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An R package for Non-Normal
Multivariate Distributions: Simulation
and Probability Calculations from
Multivariate Lomax (Pareto Type II) and
Other Related Distributions
by Zhixin Lun and Ravindra Khattree

Abstract Convenient and easy-to-use programs are readily available in R to simulate data from
and probability calculations for several common multivariate distributions such as normal and t.
However, functions for doing so from other less common multivariate distributions, especially those
which are asymmetric, are not as readily available, either in R or otherwise. We introduce the
R package NonNorMvtDist to generate random numbers from multivariate Lomax distribution,
which constitutes a very flexible family of skewed multivariate distributions. Further, by applying
certain useful properties of multivariate Lomax distribution, multivariate cases of generalized Lomax,
Mardia’s Pareto of Type I, Logistic, Burr, Cook-Johnson’s uniform, F, and inverted beta can be
also considered, and random numbers from these distributions can be generated. Methods for the
probability and the equicoordinate quantile calculations for all these distributions are then provided.
This work substantially enriches the existing R toolbox for nonnormal or nonsymmetric multivariate
probability distributions.

Introduction

A k-dimensional multivariate Lomax (Pareto Type II) probability distribution was first introduced by
(Nayak, 1987) as a joint distribution of k skewed nonnegative random variables X1, · · · , Xk with joint
probability density function given by

f (x1, . . . , xk) =

[
∏k

i=1 θi

]
a(a + 1) · · · (a + k − 1)(

1 + ∑k
i=1 θixi

)a+k , xi > 0, a, θi > 0, i = 1, . . . , k. (1)

We will denote above density function by MLk(a; θ1, . . . , θk). Prior to Nayak (1987), the bivariate
case of multivariate Lomax distribution was studied by Lindley and Singpurwalla (1986). Nayak
(1987) indicated that the k-dimensional multivariate Lomax distribution could be obtained by mix-
ing k independent univariate exponential distributions with different failure rates with the mixing
parameter η that has a gamma distribution with certain shape parameter a and the scale parameter
1. This fact readily provides an approach to simulate the multidimensional random vectors from
the multivariate Lomax distribution. The multivariate Lomax distribution is also transformable to
many other useful multivariate distributions, and therefore, simulations from these distributions
are also easily accomplished. Similarly, with appropriate transformations or reparameterizations (or
otherwise directly from the probability density function (pd f )), we can also accomplish the cumulative
probability calculations as well as the calculation of equicoordinate quantiles. The objective of this
work is to formalize all of the above and to provide a ready-to-use R package titled NonNorMvtDist
for practitioners to efficiently execute the same. See Lun and Khattree (2020).

The objective of our work is to enrich the existing R packages for supporting simulation and
computations for nonnormal continuous multivariate distributions. To the best of our knowledge and
also from the list of packages for multivariate distributions in CRAN (https://cran.r-project.org/
web/views/Distributions.html), there is no package that provides both simulation and probability
computations for multivariate Pareto distribution. In our package, we provide functions for doing
so to both Lomax (Pareto type II) and Mardia’s Pareto type I distributions. For multivariate logistic
distribution, package VGAM (Yee, 2019) implements the bivariate logistic distribution while we
support p-variate logistic distribution for p > 2. Moreover, multivariate Burr, F, and inverted beta
distributions had not been implemented in R until we included them in the package NonNorMvtDist.

This paper is organized as follows. In Section Multivariate Lomax and related distributions,
we provide simulation algorithms for generating data from k-dimensional multivariate Lomax and
generalized Lomax (to be defined later) distributions. Through transformations, the tasks of random
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numbers generation from Mardia’s multivariate Pareto Type I, Logistic, Burr, Cook-Johnson’s uniform,
and F are achieved. Based on the remarks from Balakrishnan and Lai (2009), we then extend Nayak’s
work to simulate data from the multivariate inverted beta distribution. In Section Probability compu-
tations, we discuss numerical computations of cumulative distribution functions of equicoordinate
quantiles and survival functions for the above distributions. In Section Illustrations of simulations and
probability calculations, we illustrate the use of respective functions as implemented in R for each
of the above distributions for the bivariate (k = 2) case. In Section Computation times, we provide a
run-time study to assess the computation times for functions as the dimension of data increases. In
Section Maximum likelihood estimation of parameters, we implement maximum likelihood estimation
of parameters for these distributions. In Section Two applications, we give two applications of package
NonNorMvtDist, namely, (i) data generation from certain nonelliptical symmetric multivariate distri-
butions with univariate normal marginals and (ii) computation of critical values of the multivariate
F distribution. Section Concluding remarks includes some concluding remarks, pointing out other
applications.

