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The safety of rail transport has always been the top priority for the Federal 

Railroad Administration (FRA). Legacy technology, like wayside monitoring, is still 

in place and is largely relied upon for detection of faults. Modern technology like 

Radio Frequency Identification (RFID) has been introduced recently. However,   this 

is largely used to detect a particular railcar rather than to monitor it for problems. 

Wireless Sensor Network (WSN) technology is being evaluated by the railroads for 

real-time or near real-time monitoring of the status of railcars for timely response to 

problems and also for trend analysis. 

ZigBee has been the networking protocol of choice for the railroads for its low 

power consumption and cost of implementation. The railroad scenario presents a long 

linear-chain like network topology which ZigBee was not designed to handle. It has 

been found that a ZigBee-only network in the railroad environment suffers from 

drawbacks like long synchronization delays, severe problems with route discovery 

and maintenance, aggregation of data errors leading to unacceptable packet loss rates, 

lack of a mechanism to decide traffic priority for critical packets, like alarm, so that 

they can reliably traverse the network to the collecting node in the locomotive etc. 

Hybrid Technology Networking (HTN) protocol has been suggested which 

addresses the shortcomings of ZigBee in the railroad scenario. It proposes a 



 
 

standards-based multi-protocol approach that is well-suited for the railroad scenario. 

The current crop of sensor platforms does not provide an integrated environment for 

the implementation of HTN. 

In this research work an integrated hardware platform for the implementation 

of the HTN protocol is designed and implemented. The guiding principle has been the 

adherence to standards. The test results using the hardware show that it provides inter-

operability with available sensor platforms, can interface with other sensing hardware 

using standard protocols and provides communication capabilities exceeding that 

needed by HTN. 
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Chapter 1. INTRODUCTION TO STATUS 

MONITORING IN RAILROADS 

 

1.1. Importance of Freight Railroad 

 
Freight railroad is very important to the economic health of a country as it 

moves commodities between source and the market place, between the place of origin 

and the place where those commodities are used as raw materials. Hence freight 

railroads directly help businesses and industries thrive which in turn drives the 

economy of a country. 

In the United States of America freight railroad accounts for 40% of the total 

freight volume [1], when measured in ton-miles. Ton-mile is defined as the movement 

of one ton of freight over a distance of one mile. The commodities moved by freight 

rail vary from coal, chemicals, food and related products, automobiles and their 

related products, lumber and wood products, minerals, metallic ores, petroleum and 

coal and other miscellaneous products [2-3]. Figure 1 and 2 illustrate this distribution. 

 

 

Figure 1.1. Percent in ton-miles of freight carried by different modes of transport 
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Figure 1.2. 2005 Class I Railroads Revenues by Commodity Group 

 

There are several advantages of using freight railroad as well. They are 

presented as under: 

a) A major advantage of freight rail is that it is fuel efficient. Studies have found 

that freight rail is as much as three times as fuel efficient as trucks, the other 

major mode of freight movement in the United States. 

b)  The movement of freight by rail is environment friendly. In today’s day when 

the adverse effects of pollution on the environment is all too clear, emphasis is 

on clean modes of transport. Environment Protection Agency (EPA) estimates 

that freight rail produces only 9 percent of total transportation related nitrous 

emissions and 4 percent of total transportation related particulate emissions 

although it accounts for nearly 40 percent of inter-city ton-miles [2]. 

20% 

15% 

12% 
8% 

8% 

7% 

21% 

5% 4% 

2005 Class I Railroad Revenues by 
Commodity Group 

Coal

Misc. mixed shipments

Chemicals

Motor vehicles & equipment

Farm products

Food & kindred products

All other commodities

Lumber & wood products

Pulp, paper & allied products



3 
 

c) Freight railroad also helps take trucks off the road. It is estimated that a single 

freight rail takes 280 – 550 trucks off the road [1]. This contributes 

significantly to the alleviation of congestion from the road network. 

d) Freight railroad is the safest way to carry hazardous materials. This stems 

from the fact that even though both trucks and rail carry hazardous material, 

the chances of a truck getting into an accident and releasing hazardous 

material is far higher than when using freight rail. 

1.2. Reasons for Monitoring Freight Railroad 

Each freight railcar consists of hundreds of moving mechanical parts, 

electrical wirings, goods and commodities that are prone to damage and maybe 

perishable. 

The bearing in the wheels of a railcar may overheat and lead to a catastrophic 

failure and derailment. Electrical systems may fail leading to shut down of a 

refrigeration unit that would spoil the perishable goods that railcar was carrying. 

Doors of the railcar may be opened with the intention of stealing merchandise. 

Any of these result in huge losses in the form of time and money for both the 

railroads and the businesses which depend on the goods transported by the railroads. 

Each freight rail consists of close to hundred or more railcars. It becomes very 

difficult for the limited number of personnel on-board to monitor all the different 

parameter for each and every railcar.  

Hence the ability to monitor status of various components and goods in a 

railcar becomes of critical importance. Also such monitoring can be used to look at 

and evaluate trends that can be used to upgrade maintenance schedules and put best 

practices in place. 
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1.3. Existing Methods for Railcar Status Monitoring 

Currently employed methods of monitoring railcar status can be classified as 

the following: 

a) Wayside Monitoring: In wayside monitoring certain parameters of a railcar 

are logged when it passes by the detector. The detector is generally placed 

outside stations or yards. They are generally used to monitor bearing 

temperature which is an indicator of bearing health. The data from the 

detectors are transmitted via backhaul networks to controlling stations where 

these are monitored and logged. Figure 3 shows a wayside monitoring 

installation. 

 

Figure 1.3: Wayside monitoring equipment in the field [5] 

 

b) Automatic Equipment Identification (AEI): This form of monitoring is used 

just to identify the railcar or rail equipment that passed by the detector. It 

makes use of passive tags that are mounted on the side of railcars or on the rail 
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equipment that is read by a reader mounted by the trackside. This technology 

makes use of Radio Frequency Identification technology [6] (RFID). Figure 4 

shows an AEI setup in the field. 

 

Figure 1.4: A railcar with an AEI tag mounted on its side [7] 

 

c) On-Board Monitoring and Control System (OBMCS): This system 

puts the sensing equipment on-board the railcar. It has two distinct 

components. The sensors on-board a single railcar are interconnected by a 

CAN bus. While intra-train communication and control from the locomotive is 

achieved using IEEE 802.11(b) [8]. The system is also equipped with cellular 

radio and GPS for transmission of information to remote monitoring stations 

and location services. The system details are present in [9]. 
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1.4. Drawbacks of Current Methods 

The methods of railcar status monitoring mentioned briefly above suffer from 

some severe drawbacks. They are shortly discussed below: 

 

a) Lack of real-time monitoring is a severe drawback plaguing the wayside 

monitoring technique. The wayside installations are spaced far apart from one 

another. The distance between two stations or yards may be in the hundreds of 

miles. Bearing failures are often catastrophic and happen very quickly. There 

is a good chance that it may take place between two stations. Also failure of 

the refrigeration unit, opening and closing of doors are events that cannot be 

effectively monitored by wayside installations. 

b) The meager number of parameters that can be monitored by a wayside 

installation is also a noticeable drawback. These installations can measure 

bearing temperature and some very limited other parameters when a railcar 

passes by. 

c) The OBMCS addresses these problems but introduces some unique to it. The 

use of a wired CAN bus within a railcar fixes the location of the sensors and 

also makes it hard to introduce a new sensor later on. The use of cellular radio 

is possible only in areas covered by cellular network. There are vast stretches 

of land, through which trains need to pass, where there is no cellular coverage. 

In those areas this system becomes non real-time. Also, the use of IEEE 

802.11(b) [8], cellular radio and GPS [10] make the system power hungry. 

The use of dynamo to generate power to recharge the batteries needs invasive 

installation on the wheels. 
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1.5. WSN for Railcar Status Monitoring 

Wireless Sensor Networks (WSN) involves sensor nodes that are capable of 

communicating with other sensor nodes and forming a network among themselves 

[11]. These nodes are capable of monitoring parameters and then communicating the 

readings through the network to the main collecting unit. Since the nodes are 

extremely resource constrained so the design of sensor nodes and network protocols 

are all guided by the principle of low power consumption. The continuing 

advancement in silicon science enables reduction of size of the sensor nodes which 

leads to lowering of cost. WSN has been successfully used in varied application 

environments as follows: 

a) Area Monitoring 

b) Environmental monitoring of forests, glaciers, air quality etc. 

c) Industrial monitoring of machine health, data logging etc. 

d) Agricultural monitoring of crops, soil humidity, cattle etc. 

e) Smart home monitoring. 

The deployment of WSN for railcar status monitoring is hence very feasible. It 

allows for real-time or near real-time monitoring. The absence of wires and self-

forming and self-healing networks make the addition of new sensors very easy. Low 

power consumption profile increases the overall lifetime of the network and also since 

these can easily be battery powered, invasive installation is not required. 

Hence the use of WSN for railcar status monitoring has significant advantages 

over the currently used methods of monitoring. 
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Chapter 2. OVERVIEW OF COMMUNICATION 

PROTOCOLS 

This chapter will provide a brief overview of the involved communication 

protocols, namely IEEE 802.11, IEEE 802.15.4 and ZigBee. 

2.1. IEEE 802.11 

IEEE 802.11 [12] consists of a group of standards that are used to implement 

Wireless Local Area Network (WLAN) communication in the 2.4, 3.6, 5.0 and 60.0 

GHz frequency bands. In 1999, the Wi-Fi Alliance [13] was formed which is a body 

that evaluates and certifies a product as Wi-Fi compliant. Wi-Fi is the name that has 

come to be commonly associated with products that conform to the IEEE 802.11 

group of standards. 

The following table shows the evolution of the IEEE 802.11 standard over the 

years with respect to a few parameters of interest: 

802.11 

Protocol 

Release 

Year  

Frequency 

(GHz)  

Bandwidth 

(MHz) 

Data Rate 

(Mbps)  

Modulation 

Initial 1997 2.4 20 1,2 DSSS, 

FHSS 

a 1999 5.0 20 6,9,12,18,24 

36,48,54 

OFDM 

b 1999 2.4 20 1,2,5.5,11 DSSS 

g 2003 2.4 20 6,9,12,18,24 

,36,48,54 

DSSS, 

OFDM 
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n 2009 2.4, 5 20 7.2, 14.4, 

21.7, 28.9, 

43.3, 57.8, 

65, 72.2 

OFDM 

40 15, 30, 45, 

60, 90, 120, 

135, 150 

 

Table 2.1: IEEE 802.11 releases over the years [8] 

 

2.1.1. IEEE 802.11 Components 

The IEEE 802.11 typical network architecture consists of the following 

components: 

a) Basic Service Set: The IEEE 802.11 network is envisioned to consist of 

several interconnected cells. Each cell is called the Basic Service Set. 

b) Access Point: Each Basic Service Set is to contain an Access Point or Base 

Station which controls the network within that cell. 

c) Distribution System: If the WLAN consists of several cells, then the APs are 

connected by either a wired or wireless backbone. This is known as the 

distribution system. 

d) Extended Service Set: The entire network consisting of the Basic Service 

Sets, APs and distribution system, viewed from the higher layers of the OSI-

ISO stack appear as a single entity known as the Extended Service Set. 
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e) Portal: This is defined as a device which connects the 802.11 LAN to any 

other 802 LAN. 

