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Commercial storage bins are a quintessential part of a grain supply chain. Having the 

advantage of taking up space in vertical rather than horizontal fields, cylindrical bins are 

very useful for grain production companies; As a result, various types of bins and silos are 

being constructed more often than ever, especially, as the expenses of acquiring and/or 

managing vast operation fields are skyrocketing while, even finding suitable fields for 

lease or purchase is a challenge for this matter. 

Keeping inventory record of packed grains in silos poses challenges since the bulk 

material’s different segments do not discharge uniformly, leading to formation of random 

peaks and valleys on the surface. To facilitate obtaining accurate volume measurement of 

the grains by taking into account this non-linear behavior on the surface, laser or plumb-

bob level-sensing devices are employed at different part of the surface to probe the level 

of material under those regions. An acceptable estimation method commonly practiced is 

installing the sensors at the distance equal to 1/6 of the diameter of bin from the side wall. 

However, since this method disregards other possible peak and valleys which might be 

present at other areas on surface in an unsystematic fashion, the accuracy of the results 

using this method is debatable. The main goals of this research is to study the behavior of 

granular material in silo while discharging downward and by doing so, differentiate 



 

 

certain flow patterns formed during this process which could be important in predicting 

granular materials’ behavior on the surface. 

Since the numerical model needs the input parameter value to function, a couple of 

important mechanical properties such as normal/shear stiffness, friction coefficient, and 

Young’s modulus were obtained by performing numerical triaxial tests in order to facilitate 

the validation of the parameters which had been previously taken from available literature. 

The slope of the stress-strain diagram for this particle at the linear region was calculated 

from the graphs needed to obtain the Young’s modulus for the specific grain (polyethylene 

plastic). This value matched with the one that had been already chosen, hence validated 

the values as being suitable approximations. In order to conduct the study, three unique 

numerical discharge models were built with two types of granular material and assigned to 

these, were the material/mechanical properties of polyethylene plastic and corn kernels 

separately. Validation procedures were conducted (grain volume measurements) by setting 

up a physical silo in the lab and monitoring center and side discharge developments for 

real polyethylene and maize grains, sequentially. The differences in results of numerical 

and lab discharge were small and large, depending on the materials used, as well as the 

type of discharge process performed (center or side). At the end, reruns of models were 

carried out with improved input values. 

 

 

 

 



 

 

ACKNOWLEDGMENTS 

 

I have been indebted in the preparation of this thesis to my mentor and supervisor, 

professor Ram Bishu, whose patience, kindness, and support, as well as his far-reaching 

academic knowledge, have been invaluable to me. I am extremely grateful for having him 

as my advisor.  

I would like to thank my committee members Dr. Michael Riley and Dr. Demet Batur for 

providing very helpful suggestions needed to improve my research. I greatly appreciate 

their feedback and guidance. 

I extend my gratitude to Mr. McLain and Mr. Hartzell, who gave me the opportunity for 

the internship in their company and made available the instruments and space for 

performing experiments required for the thesis to be successfully performed. 

Lastly, I would like to express my gratitude to my family for their unconditional support. 

 

 

 

 

 

 

 

 

 

 



 

 

Table of Contents 

 

List of  Figures …………………………………………………………….................X 

List of  Tables…………………………………………………………………..…..XVI 

Chapter 1- Introduction……………………………………………………………....1 

1.1 Inventory Monitoring in Silos and the Related Issues   ……………………….......1 

1.2 Scope of the Thesis……………………………………………………………........2 

1.3 Chapter Details    ……………………………………………………………..........3 

Chapter 2- Literature Review… ………………………………………………….....5 

2.1 Level Sensors for Accumulated Material in Silos………………………….............5 

2.2 Level Sensor Types…………………………………………………………...........8 

2.2.1 Admittance-type Sensors……………………………………………...................8 

2.2.2 Rotating-paddle Sensors……………………………………………………........9 

2.2.3 Vibrating Point Sensors…………………………………………………….........9 

2.2.4 Ultrasonic Level Detectors   ………….………………………………………..10 

2.2.5 Capacitance Level Detectors……………………………………………….......10 

2.3 Granular Material Characteristics…………………………………………….......10 

       2.3.1 Granular Material -General Description…………………………………...10 

      2.3.2 Molecular Dynamics………………………………………………………..11 

      2.3.3 Description of Bulk Material flow in Silos....................................................12 

      2.3.4 Behavior of Bulk Solid in Silos……………………………………….........13 

 



 

 

2.4 Janssen Theory……………………………………………………………………....15 

2.5 Micro and Macro Behaviors of Bulk Material…………………………………........16 

2.6 Granular Flow...…………………………………………………..…………...........17 

2.7 Stress Analysis of Granular Material…………………………………………..........17 

2.8 Confined Granular Material Behavior…..…………………………………..............17 

2.9 Bulk Material Volume Measurements…………………………………………........18 

2.10 Review of a Number of Significant Granular Flow Parameter………………........26 

        2.10.1 Particle Size and Distribution Influences on Silo Discharge Process……....33 

        2.10.2 Limitations in Simulating Large-Scale Models with DEM…………….......34 

Chapter -3 Objectives and Rationale of Research……………………………….......35 

3.1 Overview…………………………….....…………………………………………....35 

     3.1.1 Inadequacy of Preceding Silo DEM Simulations………………………….......36 

3.2 Need for this Study……………………………………………………………….....37 

3.3 Objectives……………………………………………………………………….…...40 

Chapter-4 Methodology ………………………………………….......................….......42 

4.1 Overview……………………………………………………………………..…........42 

4.2 Model Development……………………………………………………….……........42 

4.3 Description of Running the Simulation Package……………………………….........44 

4.4 Validating the Numerical Models by Lab Experiment Procedures………….…........44 

4.5 Actual Procedure…………………………………………………….........................45 

4.5.1Brief Overview of Elements to Be Considered in PFC3D Model………………...46 



 

 

                 4.5.1.1 Spherical Elements Resembling Granular Particles…..……................46 

                 4.5.1.2 Boundary Conditions of the Model ……………….............................46 

                 4.5.1.3 Initial Condition of the Models……………………….........................47 

                 4.5.1.4 Porosity Considerations……………………………….........................47 

                 4.5.1.5 Contact Representation for the Models………….………....................48 

      4.5.2 Lab Experiment for Validation and Calibration Purpose…….…........................48 

Chapter-5 Results ………………………………………………………………….........46 

5.1 Development of Numerical Models-Background………………………………….....49 

      5.1.1 Simulation Model Designs……………………………......……………….........51 

      5.1.2 Model 1……………………….............…….......................................................53 

      5.1.3 Model 2……………….…………………………...............................................54 

5.2 Running of the Simulation Models……………………………………………..........57 

      5.2.1 Specific Procedures……………………………………………......……….......57 

      5.2.2 Specific Results from Three Simulation Models………………………............58 

              5.2.2.1 Model 1- Center Discharge of Polyethylene Plastic pellets………….....58 

              5.2.2.2 Model 2- Side Discharge of Polyethylene Plastic Pellets….....................62 

              5.2.2.3 Model 3-Center Discharge of Corn with porosity of 0.50……………...65 

     5.3 Lab Study procedure…………………………………….......................................69 

          5.3.1 General Description…………….…………………………………...…….....66 

         5.3.2 Discharging Process……………………………………………………..........72 

5.4 Comparing Simulation and Lab Results…………………………………...................74 



 

 

        5.4.1 Model 1 (Center Discharge of Polyethylene Plastic Pellets)……………….....74 

        5.4.2 Model 2 (Side Discharge of Polyethylene Plastic Grains)…………….............75 

        5.4.3 Model 3 (Center Discharge of Maize)………… ……………………………..77 

Chapter-6 Detailed Results..............................................................................................79 