Multivariate Lomax and related distributions

Multivariate Lomax distribution can be derived as the probability distribution of a k-component
system where k independent exponential random variables have a common environment or mixing
parameter following a gamma distribution with shape parameter a and scale parameter b. Let the
corresponding random vector be X = (X1, · · · , Xk)

′. The probability density function of X is given by
(1), and the joint survival function of X is

S(x1, . . . , xk) =

(
1 +

k

∑
i=1

θixi

)−a

, xi > 0, a > 0, θi > 0, i = 1, . . . , k. (2)

Specifically, the pivotal result that we use is given by the following theorem (see Nayak (1987)),

Theorem 2.1: Conditioned on fixed mixing parameter η, representing the environment effect, let
X1, · · · , Xk be independent exponentially distributed random variables with failure rates ηλ1, · · · , ηλk,
respectively. Let the environment effect η be distributed as a Gamma random variate with probability
density

g(η) = ba exp(−ηb)ηa−1/Γ(a), η > 0, a, b > 0.

Then, the unconditional joint density of X1, · · · , Xk is given by (1), where θi = λi/b, i = 1, · · · , k.
Clearly, without loss of generality, b can be taken as 1, in which case θi = λi, i = 1, · · · , k.

In view of the above result, we implement the simulation from k-dimensional multivariate Lomax
distribution by adopting the following algorithm.

Algorithm-MLk(a; θ1, . . . , θk):

1. Generate a random number η from Gamma(a, 1) distribution;

2. With η as generated in Step 1, generate k-independent random variables Xi, i = 1, . . . , k,
each from exponential distribution with parameter ηθi, i = 1, . . . , k, respectively. Let X =
(X1, X2, · · · , Xk)

′;

3. To obtain a random sample of size n, repeat the Steps 1 and 2 n times.

Nayak (1987) also generalized this distribution by mixing conditionally independent Xi having
the Gamma(li, ηθi) distribution, with mixing variable η ∼ Gamma(a, 1), i = 1, . . . , k. This is termed
as generalized multivariate Lomax distribution denoted by GML(a; θ1, . . . , θk, l1, . . . , lk) and has the
probability density function

f (x1, · · · , xk) =

[
∏k

i=1 θli
i

]
Γ
(

∑k
i=1 li + a

)
∏k

i=1 xli−1
i

Γ(a)
[
∏k

i=1 Γ(li)
] (

1 + ∑k
i=1 θixi

)∑k
i=1 li+a

, xi > 0, a, θi, li > 0, i = 1, · · · , k (3)

Accordingly, we perform the corresponding simulation by implementing the suitable changes in the
above algorithm. The algorithm is given below.

Algorithm-GML(a; θ1, . . . , θk, l1, . . . , lk):

1. Generate a random number η from Gamma(a, 1) distribution;
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2. With η as generated in Step 1, generate k-independent Xi, each following Gamma(li, ηθi),
i = 1, . . . , k, respectively;

3. To obtain a random sample of size n, repeat the Steps 1 and 2 n times.

Both algorithms are easily implemented using R stats (R Core Team, 2019) functions rexp() and
rgamma(), respectively, for generating univariate exponential and gamma random variates. In the
following, we describe approaches to generate other distributions related to multivariate Lomax and
generalized multivariate Lomax distributions.

Nayak (1987) has also discussed the inter-relationships between many other multivariate dis-
tributions and generalized multivariate Lomax distribution. In view of these inter-relationships,
the above algorithm can accordingly be amended to simulate data from these distributions - a task
which can be quite difficult to accomplish directly. These inter-relationships are described in Table
1. For convenience, we assume X = (X1, · · · , Xk)

′ ∼ MLk(a; θ1, · · · , θk) and T = (T1, · · · , Tk)
′ ∼

GMLk(a; θ1, · · · , θk; l1, · · · , lk).

Multivariate Transformation/ Probability Density Function
Distribution Parameter Substitutions

Lomax li = 1, f (x1, . . . , xk) =
[∏k

i=1 θi ]a(a+1)···(a+k−1)

(1+∑k
i=1 θi xi)

a+k

i = 1, · · · , k xi > 0, a > 0, θi > 0

li = 1,

Mardia’s Yi = Xi + 1/θi , f (y1, · · · , yk) =
[∏k

i=1 θi ]a(a+1)···(a+k−1)

(∑k
i=1 θiyi−k+1)

a+k ,

Pareto Type I i = 1, · · · , k yi > 1/θi > 0, a > 0, θi > 0

li = 1 and a = 1,

Logistic Wi = µi − σi ln(θiXi), f (w1, · · · , wk) =
k! exp

(
−∑k

i=1
wi−µi

σi

)
∏k

i=1 σi

(
1+∑k

i=1 exp (− wi−µi
σi

)
)1+k ,

i = 1, · · · , k −∞ < wi , µi < ∞, σi > 0

li = 1,

Burr Bi = (θiXi/di)
1/ci , f (b1, · · · , bk) =

[∏k
i=1 cidi ]a(a+1)···(a+k−1)

[
∏k

i=1 b
ci−1
i

]
(

1+∑k
i=1 dib

ci
i

)a+k ,

i = 1, · · · , k bi > 0, a > 0, ci > 0, di > 0

li = 1,

Cook-Johnson’s Vi = (1 + θiXi)
−a, f (v1, · · · , vk) =

Γ(a+k)
Γ(a)ak ∏k

i=1 v(−1/a)−1
i

[
∑k

i=1 v−1/a
i − k + 1

]−(a+k)
,

uniform i = 1, · · · , k 0 < vi ≤ 1, a > 0

F

with degrees of freedom θi = li/a, f (t1, · · · , tk) =

[
∏k

i=1(li/a)li
]
Γ(∑k

i=1 li+a)∏k
i=1 t

li−1
i

Γ(a)[∏k
i=1 Γ(li)]