Figure 5 shows the conceptual diagram of an 802.11 WLAN consisting of 

most of the above components. 

 

Figure 2.1: The IEEE 802.11 Infrastructure based network architecture [14] 

 

2.1.2. IEEE 802.11 Network Types 

The IEEE 802.11 standards provide for two distinct of network modes. The 

two modes are discussed as follows: 

a) Infrastructure mode: This type of network depends on the cellular 

architecture and the presence of an Access Point through which all subscriber 

stations within a cell connect to the network. Figure 5 is an ideal 

representation of this type of network. The Distribution System or DS in an 

infrastructure based network needs to provide Distribution system services 
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(DSS) and Station services (SS). Distribution system services are related with 

node mobility and include Association, Re-association, Disassociation, 

Distribution and Integration. The Station services include Authentication, De-

authentication, Privacy and MAC Service Data Unit (MSDU) delivery. 

b) Ad-hoc mode: In this mode there is no Access Point present. There are just 

nodes which form a network among themselves. The services that are present 

in the Infrastructure mode are taken up by end-user stations, like beacon 

generation. Some functions, like frame relaying and power saving, available in 

the Infrastructure mode are not available in the ad-hoc mode. Figure 6 shows 

the layout of a typical ad-hoc network. 

 

Figure 2.2: A few laptops in an ad-hoc IEEE 802.11 network [15] 
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2.1.3. IEEE 802.11 Protocol Stack 

Figure 7 shows the IEEE 802.11 protocol stack showing the components of 

the Physical and the Data Link Layers. 

 

Figure 2.3: IEEE 802.11 Protocol Stack [16] 

 

2.1.3.1. IEEE 802.11 Physical Layer 

The original IEEE 802.11 standard defined communication at 1 or 2 Mbps 

using Frequency Hopped Spread Spectrum (FHSS) or Direct Sequence Spread 

Spectrum (DSSS). Later on Orthogonal Frequency Division Multiplexing (OFDM) 

and High Rate-Direct Sequence Spread Spectrum (HR-DSSS) were introduced to 

support higher data rates. 

When the FHSS technique is used the 2.4 GHz band is divided into 75 1 MHz 

sub-channels. Each pair of sender and receiver agrees on a hopping pattern and 

conversation between them is carried out with communication hopping between sub-

channels according to the agreed hopping pattern. Each pair also chooses the hopping 

pattern in a way that interference is minimized. FHSS technique has the following 

characteristics: 
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a) Radio design is simple. 

b) Data rate limited to 2 Mbps due to sub-channel restriction to 1 MHz by FCC. 

c) Frequent hopping leads to high hopping overhead. 

The use of DSSS technique allows the use of 13 22 MHz sub-channels in the 

2.4 GHz band. All of these bands are partially overlapping with one another. Hence at 

any time there are just 3 sub-channels which are completely overlap free and 

communication is carried over any one of these channels. DSSS technique has the 

following characteristics: 

a) Data rate is no longer limited to 2 Mbps. 

b) Hopping is not used. 

c) Chipping is used to increase immunity to noise. Each bit in the transmission 

sequence is converted into a unique series of bits called a chip and the entire 

signal is spread over the 22 MHz band to reduce the effect of noise and also 

build is redundancy that can be used for error correction. This leads to fewer 

retransmissions. 

Figure 8 shows the utilization of the 2.4 GHz band using DSSS technique. 

 

 

Figure 2.4: Channel assignment in the 2.4 GHz band for IEEE 802.11 [8] 
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2.1.3.2. IEEE 802.11 Data Link Layer 

The IEEE 802.11 Data Link Layer consists of the Logical Link Control (LLC) 

sub-layer and the Medium Access Control (MAC) sub-layer.  

The LLC is the same for IEEE 802.11 as it is for any other 802 

communication protocol [17]. 

The MAC is unique to the IEEE 802.11. It provides the following features: 

a) Distributed Coordination Function (DCF) deals with the problem of 

collision when two or more stations try to simultaneously transmit over the 

same channel. Carrier Sense Multiple Access/Collision Avoidance 

(CSMA/CA) is used for this purpose. When a station has data to transmit, it 

senses the channel and waits for a randomly generated time interval, if it finds 

the channel free. At the end of this time period if the channel is still free then 

the transmission is made. The receiving station receives the packet and if the 

CRC is alright, sends an acknowledgement back to the sender. If the sender 

receives the acknowledgement transmission terminates successfully. If the 

packet was lost or received in error or the acknowledgement was lost, the 

sender waits for some time and sends the packet again for a specified number 

of retries. 

b) Hidden node problem: Often times there may arise a situation in which both 

the sending and receiving stations are visible to the Access Point but are 

outside of range from each other. In these cases the sender sends a Request to 

Send (RTS) to the access point. Since the Access Point is visible to all nodes 

in the cell, a Clear To Send (CTS) is only sent to the sender when there is no 
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chance of collision happening during the ensuing transmission. This way the 

hidden terminal problem is tackled. 

c) Fragmentation and Reassembly: Large packets are always more susceptible 

to corruption by noise and other inherent disturbances in the wireless channel. 

The IEEE 802.11 MAC layer provides for breaking a large packet into smaller 

chunks each framed by a MAC header and CRC for better reliability in 

transmission. On the receiving end it is the responsibility of the MAC layer for 

reassembling the fragments before passing them onto a higher layer. 

2.1.4. IEEE 802.11 Security 

Transmission security is one of the foremost concerns in any deployment of 

the IEEE 802.11 networks. Since it is over-the-air the ease of eavesdropping is much 

easier than in wired networks. The IEEE 802.11 standard defines a Wired Equivalent 

Privacy (WEP) for the security of communication. This has been shown to be very 

weak in the face of sophisticated attacks [18-20]. 

In summary, IEEE 802.11 provides for a high data rate long range 

communication protocol. The finer details of the protocol and its various 

implementation details can be found in [12]. 

2.2. IEEE 802.15.4 

IEEE 802.15.4 [21] standard specifies the physical layer and the medium 

access layer for Low Rate-Wireless Personal Area Networks (LR-WPAN). It is 

designed for networks where communication is within devices close by and 

infrastructure for network formation and maintenance is virtually absent. It focusses 

on low power consumption, low data rate and small area of coverage. It is in sharp 

contrast to IEEE 802.11 or Wi-Fi where the networks deployed are principally 
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infrastructure based and power consumption is not an issue but end-user experience is 

[22]. 

IEEE 802.15.4 was initially theorized to have a communication distance of 10 

m and a maximum theoretical data rate of 250 kbps. 

The two versions of IEEE 802.15.4 that are of interest in this research work 

and their brief introduction is provided in the table below: 

IEEE 802.15.4 version Brief Introduction of features 

IEEE 802.15.4 – 2003 This was the first release of the IEEE 

802.15.4 standard. It provided two 

physical layer bands, one in the 868 and 

915 MHz and the other at 2.4 GHz. 

IEEE 802.15.4 – 2006 This version of the standard upgraded 

the data rates possible in the 868 and 

915 MHz bands. It also introduced new 

modulation schemes - three for the 868 

and 915 MHz and one for the 2.4 GHz 

band. 

Table 2.2: IEEE 802.15.4 versions [23] 

 

2.2.1. LR-WPAN Device Architecture 

The LR-WPAN device architecture is shown in figure 9 below. The IEEE 

802.15.4 standard specifies the physical and the MAC layers only. The upper layers 

have to be implemented according to usage scenarios. 
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Figure 2.5: LR-WPAN Device Architecture [24] 

 

The details of the layers and their interactions are provided in [21,25]. 

There are some popular upper layer implementations using IEEE 802.15.4 as 

the base and they include, but are not limited to, ZigBee [26], 6LowPAN [27], ISA-

100.11a [28] and MiWi [29]. 

2.2.2. IEEE 802.15.4 Physical Layer 

The physical layer of IEEE 802.15.4 specifies the radio communication 

capabilities of the protocol. The standard specifies several frequency ranges of 

operation, data rates and modulation techniques which are tabulated in the following 

table: 
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Frequency 

(MHz) 

Available  

Channels 

Bit Rate 

(kbps) 

Symbol 

Rate 

(kbaud) 

Modulation 

Scheme 

Receiver 

Sensitivity 

(dBm) 

868 – 868.6 1 20 20 BPSK -92 

902 - 928 10 40 40 BPSK -92 

868 – 868.6 1 250 12.5 ASK -92 

902 - 928 10 250 50 ASK -92 

868 – 868.6 1 100 25 O-QPSK -92 

902 - 928 10 250 62.5 O-QPSK -92 

2400 – 

2483.5 

16 250 62.5 O-QPSK -86 

 

Table 2.3: IEEE 802.15.4 Frequency bands of operation [30] 

 

The physical layer of IEEE 802.15.4 provides two distinct services: 

a) Data transmission and reception using physical layer protocol data units 

(PPDU). 

b) Interface to the physical layer management entity which provides access to the 

upper layers as well as maintains information about the WPAN. 

Direct Sequence Spread Spectrum technique is used for transmission which 

enhances the robustness of the communication in a non-perfect channel. 

The data exchange is carried through using PPDUs the format of which is 

presented in the figure below: 
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Figure 2.6: Format of a IEEE 802.15.4 PPDU [21] 

 

The SHR is used by the receiving device for synchronization, the PHR 

contains the frame length information and the PHY payload is variable length and 

contains the packet that is handed down from the IEEE 802.15.4 MAC layer. 

The management functions that the IEEE 802.15.4 physical layer carries out 

have been listed below: 

a) Receiver Energy Detection (ED): This is used by the network layer as a part 

of its channel selection algorithm. 

b) Link Quality Indication (LQI): This is a representation of the strength and 

quality of the received packet. This is passed on to the higher layers and its use 

is completely dependent on the higher layers. 

c) Clear Channel Assessment: Clear channel assessment is done using any one 

of the three methods outlined hereafter. If the channel sense returns energy 

above ED threshold then the channel is deemed to be busy. If on sensing the 

channel a carrier with IEEE 802.15.4 physical layer characteristics and 

spreading profile is detected then the channel is deemed to be busy. The last 

method is to use a combination of carrier sense and also detecting whether that 

energy is above ED threshold, to decide if the channel is busy or not. 
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2.2.3. IEEE 802.15.4 MAC layer 

The IEEE 802.15.4 MAC layer provides the interface between the physical 

layer and the upper layers. Since the upper layers are not defined as part of the 

standard, they can be any of the implementations, like ZigBee, 6LoWPAN, mentioned 

before. The IEEE 802.15.4 MAC layer provides the following services [21]: 

a) MAC Data Services: The entity known as MAC Common Port Layer 

(MCPS) provides data transmission and reception services between peer MAC 

layers. 

b) MAC Management Services: The MAC Layer Management Entity (MLME) 

provides the interface through which layer management functions are 

accessed. It also maintains a database of objects for the MAC layer known as 

the Personal Area Network (PAN) information database. The MLME also has 

access to the MCPS for data transfer activities. 