6.1 Chapter Summary…………………………………………………………………….79 

6.2 Investigation of Various Parameters in Models………………………………….......79 

     6.2.1 Model 1-Center Discharge of Polyethylene Plastic Pellets………………..…....79 

     6.2.2 Model 2- Side Discharge of Polyethylene Plastic Pellets………………............84 

     6.2.3 Model 3- Center Discharge of Maize ………………………………….............90 

6.3 Volume Measurement Validation………………………………………………........92 

      6.3.1 Model 1- Center Discharge of Polyethylene Plastic Pellets……………….......92 

      6.3.2 Model 2 -Side Discharge of Polyethylene Plastic Grains………………...........95 

      6.3.3 Model 3 (Center Discharge of Maize)……………… ………………...............97 

6.4 General Comparison …………………………………………………………...........98 

6.5 Validation by Discharge Flow Rate Values…………………………………...........101 

6.6 General Volume Measurement Results…………………………………..................103 

6.7 Recommendations…    …………………………………………………………......104 

     6.7.1 Calibration of the Simulation Parameters……………………………..............104 

6.8 Triaxial Shear Test Simulation………………………………………………..........106 

      6.8.1 General Description…………………………………………….....................106 

      6.8.2 Sample Preparation for Triaxial Test for Polyethylene Plastic Pellets........…108 



 

 

      6.8.3 Stress State Computation with Servo Control Process…………………........108 

      6.8.4 Computation of Elastic Properties of the Sample…………………………....109 

      6.8.5 Test of Stress Failure for the Sample………………………………...….......111 

Chapter-7 Discussions……………………………………………………………......115 

7.1 Specific Discussions…………………………………………………............…....115 

      7.1.1 Modeling.........................................................................................................115 

      7.1.2 Simulation Models..........................................................................................116 

             7.1.2.1 Model 1…………………………………………….............................116 

             7.1.2.2 Model 2………………………………………………….....................118 

             7.1.2.3 Model 3…………………………………………….............................119 

7.2 Laboratory Experiment for Validation    ……………………………………….....120 

7.3 Limitations…………………………………………………………………...…….124 

    7.4 Future Work and Extension /Recommendations..…………………… . . . . . . . .. .…126 

References……………………………………………………….…….….. . . . .128 

Appendix A  Distinct Element Method (DEM)………………………………….......132 

A.1 General Description………………………………………………………..............132 

A.2 Boundary conditions in Simulation………..........…………………………..…......136 

A.3 Force-Displacement Law……………………………………………………..........138 

A.4 Simplified Hertz-Mindlin Model………………………………………………......141 

A.5 Slip Model…………………………………………………………………….........141 

A.6 Rolling………………………………………………………………………….......142 



 

 

A.7 Motion Law…………………………………………………………………….........142 

A.8 Time-Step Establishment………………………………………………………........144 

A.9 Damping System Model…………………………………………………………….144 

A.10 Contact Models………………………………………………………………….....145 

       A.10.1 Linear Contact Model……………………………………………….............146 

       A.10.2 Bonds…………………………………………………………………..........147 

Appendix -B  Codes Used for Simulation Model (partial)…………………………...149 

Appendix-C Codes Used for Numerical Triaxial Tests (Partial)………………........166 



XI 

 

List of Figures 

Figure 2.1 Overview of a measurement system…………………………………………......5 

Figure 2.2 Block diagram of a radar system ……………………………………………......6 

Figure 2.3 The SiloVis software interface……………………………………………..........6 

Figure 2.4 A display unit showing bulk material level...…………………………………....6 

Figure 2.5. Multiple-point 3D bin volume measurement……………………………...........7 

Figure 2.6 Admittance-type sensors…………………………………………………….......9 

Figure 2.7 An element of bulk solid under stress…………………………………….........14 

Figure 2.8 Pressure developments in fluids and bulk solids ……………………………...15 

Figure 2.9 Camera-centered active triangulation geometry……………………….............20 

Figure 2.10 Point cloud generation using triangulation with a laser stripe …………….....20 

Figure 2.11 Structured –light 3D scanner…………………………………………...…......20 

Figure 2.12 Working principle of a structured-light 3D scanner ……………………….....21 

Figure 2.13 A NURBS Mesh…………………………………………………………........21 

Figure 2.14 Stockpile shape characteristic and 3D scanning views…………………..........24 

Figure 2.15 Experimental set-up: (A) schematically and (B) tomography ……………......25 

Figure 2.16 Possible paths of wall normal stress and implicit 1 directions ……………...27 

Figure 2.17 Possible paths of wall shear stress of s during filling and discharge………..27 

Figure 2.18 Filling height hf, vertical stress at the outlet sv, and feeder force Fh vs. time .28 

Figure 2.19 Evolution of kinetic energy during filling with various friction coefficients ..29 



XII 

 

Figure 2.20 Comparison of numerical and analytical values with µ=0.3……………...........29 

Figure 2.21 Time variation of relative discharge mass for various inclination angles ……..30 

Figure 2.22  A simulation model geometry and the representative pressures ……………....31 

Figure 2.23 Radial velocity profiles for maize model discharge from a hopper …………....32 

Figure 2.24 Schematic of an ore pass which resembles a bulk storage system…..….............33 

Figure 2.25 Downward- sequential model for stress field construction ………….................34 

Figure3.1 Level sensor installed in 1/6 of the bin diameter………………………….............39 

Figure 5.1 Cylindrical container model used in the study……………………………...........51  

Figure 5.2 Model 1, a cylindrical container filled with circular particles…………................53 

Figure 5.3 Side-discharge point as seen from the bottom of the silo……………..................53 

Figure 5.4 Physical corn grain dimensions…………………………………….…….............54 

Figure 5.5 Model 3, cylindrical container filled with circular particles……………..............56 

Figure 5.6 Initial contour state of center-discharge process …………………………...........58 

Figure 5.7 Contact forces as seen vertically from bottom …………………………….........59 

Figure 5.8 Initial velocity vectors and, displacement vectors –center discharge………..…..59 

Figure 5.9 Contour state of center-discharge process well into discharge process……….....60 

Figure 5.10 Velocity vectors and, displacement vectors well into discharge………..............60 

Figure 5.11 Contact forces as seen from below at the middle o f discharge…..................60 

Figure 5.12 Contour state of center-discharge process in the end of discharge…..………....61 

Figure 5.13.Velocity vectors and, displacement vectors   in the end of discharge process.....61 

Figure5.14 Surface topography decrescence through center discharge process ………….....62 



XIII 

 

Figure 5.15 Initial stages of side-discharge of the silo…………………………….…...........62 

Figure 5.16 Velocity and displacement vectors for initial stage of side discharge….............63 

Figure 5.17 Midway through side discharge process of plastic pellets……………...............63 

Figure 5.18 Velocity and displacement for half way through side discharge of PP ……......64 

Figure 5.19 Final stages of side discharge of plastic pellets………………………...............64 

Figure 5.20 Velocity and displacement vectors for final part of side discharge of PP……...65 

Figure 5.21 Surface topography decrescence through side discharge process…………........65 

Figure 5.22 Initial stages of maize center discharge course…………………………............66 

Figure 5.23 Velocity and displacement vectors for initial stage corn discharge……….........66 

Figure 5.24 Remaining maize particles in the bin halfway through discharge………............67 

Figure 5.25 Contact forces halfway through discharge of maize particles……………….......67 

Figure 5.26 Velocity and displacement vectors halfway through discharge………………....68 

Figure 5.27 Contact forces for the final stage of maize discharge ………………………......68 

Figure 5.28 Final stage of maize discharge simulation ……………………………................69 

Figure 5.29 Velocity and displacement vectors at the final stage of maize discharge………..69 

