Zoomed views of the lower-left portion of (a) and (c) are respectively 
displayed in (b) and (d), and correspond to the location of the superimposed red dot, 
which indicates a sample fire pixel from California test case #1.  The specific retrieval 
inputs and results are provided in the black boxes.   
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When comparing the retrieval that uses the mid-latitude summer atmospheric 

profile (Figure 4.5a), with the retrieval that is modified for the observed atmospheric 

profile (Figure 4.5c), the reduced column water vapor in the latter case renders a shift of 

the entire lookup table towards higher 11 µm brightness temperatures, with little change 

based on the 4 µm channel.  Consequently, the primary impact on the retrieval is a 

reduction in fire area fraction (between Figure 4.5a and Figure 4.5c) for any given set of 

pixel temperatures.  However, the retrieved fire temperature concurrently increases (to a 

lesser extent) due to the minimal atmospheric effects at 4 µm.  The superimposed red dot 

displayed in Figure 4.5b,d (corresponding to the location in Figure 4.5a,c) represents the 

actual retrieval result using the residual-based method (described in Chapter 2) and 

highlights the effect caused by a change in the atmospheric profile.  This sample fire 

pixel has an observed 4 µm pixel temperature of 366.8 K and 11 µm pixel temperature of 

306.3 K, which produces a retrieved fire area fraction of 0.012 and a fire temperature of 

660 K using the mid-latitude summer lookup tables.  In contrast, the fire area fraction 

decreases to 0.007 and the fire temperature increases to 720 K when using the modified 

lookup tables.  

Similar to Figure 4.5, the retrieved fire area for all 33 valid fire pixels (from test 

cases #1 to #6) is overestimated when using the mid-latitude summer atmospheric profile 

(red data points in Figure 4.6a) compared to the observed profile (blue data points in 

Figure 4.6a), with a mean difference of 69.1%.  Figure 4.6a also shows that this 

overestimation is slightly larger for the fire pixels with large VZAs, which can be 

explained by the effect of longer path lengths (displayed in Figure 4.3c,d).  Interestingly, 

the modified retrieval for the observed atmospheric profile does not improve the 
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correlation between the retrieved fire area and the AMS observations (R = 0.57) when 

compared to the counterparts from using the mid-latitude summer profile (R = 0.59, 

Table 4.1).  In fact, the observed profile seems to result in retrieved fire areas that may 

even be too low compared to AMS, which likely stems from the low column water vapor 

amount value of 1.06 g/cm2.  Figure 4.3a-d shows that a column water vapor observation 

of less than ~1.5 g/cm2 falls in the region where the BTTOA changes rapidly for small 

changes in water vapor amount.  Therefore, relatively small errors in the water vapor 

profile will result in a relatively large change in retrieved fire area.  

 

 

 

Table 4.1:  Statistics for the atmospheric effect on retrieved fire area and FRP. 
 

Column Water Vapor Amount 
(g/cm2) RMSE R R2 

MODIS (Retrieved) vs. AMS (Observed) Fire Area (km2) 
2.92 (Mid-Latitude Summer) 0.03 0.59 0.35 

1.06 (Observed) 0.04 0.57 0.32 

    

Sub-Pixel FRPf vs. Current MODIS FRPp (MW)  
2.92 (Mid-Latitude Summer) 77.57 0.93 0.86 

1.06 (Observed) 31.5 0.98 0.96 
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Figure 4.6:  Retrieval sensitivity to atmospheric column water vapor amount.  (a) Pixel-
level comparisons between retrieved MODIS fire area and AMS observed fire area, with 
black error bars indicating the change in retrieved fire area using the mid-latitude summer 
(red symbols) and the observed (blue symbols) water vapor profiles.  (b) and (c) Same as 
(a), but respectively for pixel-level comparisons between FRPp and FRPf, and cluster-
level comparisons between FRPp per cluster pixel area (FRPp flux) and FRPf per fire area 
(FRPf  flux) using the sum of pixel-level retrievals method.  The California test case 
labels in (c) correspond to Figure 4.1.  The plot symbol type in (a-c) indicates the viewing 
zenith angle of each pixel.   

 

 As a result of the offsetting changes in fire area fraction and temperature (Figure 

4.5) from the observed profile, it can be expected that the effect on FRPf (equation 1.2) 

will be relatively small in comparison to fire area.  Figure 4.6b shows the current MODIS 
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FRPp compared to the retrieved FRPf when using the mid-latitude summer and 

observed atmospheric profiles, and the change in FRPf is indeed small, with a mean of 

20.7% and many pixels less than 10%.  As with fire area, the largest differences occur 

with large VZAs, but also at high FRP values.  In these cases, the surface fire temperature 

is likely larger, which would enhance the effect of an atmospheric correction based on 

Figures 4.2 and 4.3.  The observed profile also increases the correlation between FRPp 

and FRPf (R = 0.98) and reduces the RMSE by 59.4% (Table 4.1).  However, caution 

must be used when interpreting this result because FRPp itself is based on a best-fit 

methodology with its own uncertainty (e.g. Kaufman et al., 1998a).  Therefore, FRPp 

should be considered as a base for comparison rather than a true, observed quantity 

(Chapter 3). 

It is obvious that variations in the atmospheric profile have the largest impact on 

retrieved fire area (Figure 4.6), which is manifested in the calculation of FRPf flux per 

total fire pixel cluster area (equation 3.2, using the sum of pixel-level retrievals method), 

where the mean difference is 53.2% (Figure 4.6c).  Similar to Chapter 3, the cluster FRPf 

flux, produced using both profiles, compares well to the FRPp flux, but provides much 

more realistic values for the large fire events in the test cases.  However, the results of 

this study show that the chosen atmospheric profile can have a noteworthy impact on the 

accuracy of the cluster FRPf flux, especially when the atmospheric column water vapor 

amount is very low.  This study only provides one such example and other locations with 

very low (or very high) column water vapor amounts, as well as regions with large 

seasonal temperature variations (e.g. winter fire events) may also require a modified 
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atmospheric profile.  Therefore, if the retrieval is applied on a global-scale, a variety of 

atmospheric profiles will be included with the lookup table calculations. 

 

4.3   Background Emissivity 

Based on previous studies, the 4 and 11 µm background emissivities (e4b and e11b 

in equations 2.3 and 2.4) are assumed to be respectively equal to 0.95 and 0.97 (e.g. 

Giglio et al., 1999; Petitcolin and Vermote; 2002; Tang et al., 2009), which is true for 

relatively dense, green vegetation, such as the temperate evergreen forests used in this 

study.  However, in broader spatial domains, it is very possible that the background 

emissivity in each fire detection channel (4 and 11 µm) may vary.  Several studies (e.g. 

Giglio et al., 1999; Petitcolin and Vermote; 2002; Tang et al., 2009) show that the 

emissivities for dense, green vegetation, such as tropical rainforest, are commonly very 

close to 0.96 in both channels.  In contrast, vegetated surfaces with a higher reflectivity, 

such as dry grassland, may result in a larger departure from 0.96 and may also result in a 

significant inter-channel difference.  For example, Giglio et al. (1999) show that 

emissivities for dry savannah or dry temperate grasslands are about 0.86 and 0.92 at 4 

and 11 µm, respectively.   

In order to study how each region’s background emissivity may affect the 

retrieval, the MODIS sub-pixel algorithm is run for each potential emissivity situation 

provided in the literature, ranging from 0.75 - 1.0 at 4 µm and 0.91 – 1.0 at 11 µm.  For 

most pixels, the difference in retrieved fire area is between 6.2% and 25.3% with a mean 

of 11.3% (see Table 4.2 in Section 4.5), which corresponds to a change in fire area from 
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less than 100 m2 to over 1000 m2.  In addition, the potential variability in retrieved fire 

area is independent of the size of the fire event (based on AMS observations, not shown).  

However, if the dry grass situations are removed, then the mean variability would 

decrease to 3.4% and most pixels would fall in the range of 1% to 7%.   

The effect of background emissivity on FRPf and FRPf flux is also small, but in 

contrast to the atmospheric profile sensitivity, FRPf is actually the most sensitive output 

variable (Figure 4.7) due to the larger range of potential emissivity values associated with 

the 4 µm channel.  As shown in Figure 4.5, the 4 µm channel is highly sensitive to 

changes in retrieved fire temperature, hence this duel channel emissivity simulation 

affects FRPf slightly more than retrieved fire area, with a mean variability of 19.2%.  

Figure 4.7 shows that this variability increases with increasing FRPf, which is largely 

independent of the observed VZA.  However, as with retrieved fire area, the sensitivity of 

FRPf to background emissivity becomes almost negligible if the dry, brown vegetation 

scenarios are removed.  Therefore, with the six test cases located in regions that are 

dominated by forest (Figure 4.1), it is very likely that the assumed emissivity values (0.95 

at 4 µm and 0.97 at 11 µm) will not result in large retrieval errors.  In fact, regions that 

are completely dominated by dry, brown vegetation are the only situation where the 

emissivity impact would become significant.  In these cases, emissivity or normalized 

difference vegetation index (NDVI) data from MODIS (or other sources) could be 

incorporated as a direct input variable, which may prove valuable if the sub-pixel 

algorithm is implemented on a global-scale. 
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Figure 4.7:  Pixel-level comparisons between FRPp (MODIS pixel-based FRP) and FRPf 
(sub-pixel-based FRP).  Grey error bars are used to indicate sensitivity to background 
emissivity selection for several green and brown vegetation scenarios, with the color 
scheme indicating the viewing zenith angle. 

 

4.4   Background Temperature  

For any sub-pixel calculation, the background TOA brightness temperature (BTb) 

is defined as the non-burning portion of the pixel (e.g. Dozier 1981), but this value is not 

currently obtainable using MODIS data for that pixel.  Therefore, the MODIS fire 

detection algorithm approximates the BTb via a neighborhood search within a square 

window that progressively widens as necessary around a potential fire pixel until at least 

25% of the pixels in the square are valid background pixels (absence of fire) and the 

number of these valid pixels is at least eight (Kaufman et al., 1998a; Giglio et al., 2003).  

Not surprisingly, this method may result in a large difference between the in-pixel BTb 

and the MODIS approximation (BTbm), especially with large VZAs. 
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4.4.1 Mischaracterization of the MODIS 11 µm Background Temperature 

The bi-spectral approach in the MODIS sub-pixel algorithm requires an accurate 

estimation of both the 4 and 11 µm BTbm (Chapter 2).  While the MODIS fire detection 

algorithm uses the same fire-free pixels to compute the BTbm for the 4 and 11 µm 

channels (Justice et al., 2002; Giglio et al., 2003), few, if any, subsequent calculations 

(e.g. FRPp) require the use of the 11 µm BTbm, thus any errors at 11 µm may have gone 

unnoticed or have been disregarded.  For example, 3 out of the 37 MODIS fire pixels 

used in the test cases have a pixel brightness temperature that is less than the BTbm at 11 

µm, while the 4 µm brightness temperatures display no such mischaracterization (Figure 

4.8).  The three pixels with an error also occur during the daytime, which may increase 

the background noise due to unequal heating of the surface.  Regardless, any such error 

produces a major limiting factor on the retrieval because sub-pixel calculations are not 

possible for any of these pixels, unless an improved background characterization 

technique is developed.  Zhukov et al. (2006) described a similar issue with the BIRD 

small satellite mission (operational from 2001-2004), but the spectral properties, pixel 

resolution, and background temperature methodology were significantly different from 

the MODIS sensor. 
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Figure 4.8:  Scatterplots showing the pixel and background brightness temperatures at 4 
µm (top) and 11 µm (bottom) for each MODIS fire pixel from the California test cases.  
Day and night observations are displayed as dots and triangles, respectively.  The color 
scheme indicates whether each day or night pixel is valid or has a background 
temperature mischaracterization error. 
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As described in Section 4.2, the MODIS 11 µm channel is much more sensitive 

to the relative change of cooler temperatures than the 4 µm channel, suggesting that the 

BTbm mischaracterization observed in the three MODIS fire pixels is most likely to occur 

when the sub-pixel fire area is very small (Zhukov et al., 2006).  Therefore, to create a 

spatial perspective on the sub-pixel fire properties of these pixels, the AMS data are 

incorporated (Figure 4.9a-c) and show that all three fire pixels actually contain fairly 

large sub-pixel fire area fractions (~0.01).  However, two of the pixels (Figure 4.9a,b) 

contain very diffuse fire hot spots and the remaining pixel (Figure 4.9c) contains pixel 

edge hot spots, which can greatly reduce the mean fire pixel temperature due to point 

spread function effects (described in Chapter 3; Calle et al., 2009).  Furthermore, the 11 

µm AMS data (free from saturation) can be averaged to provide a general representation 

of the sub-pixel fire brightness temperature (FTAMS), which will be considerably lower 

than at 4 µm due to the reduced sensitivity to higher temperatures, but will still be the 

warmest portion of the pixel.  This analysis shows that the three MODIS fire pixels 

displayed in Figure 4.9a-c have a mean 11 µm FTAMS less than 430 K, which is low in 

comparison to highly concentrated sub-pixel fire fronts that can produce mean 11 µm 

FTAMS greater than 460 K (described in Chapter 3).  Therefore, the observed combination 

of diffuse or pixel edge hot spots, at relatively low FTAMS values, likely reduces the mean 

MODIS 11 µm fire pixel brightness temperature to the point where it cannot be 

distinguished from general background noise.  
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Figure 4.9:  Spatial displays of the AMS-derived fire locations (red shading) within the 
three MODIS fire pixels (a-c) that have a brightness temperature less than the 
background.  Black polygons indicate the boundaries of each MODIS fire pixel. 