In general the IEEE 802.15.4 MAC layer is involved in the following network 

functions: 

a) Beacon management. 

b) Channel access. 

c) Guaranteed-to-Send (GTS) management. 

d) Frame validation. 

e) Acknowledgement frame delivery. 

f) Association 

g) Dissociation. 

The general MAC layer frame format is presented below and a short 

discussion is given thereon about the various fields within the frame. 
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Figure 2.7: IEEE 802.15.4 MAC Frame format [21] 

 

The MAC frame consists of the MAC header (MHR), a variable MAC 

payload and a Frame Check Sequence (FCS). 

The MAC header consists of information needed for proper traversal of the 

data payload through the physical network to the intended receiver device. It consists 

of the following fields: 

a) Frame Control: A 2 bytes long frame control field contains information 

related to frame type, addressing fields and other control flags. This will be 

discussed in details subsequently. 

b) Sequence number: A 1 byte long sequence number gives an identifier to the 

frame that will be used by the destination node to generate an 

acknowledgement frame with the same sequence number. 

c) Destination PAN identifier: A 2 bytes long field, when present, indicates a 

unique PAN identifier of the destination node. 

d) Destination address: A 2 or 8 bytes long field, when present, that specifies 

the address of the intended recipient of the frame. 

e) Source PAN identifier: A 2 bytes long field, when present, that specifies the 

unique PAN identifier of the origin of the frame. 
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f) Source address: A 2 or 8 bytes long field, when present, that specifies the 

address of the origin of the frame. 

g) Auxiliary Security Header:  This field provides all the information necessary 

for security processing of the frame. 

h) Frame payload: This field contains the data to be transmitted as handed down 

by the upper layers at the transmitter. If security is enabled then this field may 

be cryptographically protected. 

i) FCS field: This field is a 16-bit ITU-CRC that is calculated over the entire 

MHR and MAC payload fields. 

The structure of the Frame control field is shown in the figure below and its 

various bits and their functions are discussed. 

 

Figure 2.8: IEEE 802.l5.4 MAC Frame control field [21] 

 

The Frame control field bits are used as follows: 

a) Frame type: Bits 0 and 1 are used to indicate the frame type. There are four 

types of frames namely Beacon, Data, Acknowledgement and MAC 

command. 

b) Security enabled: This field if set to 1 indicates that the data in the payload 

will be encrypted and the auxiliary security header will be present in the MAC 

frame. 
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c) Frame pending: This bit will be set to 1 if the transmitter of the frame has 

more frames to send after the current one. 

d) Acknowledgment request: This bit when set to 1 indicates that the recipient 

of the data or MAC command frame needs to acknowledge the receipt. An 

acknowledgement frame with the appropriate sequence number is sent back in 

that case. 

e) PAN ID compression field: This bit indicates whether only one of the PAN 

identifiers will be present in the frame even though both source and 

destination addresses are present. If this field is 1 then when both source and 

destination addresses are present, only the destination PAN identifier will be 

present and the source PAN identifier will be assumed to be equal to the 

destination PAN identifier. If this field is set to 0, then the PAN identifier will 

be present only if the corresponding address fields are present. 

f) Destination and Source addressing modes: These fields can be set to any 

one of the following values: 

 PAN identifier and address fields are not present (00) 

 Address field contains a short address (10) 

 Address field contains an extended address (11) 

 Reserved (01) 

g) Frame version: The presence of a 0 in this field indicates that the frame is 

compatible with IEEE 802.15.4-2003 and a value of 1 indicates just an IEEE 

802.15.4 frame. All other values are reserved. 

The transfer of data between devices using IEEE 802.15.4 takes place in one 

of two modes. These are known as the Beacon Enabled mode and the non-Beacon 
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Enabled mode. The beacon enabled mode uses the slotted CSMA/CA algorithm 

whereas the non-Beacon enabled mode uses an un-slotted CSMA/CA algorithm [21]. 

The sequence of data transfer operations using these two modes are presented in the 

figures below. 

 

Figure 2.9: Sequence of steps when Coordinator has data to send to Network 

device in a beacon enabled mode [21] 

 

 

Figure 2.10: Sequence of steps when the Network device has data for 

Coordinator in a beacon enabled mode [21] 
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Figure 2.11: Sequence of steps for transfer of data in a non-beacon enabled 

network [21] 

 

2.2.4. IEEE 802.15.4 Network Topologies 

There are two types of network topologies that can be used within the IEEE 

802.15.4 standard. These are briefly defined below [31]: 

a) Star Network: In this topology there is a central PAN coordinator node and 

every other node communicates with this node. 

b) Peer-to-Peer Network: In this topology there still exists the PAN coordinator 

node but the other nodes can also communicate between themselves without 

having to go through the coordinator node. 

The two network topologies are represented in the figure below: 
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Figure 2.12: IEEE 802.15.4 network topologies a) Star and b) Peer-to-Peer 

  

2.2.5. IEEE 802.15.4 Device Types 

The different types of device classes that can exist within an IEEE 802.15.4 

network are briefly presented below: 

a) Full Function Device (FFD): These devices can send, receive as well as route 

data through them. They require more power to function. 

b) Reduced Function Devices (RFD): These are devices which can only send 

and receive data but cannot route traffic through them. They are generally end-

devices in a network, typically a sensor or a switch. They can be very low 

power devices as they do not need to route traffic and hence can be out to 

sleep when not in operation. 
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c) PAN Coordinator: This is a special type of FFD which creates the network 

and also coordinates and manages it. 

2.3. ZigBee 

ZigBee is a standard which defines the network and application layer over the 

IEEE 802.15.4 physical and MAC layers for wireless sensor networks. It is 

maintained by ZigBee alliance, which an open, non-profit collaboration of hundreds 

of companies. Before any device is declared ZigBee compliant it has to undergo the 

ZigBee Certification Program [32]. ZigBee has the following characteristics: 

a) Leads to low power consumption hence longer battery life. 

b) Leads to small device footprint. 

c) Allows mesh networking. 

d) Self-forming, self-healing network. 

e) Interoperability between devices from various vendors but conforming to the 

ZigBee standard. 

f) Security mechanisms in place with 128 bit AES encryption possible. 

In addition to the standard the ZigBee Alliance has defined many application 

profiles as well. Every data request in ZigBee is sent and received on an application 

profile. Some of the commonly used application profiles are Home Automation, 

Industrial Plant Monitoring, Commercial Building Automation, Telecom applications, 

Personal Home and Hospital care etc [33]. 

2.3.1. ZigBee Stack Architecture 

The best way to understand how ZigBee builds on the IEEE 802.15.4 lower 

layers is by looking at the ZigBee stack architecture as provided in [33]. The same is 

replicated in the figure below: 
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Figure 2.13: ZigBee stack architecture 

 

Each component of the ZigBee standard will be briefly discussed in what 

follows 

2.3.1.1. ZigBee Network Layer (NWK) 

The ZigBee network layer resides just above the MAC layer as defined by 

IEEE 802.15.4 and is in charge of executing the following services [34]: 

a) Routing of frames. 

b) Discovering and maintaining route tables, one-hop neighbors and storing 

important information about neighbor devices. 

c) Joining and Leaving of ZigBee network devices. 

d) Providing cryptographic security to the transmitted frames. 
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The above functions are achieved by the NWK layer using the NWK Layer 

Data Entity (NLDE), used for data transmission via the NLDE-Service Access Point 

(NLDE-SAP), and the NWK Layer Management Entity (NLME) that manages the 

services via the NLME-Service Access Point (NLME-SAP). 

The general NWK layer frame format is presented below and each of the 

fields in the frame are defined. 

 

Figure 2.14: General ZigBee NWK Layer Frame Format [34] 

 

The fields in the NWK Layer Frame are presented briefly below: 

a) Frame Control: This field has information about how the frame is going to be 

treated. Each bit within the Frame control field has a specific meaning as 

follows: 

 Frame type: This indicates the type of frame like NWK data or NWK 

command etc. 

 Protocol Version: The value here indicates which version of ZigBee 

this frame is compliant with. For example, a value of 2 will indicate 

ZigBee 2006/2007/Pro. 
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 Discover Route: If this contains the value 1 then route discovery for 

this frame is enabled. 

 Multicast Flag: If this bit is 0 then it indicates that the frame will be 

unicast to its destination. 

 Security: If this bit is 0 then security for the frame is disabled and if it 

is 1 then security for the frame is enabled. 

 Source Route: If this field is 0 then it means that the source route is not 

specified for the frame. 

 Destination and Source IEEE addresses: A zero in each of these fields 

means that the frame does not contain the field marked with a zero. A 

1 will indicate that the corresponding field is present in the frame. 

b) Destination Address: This field contains the 16 bits long destination short 

address. 

c) Source Address: This field contains the 16 bits long source short address. 

d) Radius: This field contains the range of transmission as the maximum number 

of hops from source to destination. Each node on the way decrements this 

value by 1. 

e) Sequence number: This is a number unique to the frame being sent and is 

used for proper re-assembly at the receiver end. 

f) Source and Destination IEEE Address: If present these fields contain the 64 

bits long source and destination IEEE addresses respectively. 

g) Multicast Control: This field is present dependent on the Multicast flag in the 

Frame Control field. 



31 
 

h) Source Route sub-frame: This is present if the Source route flag in the Frame 

control field is set to 1. This indicates to the next hop node to check this sub-

frame to determine the next hop in the route to the destination for this frame. 

i) Frame payload: This contains the data that has been handed down from the 

higher layers. 

2.3.1.2. ZigBee Application Layer 

The application layer of ZigBee is composed of Application Framework (AF), 

ZigBee Device Object (ZDO) and Application Support Sub-layer (APS) [34]. 

The Application Support Sub-layer (APS) lies between the application and 

network layers and principally accomplish the following tasks: 

a) It uses the APS Data Entity (APSDE) for exchange of data. 

b) It uses the APS Management Entity (APSME) for exchange of management 

primitives. 

c) The APS Information Base (AIB) contains constant and variable attributes. 

d) When the APS receives an application payload, it adds the address and control 

fields, and passes the resulting payload to the lower layer. 

e) APS frames are of the following types namely data, command, and 

acknowledge. 

The Application Framework (AF) has the following characteristics: 

a) Each device can have up to 240 application endpoints represented by a 8 bit 

address. 
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b) The application endpoint is used to transmit and receive data. It acts much like 

a port in TCP/IP communications. 

c) Information generated by an application endpoint is called an attribute. A 

collection of attributes and commands working on the attributes is called a 

cluster. A collection of clusters is called the ZigBee Cluster Library (ZCL). A 

profile consists of a cluster, device ID and endpoint and together it forms an 

application. Each attribute, cluster and profile is represented by 16 bit IDs. 