Figure 5.30 Model Silo used for validation…………………………………………...............70 

Figure 5.31 A picture of the silo model lid……………………………………………............71 

Figure 5.32 Discharge gates at the bottom…………………………………………................71 

Figure 5.33 Discharge mechanisms at the bottom of the model ………………………….......71 

Figure 5.34 Laser level sensor device…………………………………………………............72 

Figure 5.35 Polyethylene particles discharging out of the system……………… . . . . . .. . .. . .. .72 



XIV 

 

Figure 5.36 Random measurement of point levels of granular pack………………………......74 

Figure 5.37 Comparing numerical simulation with lab results in center discharge of PP……..74 

Figure 5.38 Comparing numerical results with lab side discharge results …………................76 

Figure 5.39 Comparing numerical results with lab side discharge result……………...............78 

Figure 6.1 Vertical velocity charts of spheres vs. respective X-positions in the silo…….........80 

Figure 6.2 Velocity charts of spheres vs. their respective Y-positions in the silo………..........81 

Figure 6.3 X, Y, and Z positions of a collection of particles) vs. time………………...............82 

Figure 6.4  a) X-velocity of a ball vs. time b) Z-velocities of a couple of particles vs. time c) Z 

position of a ball vs. its Y position d) Z position of a ball vs. its X position and, e) Z velocity of 

a ball vs. its vertical ..……………………………………………….……..................................83 

Figure 6.5 X and Y forces from particle movements on the cylindrical wall vs. time……........84 

Figure 6.6 Vertical velocity charts of particles vs. their respective X-positions in the silo….....85 

Figure 6.7 Vertical velocity charts of vs. their respective Y-positions in the silo…...................85 

Figure 6.8 Vertical velocity charts of vs. their respective vertical positions ……………..........86 

Figure 6.9 X path vs. vertical path and, Y path vs. vertical path of two particles………...........87 

Figure 6.10 Vertical velocities and vertical positions of a collection of particles ………..........87 

Figure 6.11 Mean contact forces and mean unbalanced forces of the system ……...…….........88 

Figure 6.12 a:Y force of cylindrical wall vs. time, b: X force of cylindrical wall vs. time c: Z 

force of flat-bottom wall vs. time and, d: Y force of cylindrical wall vs. its X force…….........89 

Figure 6.13 Porosity of grains for side discharge of plastic pellets……………………….........89 

Figure 6.14 Vertical (z) velocities vs. X coordinate (a), vs. Y coordinate (b), and vs. height for 

maize center discharge simulation ………………………………………..................................90 



XV 

 

Figure 6.15 X force and Z force endured by cylindrical and bottom flat walls vs. time…….....91 

Figure 6.16 Mean unbalance forces and average stress ………………………….…….............92 

Figure 6.17 Porosity value of discharging maize in the silo……………………………............92 

Figure 6.18 Initial sample of compact assembly prepared for the triaxial test ………….........108 

Figure 6.19 Axial deviatoric stress vs. axial strain for elastic load/unload test……...…..........110 

Figure 6.20 Volumetric strain vs. axial strain for elastic load/unload test…………….............110 

Figure 6.21 Axial deviatoric and confining stresses vs. axial strain for grains without bond....111 

Figure 6.22 Axial deviatoric/ confining stresses vs. axial strain for bonded grains 0.05MN....112 

Figure 6.23 Axial deviatoric and confining stress vs. axial strain for bonded grains 0.1MN....113 

Figure 6.24 Volumetric strain vs. axial strain for bonded grains -0.05MN……….…..............113 

Figure 6.25 Volumetric strain vs. axial strain for bonded material ……...…………….114 

Figure 7.1 Level sensor installed at 1/6 of the bin diameter………………………..................121 

Figure A.1 Contact-only deformation and the contact forces between grains …….................136 

Figure A.2 Calculation cycle in DEM simulation ……………………………………............138 

Figure A.3 Ball-Ball contact………………………………………………………........... ......139 

Figure A.4 Ball-Wall contacts ………………………………………………...……...............139 

Figure A.5 Rolling resistance effect on particles…………………………….……….............142 

Figure A.6 Illustration of contact forces between two spheres………………….....................145 

Figure A.7 Normal component of stiffness in a linear contact model …………………….......146 

Figure A.8 Shear component of stiffness model in a linear contact model……………............147 

Figure A.9 Contact bond ……………………………………………………….......................148 



XVI 

 

Figure A.10 Parallel bond……………………………………………………………..............148 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XVII 

 

List of Tables 

 

Table 2.1 3D level sensing device benefits……………………………………........................8 

Table 5.1 General spectrum of modeling situations…………………………………..............50 

Table 5.2 Material Properties used in the numerical model for polyethylene plastic …….....52 

Table 5.3 Material mechanical Properties used in the maize numerical model………….......56 

Table 6.1 Volume calculations for center discharged PP-18 point measurements……...........93 

Table 6.2 Volume calculations for center discharged PP 3 point measurements….................93 

Table 6.3 Volume calculations for center discharged PP 2 points (located at about 1/6 

diameter of silo’s side walls) measurement………………………………………..................94 

Table 6.4 Volume calculations for center discharged PP 2 point measurements….................94 

Table 6.5 Volume calculations for center discharged PP –single point measurement…….....94 

Table 6.6 Volume calculations for side discharged PP-18 point measurements……..............95 

Table 6.7 Volume calculations for side discharged PP 3 point measurements…………........96 

Table 6.8 Volume calculations for side discharged PP 2- point (1/6D) measurements…........96 

Table 6.9 Volume calculations for side discharged PP 2 point measurements.........................96 

Table 6.10 Volume calculations for side discharged PP single point measurements …...........96 

Table 6.11 Volume calculations for center discharged maize-18 point measurements….........97 

Table 6.12 Volume calculations for center discharged maize- 3 point measurements…..........97 

Table 6.13 Volume calculations for center discharged maize 2- point (1/6D) measurements.....98 

Table 6.14 Volume calculations for center discharged maize 2 point measurements…...........98 



XVIII 

 

Table 6.15 Volume calculations for center discharged maize single point measurements......98 

Table 6.16 Average values for 18-point discharges………………………………….............99 

Table 6.17 Average values for 3-point discharges………………………………...................99 

Table 6.18 Average values for 2-point (1/6D) discharges………………………...................99 

Table 6.19 Average values for 2-point discharges………………………………..................99 

Table 6.20 Average values for single-point discharges…………………………….............100 

Table 6.21 Average values for 18-point measurements for 3 models ……………………..100 

Table 6.22 Average values for 3-point measurements for 3 models……………….............100 

Table 6.23 Average values for 2-point (1/6D) measurements for 3 models…………….....100 

Table 6.24 Average values for 2-point (random) measurements for 3 models………….....100 

Table 6.25 Average values for single point (random) measurements for 3 models………..100 

Table 6.26 Comparing Discrepancies in volume (%) of center and side discharges….........100 

Table 6.27 Average and discrete discharge rate values for numerical models....…………...102 

Table 6.28 Average and discrete discharge rate values for physical model discharges…….102 

Table 6.29 Average and discrete percentage errors…………………………………............102 

Table 6.30 Volume measurement error value change comparisons to 18-point………….....104 

Table 6.31 Volume measurement error comparison between three and single point.............104 

Table 6.32 Volume measurement results of calibrated simulation for three models…….......105 

Table 6.33 Volume measurement results of calibrated simulation and lab results………......106 

Table A.1 Quantities in the balance equations of discrete and continuum system……..........135 



1 

 

Chapter-1 

INTRODUCTION 

 

1.1 Inventory Monitoring in Silos and the Related Issues 

 

In the modern age of technology the inevitability of intense competition among 

companies in providing the fastest and the most efficient products to the customers, the 

importance of managing the existing inventory and continuous monitoring of its flow are 

more vital than it was in the past. The research has a focus on inventory that is non-liquid 

and stored in bulk quantities in silos 

Companies are adopting the so-called lean production/supply management practices in 

order to survive as well as capture the attention of potential customers, while optimizing 

their limited resource utilization. Novel philosophies such as JIT (just-in-time) and Lean 

Six Sigma and many more, all place the biggest emphasis on competent management of 

the business’s inventory so that, at any point during the process, the production line 

would be able to provide desired service from customers in as short a time as possible. Of 

course, keeping higher than required inventory level is not a resourceful solution since it 

costs money and contradicts the concept of JIT. Management in general, prefers to have 

access to the most accurate level of inventory in large silos at anytime for periodic and/ or 

continuous reviews and as a result, implementation of material level-sensors in silos is 

imperative. 