 

 

At 11 µm, background noise can result from large burn scars, smoldering regions, 

or a relatively warm, heterogeneous location (Schroeder et al., 2010).  Additional 

variations in BTbm may result from changes in land cover (e.g. forest to exposed rock), 

topography, and aspect.  As shown in Figure 4.1, the test cases used in this analysis are in 

fairly mountainous terrain in California, a situation that may produce variations in BTbm 
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from high to low elevations and from slopes that face the sun (south slopes) versus 

slopes that face away from the sun (north), as well as vegetated to non-vegetated regions.  

Figure 4.10a,b highlights the 11 µm background noise surrounding the three pixels with 

an 11 µm mischaracterization using the MODIS and high-resolution AMS data.  While 

there is an offset of about 5 K between sensors (produced from differences in altitude and 

scan method), both scans (Figure 4.10a,b) show how complex topography and changes in 

aspect create variations in 11 µm temperature of more than 10 K over very short 

distances in these daytime scenes.  It is also evident that all three non-valid fire pixels 

(white shading in Figure 4.10) are located in a relatively cool region of the scan with 

much warmer regions in the immediate vicinity.  Therefore, depending on how wide the 

MODIS background pixel window becomes, the resulting mean 11 µm BTbm has the 

potential to be warmer than the fire pixel temperature, especially since as many as 21 

valid (non-fire) background pixels may be included (e.g. Kaufman et al., 1998a; Giglio et 

al., 2003).  With the pixel-level retrieval rendered impossible, these background 

temperature errors will affect the FRPf and effectively reduce the retrieved fire area in the 

corresponding fire pixel cluster, thus a quality control flag is currently being considered. 



 82 

 
Figure 4.10:  Maps showing the 11 µm brightness temperature for MODIS (left) and 
AMS (right) using California test case #1 (a) and case #3 (b).  Black polygons indicate 
the boundaries of MODIS fire pixels and a white-filled polygon indicates a MODIS fire 
pixel with a brightness temperature that is less than the background. 

 

4.4.2 Retrieval Uncertainty Associated with Background Temperature  

While MODIS is limited to a background window approximation, the AMS data 

allow the true in-pixel background brightness temperature (BTbp) to be calculated based 

on the distribution of AMS pixel temperatures at 4 and 11 µm within the MODIS pixel 

footprint (Chapter 3).  Figure 4.11a,b shows that the BTbp and BTbm are strongly 

correlated (R4 µm = 0.88 and R11 µm = 0.92), but for many pixels, the BTbm is cooler than 

the BTbp, which may result from differences in sensor characteristics.  For the daytime 

test cases, these deviations are reduced at the smallest VZAs (blue data points), 
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suggesting that off-nadir pixel growth may influence the background temperature 

noise.  However, there is paucity of available data and the test cases with the largest 

VZAs (64o) occur at night with no solar impact, which may explain the stronger 

agreement between BTbp and BTbm in the largest VZA cases (orange data points).  Even 

still, Figure 4.11a,b shows that there can be a considerable difference between the 

MODIS fire product and the AMS-derived in-pixel background brightness temperatures. 

 

 
Figure 4.11:  Comparisons between the MODIS fire product BTbm and the AMS derived 
in-pixel BTbp at 4 µm (a) and 11 µm (b).  The color scheme indicates the MODIS 
viewing zenith angle (distance from nadir).  Grey error bars indicate ±1.0 standard 
deviation of all AMS data points considered for the calculation of the BTbp.   

 

The incorporation of AMS data also allows the variability (±1.0 standard 

deviation) of the BTbp region (e.g. not flaming or smoldering) to be visualized (grey error 

bars in Figure 4.11a,b).  From this illustration, it is clear that the 4 µm BTbp region 

contains a larger range in temperature (~10 K) than at 11 µm (~ 5 K), suggesting that 

solar reflectivity may play a role.  In general, the variability of the BTbp increases as the 

VZA (pixel size) increases.  However, the MODIS fire pixels at the largest VZAs are 
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nighttime test cases where the temperature variability in the background region of the 

pixel should be reduced.  At 4 µm (and to a lesser extent at 11 µm), many of these 

nighttime, large VZA pixels have the largest variability in the BTbp.  In these cases, the 

large size of the background region may outweigh the effect of nighttime observation by 

allowing a wider variety of surface features, such as valleys and ridges (complex 

topography), to be contained within the boundaries of the MODIS fire pixel, greatly 

affecting the sub-pixel temperature distribution, even at night.  Therefore, Figure 4.11a,b 

also highlights the complexities in obtaining an accurate background temperature in a 

heterogeneous environment, where relatively large variations can occur even within the 

boundaries of an individual MODIS fire pixel.  

The impacts from these background brightness temperature errors on the sub-

pixel results are drastically different between the 4 and 11 µm channels.  Based on Figure 

4.11a, it is possible to observe a 4 µm BTbp error of 5 to 10 K.  However, an error of 5 K 

produces a relatively small change in retrieved fire area, averaging ~23.0% (Figure 

4.12a).  The effect on FRPf and the cluster FRPf flux is also small, with mean changes of 

13.8% and 20.8%, respectively (see Table 4.2 in Section 4.5).  The error bars in Figure 

4.12a display the resulting fire area variability on a per pixel basis, produced by running 

the sub-pixel retrieval with deviations of ±1.0 K from the observed BTbm up to a 

maximum deviation of ±5.0 K.  A closer examination reveals that the resulting change in 

retrieved fire area is very small for large fires with a high FRPf (~4 %) and larger for 

smaller fires with lower FRPf values (40 - 50%).  This discrepancy can be explained by 

fires with a high FRPf coinciding with a much larger difference between the flaming and 



 85 
the background regions than with low FRPf fires.  Therefore, high FRPf fires are not as 

susceptible to BTbm errors as low FRPf fires.   

 

 
 

Figure 4.12:  Retrieval sensitivity to background brightness temperature.   (a) and (b) 
Pixel-level comparisons between retrieved MODIS fire area and AMS observed fire area 
from the six California test cases.  Grey error bars indicate the sensitivity of the retrieval 
to a ±5.0 K error in the 4 µm BTbm and a ±1.0 K error in the 11 µm BTbm, respectively.  
The color scheme indicates the FRPf value for each pixel.  (c) Same as (a) and (b), but for 
pixel-level comparisons between MODIS FRPp and the sub-pixel FRPf.  (d) cluster-level 
comparisons between FRPp per cluster pixel area (FRPp flux) and FRPf per fire area 
(FRPf  flux) using the sum of pixel-level retrievals method.  The test case labels 
correspond to Figure 4.1. The color scheme in (c) and (d) indicates the MODIS viewing 
zenith angle.   

!"# !$#

!%# !&#

'

(

)*

+,



 86 
At 11 µm (Figure 4.12b), the error bars were produced by running the sub-pixel 

retrieval with deviations of ±0.5 K from the observed BTbm up to a maximum deviation 

of ±1.0 K, provided that the BTbm was cooler than the fire pixel brightness temperature.  

In this case, the small 1.0 K error in 11 µm BTbm produces in an enormous change in 

retrieved fire area, occasionally reaching an order of magnitude or more.  As with 4 µm, 

smaller fires with low FRPf are affected more than larger fires with a high FRPf, but the 

smallest change in retrieved fire area is still at least 50%.  The incomplete error bars in 

Figure 4.12b show that this simulation of a small BTbm error still resulted in several 

pixels that reached the mischaracterization threshold described in the previous section, 

where the retrieval was rendered impossible because the BTbm became warmer than the 

pixel brightness temperature.  Not surprisingly, the large errors observed in Figure 4.12b 

also produce large deviations in FRPf, which increase with large VZAs (Figure 4.12c).  

Similarly, the variability in FRPf, along with the large effect on retrieved fire area, greatly 

influences the cluster FRPf flux values, which change by more than 90% for all six fire 

clusters (Figure 4.12d).  However, this variability of FRPf flux (at both 4 and 11 µm) is 

based solely on the highly sensitive fire area component.  Therefore, Figure 4.12d 

represents a worst-case scenario for an error of ±1.0 K, and any variations in FRPf 

(shown in Figure 4.12c) may mitigate the FRPf flux sensitivity.   

 

4.5   Summary 

The previous three sections clearly show that several potential direct sources of 

error in the sub-pixel retrieval (summarized in Table 4.2), such as the atmospheric profile 
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and background emissivity assumptions, are contained within the large uncertainty 

range of small (±1.0 K) errors in the 11 µm BTbm.  Furthermore, the BTbp displayed in 

Figure 4.11b shows that variations in the 11 µm BTbm may occasionally reach up to 5 K, 

greatly increasing the uncertainty displayed in Figure 4.12b.  The sensitivity analysis of 

Giglio and Kendall (2001) showed a similar results, where the retrieved fire area was 

roughly 10 times more sensitive to errors in the 11 µm background brightness 

temperature than at 4 µm.  Therefore, this analysis confirms the results of previous 

studies (e.g. Giglio and Kendall, 2001; Zhukov et al., 2006), and suggests that the 11 µm 

BTbm is the primary factor limiting the accuracy of sub-pixel calculations, especially for 

small fires with a low FRPf. 

The results from this study suggest that the atmospheric profile assumption is the 

second principle source of error (Table 4.2), and will overestimate retrieved fire area for 

fire pixels observed in regions of low column water vapor amount, when using the 

current methodology.  However, incorporating multiple profiles into the retrieval process 

and matching the observed column water vapor amount to the closest atmospheric profile 

can easily alleviate this problem.  Therefore, the BTbm selection methodology is the 

primary focus for improvement, especially for future satellite missions, such as NPP 

VIIRS and GOES-R.  Currently, BTbm selection is heavily weighted on the 4 µm channel 

to ensure the region is free of smoldering or recently burned pixels (Giglio et al., 2003), 

but a correction for noise caused by variations in surface features is also required, 

especially at 11 µm.  Any future 11 µm background brightness temperature selection 

methodology will likely require the incorporation of topography, land cover, and aspect 
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data sets.  The background region could then be defined as nearby pixels that are not 

only free of fire, but also have similar characteristics as the fire pixel under scrutiny. 

 

Table 4.2:  Sensitivity summary for the MODIS sub-pixel retrieval. 
 

Variable % Change in Variable 
33 MODIS Fire Pixels Min. Max. Mean 

Atmospheric Profile (Mid-Latitude Summer vs. Observed)  
Retrieved Fire Area 10.02 102.22 69.05 
FRPf 1.85 42.1 20.68 
Cluster FRPf Flux 34.47 68.48 53.19 

    
Background Emissivity (0.75 - 1.00)   
Retrieved Fire Area 6.22 25.27 11.29 
FRPf 13.86 30.86 19.21 
Cluster FRPf Flux1 10.9 16.43 9.06 
    
4 µm Background Temperature (± 5.0 K from Observation) 
Retrieved Fire Area 4.18 55.67 22.92 
FRPf 2.92 43.03 13.71 
Cluster FRPf Flux1 14.09 36.56 20.78 
    
11 µm Background Temperature (± 1.0 K from Observation)2 
Retrieved Fire Area 50.6 196.22 121.96 
FRPf 5.29 79.03 37.61 
Cluster FRPf Flux1 93.68 131.44 104.95 
    

1 FRPf flux sensitivity is based on the sensitivity to retrieved fire area. 
2 Background temperatures are not allowed to increase above the pixel temperature. 
 

The results in Table 4.2 show that fire area is typically the most sensitive 

retrieved parameter to errors in the direct input variables, while FRPf is much less 

susceptible, due to offsetting effects from fire area fraction and temperature.  Chapter 3 

also showed that FRPf is strongly correlated to FRPp.  The combination of this result, and 

the reduced sensitivity, suggests that FRPf, by itself, can be used as an alternative 
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methodology to the current MODIS FRPp.  However, the primary reason for choosing 

the sub-pixel based method is that it also allows the radiant energy released over the area 

of the fire to be quantified via the FRPf flux, which may be useful for future fire weather 

and smoke modeling studies.  FRPf flux is also the second most sensitive parameter in the 

retrieval; hence it is desirable to investigate its relationship to key meteorological 

variables affecting smoke production, such as wind speed, over a broad spatiotemporal 

domain with known variations in column water vapor amount and background emissivity.  

Similarly, the total number and spatial distribution of fire pixels with an 11 µm 

background temperature error (described in Section 4.4.1) must also be investigated in 

greater detail.  To accomplish these goals, the sub-pixel retrieval is applied to a recent 

independent case study, explained in the following chapter. 
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Chapter 5.   Case Study of Texas and Oklahoma Wildfires  
 
 

5.1   Introduction 

To complete algorithm development and sensitivity analysis described in 

Chapters 2, 3, and 4, this chapter applies an operational version of the MODIS sub-pixel 

algorithm to an independent, large wildfire event, occurring between 4 September 2011 

(00:00 Z) and 8 September 2011 (23:59 Z).  This case study allows the overall 

performance, limitations, and utility of the retrieval to be explored in great detail, and 

also allows the spatiotemporal distribution of background temperature errors to be easily 

explored.  The overall study region, located within the United States and Mexico, is 

bounded by a range of 25 - 37 north latitude and 93 - 107 west longitude (Figure 5.1), but 

the primary focus is on the states of Texas and Oklahoma.     

