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Pyridine is an organocatalyst for the reductive ozonolysis of
alkenes

Rachel Willand-Charnley, Thomas J. Fisher, Bradley M. JohnsonT, and Patrick H. Dussault”
Department of Chemistry, University of Nebraska—Lincoln, Lincoln, NE 68588-0304

Abstract

Whereas the cleavage of alkenes by ozone typically generates peroxide intermediates that must be
decomposed in an accompanying step, ozonolysis in the presence of pyridine directly generates
ketones or aldehydes through a process that neither consumes pyridine nor generates any
detectable peroxides. The reaction is hypothesized to involve nucleophile-promoted fragmentation
of carbonyl oxides via formation of zwitterionic peroxyacetals.

The ozonolysis of alkenes, a widely used and environmentally sustainable oxidative
transformation, is nearly always accompanied by a reaction to decompose the ozonides or
other peroxide intermediates.! However, the proclivity of ozonides towards exothermic and
self-accelerating decomposition reactions, combined with their low rate of reaction with
many reducing agents, can create serious hazards.23# An attractive alternative to a
traditional stepwise approach would involve /n situ capture and decomposition of the
carbonyl oxide intermediates. We recently described two approaches to “reductive”
ozonolyses based upon trapping of carbonyl oxides by amine A-oxides or water.58.p
However, the first of these requires basic conditions while the latter generates hydrogen
peroxide as a stoichometric byproduct. We became interested in a handful of reports
describing the direct formation of carbonyl groups for ozonolyses conducted in the presence
of pyridine.5” This mechanistically unexplained process has received little synthetic
attention.8:2 We now report that ozonolysis in the presence of pyridine involves an
unprecedented organocatalyzed decomposition of carbonyl oxides via the formation and
fragmentation of zwitterionic peroxyacetals. The overall process offers a fast, general, and
high-yielding route to aldehydes and/or ketones.

Our initial investigations, illustrated in Table 1, directly compared ozonolysis in pyridine
against a traditional two-step protocol.10:11 For example, ozonolysis of the acetate of 9-
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decenol, followed by reduction of the intermediate ozonide with Ph3P, furnished the
aldehyde in 78% yield. The same product was available in 83% — in only 2-3 minutes and
without any reductive workup - if ozonolysis was conducted in the presence of pyridine.
Performing the reaction in the presence of substoichometric pyridine resulted in the isolation
of significant amounts of ozonide, and the best yields of aldehyde or ketone were generally
obtained in the presence of two or more equivalents of pyridine. In control reactions, we
demonstrated that isolated ozonides were unreactive towards pyridine under the reaction
conditions.

We next investigated ozonolysis of enol ethers (Table 2); the carbonyl oxide/ester pair
derived from cycloreversion of the primary ozonide does not readily undergo cycloaddition
to ozonides. As a result, enol ethers typically generate monomeric products only in the
presence of an added alcohol or aldehyde able to capture the carbonyl oxide.12 However,
ozonolysis of enol ethers 1a - 4a in the presence of pyridine furnished good yields of the
carbonyl products (1b - 4b); neither carbonyl products nor ozonides were obtained in the
absence of pyridine (not shown).

The influence of pyridine electronic and steric factors was further investigated using enol
ether 3a (Table 3). Similar yields of ketone 3b were obtained in the presence of electron-rich
and electron-poor pyridines.13 However, the presence of steric bulk adjacent to the pyridine
nitrogen suppresses formation of carbonyl product. Similar results were obtained with
alkene substrates (not shown); for example, terminal alkenes furnish aldehydes in the
presence of pyridine or 2,6-lutidine but not 2,6-di-~butylpyridine. The replacement of
pyridine with other heterocyclic bases (thiophene, imidazole, 1-methylimidazole) led to
much lower yields of reduction products and this theme was not pursued.

The synthetic utility of the reductive ozonolysis can be seen in the ability to directly apply
the crude reaction to trapping of a product aldehyde by a stoichometric amount of an
organometallic reagent, a transformation typically performed on the purified products of
ozonolysis (eq 1).

OH
| 0 Pyr, CHyCl, -78°C; PN
CgHi7 then RMgBr (1-1.2 equiv)  CeHi7 R
R = Ph: 60%
R =Me: 75%

As illustrated in Scheme 1, reductive ozonolysis could in principle involve reaction of
pyridine with either the primary ozonide (POZ), the carbonyl oxide (CO), or the secondary
ozonide (SOZ).12 Unhindered alcohols are known to be effective carbonyl oxide trapping
reagents,12:14 and we investigated reaction of several substrates in the presence of pyridine
and added methanol. In each case, we observed hydroperoxyacetals (path a), demonstrating
that the reductions involve either the CO or a downstream species.12 Control reactions
demonstrated that the carbonyl products did not arise from pyridine-promoted E;cB
fragmentation of the SOZ (path b).1> These observations implied the intermediacy of the
CO,1212 pyt did little to explain the mechanism. The absence of hydrogen peroxide in crude
reaction mixtures ruled out trapping of the CO by traces of solubilized water (not shown),5P
while NMR monitoring of a reaction conducted in CD,Cl, observed only carbonyl products
and recovered pyridine, excluding a redox process (path c).8
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Given the inabilty to explain the observed products via traditional reaction pathways, we
next considered whether attack of a pyridine-ozone complex%2 on the CO could generate
zwitterionic peroxyacetals able to fragment to pyridine, oxygen, and a carbonyl (path d).
However, this mechanism requires fwo equivalents of O3 per molecule of carbonyl product,
something not supported by experimental observations.18 A more viable mechanism
involves addition of pyridine to the CO to generate a zwitterion which can react with
another molecule of carbonyl oxide (path e).17 The resulting zwitterionic bisperoxyacetal
would be highly activated towards fragmentation to generate a molecule of O,, fwo carbonyl
groups, and pyridine.