Grain production companies are examples of companies that own many large silos in 

which they store corn, soybeans, wheat, and any other type of grains. It is common 

knowledge that silos are used for mass storage of grain, cement, and food products such 
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as flour, salt and also pharmaceutical materials. Silos are large structures (usually 

cylindrical), normally up to 100 ft in diameter and 275 ft in height. The wall materials of 

these structures are usually made from corrugated steel. These kinds of huge bins 

typically have multiple filling ports (top) and discharge or draw points (at the bottom). 

Though the main filling process generally takes place from the central filling point, in a 

number of situations, filling does take place from ports located on the outer side of the 

conical lid (The same holds true for the draw points).  

Climbing along the wall of a tall silo for checking the level of stored grain as well as 

observing the contour shapes from above is dangerous because of the potential falls by 

the personnel. In addition the observation method of inventory level detection method is 

inaccurate and time-consuming. The safety issue itself mandates installing different kinds 

of level-sensing devices on top of the silos so that, management can track the accurate 

volume of the grains in the silos need to be kept at a buffer stock level. 

1.2 Scope of the Thesis 

 

The scope of this study is limited to investigating the practicality of distinct (discrete) 

element method (DEM) simulation in calculating the volume of particulate matter in 

silos. Three different silo models were numerically designed and simulated in order to 

visually study the surface contours of grains inside the silos. 

Validations were also performed by experimenting on a physical silo model in the 

laboratory and studying the differences between numerical by calculating measured silo 

volumes. The calculated volumes used data from electronic sensors. 
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The volume value discrepancies between these models were performed pair-wisely as 

well as inclusively, so that insights as to the optimal locations, along with the minimum 

number of level sensor devices to be used for obtaining as accurate values as possible, be 

acquired. 

1.3 Chapter Details 

 

Chapter 2 describes important backgrounds behind the thesis, which consist of inventory 

screening in large silos and its problems, and description of level-sensing devices such as 

plumb-bob level indicators. The background follows with a description of the behavior of 

bulk solids within the silos and granular material characteristics as well as the 

micromechanics theory of particle measurement. The chapters later proceed with a brief 

description of the classic granular material mechanism of behavior and its resulting forces 

working upon lateral silo walls (Janssen Theory), continued with an explanation of the 

connection between the angle of repose and the friction coefficient of the granular 

material when piled on a flat surface (as of a large flat-bottom silo). The next section 

describes different innovative attempts in calculating the volume and estimating the 

geometry of the bulk solid stored in the silos. This chapter is concluded by a thorough 

explanation of the theory adopted for this thesis, the Discrete Element Method (DEM), as 

well as its application and importance towards granular flow behavior analysis. Several 

reasons are also given in support of adopting DEM over Finite Element Method Analysis 

(FEMA) for this research purpose. Chapter 3 states the drive behind this study which 

extensively explains the problems in volume calculation of grains in silo. Chapter 4 

covers the methodology adopted for the thesis which explains the DEM and physical 
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simulation models. This is followed by chapter 5 which discusses the detailed results 

from simulation and the related implications. Chapter 6 includes further discussions of 

the significance and implications of the results. 

Appendix of the thesis is comprised of 3 sections: part (A) includes a detailed literature 

review on DEM and granular materials working principles, part 2 (B) the codes written 

for the simulation models, the codes used for triaxial shear test, and part 3 (C) the codes 

written for numerical triaxial shear test. 
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Chapter-2 

 

LITERATURE REVIEW 

 

2.1 Level Sensors for Accumulated Material in Silos 

 

In today’s industry, establishing the volume of solid materials in a silo requires a system 

of measurement consisting of sensors installed at correct locations in the silo wall or lid, 

along with supporting software package that analyzes the data acquired by the sensors. 

Therefore, the measurement system always consists of a hardware component (any kind 

of level sensors, wiring, and transmitters), along with the software component (certain 

programs tailored for analyzing and interpreting the volume dimensions). The specific 

software can receive data through protocol converter. In Figures 2.1 and 2.2, schematics 

of typical silo volume measurement and the radar sensor systems are given. Moreover, in 

the Figure 2.3 and 2.4, user interface of a software package, which provides information 

about the level of material in silo and its volume, can be seen. 

 

 
Figure 2.1 Overview of a measurement 

system. (Dimetex, 2004) 
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Figure 2.3 The SiloVis software triggers the filling level measurement 

and based on feedback calculates the silo volume in cubic meters. The 

filling level is being displayed graphically and the measured values are 

stored in a data file (Dimetex, 2004). 

Figure 2.4 A display unit at the silo displays the 

empty space (in meters) or the filling level in 

percentage. (Dimetex, 2004) 

Figure 2.2 Block diagram of a radar system. 

(Brumbi, 2006) 
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The sensor mechanism thus would be able to analyze the volume change in real-time, 

continuous, or off-line if desired so. 

Level sensors identify the altitude of any type of materials stored in the silo; these 

devices could be installed at multiple points above the bin storage so that, in case the 

material has bulk properties (neither fully solid, nor fluid), these devices can provide the 

system with more accurate level of grain inventory especially when the contour of the 

material is highly uneven and inconsistent. By doing so, the inventory control system can 

be easily automated. The benefit of multiple point measurement is that the resulting 

inventories would be more accurate at any time. It accounts for cone-up or cone-down 

geometries, multiple filling points, and materials prone to sidewall buildup and rat holing. 

It can detect uneven topography where there are points in the bin that are lower or higher 

than the majority of the bin contents. “If just one measurement is taken randomly that 

measurement might not truly be representing the volume of material remaining in the 

bin” (Christensen, 2010). In Figure 2.5, a representation of multiple-point 3D level sensor 

which is installed on a silo is given. Moreover, Table 2.1 summarizes the benefits of 3D 

measurement sensors. 

 

Figure 2.5. Multiple-Point 3D Bin Volume Measurement.  
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2.2 Level Sensor Types 

There are various types of level-sensing devices for measuring the grain level inside the 

silos such as; plumb-bob, ultrasonic, laser devices and many more. These devices can 

provide either continuous or point value measurements for solid material levels.  

A brief description of a few types is given as follows; Admittance, rotating paddle, 

vibrating, ultrasonic, and capacitance type level detectors. 

 

2.2.1 Admittance-type Sensors 

These sensors use a rod probe and radio frequency source to measure the change in 

admittance. (Admittance is the measure of impedance and is a measure of how easily 

current is allowed to flow). They operate in the low MHZ radio frequency range. The 

probe is driven through a protected cable. When the level changes around the rod, an 

analogous adjustment in the dielectric is experienced; this changes the admittance of the 

Table 2.1 3D level sensing device benefits (BinMaster, 2010) 
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capacitor and this variation is gauged to detect variation in height. An illustration is 

shown in Figure 2.6. 