Several months of persistent upper-level ridging, with 500 hPa heights averaging 

5 – 20 meters above the 1981-2010 climatology (contours in Figure 5.1), resulted in 

extreme drought conditions over the majority of the study region.  The five days of this 

case study were also marked by low relative humidity values and stronger than average 

surface winds, following the passage of a surface cold front.  Not surprisingly, 890 

MODIS fire pixels were observed (via Aqua and Terra) within the study region during 

the temporal window of this study (red and greed dots in Figure 5.1), with the vast 

majority observed in northeastern Texas and southeastern Oklahoma.  This region is an 

ideal location for testing the sub-pixel retrieval due to the combination of uniform, post-

frontal weather conditions and relatively homogeneous biomass and terrain.  Along with 

comparisons to the previously described California test cases, this Chapter will also 
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examine the potential utility of FRPf flux for the characterization of fire weather, 

which is another method for assessing the retrieval’s performance. 

 

 

 
 
Figure 5.1:  Map of the case study region, as denoted by the black box.  The MODIS fire 
pixels observed between 4-8 September 2011 are displayed as dots, with red indicating 
valid pixels and green indicating an error in the 11 µm background temperature.   Dashed 
contours indicate the mean 500 hPa height anomalies (based the 1981-2010 climatology) 
during the preceding three months (June, July, and August), with red and blue 
respectively indicating positive and negative anomalies. 
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5.2   Comparisons to the California Test Cases 

For this application, level-2, Collection 5 MODIS column water vapor data 

(MOD05_L2/MYD05_L2, http://ladsweb.nascom.nasa.gov/data/search.html, King et al., 

2003) were saved along with the retrieval output for each fire pixel, and show that the 

average atmospheric column water vapor amount (per pixel) over the five days was 2.09 

g/cm2.  This value is closer to the mid-latitude summer column water vapor amount of 

2.92 g/cm2 than the California test cases (described in Chapters 3 and 4).  However, a 

large range of 0.60 to 6.74 g/cm2 was also observed, which is produced by the study 

domain stretching from desert regions to the Gulf of Mexico.  The majority of the fire 

pixels are located in northeastern Texas, where the column water vapor amount likely 

falls much closer to the mean, suggesting that any resulting retrieval errors will be minor, 

especially compared to the test cases (e.g. Figure 4.7).  The few fire pixels in the western 

portion of the study region have column water vapor contents that are much closer to the 

California test cases (e.g. < 1.0 g/cm2), and thus will suffer from an overestimation in 

retrieved fire area.  However, specific pixel-level validations of retrieved fire area, via 

AMS (or any other method), were not possible.  A detailed examination of the 

background emissivity was also not considered due to the minimal sensitivity effect 

shown earlier (Table 4.2), but the extreme drought likely resulted in regions of brown 

vegetation that may produce a minor effect on the retrieval output.  
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Figure 5.2:  Pixel-level comparisons between FRPp (current MODIS pixel-based FRP) 
and FRPf (sub-pixel-based FRP) for the case study region displayed in Figure 5.1.  The 
solid line corresponds to the linear fit equation and the color scheme is based on the 
viewing zenith angle (distance from nadir). 

 
 

Similar to the results from the California test cases (Chapter 3), the retrieved FRPf 

in the study region is strongly correlated (R = 0.97) to the current MODIS FRPp for the 

valid individual fire pixels (Figure 5.2).  However, this case study exposed a secondary 

limitation of the retrieval, where 39 fire pixels (not considered in Figure 5.2 or the 

statistics above) had retrieved fire temperatures of 1500 K - the maximum value currently 

considered in the sub-pixel retrieval based on earlier studies (Giglio and Kendall, 2001; 

Zhukov et al., 2006).  Many of these pixels have an FRPf that compares nicely to the 

FRPp, but 11 pixels have an FRPf that is unrealistically high.  One explanation is that 

retrieval limit of 1500 K may be too low, which is evidenced by the questionable pixels 

corresponding to larger differences between the 11 µm pixel and background 
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temperatures (4-8 K) compared to the remainder of the 1500 K pixels (< 2 K).  

Similarly, Zhukov et al. (2006) allowed the retrieved fire temperature to increase above 

1500 K if the 11 µm (TIR) pixel brightness temperature was greater than the background 

temperature plus four standard deviations of the surrounding background noise.  

However, for this case study, it is generally observed that many of the 1500 K fire 

temperatures correspond to very low FRPp values (< 140 MW), reduced MODIS 

confidence levels, and small retrieved fire area fractions (< 0.001).  Therefore, these are 

likely small fires, such as a fire front in a grassland or pasture (Figure 5.3, Smith et al., 

2005; Mell et al., 2007; Stephens et al., 2008), which are also situations that greatly 

increase the uncertainty in the retrieval output (e.g. Giglio and Kendall, 2001; Peterson et 

al., 2012a).  As a result, the retrieved fire temperature of 1500 K may simply be an 

artifact of an underestimated 11 µm background temperature that produces an improper 

fit (artificially large difference between fire and background) in the observed radiances 

during the retrieval calculations (described in Chapter 2).  These pixels are currently 

flagged as invalid in the operational version of the algorithm. 
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Figure 5.3:  Landcover map for Texas and Oklahoma (http://gisdata.usgs.gov/). 

 
The 11 µm BTbm mischaracterization errors, highlighted in the California test 

cases (background warmer than the fire pixel), are also present in this case study, denoted 

by the green dots in Figure 5.1.  Specifically, 157 (17.6%) of the 890 MODIS fire pixels 

have this BTbm error, but seem to be randomly distributed within the study region, 

suggesting there is little spatial dependence on background noise.  The vast majority of 

these errors, including the largest magnitudes, occur with daytime pixels (Figure 5.4, 

Table 5.1), where 26.4% of the pixels have an error.  The case study domain has minimal 

topographic influences compared to the California test cases, suggesting that the 11 µm 

BTbm errors in eastern Texas and Oklahoma likely stem from variations in local land 
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cover (Figure 5.3), which may include forest (deciduous/evergreen), cropland, pasture 

land, and urban or other non-vegetated regions.  The major drought may also have 

created localized cases of brown or de-vegetated regions (presumably not irrigated) that 

are located nearby green, irrigated regions, which will have a considerably lower 11 µm 

BTbm than the dry regions.  Therefore, similar to the California test cases, daytime 

background noise at 11 µm is the key factor limiting the sub-pixel retrieval in this case 

study, further supporting the need for an improved BTbm selection methodology.  In stark 

contrast, the 4 µm background brightness temperatures displayed in Figure 5.4 are clearly 

free of any mischaracterization errors due to the channel’s reduced sensitivity to cooler 

temperatures.   

 

 
Table 5.1:  Statistics for the MODIS 11 µm background brightness temperature1. 
 

Observation Number of Pixels Pixels with Error % Error 
California Test Cases (Development)   

All Pixels 37 3 8.1 
Day Pixels 32 3 9.4 

Night Pixels 5 0 0.0 
    
Case Study (Application)   

All Pixels 890 157 17.6 
Day Pixels 571 151 26.4 

Night Pixels 319 6 1.90 
    

 

1 The California test cases are described in Chapters 3 and 4. 
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Figure 5.4:  Scatterplots showing the pixel and background brightness temperatures at 4 
µm (top) and 11 µm (bottom) for each MODIS fire pixel from the case study application.  
Day and night observations are respectively displayed as dots and triangles.  The color 
scheme indicates whether each day or night pixel is valid or has a background 
temperature error.  The corresponding statistical summary is provided in Table 5.1. 



 98 
5.3   Using FRPf Flux to Derive Fire Weather Relationships 

When considering the very nature of fire events, FRP is an excellent parameter to 

focus on because it is a direct measurement of fire intensity (Ichoku et al., 2008a).  

However, since the advent of satellite-derived FRP products, few, if any, studies have 

investigated the relationship between FRP and meteorological variables.  Peterson et al. 

(2010) did attempt to investigate any such relationships (via MODIS FRPp) over broad 

spatial domains located within the boreal forest of North America, but showed that there 

is a very weak correlation between FRPp and most fire-related weather variables, except 

for the overall synoptic environment (e.g. 500 hPa heights).  The lack of any significant 

correlation between FRPp and the meteorological variables (e.g. wind speed), which are 

assumed to greatly influence its intensity, likely stems from the previously described 

limitation of pixel size in the current MODIS FRPp data.  Therefore, the incorporation of 

retrieved fire area via the sub-pixel FRPf flux should greatly increase the usefulness of 

FRP data in fire weather studies and the resulting effects on smoke production. 

In this study, meteorological data were obtained from the North American 

Regional Reanalysis (NARR), which blends a variety of observational data into Eta 

model output containing 45 vertical layers across the North American continent with ~32 

km grid spacing every three hours (Ebisuzaki, 2004, Mesinger, 2006).  The NARR data 

(obtained in 2011 via http://nomads.ncdc.noaa.gov/data.php?name=access#narr_datasets) 

were subsequently downscaled onto a 10 km grid with one-hour temporal resolution by 

the Weather Research and Forecasting (WRF) model (e.g. Grell et al., 2005; Skamarock 

et al., 2005; Wang et al., 2012), and the MODIS fire observations, including the sub-pixel 

output, were geographically matched to the mesh of 10 km grid boxes and summed for 
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each day.  This data integration step is essentially the same as the clustering sum of 

pixel-level retrievals methodology (described in Section 2.2) and acts to reduce the 

previously described sensitivity effects by averaging out several systematic errors.  

Therefore, the grid boxes with a higher number of MODIS fire pixels will likely provide 

retrieved fire area with a higher accuracy, but this will be examined in greater detail in 

Chapter 6. 

While the California test cases allowed for a simple creation of fire clusters, 

comprised of several, mostly contiguous MODIS fire pixels, the case study domain 

described here (Figure 5.1) includes many fire pixels that may not be part of a contiguous 

cluster.  In addition, the relatively large MODIS pixel size, varying from 1 to 10 km 

(depending on VZA), also limits the number of observed contiguous pixels.  Therefore, 

investigating FRPf flux for all fire pixels contained within a 10 km grid box (or any 

similar model grid) is the most advantageous application of a clustering methodology for 

MODIS data.  Additional output includes the number of fire pixels, total fire area, total 

FRPf, and the total FRPp for each grid box, as well as the total number of invalid pixels, 

currently produced from 11 µm BTbm errors and reaching the fire temperature threshold 

of 1500 K.  These fire data can then be compared to the meteorological data from each 

model grid box at each one-hour time step. 

Drawing from the widely used Canadian Forest Fire Danger Rating System 

(CFFDRS), surface wind speed and temperature are key variables affecting fire-spread 

potential (Wagner and Pickett, 1985; Wagner, 1987).  As a result, these variables should 

also be strongly correlated to the FRP observations.  However, Figure 5.5a,c shows there 

is very little correlation between MODIS FRPp and the surface (10-meter) wind speed or 
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temperature (Rwind = 0.14, Rtemp = 0.18), which is similar to the aforementioned 

results in Peterson et al. (2010).  In contrast, the correlations with surface wind speed and 

temperature are significantly stronger (Rwind = 0.55, Rtemp = 0.77), when using the FRPf 

flux (Figure 5.5b,d).  In addition, the mean FRPf for 13 (57%) of these fire pixel clusters 

is greater than 100 MW (red triangles in Figure 5.5), suggesting that the large sensitivity 

to BTbm errors will be reduced via the fire area component (e.g. Figure 4.12).   

While these results are very encouraging, it is important to note that Figure 5.5 

only shows the 23 largest fire clusters, defined as a WRF grid box with at least six valid 

fire pixels.  When this cluster criterion is reduced, the correlation between FRPf flux and 

each meteorological variable decreases, while the number of available data points 

increases (Table 5.2).  For example, a cluster size limit of at least three valid pixels 

allows for 71 data points, but the resulting correlations (Rwind = 0.21, Rtemp = 0.48) are 

much lower than the case with a cluster limit of six pixels.  However, even with smaller 

cluster sizes, the correlations using FRPf flux typically remain stronger than the 

correlations using the basic number fire pixels, MODIS FRPp, and sub-pixel FRPf (Table 

5.2).  
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Figure 5.5:  Analysis of meteorological and satellite-retrieved parameters for the 23 
largest fire clusters in the case study domain (corresponding to Table 5.2).  (a) 
Relationship between the MODIS FRPp and surface (10-meter) wind speed.  (b) 
Relationship between the cluster FRPf flux and surface wind speed.  (c) and (d) Same and 
(a) and (b) but for the surface (10-meter) temperature.  The solid black line corresponds 
to the linear fit equation.  R, P, and N denote the linear correlation coefficient, P-value, 
and number of data points, respectively.  Red triangles in (b) and (d) indicate a fire pixel 
cluster with a mean FRPf > 100 MW. 
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Table 5.2:  Fire pixel cluster size and its effect on fire-weather correlations1. 
 