The ZigBee Device Object (ZDO) layer has the following functions to 

perform: 

a) Service and device discovery. 

b) Initialization of the coordinator. 

c) Security management. 

d) Binding management. 

e) Network management. 

The frame formats involved in the discussed layers and details about the layer 

functionalities can be found in [33]. 

2.3.2. ZigBee Device Types 

ZigBee standard defines the following device types: 

a) Coordinator: It is responsible for starting and maintaining the network. It is 

also responsible for assigning addresses to newly joined devices. It is a FFD as 

defined in the IEEE 802.15.4 standard. 

b) Routers: These devices are used to route frames in the network and are likely 

to be always powered on. These are also FFDs as defined in the IEEE 

802.15.4 standard. 
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c) End-Devices: These are the same as RFDs as defined in the IEEE 802.15.4 

standard. 

2.3.3. ZigBee Network Topologies 

ZigBee standard defines the following network topologies for use: 

a) Star topology: In this topology the central PAN coordinator node starts and 

maintains the network. Every other device can only communicate with and 

through the PAN coordinator. 

b) Tree topology: In this topology beacon enabled mode is used in a hierarchical 

communication structure. 

c) Mesh topology: In this topology peer-to-peer communication is allowed. This 

leads to a network that is more robust to failures because of the existence of 

redundant paths. 

The Star and Mesh topologies are very much similar to the Star and Peer-to-

Peer topology shown during the discussion of IEEE 802.15.4 topologies. The Tree 

topology introduced in ZigBee is shown in the figure below. 

 

Figure 2.15: ZigBee Tree Topology [35] 
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Chapter 3. ISSUES WITH ZIGBEE IN RAILROAD 

ENVIRONMENTS 

The North American Railroads are looking at the use of on-board real-time or 

near real-time monitoring of freight railcar status using WSN. ZigBee is the 

technology of choice for the railroads for its low power consumption and low cost of 

implementation. 

In the railroad environment typically there will be at least hundred railcars 

strung together to form a freight rail. Each of the railcars will be equipped with 

several sensors. Let us assume that each railcar has only one sensor node. Then the 

data from each of these sensor nodes will have to travel hop-by-hop to the monitoring 

station in the locomotive. So the network topology that is most commonly found in 

the railroad environment is a long linear-chain like topology [36]. 

ZigBee was primarily designed for star topology [37]. Tests carried out at the 

Advanced Telecommunication Laboratory at the University of Nebraska, has shown 

that although ZigBee supports multi-hop communication but it is unsuitable for 

topologies involving as many hops as in the railroads environment [38 – 40]. 

Similar research studies carried out by others have also found similar issues 

and performance degradations with ZigBee [41] and also link layer performance 

bottlenecks as found in [42]. 

In the following pages we briefly revisit the main issues and challenges that 

were found to plague a ZigBee-only network in the railroads environment. 
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3.1. Route Discovery 

A route in a network, wired or wireless, refers to the path that packets take 

from their origin to the intended destination. Each link from one node to its next 

communication partner is referred to as a hop. If a router has more than one hop, we 

refer to this as multi-hop routing [36]. 

ZigBee was designed for star topologies. In such a configuration, each node is 

in direct communication range of the PAN Coordinator. In this topology the hop 

count is at most 2 hops. To a limited degree, ZigBee also supports tree topologies, 

with the PAN Coordinator as the root node. However, it is severely restricted in the 

number of hops it supports for this topology. A hop count of 100 or more is far 

beyond the capability of ZigBee. In the chain-like topology we find on a freight train, 

ZigBee fails to discover routes after about 20 – 25 hops [36]. 

 

Figure 3.1: Number of unsuccessful route requests vs Node ID 

 

3.2. Synchronization Delay 

All nodes within a single PAN network are synchronized with each other. 

Each time the layout of the network changes due to node failure or disconnections, a 

resynchronization becomes necessary. This can also be triggered by fluctuating 
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channel conditions that prevent a node from successfully communicating with the rest 

of the network for a period of time. Fluctuating channel conditions are a common 

occurrence in wireless networks. For a 100 railcar scenario, this synchronization can 

stretch to several minutes. During this time, no communication is possible between 

the unsynchronized nodes and the rest of the network [36]. 

 

Figure 3.2: Time required for synchronization vs the maximum number of 

hops in network 

 

3.3. Packet and Link Loss 

If we study the behavior of wireless communication systems we can find that 

the probability of successful packet delivery decreases as the number of hops 

increases. As reported in [41], our analysis of this problem when applied to freight 

train monitoring using ZigBee. That analysis is shown in the following figure, 

demonstrating the end-to-end packet error rate for different hop counts and bit error 

rates. For this analysis we used a packet size of 127 bytes per packet [36]. 
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Figure 3.3: Packet Loss Rate percentage for different hop counts and Bit 

Error Rates 

 

It can be seen, for a Bit Error Rate of 10
-5

, which in wireless networks is a 

very low BER signifying good channel conditions, we still experience a packet loss of 

over 60% due to errors. Less than 40% of packets are being delivered successfully for 

a hop count of 100. Under more realistic conditions, with BERs between 10
-3

 and 10
-

4
, we can observe that none of the packets from a majority of nodes on the train will 

successfully be delivered to the locomotive. This means that the network will 

completely cease to function. 

3.4. Lack of Quality-of-Service 

Quality-of-Service refers to the ability of a network to allow transport of 

packets with special requirements, and appropriately allocate transmission resources 

to it. ZigBee does not have a way of assigning priorities to different packets.  

This is extremely important in the freight train monitoring system. An 

important aspect of the envisioned system is the ability to generate alerts in case of 
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alert messages are treated the same way as a message containing periodic status 

updates from, say, a refrigeration unit, then it shares the same probability of being 

discarded by the network due to errors or congestion. It also will be entered into every 

queue at the end, like all other packets, and thus be significantly delayed. For alerting, 

this is simply not feasible [36]. 

3.5. Data Forwarding and Aggregation 

A chain topology using ZigBee means that data from the last node needs to be 

relayed to the first node. In addition to relaying that information, however, each node 

also has its own data to report. Hence the amount of data quickly aggregates. By the 

time the nodes closest to the destination are reached the volume of data becomes very 

large, essentially overwhelming the network and causing significant congestion. This 

leads to excessively high packet loss. Simulation shows that if a freight train consists 

of more than 25 railcars then it cannot even sustain traffic of small 50-byte message 

per node generated every 20 seconds [36]. 

 

Figure 3.4: Amount of data present in channel as a progression of hops from 

the end of train 
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3.6. Network Lifetime 

The nodes closest to the data destination have a lot more data to forward than 

nodes towards the end of the train. Hence, their increased number of operations also 

means that they consume a lot more energy and deplete their reserves much faster. 

Due to the point-of-failure issue, if one of those nodes fails, no data from behind that 

node will be able to reach the destination anymore. At this point, the network 

effectively fails to operate [36]. 

 

Figure 3.5: Energy consumption per node for a 100-railcar train 

 

The battery life profile illustrates the claim that the nodes closer to the 
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Figure 3.6: Battery life in hours for each node in a 100-railcar train 
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Chapter 4. OVERVIEW OF HYBRID 

TECHNOLOGY NETWORKING (HTN) 

The Advanced Telecommunication Engineering Laboratory at the University 

of Nebraska-Lincoln has come up with a solution that addresses the issues that a 

ZigBee-only network faces in the railroads application environment. The solution is 

named Hybrid Technology Networking (HTN) protocol [43]. 

The basic idea behind the protocol envisions railcar monitoring as a two-step 

process. 

In the first step clusters of sensors are formed spanning the length of the 

freight rail. Each of the clusters have only one coordinator node which is called the 

gateway. Each sensor node communicates via single or limited number of hops to the 

gateway. In the next step, the gateway aggregates the sensor data and relays it to the 

locomotive via Wi-Fi hops over similar gateways spanning the length of the freight 

rail [43]. 

The high-level overview of the Hybrid Technology Networking protocol is 

shown in the figure below: 

 

 

Figure 4.1: High-Level representation of Hybrid Technology Networking 
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Within the clusters ZigBee is used for communication. Since the clusters are 

small and of low depth the synchronization delay is drastically reduced. 

 

 

Figure 4.2: Time required for synchronization vs. the maximum number of hops 

in network in HTN 

 

Since the ZigBee networks operate in small clusters the chance of the network 

getting overwhelmed due to data aggregation is also minuscule. 

 

Figure 4.3: Per Node Throughput vs. the maximum number of hops in HTN 
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As can be seen in Figure 28 the per node throughput using ZigBee-only 

network is shown with the red bar, the improvement in throughput with HTN is 

clearly visible. 

The protocol also suggests rotation of the gateway role among all the capable 

nodes in a cluster hence balancing the power consumption profile. 

 

 

Figure 4.4: Node Lifetime vs. Total Number of Hops in HTN 
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Chapter 5. PROBLEM STATEMENT 

This chapter underscores the reason behind undertaking this research work.  

As is evident from the discussions in chapter 3 the application of ZigBee-only 

networks to monitor railcar status is nowhere near an optimal solution. It suffers from 

severe drawbacks which defeat the very purpose of using WSN to monitor railcars. 

A solution is presented in chapter 4 and it is seen that this solution addresses 

all of the issues faced by a ZigBee-only network in the application scenario. The 

performance improvements obtained from using this new protocol, called HTN 

protocol, is also evident from the simulation results presented by the authors. 

The next step in exploring this solution is to implement it in hardware and 

actually deploy WSN using the HTN protocol and evaluate the results obtained from 

the field tests. 

The first step towards this goal is to find a sensor platform that is capable of 

supporting HTN. The major components of such a sensor platform will be a Wi-Fi 

and a ZigBee radio available on the same platform. 

The available sensor platforms like MICAz [44], Stargate [45] and recent 

development Libelium Waspmote [46] are all capable of providing the ZigBee 

communication part as well as the Wi-Fi communication part but not in an integrated 

solution. The current available sensor platforms will have to be plugged into one 

another to realize both the communication radios together. 

Several technical and logistical problems arise from this approach. Some of 

these problems are listed below: 

a) The data rate of plug-in boards will always be limited by the bus that is used to 

connect them. In all of the above cases, except the Stargate, the only available 
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interfacing bus is the UART. This is slow speed and hence will cause a 

bottleneck for Wi-Fi traffic. In Stargate, the PCMCIA interface is used which 

removes the speed bottleneck but is an order of magnitude more power hungry 

than the UART. 

b) The cost of obtaining various pieces of hardware from different vendors, 

assembling them and coding for the required firmware is high and is a 

logistical nightmare when the numbers of such platforms required are in 

millions. 

c) The railroads are looking for standards compliant solution so that vendor 

independence is maintained. Some of the off-shelf solutions may not be 

standards compliant. 

d) A custom hardware can be made with specific design goals in mind. The 

commercially available components were designed with some design goals 

and when they are brought together they may not meet the goals of the 

railroads. 

As can be understood from the above discussion there are major advantages in 

designing a custom integrated hardware platform that will be standards compliant and 

also will meet and exceed any design goals that may be set by the railroads.  