The proposed mechanism is consistent with the observed steric influences on the reduction
process, and suggested that reductive ozonolysis of bulky substrates might be enhanced by
an unhindered “helper” CO which could trap pyridine to generate the nucleophilic
zwitterion. As illustrated in Table 4, this hypothesis was tested on B-pinene. This hindered
substrate predominantly generates ozonides or polymeric peroxides even in the presence of
pyridine.18 However, performance of ozonolysis in the presence of pyridine and ethyl vinyl
ether, the latter a source of formaldehyde O-oxide, produced an improved yield of the
ketone. More intriguingly, ozonolysis of pinene in the presence of an unsaturated pyridine
designed to generate a pyridine-stabilized carbonyl oxide (eq. 2) resulted in a dramatically
improved yield of ketone.

@

| @ =
long-lived U
intermediate?

/

In conclusion, we demonstrate a high-yielding and convenient procedure for the direct
ozonolytic generation of anhydrous solutions of aldehydes and ketones. The reaction
provides the first example of organocatalysis in ozonolysis, and suggests the existence of yet
unglimpsed avenues of carbonyl oxide reactivity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1
Oa/pyridine versus a standard two-step procedure.

substrate cond product yield(s)

CH A o 8%

J J

AcO(CHyp)g B AcO(CH,)g 83%

A 90, 75%
Me(CHz)?] Me(CH,);CHO +

MeOEC(CHe B MGOZC(CH2)7CHO 82, 78%

A 80%

B (@] 81%

O

79%

t-Bu
HQCQ B OQ/ 85%

A 70%
O
B )k/\/"}o 7%
A 87%
0
i M -
(@]

A) 03, CH2Cl2, -78 °C; Ph3P, 24 h; B) 03, 2-3 equiv pyridine, CH2ClI2, =78 °C, 2-3 min; C) As per “B” but 1 equiv pyridine
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Reductive ozonolysis of enol ethers?

Page 9

Table 2

substrate

product

yield

la

2a

3a

4a

CHyCHdsAmgye  CHa(CHR)e 2O 1o

AcO(CHp)g

t-Bu
Ph

ome ACO(CHpg O 2

O
e (T
-Bu

P

t
O 4
OMe Phj\?

aConditions: 03/02, —78 °C, 2-3 equiv pyridine in CH2CI2

74%

86%

83%

70%
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Table 3

Probing steric and electronic influences
O3, additive (3 equiv)

3a CHCl, 78°C P
additive ketone (%)2
pyridine 83
3-nitropyridine 53
N,N-dimethylaminopyridine 65
2,6-lutidine traces
2,6-di- £butylpyridine traces

alsolated yield

Org Lett. Author manuscript; available in PMC 2013 May 04.
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Table 4

Influence of added carbonyl oxide sources

03‘ additive(s)

CHQCIQ -78 °C o

additive A additive B ketone (%)2

- - traces

g pyridine (3 equiv) 12

Eto\//; pyridine (3 equiv) 30

=N
| - 65
= Z

alsolated yield
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Abbreviations: EA = ethyl acetate; Hex = hexane; RBF = round bottom flask.

Substrates: Decene, methyl oleate, dihydrocarvone, methylcyclopentene, methylcyclohexene,
ethyl vinyl ether, and beta pinene were used as obtained from commercial sources. 9-Acetoxy-1-
decene,' 4-t-butyl-1-methylenecyclohexane,? 4-t- butyl-1-methoxymethylenecyclohexane (3a),’
3-phenyl-1-methoxy-1-butene (4a)," 1-methoxy-1-nonene (1a), > 9-acetoxy-1-methoxy-1-decene
(2a).° and 2-(3-butenyl)pyridine were prepared through reported procedures.’