 

 

2.2.2 Rotating-paddle Sensors  

These sensors have been in use for many years and they provide relatively valid 

measurement results; they make use of a geared motor, which rotates a paddle wheel and 

when the paddle is engaged in the granular material the motor starts to turn around its 

shaft until an extension mounted on the motor touches the mechanical switch which is the 

indication of the bulk level at that point. 

 

2.2.3 Vibrating Point Sensors 

By relevant selection of vibration frequency, these devices can read with high accuracy. 

Single-probe vibrating level sensors are best for bulk powder level. The vibration of the 

probe removes build-up of material on the probe element. Vibrating level sensors are not 

affected by dust and changes in temperature, pressure, or moisture content. 

  

 

Figure 2.6 Admittance-type sensors. (OMEGA Press, 1995) 
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2.2.4 Ultrasonic Level Detectors  

These devices could be utilized when there is difficulty making physical contact with the 

bulk or fluid for measurement; there is no need for a contact in these types of sensors to 

read a value for bulk solids and viscous liquids (remote sensing). Instead of a contact, 

these sensors release high frequency acoustic waves that are mirrored back and sensed 

via the transducer. By using this technique, one would be able to make height 

measurements without having to have physical contact with the subject material. 

 

 2.2.5 Capacitance Level Detectors 

 These devices show high efficiency sensing a wide variety of solids and liquids. This 

technique also utilizes probing rod and radio frequency signals applied to the capacitance 

circuit. These sensors are highly practical and they are easy to use and clean while 

showing high resistance to temperature extremes. The principle of this method is also 

based on point level sensing. 

 

2.3 Granular Material Characteristics  

  

2.3.1 Granular Material- General Description 

A granular material is an assembly of distinct solid, macroscopic components 

distinguished by a loss of energy whenever the components interact with one another; 

these energy losses take place when the frictional forces between particles change to heat 

and, at the same time, kinetic energies of moving particles are also lost along the process. 

Examples of granular material are corn, bean, sand/rock, and powders. Granular materials 
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do not represent a single matter phase despite the fact that they may show characteristics 

similar to those of solids, liquids or gases, depending on the mean energy distribution 

between grains and the geometry of particles. Nevertheless, in every one of these 

conditions, bulk material show behaviors exclusive to their inherent physical 

characteristics. 

When exhibiting liquid properties, bulk material flow in their unique pattern (like 

discharge flow of grains out of a silo under gravity). Granular materials’ flow properties 

differ from those of solids. A few peculiarities of granular material: 

1. Are likely to jam or form arches close to the exit sections. 

2. Can support small shear stresses (average is usually considered for study) 

3. Are mostly anisotropic (non-uniform), and 

4. Have avalanche properties when piled on a surface under certain conditions 

(whenever the friction coefficient of the grains exceeds the angle of repose this 

event usually may happen). 

 

2.3.2 Molecular Dynamics 

 One of the principal instruments in the hypothetical study of molecules is the method of 

molecular dynamics (MD) simulations. This computational method calculates the time-

dependent behavior of a molecular system. Alder and Wainwright first introduced the 

molecular dynamics method in the late 1950's (Alder and Wainwright, 1959), to study the 

interactions of hard spheres (McCammon et al., 1977). 

The importance of molecular dynamics in this research is based on the fact that discrete 

element simulation method employs some principle concepts of molecular dynamics, 
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since DEM treats each particle as a separate entity and then, analyzes the stress state 

developments between the finite pools of particles interacting with one another. 

 

2.3.3 Description of Bulk Material flow in Silos and Silo Wall Pressure Patterns 

“Because of the random variation of stockpile shape caused by mechanical operation, it is 

complicated to employ the real-time operation scheduling by offline calculating” (Chang 

& Lu, 2010). Laser level sensing devices are very accurate in representing the shape of 

the stockpile within the silos, however, dust can obscure the vision of such devices and as 

a result, geometrical details might not be fully captured. 

The precise prediction of static and dynamic stresses in dry granular material could get 

burdensome even with the new technologies available. For instance, the stresses formed 

between granular materials in a confined space would not show linear behavior and for 

this reason, elastic displacements formed as a result of these stresses too, should be 

identified because these non-linear internal stresses between bulk particles would cause 

an uneven surface topography (in large silos, the inconsistence topography results in 

inaccurate volume measurement of granular material inside). “The stress within a silo 

packed with granular material has long been of an area of interest in the engineering and 

physics communities” (Landry et al., 2008). There are two main techniques in analysis of 

the silo problems; the conventional Janssen equation, which neglects a more detailed 

representation, could be applied on uniform granular substance and still in recent years 

many engineers use this theory for the design of silos. The exact movement of the 

particles and the stress distribution within the bulk material are yet unknown from the 

Janssen equation as the formula is based on the yield limit state without taking into 
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account the end effect from the drawing point. Besides the classical Janssen equation, 

distinct element method (DEM) is gaining popularity in analyses of silo volume and wall 

pressure behaviors. Two distinct techniques are employed when intending to perform a 

DEM analysis: One is force-displacement method introduced by Cundall and Strack in 

1979 and the other is the energy-based method proposed by Shi et al. in 1993. Many 

other contributions have since been added to the method introduced by Shi throughout 

the following decade for enhancement of the energy-based EDEM or simply, to add 

additional modification on the original idea.  

The distinct element method is in fact a contact problem and the main limitations of the 

method include the contact detection algorithm, contact mechanics, computation time, 

convergence, and instability of results. Nevertheless, the distinct element method can 

provide some useful results that are not possible with the finite element method (Cheng 

and Liu, 2009).  

 

2.3.4 Behavior of Bulk Solid in Silos 

Figure 2.7 shows a component of bulk solid in a bin filled with granular matter (wall 

friction coefficient is assumed to be zero in this case). The granular element is under 

vertical stress of Sv. As a consequence of this stress, the horizontal stress, namely Sh , 

works in the horizontal axis. The stress ratio of λ (Lambda) used commonly in soil 

mechanics is utilized to express the Sh to Sv ratio. This ratio is given in Equation 2.1. 
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λ = sh / sv 

 

Different granular matters have distinct stress ratio (λ); a completely solid material would 

have a stress ratio of zero, in contrast, in fluids this ratio is very close to 1. For bulk 

materials stored at rest, this ratio is typically in the range of 0.3 to 0.6 (Schulze, 2006). 

For convenience, in stress calculation of bulk material, generally the material is 

considered a continuum rather than a series of distinct points. For this reason, the 

principles used in continuum problems could be utilized in analysis of bulk material in 

silos. If different planes cut all the way through a constituent of granular solid, it is seen 

that the shear and normal stresses work in dissimilar cutting planes, and as a result, 

the Sh and Sv stresses that work in dissimilar directions, have not same values. Major 

principle stress is the one that exerts maximum normal stress in granular material in one 

direction and is commonly represented by S1 .In contrast, minor normal stress is the one 

that acts perpendicular to S1, creating minimum normal stress and is represented by S2. In 

Equation 2.1  

Figure 2.7 An element of bulk solid under stress (D. Schulze, 1996) 
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Figure 2.8, a comparison between liquid and granular solid pressure behavior and the 

resultant surface patterns within a cylindrical silo is shown. 

 

 

Figure 2.8 Pressure developments in fluids and bulk solids (Schulze, 1996) 

2.4 Janssen Theory (Silos Vertical Walls Pressure Theory) 

In 1895, Janssen constructed a model to illustrate vertical stresses in silos. Janssen was 

able to derive a straightforward function for the vertical stress by treating bulk material as 

a continuous matter while, a portion of vertical stress is converted to horizontal stress. 