 

 

 

 

 

 



46 
 

Chapter 6. HARDWARE DESIGN 

The purpose of the hardware designed here-in is to provide an integrated 

platform for the implementation of the HTN protocol. Chapters 3 has shown the 

issues related with the use of ZigBee-only networks in the railroads scenario. Chapter 

4 discusses about a solution that addresses the issues highlighted in chapter 3. In 

chapter 5 we provide the reasons why a new sensor hardware platform is necessary 

for the implementation of the HTN protocol. 

In this chapter the hardware design has been presented in details. The 

operational requirements for the hardware have been discussed, followed by a general 

high level block diagram of the hardware. This is followed up by a discussion on each 

of the components involved in the design with respect to why they were chosen, how 

they are interfaced with the microcontroller etc. The design choices made during the 

design of the PCB have been discussed. Several snapshots of the hardware have been 

provided at the end of the section. 

6.1. Requirements 

The hardware design was guided by a set of requirements which originated 

from the overview of the HTN protocol and what it wishes to achieve. 

The requirements are listed below: 

a) The microcontroller that will form the core of the hardware platform needs to 

be fast as it has to deal with both ZigBee and Wi-Fi communication and also 

run a sizeable firmware involving many calculations. The microcontroller 

should be able to drive data transfer to and from ZigBee radio to Wi-Fi radio 

and vice-versa fast enough to ensure respectable throughput. At the same time 
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the peripherals available with the microcontroller should be large. Keeping the 

overall low power budget in mind the microcontroller and its associated drive 

circuitry should not consume much power. 

b) ZigBee radio hardware. The best option is to have an integrated solution 

having an on-board processor that will offload the ZigBee communication 

related tasks from the microcontroller. Needs to be able to transmit at a max of 

3dBm output power and have a receive sensitivity of up to -87 dBm. The 

overall power consumption of this component should not exceed the 50 mA in 

any communication mode (Tx/Rx). Should operate in the 2.4 GHz band and 

have the flexibility to pick and cycle between the 16 available channels. 

c) Wi-Fi radio hardware. The best option is to have an integrated solution having 

an on-board processor that will offload the TCP/IP stack functionality and 

radio interface tasks from the microcontroller. Should be low on power 

consumption, not exceeding 150 mA in any of the communication modes 

(Tx/Rx). Should be compliant to at least IEEE 802.11 a/b/g. Should support 

Ad-Hoc and infrastructure modes. 

d) Since the HTN protocol mandates that the roles of the nodes may change 

depending on need, the nodes need to have some information stored on-board 

which facilitates this role change. Hence, a storage medium like SD Card is 

necessary. 

e) The hardware must have capabilities to interface with a laptop or computer 

easily for diagnostics.  
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f) Since this hardware will need to interface with other hardware and sensor 

platforms, there must be multiple power supplies catering to various sensor 

platforms. 

g) There must be debug interfaces on the hardware for initial development 

cycles. 

h) The availability of development environment and APIs to reduce development 

time. 

i) Low bill of materials. 

6.2. Block Diagram of Design 

The following figure shows the basic building blocks of the design. In later 

sub-sections the blocks are explained in more details. 

Power 

Supply

Microcontroller 

K60
RS-232

Clock 

Circuitry

4 MHz

3.3 V

3.3 V

8-bit GPIO

Serial

Communication

LCDWi-FiZigbee USB SDHC

Sensor Board 

Expansion 

Connector

SPI at 4 MHz SPI at 12 MHz SDHC ModuleD+, D-, 5 V

3.3 V

3.3 V 3.3 V 3.3 V 3.3 V 3.3 V

3.3 V

Analog Lines & I2C

Figure 6.1: Hardware Block Diagram 
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6.3. Hardware Components 

In the following each of the hardware components are introduced in detail. 

6.3.1. Power Supply Circuitry 

Figure A.1-4 in Appendix A shows the schematic of the power supply 

circuitry. In keeping with the requirement of interfacing platforms with this hardware 

that may need different levels of supply three different power supply options are 

provided. The board has 5 V, 3.3 V and 1.8 V options. 3.3 V is the main power supply 

voltage that runs all the peripherals on the board.  

The LT1129-3.3 [47] IC is used to generate a 3.3 V from the 5 V supply. This 

chip consumes only 50 uA while operating and can deliver up to 700 mA of current at 

3.3 V. 

TPS73701 [48] IC is used to generate 1.8 V from 5 V supply. This chip 

consumes 0.3 mA while operating and can deliver up to 1 A of current at 1.8 V. 

The supply of 5 V is taken from wall socket or USB and this is decided 

through a selector switch. The two regulator ICs can be individually disabled. 

6.3.2. Clock Circuitry 

Figure A.5 in Appendix A shows the schematic of the clock circuitry. The 

microcontroller runs off a 4 MHz external clock signal. The hardware board is given a 

choice of sources for this 4 MHz clock signal. Using selector switches one can use a 4 

MHz crystal, a 4 MHz clock chip or source the 4 MHz from an external clock source. 

This is done to give maximum flexibility to the source of the clock signal for 

the microcontroller. 

The microcontroller also needs an external 32.768 kHz clock to operate. 
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An ECX-71 [49] tuning fork crystal is used for the 32.768 kHz clock source. 

Its load capacitance is 12.5 pF. 

An ECS-3951 [50] SMD clock oscillator is used as one of the two 4 MHz 

clock sources for the microcontroller. 

A Murata CSTCR4M00G53Z-R0 [51] ceramic resonator is used as the other 

source for the 4 MHz clock for the microcontroller. 

6.3.3. Microcontroller 

Figure A.6-7 of Appendix A shows the schematic for the microcontroller. 

The microcontroller used for this hardware is the Freescale Kinetis K60 [52]. 

The features of this microcontroller are presented in the list below: 

a) Operates at a voltage of 3.3 V in this case. 

b) 100 MHz ARM-Cortex-M4 delivering up to 1.25 Dhrystone MIPS per MHz. 

c) 512 KB flash memory and 128 KB RAM. 

d) 10 different low power modes of operation. 

e) Built in security modules for integrity of firmware once burnt in the 

microcontroller memory. 

f) Two 16 bit SAR ADCs. Programmable Gain Amplifiers built in to the ADCs. 

g) Two 12 bit DACs. 

h) Three comparators containing a 6 bit DAC and a programmable input 

reference. 

i) Several timer modules available including real time clock. 

The communication modules available with this microcontroller are as 

follows: 
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a) Ethernet controller with MII and RMII interface to external PHY and 

hardware IEEE 1588 capability. 

b) USB full-/low-speed On-the-Go controller with on-chip transceiver. 

c) Two Controller Area Network (CAN) modules. 

d) Three SPI modules. 

e) Two I2C modules. 

f) Six UART modules. 

g) Secure Digital host controller (SDHC). 

h) I2S module. 

As can be seen from above, this microcontroller fits the requirements 

perfectly. The microcontroller has a maximum current consumption of 71 mA. The 

SPI interface is used to connect to the Wi-Fi and ZigBee modules. The SPI maximum 

speed is 12.5 MHz for the microcontroller. The abundance of analog lines on the 

microcontroller makes interfacing external sensors easy. The presence of I2C bus 

gives us the flexibility of interfacing digital I/O sensors as well. The integrated USB 

transceiver makes interfacing this microcontroller to a laptop or computer very easy. 

The microcontroller is driven at a core clock speed of 96 MHz. The bus clock 

is 48 MHz. The USB module is driven at 48 MHz. 

6.3.4. Wi-Fi Module 

Figure A.8  in Appendix A shows the schematic of the Wi-Fi module. 

The Wi-Fi module used in the design is an integrated solution with a 

microcontroller and RF front end built on-module. The module interfaces to the 

Kinetis microcontroller using the SPI bus at a SPI clock frequency of 12 MHz.  
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The Wi-Fi module used is the Redpine Signals module RS9110-N-11-22-05 

[53]. Some of the capabilities of this module are listed below: 

 Operates at a low power supply voltage of 3.3V. 

 Small form factor of 22 mm X 28 mm 

 Integrates a uFL antenna connector for external antenna connection. 

We use a 6 dBi gain rubber duck antenna. 

 Integrates full TCP/IP stack with an option of bypassing it in the SPI 

mode. We use the TCP/IP stack within the module. 

 Fully compliant with 802.11 b/g and single stream 802.11 n standards. 

 Supports TCP, UDP, ARP, ICMP, IPv4 and DHCP. 

 Supports infrastructure, ad-hoc and power save mode of operation. 

 Current draw of 30 mA in transmit mode and 24 mA in receive mode 

at 2 Mbps throughput. 

 

Figure 6.2: General high level block diagram of the Redpine Signals Wi-Fi 

module 
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The motivation behind using this module lies quite heavily on its low power 

consumption, availability of low power modes to further reduce overall current 

consumption and the integration of a fully functional Wi-Fi transceiver device with 

minimal processing requirement for the host microcontroller. 

6.3.5. ZigBee Module 

Figure A.9  in Appendix A shows the schematic of the ZigBee module. 

The ZigBee module used in the design is the Texas Instruments CC2530 [54]. 

The interfacing circuitry and RF front end around this chip is designed and 

implemented. The RF front end consists of a signal conditioner, as the main 

component. This is the TDK-DEA202450BT-7210A1 signal conditioning Band Pass 

Filter for 2.4 GHz band. The circuit is connected to a SMA connector that uses a 6 

dBi rubber duck antenna for transmission and reception of ZigBee signals. 

 

Figure 6.3: Texas Instruments CC2530 System-on-Chip 
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The main characteristics of this chip which led to its selection are given 

below: 

 Small 6 mm X 6 mm form factor with very few external components required 

to setup functional ZigBee communication. 

 Standards compliant 802.15.4 implementation. 

 Low power consumption of 24 mA for transmit and 29 mA for receive. 

Several low power modes are also available. 

 High sensitivity of down to -91 dBm. 

 High performance, low power consumption 8051 core with code pre-fetch 

built in the module. 

 256 KB of FLASH which is enough to run the Z-stack ZNP firmware. 

 8 KB of RAM with retention in all power modes. 

 CSMA/CA hardware support. 

 Accurate digital RSSI/LQI value reporting. 

The CC2530 is used in the ZigBee Network Processor configuration. The host 

Kinetis microcontroller interfaces with this chip using SPI functioning at 4 MHz. 

6.3.6. SDHC module 

Figure A.10 Appendix A shows the schematic of the SDHC module. 

The Secured Digital Host Controller [55] peripheral of the Kinetis K60 

microcontroller is used to provide an on-board SD card storage option. In this 

implementation a standard size SD card is used. The supply required for operation is 

3.3 V. 

The data communication can be made at a maximum of 25 MHz, but since the 

requirements of this hardware do not place any specific constraint on this speed, for 
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the sake of data integrity a low speed mode of 400 kHz is used. The 4-wire mode is 

used and hence at a time only a nibble can be exchanged physically from the 

microcontroller to the SD card and vice-versa.  

6.3.7. USB module 

Figure A.11  Appendix A shows the schematic of the USB module. 