General Experimental Conditions: All reagents and solvents were used as supplied commercially,
except CH,Cl,, which was distilled from CaH,. Thin layer chromatography (TLC) was
performed on 0.25 mm hard-layer silica G plates containing a fluorescent indicator. Developed
TLC plates were visualized with a hand-held UV lamp or by staining: 1% ceric sulfate / 10%
ammonium molybdate in 10% H>SO4 (general stain, after charring); 1% N,N’-dimethyl-p-
phenylenediamine in 1:20:100 acetic acid/water/methanol (specific for peroxides:
hydroperoxides and some ozonides give a pinkish color upon dipping; nearly all peroxides will
give a reddish-pink coloration upon mild heating).® Unless noted, NMR spectra were acquired in
CDCls. IR spectra were recorded as neat films on a ZrSe crystal with selected absorbances
reported in cm™

Ozonolysis in the presence of pyridine: The alkene substrate (1-3 mmol) and dry pyridine (3-9
mmol) were dissolved in dry CH,Cl, (15-20 ml) in a flame-dried flask under N,. The solution
was cooled to-78 °C, at which point a stream of O3/O; (~ 1 mmol/min of O3) was introduced
through a disposable pipet for a period that varied with the amount of alkene (~ 1 min/mmol).
Once complete, the reaction was sparged with O, and then N,. The crude reaction mixture was
diluted with CH,Cl, (10 ml) and sat. aq. NaHCOs3 (15 ml). The aqueous layer was extracted (3 x
5 mL) with CH,Cl, and the combined organic layers were dried over Na,SO4 and filtered
through a cotton plug. The residue obtained upon concentration was purified via flash
chromatography with ethyl acetate/hexanes to furnish the aldehyde or ketone.

Preparative scale: Application on a 10 mmol scale resulted in similar yields (e.g., ozonolysis of
dihydrocarvone to 5-acetyl-2-methylcyclohexanone was achieved in 80% isolated yield).

Nonaqueous work-up: In lieu of an aqueous work-up, the sparged reaction solution resulting
from ozonolysis could be partially concentrated and then directly loaded onto a silica column and
eluted with ethyl acetate/hexane. Yields were comparable to the extractive workup. For example
ozonolysis of 9-decenyl acetate followed by concentration and chromatography furnished 9-
acetoxynonanal in 87% yield vs. the 80% yield (Table 1) obtained with an aqueous workup.

Substrates prepared via ozonolysis: The following were prepared according to the experimental
procedure. All compounds afforded spectral data that was identical to literature values.

5-Acetyl-2-methylcyclohexanone [56893-77-7].° R/=0.48 (10% EA/hex); (RWC-1-54)
5-Oxohexanal [ 505-03-3]."° R;= 0.33 (30% EA/hex). (RWC-1-71)

6-Oxoheptanal [19480-04-7]."' R;= 0. 33 (30% EA/hex). (RWC-1-70)
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Octanal (1b) [124-13-0]." R;= 0.7 (10% EA/hex). (RWC-3-46)

9-Acetoxynonanal (2b) [29541-97-7].° R/=0.14 (10% EA/hex). (RWC-1-43)

Nonanal [124-19-6]."> R;= 0.6 (10% EA/hex). (RWC-1-43)

Methyl-9-oxononanoate [1931-63-1]. R,= 0.7 (10% EA/hex) (RWC-1-52)
4-(1,1-Dimethylethyl cyclohexanone (3b) [98-53-3]."* R;= 0.47 (10% EA/hex). (RWC-2-31)
2-Phenylpropanal (4b) [1335-10-0]." R;= 0.6 (10% EA/hex). (RWC-1-90)

Nopinone [38651-65-91."° R;= 0.33 (10% EA/hex). (RWC- 3-10)

6,6-Dimethylspiro[bicyclo[3.1.1]heptane-2,3'-[1,2,4]trioxolane] [pinene ozonide, 201472-62-
0]." Ry= 0.8 (10% EA/hex) (RWC-1-77)

One-pot ozonolysis/organometallic addition: A -78 °C solution of alkene and pyridine in CH,Cl,
was subjected to ozonolysis as described above. Once the cleavage of alkene was complete
(based upon reaction time and/or TLC analysis), the reaction was sparged with oxygen and the
flask was capped with a septa. The internal atmosphere was removed under vacuum and
replaced with dry nitrogen. The flask was recooled to 0 °C, whereupon a stoichiometric amount
of phenyl or methyl magnesium bromide (nominally 1M solutions in THF) was added. The
reaction was monitored by TLC and, when complete, was quenched by dropwise addition of
water followed by a few drops of 6M HCI. The mixture was diluted with a volume of saturated
aq. NH4Cl and the separated aqueous layer was extracted with CH,Cl, (3 x). The remainder of
the work-up was as for the ozonolysis procedure described above. The combined organic layers
were dried and concentrated as described previously.

Decan-2-ol [1120-0605]."® R;= 0.20 (10% EA/hex). (RWC-2-82)

1-Phenyldecan-1-ol [256378-51-5]." R;= 026 (10% EA/hex). (RWC-2-95)
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Delivery of a fixed amount of ozone to an alkene in the absence of pyridine.

1D Proton NMR AIIXU
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Delivery of a fixed amount of ozone to an alkene in the presence of pyridine.

1D Proton NMR AIIX\U
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Supporting Information: Willand-Charnley, et al “Pyridine is an organocatalyst for the reductive
ozonolysis of alkenes”
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Supporting Information: Willand-Charnley, et al “Pyridine is an organocatalyst for the reductive

ozonolysis of alkenes”
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