 Cluster Limitation Number of R Values 
Variable  (Valid Pixels) Clusters  Wind Speed Temperature 

Fire Pixels No limit 279 0.03 -0.05 
FRPp No limit 279 0.11 0.07 
FRPf  No limit 279 0.09 0.03 
FRPf Flux No limit 279 0.02 0.19 
     
FRPp 3 71 0.09 0.16 
FRPf  3 71 0.04 0.09 
FRPf Flux 3 71 0.21 0.48 
     
FRPp 4 52 0.08 0.17 
FRPf  4 52 0.03 0.10 
FRPf Flux 4 52 0.33 0.54 
     
FRPp 5 38 0.00 0.13 
FRPf  5 38 -0.05 0.05 
FRPf Flux 5 38 0.37 0.55 
     
FRPp 6 23 0.14 0.18 
FRPf  6 23 0.08 0.08 
FRPf Flux 6 23 0.55 0.77 
     

1 Fire pixel clusters are based on a 10 km model grid. 

 

The effect of variations in cluster size threshold is further examined in Figure 5.6 

by computing the correlation between the FRP and meteorological data for several fire 

pixel cluster size thresholds, ranging from 1 to 12 (a threshold of 12 indicates a cluster 

size ≥ 12 fire pixels).  As random effects are averaged out, the correlations using FRPf 

flux increase rapidly, become statistically significant, and begin to stabilize at a threshold 

of ~6 pixels, which is used in Figure 5.5 (upper limit in Table 5.2).  In contrast, the 

correlations using the MODIS FRPp remain very low (R < 0.20), and are not statistically 

significant for nearly every cluster size.  This suggests that FRPf flux is an improvement 

over FRPp for characterizing fire weather, especially for large fire pixel clusters.  
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However, as described earlier, this case study is an idealized fire event with generally 

uniform meteorological conditions within a region that is devoid of any major 

topography.  Therefore, attempting to identify relationships between meteorological 

variables and FRPf flux in regions with complex topographic features, and potentially 

large mesoscale variability, will be more challenging (see Chapter 6). 

 

 

Figure 5.6:  Correlations between the FRP data and the meteorological variables of 
surface wind speed (solid) and temperature (dashed) as a function of fire pixel cluster size 
and the number of available data points.  Red curves indicate FRPf flux and blue curves 
indicate FRPp.  Triangles are used to identify statistical significance, corresponding to a 
P-value < 0.05.  The horizontal, dotted line indicates the fire pixel threshold used in 
Figure 5.5.   

6 Pixels, 23 Data Points
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While this case study used a 10 km model grid, the methodology can easily be 

applied to any mesoscale model grid mesh.  Increasing the grid size will produce larger 

fire clusters and reduce the uncertainty associated with the fire area component of the 

FRPf flux, especially when the mean FRPf is high.  However, larger grid spacing may 

concurrently decrease the accuracy of the corresponding meteorological information; 

especially for variables like surface wind speed that often vary over short distances.  As a 

result, caution must be used when integrating meteorological data archives and the 

MODIS sub-pixel fire output.  Future sensors, such as NPP VIIRS (e.g. Csiszar et al., 

2011), will have a higher spatial resolution (~750 m), and may allow for clustering based 

solely on contiguous fire pixel clusters, similar to the BIRD satellite (Zhukov et al., 

2006).  In these cases, the accuracy of FRP-based fire weather analysis will improve 

because large fire clusters will be predefined and easily separated from small fires. 

 

5.4   Summary   

 This case study applied an operational version of the sub-pixel algorithm to a 

large 2011 fire event, centered on Texas and Oklahoma.  Similar to the results in Chapter 

4, this case study revealed that 17.6% of the 890 available fire pixels suffer from an 

overestimation error in the MODIS 11 µm background brightness temperature input data, 

with the vast majority, especially the large magnitude errors, occurring in daytime scenes.  

Similarly, background temperature underestimation errors, possibly associated with small 

fires, may produce an invalid fire temperature of 1500 K.   
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This chapter also showed that the sensitivity of the sub-pixel retrieval output 

is reduced when investigating large fire clusters (at least 4-6 MODIS fire pixels), which 

can defined based on the resolution of a mesoscale model grid.  Subsequent comparisons 

with meteorological data showed that the cluster FRPf flux, unlike the current MODIS 

FRPp, has a statistically significant correlation with surface wind speed and temperature, 

especially for clusters 6 or more MODIS fire pixels.  This encouraging result suggests 

that the cluster FRPf flux is not only an improved parameter for investigating fire 

intensity, but may also be useful for characterizing the meteorological effects on fire 

intensity.  In addition, the results discussed in this chapter provide valuable information 

for the potential applications of the sub-pixel retrieval, which are described in the 

following chapter. 
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Chapter 6.   Potential Applications in Boreal North America 
 
 

6.1   Introduction 

In the previous chapter, the sub-pixel retrieval algorithm was tested on a single 

fire event in Texas and Oklahoma (4-8 September 2011), which highlighted the 

limitations and potential utility of FRPf flux.  This chapter reports on the first large-scale 

application of the algorithm, in which a much larger volume of data is incorporated from 

two recent fire seasons in the North American boreal forest.  The specific study region, 

located primarily in central Alaska, is based on Peterson et al. (2010) and includes the 

core of the mountainous western boreal forest (Figure 6.1).  Within the study region, the 

fire season typically falls between May and September (Skinner et al., 1999; Stocks et al., 

2002; Fauria and Johnson, 2006), and the fire seasons of 2004 and 2005 were two of the 

three largest in the 73-year observational record (Kasischke et al., 2002).  The North 

American boreal forest is an ideal region of study due to the potential for very large, 

intense fire events (example displayed in Figure 1.1).  Previous research has shown that 

boreal fire events occasionally result in large-scale smoke transport, which may 

occasionally reach the Continental United States (e.g. Sapkota et al., 2005; Duck et al., 

2007).  In addition, over 30 years of research has focused on developing fire weather 

indices for operational use in the unique boreal ecosystem (e.g. Van Wagner and Pickett, 

1985; Van Wagner, 1987; Amiro et al., 2004).  This chapter will draw on these previous 

studies to examine the potential applications of FRPf flux, including: (1) smoke plume 

injection height estimates, (2) fire weather, and (3) the potential for improved modeling 

and prediction of (1) and (2). 
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Figure 6.1:  Map highlighting the boreal study region as a blue box (same as Figure A.1).  
The color scheme is based on the dominant vegetation types located within and 
surrounding the study region.  Dashed black contours indicate variations in topography, 
with a contour interval of 500 meters.   

 

6.2   Smoke Plume Injection Heights 

Currently, many smoke emissions inventories and global chemical transport-

modeling studies assume that smoke particles travel upward to a constant injection height 

based on an empirical relationship (e.g. Lavoue et al., 2000), or remain in the boundary 

layer (e.g. Reid et al, 2009).  However, Wang et al. (2012) show an example where the 

injection height of 2 km, typically assumed in modeling studies in Southeast Asia (Figure 

6.2a), should be reduced to ~0.8 km (Figure 6.2b) based on lidar observations provided 

by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, Figure 6.2c).  While 

it is commonly assumed that smoke aerosol particles are uniformly distributed up to a 
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peak altitude, Kahn et al. (2007) show that these particles tend to concentrate at 

discrete layers of increased atmospheric stability, located at the top of the boundary layer 

(BL) or another stable layer aloft.  In addition, cases of pyroconvection, which have been 

observed in many regions across the globe, can inject aerosol particles into the 

stratosphere (Fromm et al., 2010).  Indeed, fire characteristics can vary dramatically 

between individual fire events, biomes, and climate zones, greatly impacting smoke 

plume behavior, especially due to changes in fire intensity and local meteorological 

conditions.  This suggests that accurate modeling of smoke plume dynamics will require 

plume height information for every observed fire.  

 

 
Figure 6.2:  Inter-comparison of CALIOP-derived vertical profile of aerosol extinction 
coefficient (c) with the WRFchem simulated vertical profile of smoke concentration 
along the corresponding CALIPSO ground track (a) and (b) on 1 October 2006.  The 
model results in (a) are from a simulation with a smoke injection height at 2 km, while 
(b) uses a smoke injection height of 0.8 km (adapted from Wang et al., 2012). 

 
 

Unfortunately, the only two available satellite sensors that can give an indication 

of plume height at the global scale have severe limitations in spatial and temporal 

coverage.  CALIOP observes only curtains over a set of north-south lines that are 

hundreds of kilometers apart, and sees plumes only sparingly (e.g. Kahn et al, 2008).  

Similarly, The Multi-angle Imaging SpectroRadiometer (MISR) can only observe a given 

location once every 8 days, and only during the daytime (e.g. Diner et al., 1998; Kahn et 

(d)                                                                                  (e)                                                                                  (f )

(g)                                                                                (h)                                                                                    (i)

(j)                                                                               (k)                                                                                      (l)
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al., 2007, 2008).  Therefore, the only feasible way to obtain accurate plume height 

information for every observed fire is to derive it from the FRP data themselves.   

As described in previous chapters, the potential link between the current MODIS 

FRPp and smoke plume injection heights has not been quantitatively established, largely 

due to the lack of sub-pixel information for fires (e.g. Eckmann et al., 2010).  Therefore, 

the FRPf flux calculation could be a valuable asset to global fire monitoring (e.g. Zhukov 

et al., 2006; Peterson et al., 2012a) by providing estimates of the radiant energy (over the 

retrieved fire area) that in turn, relates to the true fire intensity that produces the thermal 

buoyancy of the smoke plume (Kahn et al., 2007, 2008).  This information can then be 

used in combination with MISR and CALIOP plume height observations (where 

available) to derive quantitative relationships between observed FRPf flux and smoke 

plume heights, ultimately improving smoke transport modeling and forecasts.  The 

following sections provide an example comparison between MISR smoke plume height 

and FRP data (both FRPp and FRPf flux) within the study region highlighted in Figure 

6.1. 

6.2.1 MISR Smoke Plume Height Data 

In this example, the MISR sensor aboard the Terra satellite is the primary source 

of smoke plume height data.  MISR provides multi-angle radiance imagery from a set of 

9 push-broom cameras, allowing the retrieval of buoyant smoke plumes and other aerosol 

layer heights above ground level, along with motion vectors via stereoscopic methods 

(e.g. Diner et al., 1998; Val Martin et al., 2010).  MISR data are provided at vertical and 

horizontal resolutions of 500 m and 1.1 km, respectively (Kahn et al., 2007).  As shown 

in Figure 6.3, individual smoke plumes are retrieved using the MISR INteractive 
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eXplorer (MINX), whereby a MINX user digitizes the source, boundaries, and smoke 

plume transport direction based on the corresponding Terra MODIS fire pixel locations 

(Figure 6.3a).  Provided for several geographic regions between ~2001 and 2009, the 

output for each individual MISR data point, located within a digitized smoke plume, 

includes smoke heights (Figure 6.3b), wind speeds, albedos, and aerosol properties.  This 

information (obtained in early 2012) is available from the MISR Plume Height Project 

(http://misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes).   

 

 
 

Figure 6.3:  (a) MISR imagery showing an example of a digitized plume region (green), 
wind direction arrow (yellow) and Terra MODIS fire pixels (red).  (b) Same as (a), but 
color-coded based on MISR wind-corrected plume heights 
(http://misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/). 

 

The MISR plume height data are limited by potential bias and errors inherent in 

the digitizing process as well as the exclusion of pyroconvection events (e.g. Val Martin 

et al., 2010).  The Aqua satellite does not have a MISR sensor, thus only MODIS fire 

data obtained from the Terra satellite are applicable.  In addition, the Terra daytime 

overpass, occurring in the late morning or early afternoon local time, does not coincide 

!"# !$#
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with the late afternoon maximum of observed fire intensity (e.g. Ichoku et al., 2008).  

While additional smoke plume information is available from CALIOP (lidar data, Figure 

6.2c), these data are better suited for horizontally extensive, but optically thin, boundary 

layer smoke located in downwind regions (e.g. Kahn et al., 2008).  Therefore, despite 

several limitations, MISR data are the best available option for investigating smoke 

plume heights near the source. 

This study uses the median height of each smoke plume, obtained by averaging 

the individual MISR data points within the digitized smoke plume boundary (e.g. Figure 

6.3b).  MISR plume heights are provided as the height above sea level (Kahn et al., 

2008), and therefore must be corrected a priori for the terrain in the boreal study region 

(Figure 6.1).  The MODIS fire pixel locations and FRPp values, provided by the plume 

height database, are then used to locate the matching FRPf flux values.  However, the 

total number of FRPp and FRPf flux data points are rarely the same due to the pixel 

overlap correction included within the sub-pixel retrieval algorithm described in Chapters 

2 and 3.  Therefore, only the MODIS fire pixels that coincide with FRPf flux observations 

are used to define a single fire pixel cluster because: (1) the standard MODIS fire 

product, including FRPp data, does not account for pixel overlap, which likely creates a 

positive bias in the fire cluster’s total FRPp and (2) MISR plume height data are provided 

for individual smoke plumes that obviously correspond to the same fire event. 

6.2.2 Comparing MISR Smoke Plume Heights with FRP Data 

As highlighted in previous chapters, the FRPf flux data should be used at the 

cluster-level (not the individual pixel-level) to reduce the effect from random sources of 

error, including PSF effects and background temperature.  In this example, the cluster 
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size threshold is set at the minimum number of fire pixels required to reduce the noise 

in the FRPf flux data located within the boreal study region (Figure 6.1).  This is 

visualized in Figure 6.4 by computing the correlation between the FRP data and smoke 

plume height for several fire pixel cluster size thresholds, ranging from zero to 25 (a 

threshold of 25 indicates a cluster size > 25 fire pixels).   

 

 
Figure 6.4:  Relationship between MISR smoke plume heights and FRP data, including 
FRPf flux (red line) and FRPp (dashed blue line), as a function of fire pixel cluster size 
and the number of available data points. 