Various assumptions should be considered while applying Janssen’s theory; first and 

foremost, is the assumption that the friction between particles and walls obeys the 

Coulomb failure criterion of Ft = μw Fn , where Ft is the amount of the tangential friction, 

Fn is the  vertical force at the wall, and μw is the friction coefficient of particle-wall 

contacts. “This theory qualitatively describes the crossover to a depth-independent 

vertical stress, while quantitative inconsistencies concerning the Janssen theory and 

experimental data are commonly discernible” (Landry, et al,. 2008). In the construction 

of silos, the distribution of stresses is one of the most important factors to be considered. 

In a liquid, hydrostatic pressure increases with depth. Granular materials tolerate vertical 
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stress, and for that reason, the lateral walls of a bin are able to support a portion of this 

vertical stress, only when μw > 0. The problem of the resulting vertical stress in a silo 

after filling was investigated at various times, starting with Janssen (1895). Janssen’s 

analysis is still widely practiced, even if it is based on a few hypotheses that are not 

completely examined yet. 

2.5 Micro and Macro Behaviors of Bulk Materials 

Bulk materials are special in that they neither demonstrate a complete solid behavior, nor 

do they behave as liquids. These materials are comprised of a set of distinct granular 

particles which interact at specific contact points only. 

The entire shape of granular particles such as rocks, grains, and certain powders can be 

classified as materials with behavior not being either continuous or homogenous; they 

show discontinuity at certain points.  In addition, these researches include dilation (bulk 

materials viscosity increases with the rate of its shear strain, also known as dilatants), 

liquefaction (the course of action when saturated, bulk material are transformed into a 

matter that shows flow properties), and many more. The relationship between micro and 

macro properties of granular material is not fully understood, even though it is believed 

that micro parameters significantly influence the general behavior of these types of 

material. One reason to the lack of understanding of such incident is that, “micro-

characteristics of granular material are difficult to measure through experimental tests 

due to limitation of conventional techniques in obtaining micro-quantities such as micro-

displacements, fabric quantities, and micro-strains” (Fu, 2005). One particular challenge 

for analysis of three-dimensional micro-structures is the fact that every single particle 

should be accounted for in the analysis as an independent rigid body. As Wang (2004) 

http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Shear_strain
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stated, “the present means for particle identification requires human judgment”. Spatial 

arrangement of particles should be fully studied for this matter (Fu, 2005). 

2.6 Granular Flow 

When studying the behavior of granular flow within a silo, several factors influence the 

characteristics and behaviors of these particles. For example, if a wall of a hopper in a 

silo is not too steep, or the hopper wall is not smooth, particles may clog the hopper or 

stick on the inside. 

2.7 Stress Analysis of Granular Material 

For bulk material, stress refers to the average stress in a certain volume. Stress is defined 

in a continuum realm and in heterogeneous spaces such as granular medium, this stress is 

not definable at each discrete point (particles) and in micro-scale, the adopted theories 

from continuum mechanics are only applicable in ‘between particles’. The difficulty in 

modeling grain behaviors necessitates a modification of particles’ behavior to the 

continuum status presumed at the micro-level. The mathematical modeling is performed 

by certain averaging methods in DEM software. 

2.8 Confined Granular Material Behavior 

Interpreting a robust stress/pressure state for packed granular material (which are under 

discrete pressure zones), is problematical and the number of studies on this issue is 

limited. There have been a few models developed in order to accurately account for this 

‘point-dependent stress’ condition in confined bulk material.  

2.9 Bulk Material Volume Measurements 
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Determining the quantity of a three-dimensional object’s volume based on estimating the 

values of these dimensions is a big challenge faced by many industries today. Volume-

based inventory assessment’s importance and its associated uncertainty are intensified 

further when there exist obstructions for proper access to the bin geometry which is needs 

to be measured. For instance, in coal or metal extraction sites, there is very limited access 

visually as well as physically, for a person or even for a fabricated robot arm to enter via 

a draw point located in a mine. Thus it is difficult to attain the measurements of 

dimensions and the real geometry of the whole interior. The obtained measurements later 

have to be passed to integrating algorithms in order to perform precise volume appraisals. 

In cases where there is a limited capacity for capturing the geometric shape of material 

containment. Researchers have developed some models for calculating the ‘unreachable’ 

volume. The researches have strived to achieve an acceptable level of accuracy for their 

models, most of the studies lack in a practical solution for everyday volume 

measurements. Some studies have their bases in schemes on reverse engineering 

techniques. “Reverse engineering treats advanced equipment and imaging as research 

subjects, then measures a physical model or sample part with certain measurement 

means” (Feng et al, 2009). These methods essentially analyze a predesigned shape or 

device and then develop modifications and possibly improvements for the initial design. 

As the popularity of computer-aided design increases, more businesses are investing in 

this method which is also a subgroup of reverse engineering. The reverse engineering 

method in CAD case is taking measurements of an object and then rebuilding a 3D 

model. The measured values can be obtained from physical model by using 3D scanners. 

The 3D scanning technology is one of the most important methods for the digitalization 
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of the objects and environment in the real world. The accurate quality of 3D modeling 

has been carried out in a variety of fields including, quality control and reverse 

engineering. (Chang et al, 2010). The devices used in these domains analyze an actual 

object and collect information about their geometries. Later, the collected data are 

utilized to build a 3D model from the digitized files. The 3D scanners are intensively 

used in rapid-prototyping along with reverse engineering fields for data collection 

purposes. These devices are very similar to cameras and, they can get information about 

the topography and eventually dimensions that are not dark-colored. Many 3D scanners 

function based on triangulation concept. These scanners are active type that utilize laser 

to explore the surroundings. In Figure 2.9, we can spot the ‘triangular’ trace formed by 

the laser projector with the 3D point and the camera path along the X axis. A 

representation of point cloud generation triangulation-supported procedure is given in 

Figure 2.10. 

Structured-light 3D scanner is yet another type of triangulation measuring device that is 

capable of calculating three-dimensional shapes volume by using ‘projected light 

patterns’ and a camera. A basic work principle of such device, as well as an arrangement 

is given in Figures 2.12 and, 2.13 respectively; this apparatus projects a narrow band of 

light on a 3D plane and creates a streak of light which looks contorted from any other 

standpoint except from the projector’s. These reflections can then be used in investigating 

the exact geometric shape of the object. Working principle of a structured light 3D 

scanner is also given in Figure 2.12. 
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Figure 2.9 Camera-centered active triangulation geometry (Feng et al., 2009). 

Figure 2.10 Point cloud generation using triangulation with a laser stripe (Cteutsch, 2007). 

Figure 2.11 Structured –light 3D scanner (webexhibits.org, 2010). 

http://commons.wikimedia.org/wiki/User:Cteutsch
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The 3D scanners are utilized in creating ‘point clouds’, which are a set of 3D vertices 

generally named by X, Y, and Z spatial points system. These vertices could be used in 

defining a representation of surface of objects with complex geometries. The 3D scanners 

measure numerous points on the surface of an item, and then give a point cloud yield. 

Point clouds, however, are not directly used in most of the 3D applications and as a 

result, they are generally converted to polygon or triangle mesh, or NURBS surface 

models via surface reconstruction technique. NURBS which is an acronym for Non-

uniform rational basis spline, is a model used for producing surfaces. NURBS are most 

often used in CAD/CAM in many industries as well as in various 3D modeling packages. 

This application makes possible a presentation of complex geometries in compacted 

fashion. A representation of a NURB surface is given in the Figure 2.13 below. 

 

Figure 2.13 A NURBS Mesh (miaumiau interactive studio, 2011). 

Figure 2.12 Working principle of a structured-light 3D scanner (Ezekowitz, 2008). 
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These techniques are only a few of the attempts made for measuring the volume of 

complex volumes (e.g., surfaces with distorted contour, geographical dimensional 

representation of terrains, and so on). There, however, exist a limited number of papers in 

the research literature covering the very concepts of volume measurement of complex 

shapes. In the next section, a review of some novel ideas proposed for volume 

measurements is covered. 