(
1+∑k

i=1
li
a ti

)∑k
i=1 li+a

,

(2a, 2l1, . . . , 2lk) i = 1, · · · , k ti > 0, a > 0, li > 0

Inverted Beta θi = 1, f (t1, · · · , tk) =
Γ(∑k

i=1 li+a)∏k
i=1 t

li−1
i

Γ(a)[∏k
i=1 Γ(li)](1+∑k

i=1 ti)
∑k

i=1 li+a
,

i = 1, · · · , k ti > 0, a > 0, li > 0

Table 1: Multivariate distributions related to GMLk(a; θ1, · · · , θk; l1, · · · , lk).

The multivariate F distribution can also be obtained by considering

Ti =
Si/(2li)
S0/(2a)

, i = 1, . . . , k, (4)

where S0, S1, . . . , Sk are independent Chi-square variables with 2a, 2l1, . . . , 2lk degrees of freedom
respectively; see Johnson and Kotz (1972). It is the joint distribution of the ratios of mean squares under
certain linear hypotheses on treatments as discussed in Krishnaiah (1965) in the context of simultaneous
ANOVA and MANOVA tests where S0 is a residual sum of squares and Si’s are various effect sums
of squares. The density given in Table 1 is a special case of generalized multivariate F distribution
defined by Krishnaiah (1965) when Si’s, i = 1, · · · , k, are all independent. This fact is useful in that
the Tables given by Armitage and Krishnaiah (1964) make use of this in constructing the statistical
tables for certain linear hypotheses. We use these tables to confirm our calculation as done by our R
programs. The multivariate Inverted Beta distribution also called the multivariate inverted Dirichlet
distribution, is essentially a special case of multivariate F distribution when l1 = l2 = · · · = lk = a.
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Figure 1 pictorially summarizes the relationships between (generalized) Lomax and other distribu-
tions.

Generalized Lomax
(a, θ, l)

Lomax
(a, θ)

Mardia’s Pareto Type I
(a, θ)

Logistic
(µ, σ)

Burr
(a, d, c)

Cook-Johnson’s Uniform (a)
(Clayton copula)

F
(2a, 2l)

Inverted Beta
(a, l)

li = 1 Xi + 1/θi

µi − σi ln(θiXi)

(θiXi/di)
1/ci

(1 + θiXi)
−a

θi = li/a

θi = 1

Figure 1: Relationships among (generalized) multivariate Lomax and other distributions. Solid lines
represent transformations and dashed dot lines represent reparameterization (parameter substitutions).

Probability computations

Here, we give details of computations of cumulative probability distribution function (cd f ), survival
function, equicoordinate quantile function for each distribution introduced in Section Multivariate
Lomax and related distributions. Depending on the situation, the calculation may sometimes be
simpler for joint cd f or joint survival function.

Distributions transformable from Lomax distribution

The multivariate Lomax distribution has an explicit closed-form expression for the joint survival
function given by (2). The survival or cumulative distribution function of other related distributions
can be obtained either directly or through appropriate transformations. We summarize these explicit
expressions of cumulative distribution function F(·) and survival function S(·) in Table 2.

For the cumulative distribution functions or survival functions with no closed-form expressions,
we rely on the following useful formulas (Joe, 1997):

S(x) = 1 + ∑
C∈C

(−1)|C|FC(xj, j ∈ C), (5)

F(x) = 1 + ∑
C∈C

(−1)|C|SC(xj, j ∈ C), (6)

where FC(xj, j ∈ C) (SC(xj, j ∈ C)) is the joint cd f (joint survival function) of xj where the subscripts
belong to the set C, which is a subset of {1, 2, · · · , k}. Clearly, C ∈ C where C is the powerset of
{1, 2, · · · , k}. Also, |C| represents the cardinality of C.

The equation

P[xi ≤ qi, i = 1, · · · , k] =
∫ q1

0
· · ·

∫ qk

0
f (x1, · · · , xk)dxk · · · dx1 = p
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Multivariate
Distribution

Cumulative Distribution Function Survival Function

Lomax No closed form S(x1, · · · , xk) =
(

1 + ∑k
i=1 θixi

)−a

xi > 0, a, θi > 0

Mardia’s Pareto
Type I

No closed form S(y1, · · · , yk) =
(

∑k
i=1 θiyi − k + 1

)−a

yi > 0, a, θi > 0

Logistic F(w1, · · · , wk) =
[
1 + ∑k

i=1 exp(− wi−µi
σi

)
]−1

No closed form
−∞ < wi , µi < ∞, σi > 0

Burr No closed form S(b1, · · · , bk) =
(

1 + ∑k
i=1 dib

ci
i

)−a

bi > 0, a, di , ci > 0

Cook-Johnson’s
Uniform

F(v1, · · · , vk) =
[
∑k

i=1 v−1/a
i − k + 1

]−a
No closed form

0 < vi ≤ 1, a > 0

Table 2: Cumulative distribution functions and survival functions of multivariate Lomax and related
distributions.

for a given p does not have a unique solution (q1, · · · , qk). We thus provide the quantile computations
only for the equicoordinate quantile, obtained by solving the following equation for q,

P[Xi ≤ q, i = 1, · · · , k] =
∫ q

0
· · ·

∫ q

0
f (x1, · · · , xk)dxk · · · dx1 = p, (7)

where 0 < p < 1 is a (given) cumulative probability. We make use of the R stats function uniroot(),
which is used for finding one dimensional root.