 

This display shows that FRPp is weakly correlated with smoke plume height, 

except when the fire pixel cluster threshold is more than 17 pixels and the number of 

remaining data points is small.  In contrast, the correlation between FRPf flux and smoke 

plume height increases rapidly as the fire pixel cluster size reaches 10 to 12 pixels, thus 

indicating the threshold where random effects begin to be averaged out.  Above 12 pixels, 

12 Pixels, 34 Data Points

Cluster Size E!ect
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the R-value for the FRPf flux curve (red line) remains consistently above ~0.5.  

However, it is obvious that the vast majority of fire events, corresponding to this sample 

of plume height data, contain only 1-5 fire pixels.  Therefore, setting a cluster threshold 

between 10 and 12 pixels includes only about 8-11% of the available data points. 

Using the 34 available data points provided by a cluster threshold of 12 fire pixels 

(highlighted by the dashed horizontal line in Figure 6.4), comparisons between MISR 

smoke plume heights and FRP data show that the current MODIS FRPp produces a weak 

relationship with smoke plume heights (R = 0.16, Figure 6.5a).  In contrast, Figure 6.5b 

shows that FRPf flux displays a stronger relationship (R = 0.49), and therefore may offer 

a more reliable characterization of the thermal buoyancy required for estimating smoke 

plume height.  While the sample size is small, improved plume height estimates have the 

most value for these large fire events due to the increased chance of injection above the 

BL and large-scale smoke transport.   

 
Figure 6.5:  (a) Relationship between the Terra MODIS FRPp and MISR smoke plume 
height for clusters of at least 12 MODIS fire pixels in the boreal forest of Alaska (2004 
and 2005).  (b) Same as (a), but using the cluster FRPf flux.  The solid black line 
corresponds to the linear fit equation.  R, P, and N denote the linear correlation 
coefficient, P-value, and number of data points, respectively. 
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Using a similar study region, Kahn et al. (2008) show that while the height of 

the BL can range from 0.25 to 3.0 km, it is commonly observed between ~1.0 and 1.5 

km, and only about 10% of smoke plumes are injected above this threshold.  Figure 6.5b 

shows that the smoke plumes provided in this sample range in height from 0.5 – 4.0 km, 

and there is potential for smoke plumes to reach above 1.5 km for nearly the entire range 

of observed FRPf flux values (4000 – 18000 Wm-2).  Therefore, drawing on the results by 

Kahn et al. (2008), there is at least some potential for smoke to be injected above the BL 

when the FRPf flux of the fire cluster is greater than 4000 Wm-2.  While the results in 

Figure 6.5 are a useful first step, future studies are necessary to examine a much larger 

data sample that also includes BL height information.  The slope and intercept of the 

regression line (as displayed in Figure 6.5) could then be used to derive smoke plume 

heights based on the observed value of FRPf flux.  When comparing these predicted 

plume heights to atmospheric stability information (e.g. local radiosonde data) and the 

fire weather information described in the following section, estimates can be produced 

for the potential of smoke injection above the BL, and therefore large-scale smoke 

transport.   

 

6.3   Fire Weather Analysis and Prediction 

 The analysis from the case study (presented in Chapter 5) showed that FRPf flux 

may be useful for characterizing the meteorological effects on fire intensity, and the 

previous section showed that smoke plumes may reach above 1.5 km, and potentially the 

BL, when the FRPf is greater than 4000 Wm-2.  Therefore, the following sections are 
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devoted to identifying a key combination of meteorological variables that produce a 

high probability of occurrence for FRPf flux values greater than 4000 Wm-2.   

6.3.1 Fire Weather Variables and Indices  

A broad body of research over the past several decades has tried to discern the 

role of local meteorology, topography, climate, and land use in the formation of intense 

fire seasons (e.g. Skinner et al., 1999; Stocks et al., 2002).  For example, active boreal 

fire seasons have been linked to positive 500 hPa geopotential height anomalies (Skinner 

et al., 1999, 2002), which must persist for approximately 10 days (Fauria and Johnson, 

2006).  Fire weather indices have also been developed to guide forecasts for the potential 

of fire ignition and spread.  The Haines Index, which is widely used in the United States, 

is an integer scale (1-6) that indicates the potential for fire ignition and growth based on 

two equally weighted ingredients for moisture and stability, respectively derived from the 

surface dew point depression and atmospheric lapse rate (Haines, 1988; Potter et al., 

2008).   

In contrast to the Haines Index, the fire indices used in the boreal forest regions 

generally disregard atmospheric instability.  The widely used Canadian Forest Fire 

Danger Rating System (CFFDRS) incorporates surface temperature, relative humidity, 

rainfall, and wind speed to produce operational forecasts of fire potential and spread in 

the unique boreal ecosystem (Amiro et al., 2004).  The CFFDRS is calculated based on 

weather station observations at local noon and contains six components describing the 

potential for fire ignition and spread (Van Wagner and Pickett, 1985; Van Wagner, 

1987).  Of these, the three measures of biomass moisture include: (1) the fine fuel 

moisture code (FFMC) describing the moisture content of the fine plant litter in a thin 
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layer on the forest floor, (2) the duff moisture code (DMC) describing the moisture 

content of entire upper portion of the organic material on the forest floor, and (3) the 

drought code (DC) describing the long-term moisture content of deeper layers of organic 

material.  The FFMC is combined with surface wind speed to produce the initial spread 

index (ISI), describing fire spread potential, while the DMC and DC are combined to 

produce the buildup index (BUI), which describes the overall fuel conditions.  Finally, 

the ISI and BUI are combined to produce the fire weather index (FWI), which describes 

the overall fire weather situation for the next 24 hours.  While the CFFDRS was 

developed for the North American boreal forest, it has recently been applied, with some 

skill, to the biomes of Southeast Asia (Dymond et al., 2004; 2005), suggesting that the 

CFFDRS may have the potential for global application.   

In order to characterize fire variability, scattered reports of weather, fire, and 

burned area from ground observations are often used.  However, these reports are 

sometimes unreliable and insufficient to describe the spatiotemporal distribution 

(including the start and end dates) of fire events and their intensity over the full domain 

of wildfire-affected regions in boreal North America (Flannigan and Wotton, 1991; 

Stocks et al., 2002; Roy et al., 2007; Pouliot et al., 2008; Soja et al., 2009).  Therefore, a 

continuous source of data from a reanalysis or numerical weather prediction (NWP) is 

required (see Appendix).  The case study in Chapter 5 used NARR data downscaled by 

the WRF model (~10 km).  However, the example presented here is based entirely on the 

32 km grid spacing of the NARR (Ebisuzaki, 2004; Mesinger, 2006).  In addition to 

providing several key fire weather variables, the NARR data are also used to produce the 

six components of the CFFDRS, but several modifications required in the NWP-based 
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approach.  While all six CFFDRS components are required for fire weather analysis, 

the FWI and ISI are the most relevant to short-term changes in fire activity (see 

Appendix). 

6.3.2 Grid-Based Joint Probability Analysis Using FRPf Flux 

As described by Peterson et al. (2010), the probability of a specific event’s 

occurrence (here FRPf flux > 4000 Wm-2) can be computed based on a combination of 

meteorological factors.  The approach, similar to the MISR smoke plume analysis (Figure 

6.4), begins by defining the fire pixel cluster threshold.  However, in this case, the data 

integration methodology from the case study (Chapter 5) is applied to define fire clusters 

based on the number of fire pixels within a NARR grid box (aggregated to 32 km).  In 

contrast to the case study, Figure 6.6 shows that the correlation FRPf flux and weather 

information in the boreal study region is rather weak (R < 0.50), even at the largest fire 

pixel clusters.  This may be a result of the larger grid spacing (32 km) compared to the 

case study (10 km), which likely affects the skill of each variable for prediction of fire 

activity.  For example, the stronger correlation with wind speed observed in the Texas 

and Oklahoma case study (R = 0.55) was influenced by strong, unidirectional surface 

winds, which are unlikely to occur in the boreal study region due to the presence of 

complex topographic features (Figure 6.1).  In addition, sub-regional variations in 

topography likely produce large variations in temperature and wind speed over short 

distances that are not resolved by the 32 km grid spacing.  Despite this limitation, higher 

resolution data are not considered in this example because future operational forecasting 

applications will use a variety of regional or global NWP datasets that have similar or 

even coarser spatial resolutions than the NARR. 
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Figure 6.6:  Relationship between several meteorological variables and FRPf flux as a 
function fire pixel cluster size and the number of available data points.  Fire pixel clusters 
are defined as the total number of MODIS fire pixels within a NARR grid box (32 km 
resolution). 

 
 

Similar to the case study in Chapter 5, Figure 6.6 clearly shows that the FRPf flux 

and weather comparisons begin to stabilize when there are more than five fire pixels in a 

cluster, providing 2091 available data points or 63% of the available data (horizontal, 

dashed black line).  Therefore, 37% of the fire events are small, with a cluster size of five 

fire pixels or less (e.g. ≤ 5 fire pixels observed within a NARR grid box).  The 

distribution of the available fire pixel clusters (pixels per grid box) is very asymmetric (a 
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gamma distribution, Figure 6.7a), thus fire events well above the threshold of five 

pixels, especially those with a cluster size greater than 50 fire pixels, occur rarely.  

 

Figure 6.7:  (a) Histogram showing the distribution of the number of MODIS fire pixels 
(fire counts) per NARR grid box, with the fire pixel cluster threshold denoted by the red, 
dashed line.  (b) Histogram showing the distribution of the aggregated FRPf flux for the 
fire pixel clusters that remain after applying the cluster threshold in (a).  The red, dashed 
line indicates the lower limit of the FRPf flux data (4000 Wm-2) that will be considered in 
the joint probability analysis. 
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The cluster size threshold is a required preliminary constraint, but a secondary 

constraint is also required to isolate the cases of interest, defined as an FRPf flux greater 

than 4000 Wm-2.  Figure 6.7b shows the distribution of the FRPf flux data, after the 

cluster size threshold is applied, which is much more Gaussian than the cluster size 

distribution.  The observations of an FRPf flux above 4000 Wm-2 comprise 53% (1120 

data points) of the available FRPf flux data (2091 data points).  Therefore, the remaining 

1120 data points can be used, in combination with meteorological data, to calculate the 

probability of occurrence (or joint probability) for these high FRPf flux events.  

The components of the CFFDRS (FWI and ISI) displayed in Figure 6.6 clearly 

have a stronger relationship with FRPf flux than the individual variables.  However, as 

described in the Appendix, fire weather indices, while designed to describe the entire fire 

weather situation, are not perfect indicators of changes in fire activity, and must be 

supplemented with additional information.  In the case of the CFFDRS, atmospheric 

instability is the key variable neglected in the calculations, especially for the ISI and 

FWI.  Instability can be used as an indicator of dry lightning potential, and may also be 

important indicator of changes in ongoing fire activity (e.g. Peterson et al., 2010).  

Measures of instability can either be derived based on the Haines Index (Haines, 1988; 

Potter et al., 2008), which requires the combination of a dry lower troposphere with a 

large low-level lapse rate (inverted V sounding), or from convective available potential 

energy (CAPE), which is derived from the entire atmospheric column and requires a 

higher amount of lower-tropospheric water vapor (loaded gun sounding).  Both methods 

have been linked to extreme fire events, including pyroconvection, but large fire events 

may be present when the Haines Index component is high and CAPE is low, or visa versa 
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(e.g. Peterson et al., 2010; Fromm et al., 2010).  In this example, CAPE is used 

because it is has previously been linked to fire activity in the boreal forest and is 

specifically provided by the NARR.   

In order to quantify the potential for lightning-ignited fires, Peterson et al. (2010) 

computed the probability of dry lightning strike occurrence as a function of 500 hPa 

geopotential heights and CAPE.  For fire intensity investigations, this probability 

function can be easily modified to compute the probability of an FRPf flux greater than 

4000 Wm-2, based on CAPE and the FWI (or a related variable).  To begin, the observed 

range of the two meteorological variables of interest is divided into ~40 bins per variable.  

This forms a mesh of 1600 bin boxes per variable, with CAPE in one dimension and the 

FWI in the other dimension.  By tallying the available NARR grid boxes in each bin box 

(Ntot), the joint number density distribution of data points based on the two input 

metrological variables can be ascertained.  Figure 6.8a provides an example of Ntot based 

the FWI and CAPE, and shows that the majority of observations have an FWI below 10 

and CAPE values below 400 Jkg-1.  Similarly, Figure 6.8b displays the total NARR grid 

boxes that correspond only to cases where the FRPf flux exceeded 4000 Wm-2 (Ftot).  

While it is expected that the bin boxes with a high Ftot will correspond to high FWI 

values, many of these intense fire events occur below the FWI threshold corresponding to 

extreme fire activity (FWI between 20 and 30, Van Wagner, 1987).  However, for both 

Ntot and Ftot, the bin boxes containing data are distributed across a wide range of FWI and 

CAPE values, suggesting that instability is likely a contributing factor.  In some cases, 

the fires themselves may even contribute to the observed CAPE value, but this potential 

feedback effect should be reduced when averaged over a ~32 km NARR grid box. 
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Figure 6.8:  (a) Joint number (of data points) distribution of CAPE and the FWI for all 
available data points (Ntot) within the study region displayed in Figure 6.1.  (b) Same as 
(a) but only for data points corresponding to an FRPf flux > 4000 Wm-2 (Ftot). 