The hardware is provided with the facility to connect to a laptop or computer 

over USB. A micro USB connector is provided on the board for this purpose. The 

USB transceiver is built-in the microcontroller. It implements USB according to the 

standards specified at [56]. 

Special attention has been given to route the D+ and D- lines from the micro 

USB connector to the corresponding pins on the microcontroller. Both the traces have 

been kept the exact same length to prevent problems in USB communication that crop 

up if the lengths are different. 

The USB is also used to power the hardware. A selector switch is provided on 

the power board to switch between wall-socket power supply and USB power supply. 

6.3.8. RS-232 module 

Figure A.12  Appendix A shows the schematic of the RS-232 module.  

Although USB exists as a legitimate and high-speed mode for the hardware to 

exchange information with a laptop or computer, but this mode is easy to implement 

when only Mass Storage Device functionality is required. When program data needs 

to be exchanged with the remote device, a driver and other requisite interfacing 

software components need to be developed for proper communication. 

Hence to lessen the development effort involved and also to keep alternate 

modes of communication available the hardware is equipped with a DB9 connector 
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for communication with a laptop or PC using serial communication that can be 

monitored on the PC side using readily available terminal software like 

Hyperterminal. The RS-232 level conversion between the Laptop or PC and the 

Kinetis microcontroller is done using the well-known Texas Instruments MAX3232 

RS-232 transceiver IC [57]. The IC operates from the 3.3 V supply and draws a 

maximum of 1 mA of supply current while operating. The transfer speed is a 

maximum of 250 kbps. 

6.3.9. LCD module 

Figure A.13  Appendix A shows the schematic of the LCD connector. 

The USB and RS-232 interfaces are good for connectivity with a laptop or PC. 

When such a setup is absent, visual indication of processing state can be achieved 

with the on-board display LEDs. But for many parameters and complex conditions 

arising due to processing, LED display is not sufficient. Hence, the hardware is 

provided with a LCD. 

The LCD used is a 2.8 inch TFT display from Displaytech – SDT028ATFT 

[58].  
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Figure 6.4: Displaytech SD028ATFT LCD with a picture displayed 

 

It supports 240 RGB rows and 320 columns display. It has an integrated 

display controller ILI9341 [56]. The LCD is equipped with backlight. It operates from 

3.3 V power supply. The interface to the microcontroller is over an 8-bit parallel bus 

made out of microcontroller GPIO lines and a few control lines also interfaced to 

microcontroller GPIO lines. The connector from the LCD goes in to a 45 pin FPC 

connector on the power board. 
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6.3.10. External Sensor Board Expansion Slot 

Figure A.14  Appendix A shows the schematic of the sensor board expansion 

slot. 

The hardware is given the ability to interface external analog and digital 

sensors or other relevant hardware through a 40-pin Hirose [59] connector. The 

available analog input and output lines, not already used, from the microcontroller are 

drawn to this connector. The I2C lines from the microcontroller are also drawn to this 

connector so that sensors with digital output can also be interfaced to the hardware. 

The need to supply power to the external sensor or hardware is addressed by tracing 

power supply lines to the connector as well. 

6.3.11. PCB Layout 

In this section the motivation behind the mechanical design choices will be 

presented shortly followed by the PCB layout of the hardware. 

The number of components and peripherals on the hardware made the option 

of going with a single board quite infeasible at the very beginning. That would have 

resulted in a disproportionately large unmanageable board with long traces leading to 

latency and increased power consumption. 

Since the power supply to the board can be from varied sources like battery, 

solar cells etc., it was decided to make the power supply circuitry separate from the 

main hardware. There is a connector provided on the main board to which the power 

board attaches. This gives the freedom to use different power boards, designed 

differently with different components, with the main hardware as long as the pins on 

the connector have the same lines connecting on both boards.  
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A large part of the power board was being left unused and the LCD had to be 

on a visible part of the hardware. The placement of the LCD on the main board again 

would have made the board very large. Instead the LCD was placed on the remaining 

area of the power board with the signal lines being routed up from the main board 

using board to board connectors. This not only results in efficient usage of space but 

also lends physical stability to the board by providing two connectors to share the load 

of the power board rather than just the one power connector. 

Since both Wi-Fi and ZigBee have high speed signal lines going in to them, 

they are placed on opposite planes of the main board. This prevents interference 

between the high speed signal lines. Both the ZigBee and Wi-Fi portions of the circuit 

are placed close to the edge of the board so that the antenna connectors are easily 

accessible and also RF line trace lengths are short. The placement of the two parts of 

the circuits are also as far apart from each other as possible in order to minimize 

signal interference as they operate in the same frequency range although channel 

assignments, power outputs and spreading characteristics are different. 

The SD card slot and the sensor expansion board connector need to be reached 

from the side as well as from the top, they are placed to the south end of the main 

board. The top side reachability is also the reason why the power board and the main 

board do not share the exact same dimensions. 

To lend extra mechanical stability to the boards and provide easy access to the 

underside of the hardware there are four nut and bolt arrangement with 5 mm spacers 

in between holding the two boards together. 

The PCB layout of the boards is provided in Appendix C. 
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6.3.12. HTNMote in Pictures 

 

Figure 6.5: Power Board Top View 

 

The above figure shows the Power Board from the top. The major components 

on the board are marked in yellow.  

The connectors (DB9 and wall socket power supply)  are placed towards the 

right hand top corner flush with the edge of the board. 

The two switches seen in the figure are the power on/off switch and the switch 

which selects whether USB or wall socket power supply is the source of power for the 

board. 



61 
 

 

Figure 6.6: Power Board Bottom View 

 

The above figure shows the Power board from the bottom. The two connectors 

here are the board-to-board power connector (top center) and the board-to-board LCD 

connector (left down). The power connector takes the power supply and RS-232 

signal lines from the Power Board to the Main Board and vice-versa. The LCD 

connector takes the signal and data lines related to the LCD from the Main Board to 

the Power Board and vice-versa. 
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Figure 6.7: Main Board Top View 

 

The above figure shows the Main Board from the top. The main components 

on the board are indicated using yellow texts.  

The mating connectors for the power and LCD connectors on the Power Board 

can be seen. 
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There are some GPIO lines which we do not use on the microcontroller and 

they are routed to the left side edge of the board so that we can use those lines 

externally if required. 

We can see that there is a guard band connected to the ground around the 

clock circuitry near the microcontroller. This is necessary as the high frequency clock 

sources are very sensitive to noise and external interference. 

 

Figure 6.8: Main Board Bottom View 
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The above figure shows the Main Board bottom view. We can see that the 

guards connected to the ground plane are again placed around the clock circuitry for 

the ZigBee module. This is necessary as these high frequency clock sources are very 

sensitive to noise and external interference. 

The CC-Debugger connector is provided so that the internal workings of the 

CC2530 chip can be traced and debugged during development.  

 

Figure 6.9: HTNMote - Assembled 

 

The figure above shows the HTNMote fully assembled. The Main Board and 

the Power Board put together using nuts and bolts and spacers through the mounting 

holes. 
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Figure 6.10: HTNMote – In action 

 

The figure above shows the HTNMote powered by a wall socket supply. We 

can see the green power LED indicator glowing. The LCD is programmed to display 

some pictures and a line of text. The bank of indicator LEDs near the wall socket 

power supply inlet is also glowing as they are connected to the data lines of the LCD. 
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Chapter 7. SOFTWARE IMPLEMENTATION 

 The development platform used for writing the software for this hardware is 

the Freescale CodeWarrior for MCU v10.2 [60]. It is an Eclipse based IDE that allows 

C/C++ to be used as the coding language of choice. It has a Processor Expert module 

that slashes development time by automating low level register setup of the Kinetis 

microcontroller. The user is presented with a GUI to select the properties that the 

microcontroller needs to have for an implementation. The Processor Expert will 

automatically generate the low level code required to setup the microcontroller. The 

user can start from writing the actual system code by using the functions that the 

Processor Expert exposes. All these functions are wrappers for low level system calls. 

7.1. Wi-Fi Implementation 

 The Wi-Fi module from Redpine Signals comes with an API that can be used 

to communicate over SPI with the host microcontroller [53]. 

This API contains two header files, namely rsi_config.h and rsi_global.h, 

which consist of all the variable parameter values that can be set by the user. For 

example, one such parameter can be the BSSID of the network to be created or joined 

in ad-hoc mode. 

The API communicates with the host microcontroller with a series of low level 

hardware drivers that need to be modified according to the host microcontroller being 

used. Here, these drivers have been modified to work with the Kinetis K60 SPI 

peripheral. 

The API consists of a central union that has all the variables needed to execute 

commands on the module and also to receive responses from the module as a result of 
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executing those commands. The module carries the Wi-Fi functionalities out based on 

the values that are found in this one central union. 

The module expects a little Endian format from the host. The SPI signal 

characteristics expected are a clock polarity of 0 and a rising edge clock phase. The 

commands issued to the module consist of 4 bytes C1, C2, C3 and C4 which together 

denote all the aspects of the command and ensuing data transfer to the module. Every 

command in the API has a unique value for C1, C2, C3 and C4. 

The API has six different types of commands namely, initialization, memory 

read and write, frame read and write and register read. 

The exchanges involved in each of these types are shown below [53]: 

 

Figure 7.1: Slave initialization procedure 
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Figure 7.2: Memory Read or Master Read procedure 
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Figure 7.3: Frame read or Slave read procedure 
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Figure 7.4: Memory Write or Master Write procedure 

 

 

Figure 7.5: Frame write or Slave write procedure 
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Figure 7.6: Register read procedure 

 

Utilizing this API the code for Wi-Fi send and receive functionalities has been 

written. The corresponding flowchart is shown in Figure B.1 of Appendix B. 

7.2. ZigBee Implementation 

 The ZigBee software has been implemented using the Z-Stack ZNP variant. 

The CC2530 is setup to be a ZigBee Network Processor with the Kinetis K60 being 

the host microcontroller communicating with the CC2530 over SPI. This scenario is 

shown in the figure below: 
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Figure 7.7: CC2530 in ZNP configuration (Application Processor is K60) 

 

The SPI is clocked at the maximum speed possible for CC2530, 4MHz. The 

clock polarity is 0 and rising edge is used as the clock phase. MSB first bit ordering is 

used. Standard 4 wire SPI is in use [54]. 

Apart from the standard SPI lines the CC2530 interface also requires two 

additional control signal lines. These and their brief description are provided below 

[54]: 

a) SRDY: Slave ready signal. This signal is set by the CC2530 when it 

is ready to receive or send data. It is set low when the CC2530 is 

ready to receive data. 

b) MRDY: Master ready signal. It is an active low signal. This signal is 

set by K60 when it has data ready to send to the CC2530. 
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There are three types of command available under the CC2530 ZNP API. 

These are AREQ, POLL and SREQ. The details of these commands can be found in 

[54]. 

The CC2530 can be programmed as a ZNP in two modes, namely Simple API 

mode and the AF-ZDO mode. In this research the AF-ZDO mode is used as it offers 

better control over the CC2530 module as opposed to the Simple API. 