Distributions related to generalized multivariate Lomax distribution

For generalized multivariate Lomax distribution and its related distributions, explicit expressions
of the cumulative distribution function and survival function are not available. Thus, we obtain the
cumulative probabilities through multiple integral in (8) below over the unit cube [0, 1]k by using the
adaptive multivariate integration function hcubature() in package cubature (Narasimhan et al., 2018).

F(x1, . . . , xk) =
∫ x1

0
· · ·

∫ xk

0
f (t1, · · · , tk)dtk · · · dt1,

=
k

∏
i=1

xi

∫ 1

0
· · ·

∫ 1

0
f (u1x1, · · · , ukxk)duk · · · du1, (ui = ti/xi, i = 1, · · · , k). (8)

The following result is used for the computation of the cumulative distribution function for the
generalized Lomax distribution.

Property 3.1: Let T1, · · · , Tk be k continuous random variables that jointly follow the
GMLk(a; θ1, · · · , θk,l1, · · · , lk) distribution as given in (3). Then, the cumulative distribution function
of T1, · · · , Tk can be computed as

F(x1, · · · , xk) = P(T1 ≤ x1, · · · , Tk ≤ xk) = P(U1 ≤ 1, · · · , Uk ≤ 1),

where U1, · · · , Uk jointly follow GMLk(a; θ1x1, · · · , θkxk, l1, · · · , lk) distribution.

Proof of the above is straightforward by making the substitutions ui = ti/xi, i = 1, · · · , k.

Through parameter substitutions, the cumulative distribution functions of multivariate F and the
inverted beta distribution can be found. These are summarized in Table 3.

For the above method, the run-time consumption rapidly increases as k becomes large. Thus as an
alternative, we also provide the option of computation of cumulative distribution function via Monte
Carlo method. The corresponding algorithm is
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Distribution Parameter Cumulative Distribution Function
Substitutions

Multivariate F
with degrees of freedom θi = li/a, F(x1, · · · , xk) = P(U1 ≤ 1, · · · , Uk ≤ 1),
(2a, 2l1, . . . , 2lk) i = 1, · · · , k (U1, · · · , Uk) follows GMLk(a; x1l1/a, · · · , xk lk/a, l1, · · · , lk)

Multivariate θi = 1, F(x1, · · · , xk) = P(U1 ≤ 1, · · · , Uk ≤ 1),
Inverted Beta i = 1, · · · , k (U1, · · · , Uk) follows GMLk(a; x1, · · · , xk , l1, · · · , lk)

Table 3: Cumulative distribution functions of related multivariate distributions to generalized multi-
variate Lomax.

Algorithm - CDF Computation using Monte Carlo Method:

1. Generate N random vectors t(i) = (t(i)1 , · · · , t(i)k )′, i = 1, · · · , N from the desired distribution;

2. Compute

P̂(T1 ≤ x1, · · · , Tk ≤ xk) =
1
N

N

∑
i=1

I(t(i) ≤ x),

where x = (x1, · · · , xk)
′ and I(·) is the zero-one indicator function corresponding to the

conditions specified.

Step 1 above is readily carried out by the random numbers generation as described in Section Multi-
variate Lomax and related distributions using the package NonNorMvtDist. Since cd f is computable
using adaptive multivariate integration over unit cube [0, 1]k or via the Monte Carlo method, it fol-
lows that the survival function can also be calculated (by using (6)). The equicoordinate quantile is
computed by using (7).

We also add in our package the calculations of joint probability density function - Being self-
explanatory with all pd f s available in closed form, it needs no further elaboration. The corresponding
function is dmv*().

Illustrations of simulations and probability calculations

We will illustrate here the functions and corresponding arguments for NonNorMvtDist. The calling
sequences include probability density calculation (dmv*), cumulative distribution calculation (pmv*),
equicoordinate quantile calculation (qmv*), random numbers generation (rmv*), and survival function
calculation (smv*) for each of the multivariate distributions introduced in Section Multivariate Lomax
and related distributions. For each distribution, we consider the bivariate case (k = 2). This choice
enables us to also succinctly and graphically present the probability density plots. The detailed descrip-
tion of the calling sequence for each of the several cases has been moved into a digital complement of
this paper.