 
 
 

Based on Figure 6.8, the probability of occurrence for an FRPf flux above 4000 

Wm-2 can be computed for each bin box by: Ftot/Ntot (Figure 6.9a).  The resulting 

probability values greatly increase for increasing values of FWI and CAPE, and are at 

their highest (e.g. > 50%) when the FWI is greater than 20 and/or the CAPE is greater 

than 1200 Jkg-1.  However, regardless of the FWI observation, the probability of an 

intense fire event is low when there is less than 100 Jkg-1 of observed CAPE.  Similar 

results are obtained when the FWI is replaced with the ISI (Figure 6.9b).  In this case, the 

highest probability values occur when the ISI is greater than 10 (the value typically used 

to indicate extreme fire activity) and CAPE values are greater than 1200 Jkg-1.   

 

 

1            10           50         100        500+ 1             3             6            12           20+

Total NARR Grid Boxes with Weather Data Only Grid Boxes with FRPf Flux Data

!"# !$#



 123 

 
Figure 6.9:  Probability (Ftot/Ntot) of an FRPf Flux > 4000 Wm-2 as a function of (a) 
CAPE and FWI, (b) CAPE and ISI, and (c) CAPE and surface (10 meter) wind speed for 
the boreal study region displayed in Figure 6.1.  The observed meteorological values for 
2005-2006 with a probability of FRPf Flux occurrence ≥ 25% are shaded in color, values 
with a probability of FRPf Flux occurrence between 0 and 25% are shaded in black, 
values without FRPf flux occurrence are shaded in grey, and white areas do not contain 
observed data. 
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In contrast, replacing the ISI or FWI with a single variable, such as surface 

(10 meter) wind speed, does not produce robust results (Figure 6.9c).  This stems from 

the weaker correlation between surface wind speed and FRPf flux, compared to the 

counterparts of the FWI or ISI, observed in Figure 6.4.  Therefore, the probability 

function created from combination of the FWI (or ISI) and CAPE is the most useful tool 

for identifying the set of conditions required for a high probability of intense fire events 

(FRPf flux > 4000 Wm-2).  This combination also serves as an improvement for 

examining the overall fire weather scenario by including an instability component that 

can partially explain the occurrence of intense fire events when the FWI (or ISI) is low.   

 
 

6.4   Summary 

By incorporating fire data from two large fire seasons (2004 and 2005) in the 

North American boreal forest, this chapter provided examples of the primary applications 

for FRPf flux, including the analysis and prediction of smoke plume injection heights and 

fire weather.  The strong correlation between FRPf flux and MISR smoke plume height 

observations shows that it may be possible to use FRPf flux to derive smoke plume height 

information for large fire pixel clusters.  Drawing from previous studies, this example 

also showed that there is potential for smoke to be injected above the BL when the FRPf 

flux is greater than ~4000 Wm-2.  Therefore, smoke plume information derived from 

FRPf flux will be very useful in future smoke modeling studies, by allowing the smoke 

plume injection height to be specified with greater accuracy.  However, additional 
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analysis is required to examine a variety of fire events across the globe and their 

associated atmospheric stability profiles. 

Comparisons between FRPf flux and meteorological data highlighted the 

importance of atmospheric instability (e.g. CAPE) and fire weather indices (generated by 

NWP), such as the FWI and ISI, for quantifying the potential for intense fire events (FRPf 

flux > 4000 Wm-2).  This analysis showed that the probability of an intense fire event 

greatly increases for increasing values of FWI and CAPE.  In addition, CAPE values 

above 1200 Jkg-1 partially explain the occurrence of intense fire events when the FWI (or 

ISI) is low, and replacing the fire weather indices with a single variable (e.g. wind speed) 

produces weaker results.  By incorporating BL height information, future analysis will be 

able to compute a similar probability function for smoke injection above the BL, 

provided an FRPf flux greater than 4000 Wm-2 is also observed (e.g. Peterson et al., 

2010).  

While a larger sample size is needed, the smoke plume height and fire weather 

analysis described in this chapter is an important first step toward understanding the 

mechanisms that drive intense fire events, potentially resulting in high-altitude smoke 

plumes.  By supplementing the available suite of input variables, FRPf flux may also be 

useful for improving short-term predictions of satellite-observed fire activity.  These 

potential forecasting tools are currently based solely on the number of observed MODIS 

fire pixels (fire counts), and have limited prediction skill (described in the Appendix). 
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Chapter 7.   Conclusions 
 
 

7.1   Summary of Key Results 

In an effort to provide a fire area and temperature-based FRP product, this study 

developed a MODIS sub-pixel retrieval algorithm for fire area and temperature, which is 

used to calculate FRPf.  The retrieval was designed such that it can be run on any MODIS 

granule across the globe and a radiative transfer model was used to account for 

atmospheric effects.  Using a lookup table approach, the retrieval can be run at both the 

pixel and cluster levels and corrections are made for overlapping pixels.  Currently, the 4 

and 11 µm background temperatures are direct inputs from the MODIS fire product 

(Collection 5).   

For the first time, the near-coincident observations obtained from the AMS, flown 

aboard the NASA Ikhana UAS, allowed the retrieved MODIS fire areas to be assessed 

with unprecedented accuracy (3-50 meter resolution).  In addition, comparisons between 

the AMS and MODIS fire areas revealed the impacts from several indirect effects on the 

retrieval that are difficult to characterize, such as PSF effects, location relative to nadir 

(viewing zenith angle), and the overall distribution of sub-pixel hot spots within the fire 

pixel.  As a result, it was suggested that a clustering methodology should be implemented 

to reduce the error potential in retrieved fire area, and the clustering sum of individual 

retrievals method may have the greatest relevance to future operational algorithms.  

These fire clusters, along with the sub-pixel-based FRPf, allowed a large fire burning at a 

low intensity to be separated from a small fire burning at a high intensity, and also 

facilitated calculations of FRPf flux over the retrieved fire area. 
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A theoretical sensitivity analysis was provided for the three major outputs of 

the sub-pixel retrieval algorithm (fire area, FRPf, and FRPf flux) based on direct input 

variables and assumptions.  This analysis focused primarily on variations in the 

atmospheric profile, background emissivity, and background brightness temperature, 

which were analyzed to varying levels of detail.  Results indicate that significant 

reductions in the retrieved pixel-level fire area will occur if the observed column water 

vapor is very low with respect to the mid-latitude summer, climatologically based profile.  

The effect on FRPf is much smaller because the decrease in retrieved fire area is offset by 

an increase in retrieved fire temperature.  Therefore, the overall sensitivity of the cluster 

FRPf flux falls between that of retrieved fire area and FRPf, but is highly influenced by 

changes in fire area.  In contrast, potential variations in the assumed values for the 4 and 

11 µm background emissivities have a minor effect on all retrieval output (e.g. < 15% 

change in fire area and FRPf), except when fire events are surrounded by large regions of 

highly reflective, brown vegetation. 

When considering all potential sources of direct error, small deviations in the 11 

µm BTbm (background noise) produce the greatest affect on all retrieval outputs.  For 

example, a ±1 K error can produce a change in retrieved fire area of more than an order 

of magnitude, with the potential for large impacts on FRPf and the cluster FRPf flux as 

well.  For some MODIS fire pixels, the sub-pixel retrieval can even become irrelevant 

when the 11 µm BTbm (provided by MODIS) is greater than the pixel brightness 

temperature.  The case study application (in Texas and Oklahoma) showed that 17.6% of 

the 890 available fire pixels suffered from this BTbm error, with the vast majority, 

especially the large magnitude errors, occurring in daytime scenes.  While additional 
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input variables can alleviate potential errors caused by the water vapor and emissivity 

assumptions, BTbm errors stem from the MODIS fire product, and are therefore the 

primary sources of error in sub-pixel calculations. 

For fire weather applications, clusters of fire pixels can be created to reduce the 

aforementioned sensitivity by geographically matching each pixel’s location to the mesh 

of grid boxes provided by NWP datasets.  While the skill of NWP data is limited by 

changes in spatial resolution, the idealized case study in Texas and Oklahoma revealed 

that the cluster FRPf flux, unlike the current MODIS FRPp, has a statistically significant 

correlation with several meteorological variables.  Drawing from these results and the 

potential for smoke injection above the BL, the probability of occurrence for intense fire 

events (e.g. FRPf flux > 4000 Wm-2) was computed based on a combination of 

meteorological factors, including NWP-generated fire weather indices and CAPE.  This 

analysis showed that the probability of an intense fire event greatly increases for 

increasing values of FWI and CAPE, and replacing the fire weather indices with a single 

variable (e.g. wind speed) produces weaker results.  By incorporating MISR smoke 

plume height observations that correspond to large fire pixel clusters, this study also 

showed that FRPf flux may be useful for the direct derivation of smoke plume height 

information, and assessing the potential for smoke injection above the BL.   

 

7.2   Implications of this Study and Future Work 

Over the next decade, the new generation of satellite sensors, such as NPP VIIRS 

(e.g. Csiszar et al., 2011) and GOES-R (Schmidt et al., 2011, http://www.goes-r.gov/), 
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will replace the current generation sensors, including MODIS.  The sub-pixel 

algorithm described in this study is designed for easy application to these future sensors, 

provided the basic spectral properties are similar.  The VIIRS and GOES-R fire detection 

algorithms, currently being designed and evaluated, will perform sub-pixel fire 

characterization (e.g. Schmidt et al., 2011).  However, in contrast to MODIS, the NPP 

VIIRS sensor will provide a finer pixel resolution of about 750 m across the entire scan 

(nadir and off-nadir), reducing off-nadir pixel growth (Csiszar et al., 2011), and thereby 

enhancing any potential FRPf flux product.  Due to the large potential for error in the 11 

µm BTbm, all future applications (regardless of sensor) will benefit from an improved 

background brightness temperature selection methodology, potentially based on land 

cover, topographic, and aspect data sets.  Additional satellite observations, such as the 

Normalized Difference Vegetation Index (NDVI), can also be used to facilitate this 

analysis. 

The initial assessment methodology for the MODIS sub-pixel retrieval can also be 

applied to future studies.  In fact, as sub-pixel retrievals are incorporated into operational 

satellite missions, increasing quantities of high-resolution validation data will be 

required.  This highlights the value of airborne-sensor-collected fire data, such as those 

obtained from the AMS sensor aboard NASA’s Ikhana aircraft.  Currently, the Ikhana is 

flown over large fire events to support fire suppression operations on the ground.  

However, these flights also have an enormous scientific value for understanding wildfire 

behavior and are a potential tool for the direct validation of FRPf.  This study has shown 

that the greatest potential for error occurs with small sub-pixel fires, but validation data 

for these events are currently unavailable.  Therefore, future airborne missions must focus 
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on data collection for both large and small fire events over a wide variety of biomass 

types.  In addition, the AMS engineering team is currently exploring modifications to the 

scanner, which would allow for a large increase in the measured pixel temperatures of the 

~4 um channel.  This improvement would result in an increased probability of accurately 

determining FRP estimates from the AMS, thereby facilitating direct validations of 

MODIS FRPf and FRPf flux. 

From the operational perspective, there is a growing need for a near-real-time fire 

intensity rating system (Ichoku et al., 2008a).  While these fire-rating techniques are 

currently based on FRPp, the incorporation of FRPf flux will allow future versions to 

include aspects of fire front size, which will likely help fire suppression teams to allocate 

their resources more efficiently during a fire emergency.  Similarly, the fire weather 

analysis provided in this study (based on FRPf flux) can be used to enhance the prediction 

of changes in satellite-observed fire activity, thereby improving smoke emissions 

estimates (see Appendix).  Perhaps the most valuable application of the sub-pixel 

retrieval output will be improvements to forecasts of smoke transport.  As shown in this 

study, the FRPf flux obtained from medium to large fire pixel clusters (> 5-10 pixels) 

may offer a reliable characterization of thermal buoyancy for estimates of smoke plume 

height.  This information is critical for discerning how far the smoke will be transported 

and what regions will be affected.  Therefore, FRPf flux, and the sub-pixel algorithm used 

to derive it, can be implemented to enhance forecasts of air quality and visibility, which 

may be beneficial to a variety of end users. 
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Appendix:   A Short-Term Predictor of Satellite-Observed 
Fire Activity in the North American Boreal Forest: Toward 
Improving the Prediction of Smoke Emissions   
 
 
 

A.1   Introduction 

Smoke produced by global biomass burning is a key source of aerosol particles, 

greenhouse gases, and other trace constituents in the atmosphere, which affect the global 

climate system by altering atmospheric composition and radiative processes (e.g. 

Randerson et al., 2006; Spracklen et al., 2007; Jordan et al., 2008; Kopacz et al., 2011).  

The combination of an intense fire event with suitable atmospheric conditions (Kahn et 

al, 2007, 2008; Val Martin et al., 2010) can allow smoke particles to be injected above 

the boundary layer, and transported thousands of miles (e.g. Westphal and Toon 1992; 

Damoah et al., 2005; Sapkota et al., 2005; Duck et al., 2007).  These intense fire events, 

common in the boreal forest of North America, affect air quality and visibility, create 

health concerns, and may interact with meteorological processes a great distance from a 

fire (e.g. Wang and Christopher, 2006; Wang et al., 2006, 2012).  Several global and 

regional inventories of biomass burning emissions have been developed over the past 

decade in an effort to quantify sources and transport of aerosol particles and trace gases.  