The CC2530 ZNP software has three sections that it is divided into. These are 

presented briefly below [54]: 

a) SYS Interface: This provides the application processor a low level 

interface to the CC2530 hardware and firmware. The peripherals on 

the CC2530 accessible through this interface are the ADC, NV 

items, hardware number generator and GPIO pins. 

b) Configuration Interface: The commands in this interface allow us to 

set up various parameters of the CC2530 radio chip. 

c) AF-ZDO interface: This interface consists of the Application 

Framework (AF) which is used by the application processor to 

register its application with the CC2530 thereby being able to send 

and receive data. The ZigBee Device Object (ZDO) interface allows 

access to all network management related functions. 

Utilizing API the software for ZigBee packet transmission and reception is 

written. The flowchart outlining the code flow is shown in Figure B.2 of 

Appendix B. 
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7.3. SDHC Implementation 

 The SDHC interface code is written using the Processor Expert exposed 

function calls pertaining to the SDHC module in the K60. The block size of transfer is 

512 bytes. A write, read-back and compare cycle is followed for every 512 bytes of 

transfer to ensure integrity of data written on to the SD card. 

The flowchart for the SD card interface code is shown in figure B.3 of 

Appendix B. 

7.4. USB Implementation 

 The USB on the hardware is implemented as a mass storage device with 

vendor ID (VID) of 0x1234 and a product ID (PID) of 0x5678. 

The flowchart for the USB implementation code is shown in figure B.4 of 

Appendix B. 

7.5. RS-232 Implementation 

The serial communication software is set up to provide bi-directional 

communication capabilities to ensure monitoring from the remote terminal side as 

well as actuation from the remote terminal. 

The software is currently setup to send a string for display on the remote 

terminal. It then waits for 2 bytes of input to come from the remote terminal. Once the 

inputs arrive they are echoed back for display on the remote terminal. 

The communication baud rate is 9600 bauds and the character size is 8 bits 

with no flow control. 

The flowchart for the RS-232 implementation code is shown in figure B.5 of 

Appendix B. 
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7.6. LCD Implementation 

 The LCD implementation is done using the embedded GUI (eGUI) [61] from 

Freescale. This is a software suite that is used to interface any TFT-LCD with a 

Freescale microcontroller. 

This is a powerful but light-weight suite that has the capacity of rendering 

colors as well as the following graphics objects: 

 Button 

 Check Box 

 Radio Button 

 Gauge 

 Icon 

 Label 

 Picture 

 Graph 

 Slider 

 Menu 

 Scroll Bar 

 Console 

 Text Box 

It supports touch screen, multiple fonts and various screen sizes. 

The structure of the software suites is layered. The lower layers contain the 

low level drivers that interface the microcontroller with the controller on the LCD 

module. As part of this research, new drivers were written to interface eGUI with the 

ILI9341 [62] display controller chipset being used with the LCD. 
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The eGUI suite block diagram is show in the figure below [61]: 

 

Figure 7.8: eGUI block diagram 

 

The flowchart for LCD code is shown in figure B.6 of Appendix B. 
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Chapter 8. TESTS AND TEST RESULT ANALYSIS 

 Once the hardware platform was manufactured several tests were run on it. 

Several of these tests were functionality tests to confirm whether the module in the 

design was working as expected or not. The components mainly tested for 

functionality only were USB, RS-232, LCD and SDHC. 

 The other components, namely Wi-Fi and ZigBee, were tested for 

performance. This was essential as the HTN protocol needs the corresponding 

hardware to meet certain performance benchmarks for it to be suitable for 

implementation of the protocol. 

 In this chapter the first sub-section will consist of the test methodology, results 

obtained and result analysis for the performance tests. The second sub-section will 

consist of the functionality test outcomes. 

8.1. Performance Tests 

 In the intended usage scenario of the HTNMote the most critical components 

on the board, apart from the microcontroller, are the Wi-Fi and the ZigBee modules. 

If these two modules do not perform above a certain level in comparison with other 

off-the-shelf devices then the HTNMote solution will be rendered infeasible. The 

following bunch of performance tests helps to show the capabilities of the 

communication hardware on the HTNMote. 

8.1.1. Methodology 

 The performance tests have been divided in to three groups, namely, the 

current consumption tests, the Wi-Fi tests and the ZigBee tests. The methodology 

followed for both these tests are described in the rest of this sub-section. 
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8.1.1.1. Current Consumption Test Setup 

In this research work, the long-run steady state current consumption of various 

peripherals on the HTNMote are measured. The test setup consists of 5 VDC, 1A 

supply provided to the HTNMote using a wall power supply adapter. The voltage 

regulators on the board convert this to the 3.3 V and 1.8 V on the board as required. 

The current consumed from the wall socket source is measured. This gives us 

an idea of the overall current consumption from all components and thus any battery 

life model can be effectively come up with. 

A multimeter is connected in series with the wall socket power adapter and the 

HTNMote and the current readings are collected.  

8.1.1.2. Channel Emulator 

A wireless channel emulator from Azimuth Systems ACE 400WB [63] is used 

to create wireless channels between the two end devices. The channel emulator is 

shown in figure below: 

 

Figure 8.1: ACE 400WB wireless channel emulator 
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This piece of equipment is a computer controlled device. It is able to create 

accurate user-defined channel conditions between two devices at two ends of the 

channel. This allows us to do accurate real-world tests without having to make 

arrangements for elaborate field tests. 

There are several advantages of using the channel emulator over real-world 

field tests. They are listed below: 

 The use of the channel emulator allows the configuration of the 

physical channel exactly according to the specifications of the user. 

This means that an accurate physical channel containing a tree, a 

house, two tall buildings and a stone can be emulated. Whereas, 

finding a place in the field which has exactly this configuration of 

physical structures is very difficult to find. 

 The other problem of the real-world is that the channel conditions are 

never static and not repeatable. There are hundreds of parameters that 

keep on changing every second in a real-world channel. Hence, if a 

device needs to be tested in several configurations under equivalent 

channel conditions then that becomes an impossible task in the field. 

However, with the channel emulator the user has strict control over the 

channel and hence repeatability is easily achieved. 

A channel emulator is able to create any realistic real-world channel with great 

accuracy. In this research work only the ITU-T standard channel Butler model [64] is 

used. The power delay profile of the Butler channel model is shown in the figure 

below captured from an actual active session of the channel emulator: 
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Figure 8.2: Power delay profile of the ITU-T Butler model 

 

 The Butler model is a static non-fading channel model that uses the identity 

matrix for the channel coefficients.  It does not have any multipath components or 

scattering.  

One of the common settings for the channel emulator common to both the Wi-

Fi and ZigBee tests is that the MIMO antennas were configured to have no 

correlation. 

8.1.1.3. Wi-Fi Tests Setup 

The Wi-Fi tests consist of two tests that are performed to obtain the following 

characteristics of the hardware: 

a) Throughput vs. Packet size 

b) Packet Loss vs. Path Loss 

The channel emulator setup for the Throughput versus Packet size test is as 

follows: 
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 The path loss between sender and receiver fixed at 67.55 dB 

 The path loss between receiver and sender fixed at 67.65 dB 

 Input side attenuation Port A : 0 dB 

 Output side attenuation Port A : 0 dB 

 Input side attenuation Port B : 0 dB 

 Output side attenuation Port B side : 0 dB 

 WiFi channel used is channel number 1 centered around 2.412 GHz. 

The channel emulator setup for the Packet Loss versus Path Loss test is as 

follows: 

 Input side attenuation Port A : 0 dB 

 Input side attenuation Port B : 0 dB 

 WiFi channel used is channel number 1 centered around 2.412 GHz. 

The layout and logical interconnection of the devices for the test is given 

below: 

Azimuth Director

Channel Emulator

HTNMote 

Under Test

Laptop 

Receiving Wi-Fi 

Traffic  

Figure 8.3: Layout and device interconnections for Wi-Fi tests 
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The channel configuration for the Wi-Fi tests on the channel emulator is 

shown in the figure below: 

 

Figure 8.4: The topology for the Wi-Fi tests 

 

In the configuration above the device BS1 is connected to Port A1 of the 

channel emulator. The BS1 is the HTNMote device under test. The MS1 is the laptop 

which is the device that is the destination for the Wi-Fi traffic generated by the 

HTNMote device under test. 

The HTNMote device under test is configured to join an ad-hoc network with 

SSID ‘FRAWSNNet’. It transmits at 16 dBm and the application code inside controls 

the packet payload size for transmission. 
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8.1.1.4. ZigBee Tests Setup 

The ZigBee module is tested for the following characteristics: 

a) Throughput vs Path Loss 

b) Goodput vs Path Loss 

c) Packet Loss Rate vs Path Loss 

The test setup includes the device under test which transmits ZigBee packets 

of various payload size to the Coordinator device being monitored from Code Warrior 

using the debugger. 

A Texas Instruments ZigBee packet sniffer [65] is used to monitor all packet 

exchanges happening in the channel. This allows us to later parse the packet trace and 

find the throughput, goodput and packet loss rate parameters. 

The layout and device interconnections for the ZigBee tests are shown in the 

figure below: 

Azimuth Director

Channel Emulator

HTNMote 

Under Test

HTNMote 

Receiver

CodeWarrior 

Debug Session

Zigbee Packet Sniffer

 

Figure 8.5: Layout and device interconnections for ZigBee tests 
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The channel emulator is setup in the following layout: 

 

Figure 8.6: ZigBee tests channel emulator topology 

 

In the above layout the device under test is denoted by the BS1. This is a 

HTNMote that is configured to be an end-device which sends ZigBee packets of 

payload sizes 2 and 84 bytes to the coordinator device. A total of 10001 packets are 

sent for every execution of a test. 

MS1 denotes the coordinator device that receives packet transmissions from 

the device under test. It is monitored via a debugger from the Code Warrior IDE. 

MS2 denotes the ZigBee packet sniffer. It is kept parallel to the device under 

test so that all the channel activity can be captured. The path from the device under 
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test to the sniffer is not attenuated. All attenuations are placed in the path from the 

device under test to the coordinator device. 

8.1.2. Current Consumption Test Results 

The current consumption observed for various scenarios of interest are 

tabulated below: 

Scenario Current Consumption 

HTNMote Switched on: voltage 

regulators, power on LED, RS-232, SD 

Card, USB, clock circuitry, 

microcontroller active. No LCD. 