For example, for the bivariate Lomax distribution (k = 2) with parameters a = 5, θ = (0.5, 1), the
calling sequences for various functions are

dmvlomax(x, parm1 = 5, parm2 = (0.5,1))
pmvlomax(q, parm1 = 5, parm2 = (0.5,1))
qmvlomax(p, parm1 = 5, parm2 = (0.5,1))
rmvlomax(n, parm1 = 5, parm2 = (0.5,1))
smvlomax(q, parm1 = 5, parm2 = (0.5,1))

It may be mentioned that our approach may be more efficient than the NORTA method (Ghosh
and Henderson, 2002) for simulation in that NORTA always first requires simulation from multivariate
normal, which are then transformed to multivariate uniform. Only often this step, one could subse-
quently transform the simulated data to the desired distribution. Consequently, for large dimensions,
the approach requires more computing power and time (in fact, to simulate data from the normal
distribution, many programs themselves first require random number generations from uniform
distributions, from which normal random numbers are obtained).

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859
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3D bivariate density plot

For each bivariate distribution, we provide the density surface plots along with contours using
the function persp3D() from the package plot3D (Soetaert, 2017). To illustrate, we define function
dplot2(), and we pass appropriate density functions to the density function argument dfun to create
the density surfaces. These are summarized in the digital complement along with corresponding
resulting plots. For the Lomax distribution with parameters indicated previously, the statements will
be

library(plot3D)

dplot2 <- function(dfun, x1, x2, zlim) {
zmat <- matrix(0, nrow = length(x1), ncol = length(x2))
for (i in 1:length(x1)) {

for (j in 1:length(x2)) {
zmat[i, j] = dfun(x = c(x1[i], x2[j]))

}
}
persp3D(z = zmat, x = x1, y = x2, theta = -60, phi = 10, ticktype = "detailed",

zlim = zlim, contour = list(nlevels = 30, col = "red"),
facets = FALSE, image = list(col = "white", side = "zmin"),
xlab = "X1", ylab="X2", zlab = "Density", expand = 0.5, d = 2)

}

dplot2(dfun = function(x) dmvlomax(x, parm1 = 5, parm2 = c(0.5, 1)), x1 = seq(0, 4, 0.1),
x2 = seq(0, 4, 0.1), zlim = c(-5, 13))

The plot that results is shown in Figure 2.

Figure 2: Density surface of bivariate Lomax distribution with parameters a = 5, θ = (0.5, 1).

Random number generation

The following code illustrates the use of the function rmvlomax*() with a bivariate sample of size
n = 2. Sampling is done by setting set.seed(2019) in advance. The digital complement explicitly
provides the code as well as output for all of the probability distributions discussed here. In the output,
each row represents a bivariate observation.

• Bivariate Lomax: a = 5, θ1 = 0.5, θ2 = 1

> set.seed(2019)
> rmvlomax(n = 2, parm1 = 5, parm2 = c(0.5, 1))

[,1] [,2]
[1,] 1.0174406 0.7076480
[2,] 0.3686253 0.7826978
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CDF, survival function and equicoordinate quantile

The applications of cd f pmv*(), survival function smv*(), and equicoordinate quantile function qmv*()
are straightforward and follow the same pattern earlier. See the digital complement for computation
details. In the following, we give code as well as output only for Lomax distribution (a = 5, θ1 = 0.5,
θ2 = 1) for specified coordinates (x1, x2) and for the cumulative probability p = 0.5.

• Bivariate Lomax: a = 5, θ1 = 0.5, θ2 = 1; quantiles: (x1, x2) = (1, 0.5).

> pmvlomax(q = c(1, 0.5), parm1 = 5, parm2 = c(0.5, 1))
[1] 0.7678755
> smvlomax(q = c(1, 0.5), parm1 = 5, parm2 = c(0.5, 1))
[1] 0.03125
> qmvlomax(p = 0.5, parm1 = 5, parm2 = c(0.5, 1))
[1] 0.3928917

Computation times

We assess the run-times for the computation of probability (pmv*), equicoordinate quantile function
(qmv*) for multivariate Lomax, and generalized multivariate Lomax distributions for reference. The
survival function (smv*) of multivariate Lomax distribution has a closed-form expression, and hence
the assessment of computation time is omitted. We have used the computer with Intel Core i5-8250U
CPU and 8.00 GB RAM. The results for p-variate Lomax distribution are summarized in Table 4. As
we can see, the run-times for pmvlomax() are quit short, even for the dimension p = 20. However,
qmvlomax() requires a considerable longer time when p ≥ 17, which seems to double for every extra
dimension added to the size of the random vector. The computation times in Table 4 can also be used
as a reference for the distributions related to multivariate Lomax, which are in Table 2 since we apply
the same approach for probability computations there as well.

p pmvlomax() qmvlomax() p pmvlomax() qmvlomax()

1 0.01695895 0.03702188 11 0.04889703 0.7992568
2 0.01795197 0.02293706 12 0.09025002 1.879766
3 0.01794696 0.02789807 13 0.1545889 3.087925
4 0.01795197 0.03290296 14 0.245369 5.950396
5 0.01976085 0.04189205 15 0.4657819 11.37162
6 0.01995182 0.06582808 16 0.853502 22.04591
7 0.02094102 0.098768 17 1.708418 45.51909
8 0.02197218 0.146611 18 2.803703 90.70764
9 0.02396512 0.2393882 19 5.453189 181.55772
10 0.04587412 0.4296861 20 10.40903 351.58896

Table 4: Runtimes (in seconds) for functions pmvlomax() and qmvlomax() as functions of p.