Feng et al., (2009) have proposed a reverse engineering-based method for mass 

measurement of bulk materials with an irregular shape. This method obtains multi-point 

cloud data by frequent measurements of material pile surface. The research structure has 

already been given in Figure 2.12. Measurement is acquired via a structured light scanner 

to quantify a large-scale material stack and find the multi-view point cloud data, and the 

three-dimensional plane of the stockpile is recreated following point cloud data 

assignment. The coordinates of point (x, y, z), as shown in the picture are obtained by 

known parameters such as, the horizontal distance of camera with the projector (b), the 

variable angle of projection (ɵ) and pixel sizes (x’, y’), with simple geometric formula. 

The volume of the pile can then be estimated by this 3D surface model. This study opts 

for a structured grating measuring system based on phase-shift and gray-code scheme. (A 

binary code with black conveying zero, and white conveying one logical and, n-bit gray-

code in between). Following the image acquisition, every pixel of charge-coupled device 

acquires a gray value vector.  

The automated registration method selected in Feng et al., study was based on 3-spheres-

to-3-spheres algorithm; first, a list of sphere center candidates was created for automatic 

location of spheres and second, the registration process started for each pair of datasets. 
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In this noteworthy study, registration of 3D data was based in Three Fiducial Points of 

sphere center (via deploying three fiducial sphere center points in order to establish a 3D 

coordinate). For validation purposes, an experiment used a pile of rice located on a flat 

glass surface along with Table tennis balls glued with bamboo sticks which were placed 

on the surface of the rice mound. Measurement tabs were placed beside the rice pile over 

the flat glass as reference points. Later, the scanned single point cloud data was obtained 

before obtaining a polygon 3D model, so that a complete 3D surface model of rice was 

achieved. A coordinate plane was then created based on the measurement tabs placed 

next to the pile on the glass. Finally, a calculation of volume of small cylinder was 

performed (which was enclosed by each triangle of model surface based on its projection 

to base plane). The total volume therefore, was the integration of the small cylinder 

volumes. This procedure introduced a process of measurement of the stacked volume as 

well as quality of it by the means of reverse-engineering method. It has been proven 

reliable in calculation of the volume of complex shapes, however the validity of it 

remains theoretical and thus, for establishing the volume of real world industrial 

problems, the mentioned method encounters has shortcomings in establishing larger 

volume values. 

Chang et al., (2010) made attempt in automating the bulk stockpile scanning using 3D 

scanning technology. Since the shape of stockpile changes randomly induced by 

automatic processes, the researchers investigate a possible solution to implementing real-

time operation scheduling using off-line information. The bulk stock automatic 3D 

scanning-based modeling for real-time calculation of volume was suggested. In order to 

obtain 3D point cloud data, the mechanism was supported with a laser radar system. 
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“Once the data are obtained, the 3D stockpile model was reconstructed and updated in 

real-time” (Chang et al., 2010). The authors also contended that the feasibility and 

effectiveness of this procedure have been validated in a real case study. The characteristic 

of the stockpile with the width of w is shown from top and side view along with the 

loading/unloading equipment which is presumed to be stacker-reclaimer are given in 

Figure 2.14 below.  

 

 

 

X-ray tomography was implemented in a study by Grudzien et al., (2011) for quantity 

estimation of volume of granular materials in silos. The importance of this study was 

attributed to determining density distribution in bulk material in a confined silo. Finding 

density is very problematical due to the “existence of localization of deformation in the 

form of narrow zones of intense shearing” (Grudzien et al., 2011) and shear localizations 

occur mainly because of the walls roughness. The X-ray technique was implemented in 

Figure 2.14 Stockpile shape characteristic and 3D scanning 

views (Chang et al., 2010). 
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continuous exposure form and later, in the post-processing stage, the 1D and 2D plot 

images were analyzed in the main silo (excluding the conical hopper). The small scale 

experiment consists of rectangular silo with a hopper in below. The experiment schematic 

is given in Figure 2.15. 

 

The content of the sample (bin) is emptied under gravity while it was rotated in a fixed 

rate. The X -ray was reflected through so that the detector which is fixed on the right side 

could get the tomography of the volume geometry. The main error sources in this study, 

according to the author, were the limitation in the size of X-ray source and detector 

resolution. 

In one particular study, a measurement of capacitances consisting of parallel plate 

structures (designated as level sensors), was proposed as a solution for detecting the grain 

level in silo (Isiker and Canbolat, 2008). The error reported in their study was 

approximately 7 percent which, considering the ambiguity related to volume levels in 

silo, was a relatively sound approximation.  

 

Figure 2.15 Experimental set-up: (A) schematically and (B) tomography (Grudzien et al., 2011). 
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2.10 Review of a Number of Significant Parameters Influencing Flow Behavior of 

Granular Material in Silos 

A plethora of research has been performed to deal with simulation modeling of granular 

flow in silos. In doing so, many studies have engaged with investigating the effects of the 

wall material, coefficient of friction of the walls, the size distribution of particles, 

material type, pressure profiles/ changes observed between the walls and the particles, 

and the velocity profiles of the granular flow depending on the level of grain particle with 

regards to the draw point or axis plane. Additionally, some papers have measured certain 

parameters such as the MFI (mass flow index) and discharge rate following the 

calibration and adjustment of a few parameters in their models. 

The location-dependent behavior of stresses in silos has been studied in numerous 

research efforts. For example, in a full silo with conical hopper, the pattern of normal 

stress on the walls, Sw, is given in Figure 2.16 which represents possible static, discharge, 

filling scenarios for this silo (a, b, c, and d are the implicit paths of principal stress). It 

can be seen that the normal stress increases as we move toward the hopper along the bin 

part of the silo, but this increase in the stress value diminishes until the stress values 

reach a relative maximum value. The major principal stress of 1 direction is in the same 

direction of the silo’s axis towards the hopper. Away from the central axis, 1 deviates 

increasingly from the vertical direction. 
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The qualitative condition for the shear stress is given in Figure 2.17 for the filling state 

(a) and, discharging state (b). 

 

Schulze (1999), also gives useful scenarios for the filling height (hf ), vertical or shear 

stress at the exit (s  or v ) and, feeder force (Fh ) against time. These graphs are given in 

Figure 2.18. 

Figure 2.16 Possible paths of wall normal stress and implicit 1 directions (Schulze, 1999). 

Figure 2.17 Possible paths of wall shear stress of s during filling (a) and discharge (b) (Schulze, 1999). 
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By inspecting the Figure 2.18, during the filling phase, both shear stress and filling height 

increase. Once the discharge phase starts, the initial filling height starts to decrease as the 

material exits the system and at the same time, shear or vertical stress value decreases 

very quickly (because of the presence  of passive stress fields). 

Balevicius et al., (2005) affirmed that the problems of granular material filling and 

discharging in the hopper have always been accompanied by a number of important 

issues such as: pressure evolution on hopper walls, particle segregation, and vibration 

effects. Their study revolves on the application of DEM concept for simulating the filling 

and discharging of bulk material in a wedge-shaped hopper with an orifice draw point, in 

optimizing the discharge process parameters. The model has been validated by comparing 

pressure values of a physical model (employing classical Janssen theory which predicts 

pressure in macroscopic level), with those of resultant numerical values. The hopper 

Figure 2.18 Filling height hf, vertical stress at the outlet sv, and feeder force Fh with respect to time 

(Schulze, 1999). 
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geometry and the discharge mass were taken as design parameters for the Balevicius et 

al., study. 