48.4 mA 

HTNMote Switched on and a single 

indicator LED glowing 

49.3 mA 

HTNMote Switched on and RS-232 

transaction on-going 

51.5 mA 

HTNMote Switched on and SD Card 

transfer on-going 

50.2 mA 

HTNMote Switched on and connected 

as USB mass storage device 

59.3 mA 

HTNMote Switched on and LCD 

displaying graphic 

77.5 mA 

HTNMote Switched on and ZigBee 

sending data to coordinator 

80.1 mA 

HTNMote Switched on and ZigBee 91.1 mA 
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receiving data from end-device 

HTNMote Switched on and WiFi 

module in idle but full power mode 

163.4 mA 

HTNMote Switched on and WiFi 

module sending data 

197.1 mA 

HTNMote Switched on and WiFi 

module sending data 

190.1 mA 

 

Table 8.1: HTNMote Current Consumption 

 

When looking at the current consumption figures present in the table above we 

must keep note of the fact that all of these figures are not stand-alone consumption 

values for a corresponding component. Each of these values includes consumption 

due to all peripherals active as well as the code running in the microcontroller. This 

holistic view is necessary as in the field it is this overall current consumption which is 

of importance rather than individual component consumption.  
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8.1.3. Wi-Fi Test Results 

 

Figure 8.7: Throughput vs. Packet size test result 

  

The above test is executed by keeping the channel conditions same and 

varying the transmitted packet payload size from 50 bytes to a Wi-Fi maximum 

packet payload size of 1400 bytes. 

It is observed from Figure 8.  That the lower packet payload sizes do not make 

the device Wi-Fi operate at the saturation level of throughput and hence the 

throughput gradually increases. As the packet payload size increases the throughput 

starts to level off. It can be seen that using packet payload sizes of 800 bytes and 

above will guarantee that the device is operating close to the maximum throughput 

possible given all the other conditions. 

It can be seen that the Wi-Fi module allows nearly 2.2 Mbps as the maximum 

throughput. 
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Figure 8.8: Packet loss vs. Path loss result 

 

The Figure above shows that the overall packet loss for the Wi-Fi module is in 

the vicinity of a maximum of 32 packets per second when the payload size is 1400 

bytes, the throughput is 2.2 Mbps and the path loss is 113 dB. 
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Figure 8.9: Packet loss percentage vs. Path Loss result 

 

The above figure shows the overall percentage packet loss observed for a 

given path loss for different payload sizes at 2.412 GHz center frequency of 

operation. It is of importance to note that the above result will be affected by change 

in channel conditions and should be seen as the worst-case packet loss given similar 

conditions. We can see that the overall packet loss increases dramatically as the 

channel deteriorates. For smaller payload sizes we still are able to receive about 50% 

of the packets when there is in excess of 100 dB path loss. But as the payload size 

increases this amount becomes less and less and worst-case we observe near 100% 

packet loss for 1400 bytes payload size at a path loss of 100 dB and above. 
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We use the following formula convert the path loss value into a distance 

value: 

                  (
   

 
) 

In the above equation the path loss exponent (n) is assumed to be 2. The 

distance (d) between the sender and the receiver is in unit of meters. The wavelength 

(λ) is for the center frequency of 2.412 GHz. The path loss in the equation is in the 

unit of decibels (dB). 

Using the above formula we can see that for a distance of separation of 

roughly 1 Km between the sender and the receiver the packet loss is a meager 10 - 12 

packets per second when the transmission is very fast with 2.2 Mbps throughput using 

1400 bytes packet size. 
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8.1.4. ZigBee Test Results 

 

Figure 8.10: ZigBee throughput vs. path loss test result 

 

The above figure shows that given the software interface provided by the 

CC2530 Z-Stack ZNP API, the maximum throughput achievable is roughly 52 kbps. 

We can see that this throughput value is towards the end of the graph where the 

channel is substantially deteriorated. The increase in throughput comes from re-

transmissions in the channel. 
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Figure 8.11: ZigBee goodput vs. path loss test result 

 

The term goodput denotes the number of useful information bits that were 

transmitted per unit time from a source to the destination. As we can see from the 

above figure the goodput falls as the channel deteriorates. This is obvious as packet 

retransmissions and packet losses climb when the channel deteriorates. The above 

figure also shows us that the current hardware will be able to receive transmissions 

reliably down to 85 dB of path loss. 
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Figure 8.12: ZigBee packet loss rate vs. path loss test results 

 

The above result confirms what the test results for throughput and goodput 

shows us. As the channel conditions deteriorate the number of retransmissions and 

packet loss increases. This means there is more traffic being generated and 

transmitted into the channel by the sender, this results in an increase in throughput. 

But the number of transmissions actually reaching the intended recipient goes down 

due to a bad channel and thus the goodput decreases. 
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8.1.5. Tests Result Analysis 

 In this section the analysis of the results obtained from the Wi-Fi and ZigBee 

tests will be carried out to determine performance improvements that the HTNMote 

offers over currently available sensor hardware platforms. 

8.1.5.1. Wi-Fi Results Analysis 

The Stargate gateway node [45] is a hardware platform that can interface with 

the MICAz motes and provide a Wi-Fi gateway using a Wi-Fi Network Interface Card 

in a PCMCIA slot provided in the hardware. The Wi-Fi transfer speeds on the 

Stargate range from 1.5 Mbps to 3.75 Mbps depending on the Wi-Fi settings on both 

the sender and receiver sides [66]. This is achieved at a cost of increased power 

consumption as the Stargate operates at 5 V and consumes on an average 300 mA of 

current when Wi-Fi is active [67].  

A more recent development is the Wi-Fi expansion board [68] from Libelium 

for the Waspmote sensor platform. This board interfaces to the microcontroller core 

of the Waspmote using UART interface. This itself is a bottleneck for data transfer 

between the microcontroller and the Wi-Fi radio. In a practical scenario, the current 

consumed by the Waspmote hardware and the Wi-Fi board working together is close 

to 200 mA [68]. The maximum transmission throughput achievable when the UART 

baud rate is set to 57600 is 15.68 kbps. 

The Wi-Fi results show us that there is a huge performance gain with 

HTNMote when the parameter under consideration is the throughput. The HTNMote 

provides a maximum throughput of close to 2.2 Mbps. This is an improvement of 140 

times for similar current consumption. 
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Also when it comes to comparison with the higher power Stargate gateway, it 

must be kept in mind that the maximum 1.75 times increase in throughput comes at a 

significant increase in current consumption at a higher voltage, that is the power 

consumption is much higher. 

8.1.5.2. ZigBee Results Analysis 

The goodput test results show that the HTNMote hardware is capable of 

delivering up to 35 kbps in real-world application scenario at a path loss of 87 dB, 

which is comparable to the performance of MICAz and Waspmotes. 

This is expected since the radio chip used on the MICAz is CC2420 from 

Texas Instruments and is a predecessor of the CC2530 used on the HTNMote but with 

similar architecture. The XBee ZigBee module [69] used with the Waspmote is 

theoretically capable of delivering better performance but is severely restricted by the 

UART interface between the microcontroller and the XBee module. 

8.2. Functionality Tests 

 The USB, RS-232, LCD and SDHC are components of the hardware whose 

performance is not critical to the goals of the hardware but their proper functioning is. 

The following demonstrate the result of running the software implemented to make 

each of these modules work. 
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8.2.1. USB Test 

 The hardware is given a USB VID of 0x1234 and a PID of 0x5678. Upon 

execution of the USB code, the device is plugged into a computer using a USB cable. 

The device enumerates and the proper VID and PID can be seen from the Device 

Manager console. 

 

Figure 8.13: Device Manager screenshot for USB functionality test 
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8.2.2. RS-232 Test 

 When the software for RS-232 communication is executed, it is observed both 

on the Hyperterminal screen on the computer and on the CodeWarrior console that bi-

directional communication is achieved successfully. 

 

Figure 8.14: RS-232 bi-directional communication screenshot 
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8.2.3. LCD Test 

 The LCD successfully comes up after the code is executed as can be seen in 

the figure below: 

 

Figure 8.15: LCD output after code execution 
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8.2.4. SDHC Test 

 The SDHC software is executed to write a string to the SD card and then it is 

read back and compared with what was written. The result of the execution is shown 

in the figure below: 

 

Figure 8.16: Partial screenshot of CodeWarrior console after SDHC code has 

executed 
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Chapter 9. SUMMARY, CONCLUSION AND 

FUTURE WORK 

9.1. Summary and Conclusion 

 The Federal Railroad Administration is looking at WSN to monitor freight rail 

in real-time or near real-time. The freight rail is an important contributor to the health 

of the United States economy. Freight rail is also a greener mode of transport. The 

current methods of monitoring freight rail, like wayside monitoring etc., suffer from 

the drawbacks of not being able to monitor a large parameter set and the monitoring is 

not in real-time. 

WSN is a natural choice in achieving the real-time monitoring goals. ZigBee 

is the protocol of choice for such deployments owing to its low cost and low power 

consumption. 

However, the railroads deployment scenario is very unique when it comes to 

the topology in which the network exists. The long linear chain-like topology is one 

for which ZigBee was not designed. Hence, the use of ZigBee in such scenarios 

present significant problems. 

These problems include: 

a) Synchronization Delay 

b) Route discovery issues 

c) Packet and link loss 

d) Lack of Quality-of-Service 

e) Data forwarding and aggregation errors 

f) Skewed network lifetime issues 
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A solution has been suggested by the Advanced Telecommunication 

Engineering laboratory at the University of Nebraska-Lincoln which addresses the 

above problems. This solution is called the Hybrid Technology Networking protocol. 

This envisions ZigBee to operate in small clusters and the data forwarding from one 

cluster to the next to happen using Wi-Fi. This has been shown to improve end-to-end 

throughput, balance power consumption and also is standards based. 

The current available sensor hardware platform does not have an integrated 

solution for the application of Hybrid Technology Networking. Hence, the need to 

design an integrated standards-based sensor hardware platform that will at least be 

equivalent in performance. 

The design of HTNMote is presented. It combines a Cortex M-4 

microcontroller with both Wi-Fi and ZigBee radio capabilities residing on the same 

board. SD Card storage facility is present. Communication with  the external world is 

carried out using RS-232 and USB apart from Wi-Fi and ZigBee. 

The test results of the HTNMote hardware show that the Wi-Fi capability is 

far better than any solution available in the market now. The ZigBee performance is 

comparable to any other hardware currently available. Coupled with the possibilities 

of implementing extremely low power consuming code, as all the peripherals support 

power saving features, the HTNMote is an ideal platform to implement the Hybrid 

Technology Networking protocol. 
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9.2. Future Work 

 The initial version of HTNMote has been shown to be quite capable of 

handling the demands of the Hybrid Technology Networking protocol. It is already 

better than comparable products available in the market. 

In future further research on HTNMote will be conducted with the following 

goals in mind: 

a) Miniaturization: The next goal is to miniaturize the HTNMote hardware by 

doing away with components that are not required in the field. 

Miniaturization will further reduce latency and current consumption. 

b) Improving performance: The current implementation has shown that even 

though capable hardware and a fast interface to that hardware exists but 

still performance bottlenecks come from the software implementation. In 

the next revision, software optimization with an eye to throughput and 

other performance improvement will be done. 

c) Large deployment tests: In future, large deployments of HTNMotes will be 

carried out to test how the HTNMotes perform when they are in a network 

with several other HTNMotes. 
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APPENDIX A 

Please contact the author at sushanta.rakshit@huskers.unl.edu for more 

information on this section. 

APPENDIX B 

Please contact the author at sushanta.rakshit@huskers.unl.edu for more 

information on this section. 

APPENDIX C 

Please contact the author at sushanta.rakshit@huskers.unl.edu for more 

information on this section. 
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