The results for generalized p-variate Lomax distribution are summarized in Tables 5 and 6. Both
functions pmvglomax() and smvglomax() require relatively much longer time when p > 4, and
qmvglomax() takes longer when p > 2. Based on the run-time consumption, we recommend al-
gorithm MC for larger dimensions (e.g., when p > 5). Similarly, this run-time study can also be used as
a reference for the related distributions (to generalized Lomax distribution) as listed in Table 3 since
we apply the same method for computations.

pmvglomax() smvglomax()
p numerical MC numerical MC

1 0.03395414 4.600386 0.03084397 3.977374
2 0.02397585 6.536522 0.05378199 5.510087
3 0.101758 8.396577 0.208086 7.229721
4 0.9758801 10.64278 2.13447 8.741386
5 16.43411 19.30024 40.11997 9.762063
6 305.50092 19.57221 1344.1908 11.63218

Table 5: Runtimes (in seconds) for functions pmvglomax() and smvglomax() by using algorithms
numerical and MC as functions of p.
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qmvglomax()
p numerical MC

1 0.4144461 12.5594
2 6.383504 18.97528
3 96.86238 27.23917
4 2929.5018 30.62036

Table 6: Runtimes (in seconds) for function qmvglomax() by using algorithms numerical and MC as
functions of p.

Maximum likelihood estimation of parameters

We also include the maximum likelihood estimation to estimate the parameters for various Lomax
related distributions (except for the bivariate F distribution). Although many of the density functions
in Section Multivariate Lomax and related distributions have complicated forms, maximum likelihood
estimation can be easily accomplished by using the built-in optimization functions in R stats. The
log-likelihood function for a given sample x1, . . . , xn is given by

L(θ|x1, . . . , xn) = log

 n

∏
j=1

f (xj1, . . . , xjk|θ)


=

n

∑
j=1

log
[

f (xj1, . . . , xjk|θ)
]

, θ ∈ Θ, (9)

where n is the sample size, θ is a vector of parameters to be estimated, and xj = (xj1, . . . , xjk)
′ is

the jth observation for the random vector X = (X1, . . . , Xk)
′, respectively. The maximizer θ̂ of the

log-likelihood function given in (9), namely,

θ̂ = arg max
θ∈Θ

L(θ|x1, . . . , xn),

is obtained using an appropriate optimization method. The parameter space Θ in each case must be
appropriately constrained, and these constraints must be taken into account during the optimization
process. We have thus made use of three R stats functions, namely, optim(), constrOptim(), and
optimize() in this work. The functionality of these optimization functions is described in Table 7.

Function Number of parameters Usage

optim() Multiple General-purpose Optimization
constrOptim() Multiple Optimization with linear constraints
optimize() Single One Dimensional Optimization

Table 7: Use of optimization functions in R stats.

By default, all these functions perform the task of minimization of a function. To maximize (9), we
only need to add argument control = list(fnscale = -1) in functions optim() and constrOptim(),
and set maximum = TRUE in function optimize().

For example, for the multivariate Lomax distribution, we define the log-likelihood function
loglik.lomax() by using the following code:

loglik.lomax <- function(data, par) {
ll <- sum(dmvlomax(data, parm1 = par[1], parm2 = par[-1], log = TRUE))

}

The R stats function constrOptim() is chosen to obtain the maximizer of the log-likelihood function
(or equivalently, loglik.lomax()). The linear constraints imposed on the parameters a, θ1, and θ2 are
a > 0, θ1 > 0, and θ2 > 0. In matrix notation, it is,

Uθ =

1 0 0
0 1 0
0 0 1

 a
θ1
θ2

 =

 a
θ1
θ2

 >

0
0
0

 = C.

Thus, in the code that follows, the constraint matrix ui is set as an identity matrix I3 by using the
function diag(3), and constraint vector ci is set as a zero vector rep(0,3). For our illustration, let the
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data be the one simulated by the methods described earlier, each with n = 300. It is done by

set.seed(1)
bvtlomax <- rmvlomax(n = 300, parm1 = 5, parm2 = c(0.5, 1))

The starting initial values for a, θ1, and θ2 are all set as 10 by assigning rep(10,3) to the argument
theta in function constrOptim(). The gradient argument grad is optional, and we have chosen this to
be NULL.

> est = constrOptim(theta = rep(10, 3), f = loglik.lomax, grad = NULL, data = bvtlomax,
+ ui = diag(3), ci = rep(0, 3), control = list(fnscale = -1))
> est$convergence
[1] 0
> est$par
[1] 5.0555691 0.4468724 0.9036692

The output consists of two important pieces of information, (i) whether convergence is successfully
achieved (est$convergence = 0) or not (est$convergence = 1) and (ii) the values of the final
maximum likelihood estimates. In our illustration, the convergence is successfully achieved, and we
have â = 5.0555691 and (θ̂1, θ̂2) = (0.4468724, 0.9036692).