Examples include the Fire Locating and Monitoring of Burning Emissions (FLAMBÉ), 

produced by the Naval Research Laboratory (Reid et al., 2009), the Fire INventory (FIN), 

produced by the National Center for Atmospheric Research (Wiedinmyer et al., 2011), 

the Global Fire Emissions Database (GFED) (van der Werf et al., 2010; Mu et al., 2011), 

the Global Fire Assimilation System (GFAS) (Kaiser et al., 2011), and the emissions 
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inventory produced by the National Oceanic and Atmospheric Administration (Zhang 

et al., 2008, 2012).  While the methodology of these emissions inventories varies, the first 

step for systems operating in near real time is always dependent on observations of active 

fires, because they are the only consistent source of data over continental scales available 

in near real time.  The observed spatial and temporal patterns of satellite fire observations 

drive the patterns of estimated smoke emissions from these systems. 

Across the globe, biomass-burning activity is highly sensitive to the local climate, 

including variations in the synoptic weather pattern (e.g. Brotak and Reifsnyder, 1977).  

In the boreal forest, the fire season is short relative to other ecosystems, and a large 

majority of fire activity is often concentrated in just a few days of active burning (Hyer et 

al., 2007).  Active fire seasons have been linked to positive 500 hPa geopotential height 

anomalies (Skinner et al., 1999, 2002), which must persist for approximately 10 days 

(Fauria and Johnson, 2006).  This synoptic environment is conducive to active fire 

weather conditions at the surface, such as warmer temperatures and suppressed 

precipitation.  The duration of dry conditions typically has a much stronger relation to 

burned area observations than the total seasonal precipitation (e.g. Flannigan and 

Harrington, 1988), and therefore sets the stage for active fire weather conditions 

(Peterson et al, 2010).  In addition, low-level instability has been linked to intense fire 

activity (e.g. Haines, 1988; Potter et al., 2008), and may increase the potential for fire 

ignition via dry lightning strikes, provided the synoptic environment is favorable 

(Peterson et al., 2010).  Unstable conditions may also result in higher smoke plumes, 

stronger entrainment of the air near the fires, and faster spread rate, all of which can lead 
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to “extreme fire behavior” and pyroconvection (e.g. Werth and Ochoa, 1993; Fromm 

et al., 2010). 

While the synoptic environment is a useful first step, additional information is 

required to characterize variations in localized, short-term meteorological conditions and 

their effect on fire observations, especially when managing active fires that may threaten 

life and property.  As a result, over 30 years of research has focused the development of 

several fire weather indices that are currently used operationally in boreal North America.  

The most well-known of these, the Canadian Forest Fire Danger Rating System 

(CFFDRS), uses surface temperature, relative humidity, rainfall, and wind speed to 

derive the biomass moisture content used for assessing daily fire potential and spread in 

the unique boreal ecosystem (Van Wagner and Pickett, 1985; Van Wagner, 1987; Amiro 

et al., 2004).  The CFFDRS is typically calculating using observations from nearby 

weather stations, however large regions within the boreal forest are sparsely populated, 

limiting the available observations.  Therefore, a continuous source of weather data via 

Numerical Weather Prediction (NWP) is highly desirable, especially when trying to 

develop an automated fire weather forecast in the boreal regions.  Mölders (2008) showed 

that the Weather Research and Forecasting (WRF) model, at a fairly coarse 

spatiotemporal resolution of 1.0° and 6-hours, can successfully calculate fire weather 

indices in interior Alaska, assuming the corresponding meteorological variables are 

accurately predicted.  Therefore, the current study explores the potential for using NWP 

data to capture day-to-day changes in fire activity. 

This study is further motivated by the fact that all near-real-time fire emission 

inventories, including FLAMBÉ, which is used operationally by the Navy Aerosol 
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Analysis and Prediction System (NAAPS), at the Fleet Numerical Meteorological and 

Oceanographic Center (the US Navy’s forecast center), use observations of fire pixels 

(known as fire counts) from geostationary and polar-orbiting satellite sensors (e.g. Reid et 

al., 2009).  For numerical forecasting of smoke, however, FLAMBÉ and other models 

typically assume that the number of observed fire counts does not change throughout the 

forecast period – a forecast of persistence.  This may result in large errors in the final 

smoke emissions forecast, especially due to changes in local meteorological conditions, 

which undoubtedly affect fire activity.  Therefore, drawing from continued improvements 

in NWP accuracy, the current study makes the first attempt at developing an automated, 

NWP-based statistical model that can be used to characterize the effect of a given set of 

meteorological conditions on the following day’s satellite-observed fire counts, including 

ignition and spread potential, with the ultimate goal of enhancing the estimation and 

forecast of smoke emissions.  

 

A.2   Study Region and Data 

Drawing from a copious base of previous research and the potential for very large, 

intense fire events, the North American boreal forest is an ideal location for developing a 

fire count prediction model.  The specific study region, located primarily in Alaska, is 

based on Peterson et al. (2010) and includes the core of the mountainous western boreal 

forest (Figure A.1).  Within the study region, the fire season typically falls between May 

and September (Skinner et al., 1999; Stocks et al., 2002; Fauria and Johnson, 2006), and 

the fire seasons of 2004 and 2005 were two of the three largest in the 73-year 
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observational record (Kasischke et al., 2002).  The MODIS sensors aboard the Terra 

(launched in 1999) and Aqua (launched in 2002) satellites are the primary source of fire 

count data (MOD14) in this study (Giglio et al., 2003; Giglio, 2010), and the GOES 

Wildfire Automated Biomass Burning Algorithm (WF_ABBA) fire product (Prins and 

Menzel, 1994; Prins et al., 1998) is used for independent testing of the algorithm.  

 
Figure A.1:  Map highlighting the boreal study region as a blue box (same as Figure 6.1).  
The color scheme is based on the dominant vegetation types located within and 
surrounding the study region.  Dashed black contours indicate variations in topography, 
with a contour interval of 500 meters.   

 
 

As a polar-orbiting sensor, the MODIS fire detections are not a perfect indicator 

of fire activity, and have known biases including the inability to detect fires beneath 

opaque clouds and large variations in pixel size depending on the satellite viewing zenith 

angle (Masuoka et al., 1998; Gomez-Landesa et al., 2004).  However, MODIS data are 
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best suited for developing a fire prediction model for the study region because: (a) 

MODIS observed fire counts are a primary source for estimates of fire emissions in 

FLAMBÉ and FIN, (b) MODIS has the ability to detect smaller fires relative to GOES, 

and (c) MODIS may be better suited for high-latitude locations than GOES. 

For the meteorological component of this study, data are obtained from the North 

American Regional Reanalysis (NARR), which blends a variety of observational data 

into Eta model output containing 45 vertical layers across the North American continent 

with ~32 km grid spacing every three hours (Ebisuzaki, 2004; Mesinger, 2006).  The 

NARR data are also used to produce three modified components of the CFFDRS that are 

relevant to short-term changes in fire activity, including (1) the fine fuel moisture code 

(FFMC) describing the moisture content of the fine plant litter in a thin layer on the forest 

floor, (2) the initial spread index (ISI) created from the combination of the FFMC and 

surface wind speed, and (3) the fire weather index (FWI), which is created from all six 

CFFDRS components and describes the overall fire weather situation for the next 24 

hours (Van Wagner and Pickett, 1985; Van Wagner, 1987).  Drawing from the fire 

weather relationships identified by Peterson et al. (2010), additional indices are also 

computed to describe the ignition potential, synoptic influence, and the moisture deficit 

affecting boreal wildfire activity.  Therefore, a large suite of meteorological information, 

including both single variables and fire weather indices for day 1 (observation) and day 2 

(forecast), are available to this study. To facilitate the analysis, the MODIS (or GOES) 

fire counts are geographically matched onto the mesh of NARR grid boxes and summed 

for each day, based on the temporal requirements of the CFFDRS (18:00Z to 18:00Z).  

The CFFDRS are calculated at 10 AM local time (18:00Z) rather than at noon 
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(operational standard) in an effort to define a single observation time that can be used 

across the boreal forest of North America and to match the daytime MODIS observations 

(~10:30 AM and 1:30 PM local time), which typically contain the maximum daily fire 

activity (Ichoku et al. 2008). 

 

A.3   Statistical Prediction of Fire Growth and Decay 

The primary goal of the prediction model is to establish an empirical relationship 

between weather, fire ignition, and fire evolution, expressed in terms of the change in 

MODIS fire counts (day 1 vs. day 2) as a function of meteorological variables and fire 

weather indices.  The specific methodology is largely based on a maximum likelihood 

classification (MLC) score, which is given by 

MLC! x = −ln|Σ!|− (x!"#$% −m!)!Σ!!!(x!"#$% −m!)   (A.1) 

where mi and Σi are the mean vector and covariance matrix for a predetermined number 

(i) of training classes (Richards and Jia, 2006). This method is widely used in satellite 

remote sensing for the classification of images (into vegetation, water, clouds, etc.), 

where mi and Σi are computed from training data (a pre-selected vector of radiometric 

data xtraining at various spectral channels) corresponding to each class i.  For any given 

vector of input data (xinput), its MLC score, or the likelihood for xinput to be in class i, is 

computed via equation (A.1), and xinput is assigned to the class that provides the largest 

MLC score.  
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Figure A.2:  Comparison between day 1 and day 2 MODIS fire counts observed during 
the fire season of 2004 in the study region (Figure A.1).  The black asterisks and squares 
respectively highlight the 45 growth and 49 decay training data points.  Additional colors 
separate the remaining cases of growth, decay, ignition, and extinction. 

 
In an analogy to image classification, the MLC technique can be applied to 

classify the day-to-day change in fire counts based on a variety of meteorological factors 

that form the elements of the vector xinput in equation A.1.  To begin, the change in 

observed MODIS fire counts between day 1 and day 2 are stratified into five classes 

based on the ~32 km resolution of the NARR: (1) ignition, (2) extinction, (3) growth, (4) 

decay, and (5) no change.  However, with the limitations in satellite fire data (e.g. cloud 

cover and scan-to-scan variations), the current version of the MLC is largely based on 

classes (3) and (4).  As displayed in Figure A.2, training data are defined from the largest 

cases, defined by the 75th percentile, within the growth and decay fire count classes, from 

which mi and Σi are computed.  Finally, the xinput corresponding to each individual event 
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is compared to mi and Σi via equation A.1, thus producing the MLC growth 

(MLCgrow) and decay (MLCdecay) scores.  The complete list of inputs used to create xinput 

is provided in Table A.1, and includes the fire weather indices and other single variables, 

such as relative humidity and convective available potential energy (CAPE), that display 

the largest separability between cases of fire growth and decay (illustrated in Figure A.3).  

Therefore, the modified MLC output determines whether a given fire event best fits the 

growth or decay fire class. 

 

 
 
Figure A.3:  Histograms showing the separability of the meteorological data 
corresponding the growth (red) and decay (blue) training data (displayed in Figure A.2) 
using four examples from Table A.1.  Overlap of the growth and decay histograms is 
displayed in light brown.   
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Table A.1:  Input variables for the MLC. 
 

Input Variable 
Ratios (Day 2/Day 1) 

1 Fire Weather Index (FWI) 
2 Initial Spread Index (ISI) 
3 Fine Fuel Moisture Content (FFMC) 
4 Synoptic Index (500 hPa Heights, ISI, & Dry Days)1 
5 Moisture Index (Consecutive Dry Days & FFMC)1 
6 Relative Humidity  

Daily Variables 
7 Day 1 Initial Spread Index (ISI) 
8 Day 1 Fine Fuel Moisture Content (FFMC) 
9 Day 1 Ignition Index (CAPE & 500 hPa Heights)1 

10 Day 1 Moisture Index (Consecutive Dry Days & FFMC)1 
11 Day 1 Conv. Available Pot. Energy (CAPE) 
12 Day 2 Conv. Available Pot. Energy (CAPE) 

Other 
 13 Observed Fire Count Tendency (Previous 3 Days) 

  
1 Additional fire weather indices developed specifically for this study. 
 
 

While the MLC training data are only derived from fire classes (3) and (4), the 

MLCgrow and MLCdecay scores can be computed for all five classes.  Figure A.4a shows an 

example MLC output for the large 2004 fire season, with 3192 NARR grid boxes 

containing fire pixels in central Alaska.  The output is provided in a log scale, and cases 

of observed growth and decay are evidently concentrated in distinct clusters.  However, it 

is also evident that many NARR grid boxes, especially those with <10 MODIS fire 

counts on day 1 (small circles in Figure A.4a), are misclassified, which likely results 

from the uncertainty introduced by scan-to-scan variations of the MODIS sensor.  

Therefore, emphasis is placed on grid boxes with at least 10 fire counts on day 1 (large 

triangles in Figure A.4a), ensuring the fire is large in size and likely to appear in a 

subsequent scan.  
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Figure A.4:  Output of MLCgrow and MLCdecay from the 2004 development test and the 
2005 independent test, respectively.  Small circles indicate where the number of MODIS 
fire counts on day 1 are <10 and large triangles indicate where the day 1 fire counts are at 
least 10.  The color scheme indicates the observed relative change in fire counts (or 
ΔFCobs). Red and blue contours indicate the prediction score (or ΔFCp) obtained from a 
multiple regression as a function of MLCgrow and MLCdecay. The black contour indicates 
no change or a forecast of persistence (ΔFCp = 1). 
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The MLCgrow and MLCdecay scores for the large symbols in Figure A.4a 

indicate that the training data, which are drawn from limited data samples (e.g. 75th 

percentile), generally capture the statistics that needed to separate the growth and decay 

of the fires.  However, in a real atmosphere, meteorological variables generally co-vary, 

and therefore the observed relative change in fire counts (ΔFCobs) is usually determined 

by how MLCgrow and MLCdecay are relatively weighted: a larger growth score and small 

decay score may indicate larger ΔFCobs.  As a result, the MLC output is further refined 

via a linear regression of MLCgrow and MLCdecay against ΔFCobs to produce a fire count 

prediction score (ΔFCp) 

 ∆FC! = a!  ln  (MLC!"#$)+ a!ln  (MLC!"#$%)+ a!      (A.2) 

where a1 and a2 respectively equal the slopes for growth and decay (calculated from only 

the large day 1 cases, triangles in Figure A.4a) and a0 is a constant.  The resulting contour 

lines of ΔFCp for all data points are also overlaid on Figure A.4a,b (blue and red parallel 

lines). 