We summarize the optimization methods, constraints, and the resulting outputs for all the bivariate
distributions (except for bivariate F distribution) in Table 8. The detailed illustrations and codes for
the remaining distributions are included in the digital complement. Observe that these estimates are
reasonably close to the true parameter values, thereby confirming that the program is functioning as it
is expected to.

Multivariate Parameters Optimization Constraints Estimated Parameters
Distribution Method

Lomax a = 5 constrOptim() U = I3 â = 5.05556
θ = (0.5, 1)′ C = (0, 0, 0)′ θ̂ = (0.44687, 0.90366)′

Mardia’s a = 5 constrOptim() U = I3 â = 4.63862
Pareto Type I θ = (0.5, 2)′ C = (0, [min(X1)]

−1, [min(X2)]
−1)′ θ̂ = (0.49971, 1.99785)′

Logistic µ = (0.5, 1)′ optim() N/A µ̂ = (0.39199, 0.89731)′

σ = (1, 1.5)′ σ̂ = (0.97573, 1.55976)′

Burr a = 3 constrOptim() U = I5 â = 3.91498
d = (1, 3)′ C = (0, 0, 0, 0, 0)′ d̂ = (0.64889, 2.06858)′

c = (2, 5)′ ĉ = (1.92719, 5.07697)′

Cook-Johnson’s
Uniform

a = 0.3 optimize() a > 0 â = 0.31064

Generalized a = 5 constrOptim() U = I5 â = 3.91869
Lomax θ = (0.5, 1)′ C = (0, 0, 0, 0, 0)′ θ̂ = (0.54674, 1.79126)′

l = (2, 4)′ l̂ = (1.70310, 5.21736)′

Inverted Beta a = 4 constrOptim() U = I3 â = 3.67153
l = (2, 6)′ C = (0, 0, 0)′ l̂ = (1.82450, 5.46465)′

Table 8: Comparison between True and Estimated Values of Parameters for each of the Distributions
(except for bivariate F distribution).

Two applications

In this last section, we give two brief applications, which not only demonstrate the use but also confirm
the accuracy and verify the correctness of our work.

Generating data from the nonelliptical symmetric distributions with univariate normal
marginals

Cook-Johnson’s multivariate uniform distribution is a family of distributions that can be used for
modeling nonelliptical symmetric data. Further, in view of uniform distribution for marginal, it
has been as one of the useful choices for modeling through copula (in fact, Cook-Johnson’s uniform
distribution is indeed a Clayton copula (Nelsen, 2006)). The value of parameter a impacts the common
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correlation coefficient ρ among variates in that ρ → 0 as a → ∞, and ρ → 1 as a → 0 (Cook and
Johnson, 1981). An interesting application of Cook-Johnson’s multivariate uniform distribution is
to obtain new joint distributions by marginal transformation. Specifically, we consider the problem
of generating random numbers from a multivariate distribution that is not elliptically symmetric
but has univariate normal marginals. Let Ui’s, i = 1, 2, be two random variables corresponding to
the Cook-Johnson’s bivariate uniform distribution. The following code yields the pairs of random
numbers, each having the normal marginals by the transformation Xi = Φ−1(Ui), where Φ−1(·) is
the quantile function of a standard normal distribution. Clearly, the joint distribution of X1 and X2 is
not bivariate normal. To begin with, the parameter a is taken to be a = 2.

set.seed(1)
biv.unif <- rmvunif(8000, parm = 2, dim = 2)
biv.norm <- as.data.frame(apply(biv.unif, 2, qnorm))

The sample correlation coefficient ρ of data set biv.norm is computed by the following code.

> cor(biv.norm$V1, biv.norm$V2)
[1] 0.3180119

We create a bivariate scatter plot using the function ggplot() in package ggplot2 (Wickham, 2016) for
data set biv.norm. This is shown in Figure 3 (a).

library(ggplot2)

ggplot(biv.norm, aes(x = V1, y = V2)) + xlim(c(-4, 4)) +
ylim(c(-4, 4)) + xlab("X1") + ylab("X2") + geom_point()

To assess the behavior as a function of a, we now decrease the parameter a to 1.0, 0.5, 0.1 resulting
in higher correlations ρ (= 0.51, 0.68, 0.93, respectively) between the two variates. The bivariate scatter
plots for the four cases that is, when a = 2.0, 1.0, 0.5, 0.1 are shown in Figure 3 (a)-(d). It is easy to
observe that the generated bivariate data have nonelliptical yet, symmetric contours.

(a) a = 2, ρ = 0.32 (b) a = 1, ρ = 0.51

(c) a = 0.5, ρ = 0.68 (d) a = 0.1, ρ = 0.93

Figure 3: The scatterplots of nonelliptical symmetric normal data generated from transformed Cook-
Johnson’s uniform random numbers with a = 2, 1, 0.5 and 0.1.
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Creating tables for simultaneous MANOVA hypothesis tests

Multivariate F distribution arises naturally as the distribution of test statistics in several testing
problems in simultaneous MANOVA. Let s2

1, · · · , s2
k be k independent sums of squares, and s2

0 be the
sum of squares due to error in the classical ANOVA model. Also, let H1, · · · , Hk be certain individual
linear hypotheses with the corresponding sum of squares s2

1, · · · , s2
k . Assume that under H1, · · · , Hk,

respectively, the sums of squares s2
1, · · · , s2

k are all χ2 random variables each with n degrees of freedom
and s2

0 is a χ2 random variable with m degrees of freedom and is independent of s2
1, · · · , s2

k . Armitage
and Krishnaiah (1964) defined the critical values Fα at α level of significance for simultaneously testing
hypotheses H1, · · · , Hk by the probability statement,

P

[
m max (s2

1, · · · , s2
k)

ns2
0

≤ Fα

∣∣∣∣∣ k⋂
i=1

Hi

]
= P

[
ms2

i
ns2

0
≤ Fα, i = 1, · · · , k

∣∣∣∣∣ k⋂
i=1

Hi

]
= 1 − α.

The quantities (ms2
i )/(ns2

0), i = 1, · · · , k jointly follow multivariate F distribution if the overall null
hypothesis H0 =

⋂k
i=1 Hi is true. In this case, the critical value Fα can be readily computed using

the equicoordinate quantile function qmvf() by setting the argument corresponding to k + 1 values
of the degrees of freedom as df = c(m,n,...,n). The following code gives F0.05 = 9.551505 for the
bivariate F case when m = 5 and n = 1 with default algorithm by using adaptive multiple integration
over unit cube (algorithm = "numerical"). With Monte Carlo algorithm (algorithm = "MC" with
nsim=1,000,000), we obtain F0.05 = 9.550944. Note that the Monte Carlo method is seed dependent,
so the output from different runs may slightly differ from each other.

> qmvf(0.95, df = c(5, 1, 1))
[1] 9.551505
> qmvf(0.95, df = c(5, 1, 1), algorithm = "MC")
[1] 9.550944

For further demonstration and also to further affirm our trust in the calculations, we compare
the output of quantile function qmvf() using both adaptive multivariate integration and Monte Carlo
methods with the values given in Armitage and Krishnaiah (1964). These three calculations are
reported in Table 9 for a few choices of m and n. The agreement among the three columns shows
that the package NonNorMvtDist provides a convenient way to obtain percentage points for the
hypothesis testing problems considered by Armitage and Krishnaiah (1964) and Krishnaiah (1965).
Clearly, unlike the tables in Armitage and Krishnaiah, the choices of α and degrees of freedom are not
restricted, and in that sense, our package is very comprehensive and exhaustive in this respect.

α df (m, n, n) qmvf() Output qmvf() Output Tabulated Values in
(algorithm = "numerical") (algorithm = "MC") Armitage and Krishnaiah

(1964, pp. 33-42)

0.05

(5, 1, 1) 9.551505 9.550944 9.55
(5, 2, 2) 7.879999 7.881698 7.88
(5, 3, 3) 7.136473 7.165361 7.14
(5, 4, 4) 6.702224 6.715759 6.70
(5, 5, 5) 6.412372 6.399167 6.41
(10, 6, 6) 3.899335 3.898442 3.90
(10, 7, 7) 3.768494 3.767915 3.77
(10, 8, 8) 3.665646 3.661366 3.67
(10, 9, 9) 3.582271 3.583923 3.58
(10, 10, 10) 3.513163 3.514059 3.51

Table 9: Comparison between the output of qmvf() with the values given in Armitage and Krishnaiah
(1964).

Concluding remarks

We have developed a new R package, NonNorMvtDist, for generating multivariate random numbers
from Lomax (Pareto type II), generalized Lomax, Mardia’s Pareto type I, logistic, Burr, Cook-Johnson’s
uniform, F, and inverted beta distributions. Detailed examples of each distribution are given to
illustrate data simulation, probability calculations, and statistical modeling.
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The fact that nonnormal and skewed multivariate distributions are common in the real world but
are rarely pursued for analysis due to the lack of ready-to-use computational support underscores the
importance of this package. Possibilities of the use of these distributions are practically limitless and
yet unforeseen in a variety of areas, starting from the biomedical sciences, reliability, and engineering as
well as in statistical finance in the contexts of volatility estimation. Simulations, probability calculations,
as well as calculations of quantiles, and the maximum likelihood estimation of parameters are the
natural first set of computations in such studies. We have addressed all of these in this work.

The calculations of probabilities of hypercubes (for example, of P[a1 < X1 < b1, a2 < X2 <
b2, a3 < X3 < b3]) can be easily implemented by appropriately combining several cd f calculations.
Alternatively, our codes for pmv*() can be suitably modified for this purpose. The probability density
surface plots for any bivariate marginal can be easily constructed since, for the multivariate Lomax
distribution, the marginal distributions of any subset of random variables also follow the multivariate
Lomax distribution in the appropriate dimension. Further, our work provides a way to generate data
from, probability calculations for, as well as modeling for, the data which are marginally distributed as
normal but jointly are not.
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