As described above, equations (A.1) and (A.2) are the two key steps in the fire 

prediction methodology for the meteorological input vector (xinput).  First, MLCgrow and 

MLCdecay are computed using equation (1), and the regression equation (2) is 

subsequently used to compute ΔFCp.  As shown in Figure A.5a, this ΔFCp score can then 

be evaluated against the true ΔFCobs (here the absolute change in fire counts) for all the 

cases in 2004.  It is found that while the ΔFCp score and ΔFCobs are consistent in terms of 

sign, there are considerable deviations from the 1:1 line.   
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Figure A.5:  Results of the multiple regression function displayed as red and blue 
contours in Figure A.4a. (a) Comparison between the prediction score (ΔFCp) and the 
observed absolute change in fire counts (day 2 – day 1, ΔFCobs) for all data points.  Small 
symbols indicate where the number of fire counts on day 1 are <10 and large symbols 
indicate where the day 1 fire counts are at least 10.  (b) Comparison between the 
prediction score (ΔFCp) and the observed relative change in fire counts (day 2/day 1, 
ΔFCobs) with the ignition, extinction, and small day 1 cases (small symbols) removed.  
The brown line indicates the three-zone quantitative predictor curve that is based on the 
running mean and median, which are respectively displayed as solid and dashed blue 
curves. 
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In order to transform ΔFCp into a quantitative predictor, the extinction and 

ignition cases are removed, as well as cases with small day 1 fire counts, and a running 

mean and median are applied to the remaining cases (blue curves in Figure A.5b).  Based 

on the running mean and median curves, four parameters are empirically estimated to 

derive the three-zone quantitative predictor (displayed as a brown curve in Figure A.5b): 

(1) the slope of the growth zone (Mgrow), which relates ΔFCobs to the predicted growth in 

fire counts, (2) the slope of the decay zone (Mdecay), which relates ΔFCobs to the predicted 

decay in fire counts, (3-4) the lower and upper bounds of the persistence zone (Pmin/Pmax), 

where no change will be forecast.  When ΔFCp is above Pmax, growth is forecast as (ΔFCp 

- Pmax)*Mgrow, and when ΔFCp is below Pmin, decay is forecast as (ΔFCp - Pmin)*Mdecay.  

This quantitative predictor is analogous to a step commonly used in the Model Output 

Statistics (MOS) for a weather forecast, where NWP output, (here the regression model) 

is further corrected/adjusted to produce a final forecast (Wilks, 2006).  Parameters (1-4) 

are derived using only the 2004 MODIS fire counts, and subsequently applied to all tests 

using MODIS and GOES fire count data for 2004 and 2005. 

 

A.4   Evaluating the Fire Count Prediction Model 

Results from the 2004 MODIS development test suggest that the fire count 

prediction model can reduce the RMSE by 13.06% compared to a forecast of persistence 

– the method currently employed in FLAMBÉ and other emission products (Table A.2).  

A larger reduction in error is obtained for cases where decay occurred (reduction in 

RMSE = 24.27%), partly because decay processes are often abrupt, driven by 
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precipitation.  An independent test, conducted by applying the prediction method to 

the fire season of 2005, shows a smaller but still significant 11.36% reduction in RMSE 

for cases where decay occurred, as well as an overall reduction in RMSE.  However, 

growth predictions do not seem to offer an improvement over a forecast of persistence.  

The reason for this is clear from the 2005 MLC scores, displayed in Figure A.4b, where 

decay cases are found in a distinct cluster while many growth cases are misclassified.   

 

Table A.2:  RMSE statistics for the fire count prediction model compared to persistence. 
 

	
  	
   	
  	
   Persistence CFFDRS Inputs Only All Inputs (Table A.1) 

Observation N RMSE RMSE % Reduction RMSE % Reduction 

2004 Development Test (MODIS) 
Overall 3192 18.30 17.55 -4.10 15.91 -13.06 
Growth/Ignition 435 34.58 34.54 -0.12 32.86 -4.97 
Persistence1  2328 3.94 4.16 5.58 4.38 11.17 
Decay/Extinction 429 34.57 31.41 -9.14 26.18 -24.27 

       2005 Independent Test (MODIS) 
Overall 1302 21.21 20.56 -3.06 20.10 -5.23 
Growth/Ignition 228 33.54 34.03 1.46 34.04 1.49 
Persistence1  857 4.11 4.17 1.46 4.13 0.49 
Decay/Extinction 217 38.10 35.36 -7.19 33.77 -11.36 

       2004 Development Test (GOES) 
Overall 1235 7.56 7.43 -1.72 7.10 -6.08 
Growth/Ignition 236 11.23 11.36 1.16 11.36 1.16 
Persistence1 768 2.22 2.19 -1.35 2.19 -1.35 
Decay/Extinction 231 12.66 12.13 -4.19 11.02 -12.95 

       2005 Independent Test (GOES) 
Overall 821 7.61 7.56 -0.66 7.30 -4.07 
Growth/Ignition 177 10.97 11.10 1.19 11.08 1.00 
Persistence1 485 2.20 2.26 2.73 2.19 -0.45 
Decay/Extinction 159 12.26 11.93 -2.69 11.12 -9.30 

1 Observed persistence is bounded by ±10 and ±5 fire counts for MODIS and GOES, respectively. 
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While the fire count prediction methodology was developed using MODIS, 

the same MLC output (mi and Σi in equation 1) can also be applied to GOES 

observations, or any other satellite sensor.  The resulting GOES application yields similar 

results to MODIS, with an overall reduction in RMSE for both 2004 and 2005, due in 

part to large RMSE reductions in cases of decay.  The agreement between the MODIS 

and GOES tests shows that the fire count prediction is a robust fire count prediction for 

the western boreal forest of North America.  In addition, Table A.2 shows that 

experimenting with various combinations of the day 1 and day 2 components of the 

CFFDRS alone (e.g. FWI, ISI, and FFMC) does not produce better results than the larger 

combination of variables displayed in Table A.1, suggesting that the additional 

considerations of instability (e.g. CAPE), ignition potential, and general synoptic 

conditions are necessary for xinput and the resulting fire count prediction.   

 

A.5   Summary and Discussion 

This study has taken the first step toward linking day-to-day changes in satellite 

fire counts to variations in meteorological variables obtained from NWP using an MLC-

based prediction model in the North American boreal forest.  While MODIS fire counts 

are affected by the daily variation of several unavoidable factors, including the location 

within the scan (viewing angle) and cloud cover, the 2004 development test and the 2005 

independent test (for both MODIS and GOES) indicate that the decay prediction alone 

can be incorporated as an improvement over persistence, thus yielding a forecast of either 

persistence or decay.  The results also show that the current suite of fire weather indices 
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(e.g. the CFFDRS) must be supplemented with additional variables (e.g. CAPE) to 

improve prediction accuracy at the daily regional scale.   

As shown in this study, forecasting the decay of a fire event is often a simpler 

problem compared with fire growth, primarily due to the impact from precipitation 

events.  However, several meteorological variables that greatly impact fire ignition and 

growth, such as lightning strikes, are either unreliable or unavailable in the current NWP 

output.  Therefore, the prediction methodology must be further refined to improve growth 

predictions, perhaps by accounting for holdover effects from previous lightning strikes or 

incorporating additional satellite fire products.  In the near future, higher resolution (and 

spatially uniform) fire data from NPP VIIRS (Csiszar et al., 2011) and improved 

lightning data from GOES-R (http://www.goes-r.gov), can be used in combination with a 

modified measure of fire radiative power, scaled by the retrieved, instantaneous fire area 

(Peterson et al., 2012a; Peterson and Wang, 2012), as additional inputs for the fire 

prediction model.  These potential improvements warrant future studies in an effort to 

achieve the ultimate goal of producing a global fire prediction model (with similar NWP 

input variables) that can be ingested into the smoke emissions modeling process (e.g. 

FLAMBÉ), allowing a 24-hour or longer forecast of smoke emissions to be calculated 

based on the predicted change in fire activity. 
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Glossary of Symbols and Acronyms 

 
 
a0   regression constant  (multiple regression) 

a1, a2    slopes for the fire growth, decay cases (multiple regression) 

Af    retrieved fire area 

AGL above ground level 

AMS   Autonomous Modular Sensor 

Ap    area of a pixel 

ASTER Advanced Spaceborne Thermal Emission and Reflection 
Radiometer 

AVHRR  Advanced Very High Radiometer 

B(λ,T)    Planck function for a given wavelength and temperature 

BIRD   Bi-Spectral Infrared Detection  

BL   boundary layer 

BTb   background top-of-atmosphere brightness temperature (in-pixel) 

BTbm MODIS approximated background top-of-atmosphere brightness 
temperature  

BTbp true in-pixel background brightness temperature provided by the 
AMS 

BTTOA top-of-atmosphere brightness temperature (general) 

BUI   buildup index 

CALIOP  Cloud-Aerosol Lidar with Orthogonal Polarization 

CAPE   convective available potential energy  

CFFDRS  Canadian Forest Fire Danger Rating System 

DC   drought code 

DMC   duff moisture code 
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e4b, e11b   background emissivities at 4 and 11 µm 

ETM+   Enhanced Thematic Mapper Plus (Landsat) 

FFMC   fine fuel moisture code 

FIN   Fire INventory  

FLAMBÉ   Fire Locating and Monitoring of Burning Emissions  

FOV field of view 

FRP   fire radiative power 

FRPf   MODIS sub-pixel-based fire radiative power 

FRPp   MODIS pixel-based fire radiative power 

FTAMS  sub-pixel fire brightness temperature provided by the 11 µm AMS 
channel 

 
Ftot total NARR grid boxes that correspond only to cases where the 

FRPf flux exceeded 4000 Wm-2 

 
FWI   fire weather index (derived from all six CFFDRS components) 

GFAS   Global Fire Assimilation System  

GFED   Global Fire Emissions Database  

GOES   Geostationary Operational Environmental Satellite 

GOES VAS  GOES VISSR Atmospheric Sounder  

GOES-R  Geostationary Operational Environmental Satellite – R Series 

HTM high temperature median 

i  predetermined number of training classes (for maximum likelihood 
classification) 

 
I4ref     reflected solar radiance in the 4 µm channel at the surface 

ICT interchannel comparison test 
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IFOV instantaneous field of view 

ISI   initial spread index 

L4, L11   observed radiances at 4 and 11 µm (top-of-atmosphere)   

Mdecay, Mgrow   slope of the decay, growth zones (prediction curve) 

MESMA  multiple endmember spectral mixture analysis 

mi    mean vector (for maximum likelihood classification) 

MINX    MISR INteractive eXplorer 

MIR   middle infrared 

MISR   Multi-angle Imaging SpectroRadiometer 

MLC   maximum likelihood classification 

MLCgrow, MLCdecay maximum likelihood classification fire growth, decay score output 

MODIS  MODerate Resolution Imaging Spectroradiometer 

NAAPS  Navy Aerosol Analysis and Prediction System  

NARR   North American Regional Reanalysis 

NDVI    Normalized Difference Vegetation Index 

NPP National Polar-orbiting Operational Environmental Satellite 
System Preparatory Project 

 
Ntot   total available NARR grid boxes in each bin box 

NWP   numerical weather prediction 

P fractional area covered by fire (usually flaming) within any given 
pixel  

 
Pmin, Pmax  lower, upper bounds of the persistence zone (prediction curve) 

PSF   point-spread-function 

RAZ   relative azimuth angle 
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RMSE   root-mean-square error 

SBDART  Santa Barbara DISORT Atmospheric Radiative Transfer  

SZA   solar zenith angle 

T4    brightness temperature of the fire pixel (4 µm) 

T4b    background brightness temperature (4 µm) 

Tb    surface kinetic background temperature  

Tf    retrieved kinetic fire temperature at the surface  

TIR   thermal infrared 

TOA   top-of-atmosphere 

Tsfc surface kinetic temperature (fire or non-fire) 

UAS   unmanned airborne system 

VIIRS   Visible Infrared Imaging Radiometer Suite 

VZA   viewing zenith angle 

WF_ABBA   Wildfire Automated Biomass Burning Algorithm  

WRF   Weather Research and Forecasting (model) 

xinput    vector of input data for the maximum likelihood classification 

xtraining  pre-selected vector of training (usually radiometric) data for the 
maximum likelihood classification 

 
ΔFCobs   observed relative change in fire counts  

ΔFCp    fire count prediction score  

λ   wavelength 

σ    Stefan-Boltzmann constant 

Σi    covariance matrix (for the maximum likelihood classification) 
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τ4   upward MIR (4 µm) atmospheric transmittance 

τ11    upward TIR (11 µm) atmospheric transmittance 
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