A couple of graphs, illustrating the contrast between analytical values and DEM results, 

were presented in their work in terms of kinetic energy evolution of K, drawn in 

logarithmic scale. These graphs are presented in Figures 2.19 and 2.20. 

 

 

 

 

 

Figure 2.19 Evolution of total kinetic energy during the filling of particles with various 

friction coefficients (Balevicius et al, 2005). 

Figure 2.20 Comparison of numerical and analytical values obtained for tangential and 

normal pressures for the right wall of the hopper with µ=0.3 (Balevicius, 2005). 
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Moreover, in order to compare the time variation of discharge mass for different angles 

of hopper walls, they have provided a informative graph shown in Figure 2.21. 

 

 

 

The results presented in the above-mentioned study suggest that the flow behavior 

divides the set of the design parameters into several distinct regions, therefore, only by 

categorizing these regions (with constant parameter values) a valid analysis of flow 

discharge with the discharge mass fraction’s could be carried out. 

Another DEM simulation study was carried out by Montellano et al., (2011) for the 

purpose of modeling the flow of glass beads and corn grains during the discharge from a 

small silo model. In this study, three variables were tracked for validation: the mean bulk 

density at the end of the filling state, discharge rate and, the visual flow pattern. After 

performing a couple of calibration for the corn model (value modification of frict ion 

properties, among others) a better predictive model was achieved. Several designs were 

compared by changing the mass flow index (MFI= 
     

           
 ,  where ν represents 

Figure 2.21 Time variation of relative discharge mass for various inclination 

angles of hopper wall (Balevicius, 2005). 
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particle velocity at a given height, z ) values and observing the resulting output. The main 

outcome from this discharge simulation was that friction coefficient, and the 

characteristics of discharge flow. MFI values less than 0.3 are considered as funnel flow 

and more than 0.3 as mass flow. The main goal of this study was to determine the 

patterns of flow during discharge along with wall pressure distribution at different phases 

of the filling and discharge processes (Montellano et al., 2011). As it is common in a 

simulation study, the numerical model was calibrated iteratively by observing the real 

model's discharge behavior, so that, by slight modification of some constants (i.e. 

stiffness, friction coefficient), the numerical model would offer a closer resemblance to 

the actual model. In Montellano et al., research, discharge rate, bulk density, visual 

patterns (qualitative), MFI, and vertical velocity profiles of certain groups of particles at 

different stages during discharge were considered for validation purposes. As for the wall 

pressure distributions, an average value (relative to simulation time) was computed using 

normal and tangential contact forces produced on the walls. The schematic model 

representing the vertical and tangential pressures can be seen in Figure 2.22 (Montellano 

et al., 2011). 

 

 
Figure 2.22 A simulation model geometry and the representative pressures 

(Montellano et al., 2010). 
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A graph illustrating velocity profiles at various heights (z) and MFIs from the draw point 

for the corn model can be seen in Figure 2.23. 

 

 

It is clearly seen in the graph above that the closer the particles to the walls (larger x 

values in each direction), the lower the speed of exit of the particle from hopper. This is 

linked to the frictional forces affecting the particles with wall contacts. 

It is also observed that, the higher the level in the hopper, the larger the difference 

between velocities of the particles closer to the center axis than those of farther away 

from center. However, as the height decreases (especially within the hopper region), this 

difference in velocity values become less and less.  

Nazeri et al (2002) studied “the effects of ore shape on the static and dynamic loads on 

the ore pass gate assembly”. An ore pass system resembles the shape of a silo, with a 

hopper at its base therefore, a DEM simulation of ore flow which results in stresses on 

the ore pass walls could be indicative of those of a silo. The schematic of an ore pass 

system, used as the model in the study, is given in Figure 2.24. This research showed 

Figure 2.23 Vertical velocity profiles for corn model discharge from a 

hopper at different heights (z) and MFIs (Montellano et al, 2011). 
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proved that a rigid based DEM simulation method was predictive of loads as well as 

stresses on gate/ wall assemblies and on ore flow in ore passes. 

 

 

 

2.10.1 Particle Size and Distribution Influences on Silo Discharge Process 

In order to create particles with discrete element method, owning information about the 

size and shape of the particles is imperative. The spherical particles are more efficient 

computational wise than are particles with irregular shapes. 

Since DEM employs the contact algorithm in a ‘time-marching fashion’ in order to 

calculate the force-displacement values at each time-step, “this contact detection between 

irregular particles makes the calculation step computationally impractical to carry out due 

to the non-linearity of mathematical functions” (Mani et al., 2003). 

There have been many attempts for reproducing the particle shapes as close to reality as 

possible in a more efficient way. O’Conner (1999) proposed a discrete function 

Figure 2.24 Schematic of an ore pass which resembles a bulk storage 

system. (Nazeri et al., 2002). 
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representation in order to utilize producing “diverse shapes from super particles with 

quadratic structure”. Ting et al., (1993) considered “elliptical elements to simulate 

elements with the ratio of height-to-width greater than one in 2D”. Many kinds of these 

studies have also been developed in 3D in the subsequent years. 

2.10.2 Limitations in Simulating Large-Scale Models with DEM 

The time and the computational power required for simulating a very large system of 

granular particles in a vessel (i.e., a very large silo with grains), are prohibitive since as 

the number of particles to be modeled increases, the time and computer power required 

for its modeling amplify in quadratic proportions. Parisi et al., (2004) developed a 

method in order to effectively model a very large silo discharge filled with bulk material; 

this model consists of partitioning a silo in layers to be analyzed sequentially by 

calculating stress and velocity profiles on the hypothetical interlayer boundaries. 

A scheme of their theoretical model is given in Figure 2.25. The remainder of the details 

on DEM is presented in the appendix A of the thesis. 

 

 

 

Figure 2.25 Downward- sequential model for stress field construction (Parisi et al., 2004). 
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Chapter-3 

 

OBJECTIVE AND RATIONALE OF RESEARCH 

3.1 Overview 

Granular or bulk materials are a special type of materials which cannot be categorized 

either as being solid or fluid; the ‘discrete-point’ behavior of these materials are 

attributed to the peculiar shape and structure of the particles for which, the cause of this 

behavior can be traced to their microscopic makeup by studying the micromechanics of 

granular material. The resulting stresses formed between the discrete particles are not 

linear, hence the nonlinear behavior of the bulk material flow and random topographies 

found in them. 

Volume measurement studies for bulk material are performed by using a number of novel 

technologies: 3D scanners (mostly operate under the triangulation principle), structured-

light 3D scanners, remote sensing technologies (active and passive), Coordinate 

Measuring Machines (CMM) for depth mapping, and industrial CT scanners. The most 

common technologies available for volume measurement of bulk solids in research are, 

seldom used for industries involved in grain storage and /or production. In turn, the 

common practices in industries for volume measurement of granular material in storage 

bins involve installing and using different types of level sensors (i.e. vibrating, ultrasonic, 

capacitance), as these methods are more readily available, cost less, and are easier to 

operate, though, the resulting volume calculation values from these devices are less 

accurate than the more sophisticated research techniques.  
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The underlying principles of the majority of scanning-based technologies are on reverse 

engineering for reproducing the so-called ‘multi point-cloud data’ by which, a more 

detailed surface topography can be obtained. The data processing essence works as 

inverse problem; even though the dimensions to be measured may not be directly 

established, it can produce some valid observations with which, the ‘missing parts’ could 

be interpolated and thus estimated. Other studies discuss the complexity of working with, 

and creating a suitable environment for devices such as structured light scanner and 

coordinate measuring machines. The accuracy of such devices was high, as claimed in 

those studies. Other measurement techniques such as, industrial CT scanners and remote 

sensing devices, make use of X-ray or special radiation detector mechanisms in order to 

inversely reproduce a prototype of a bulk material surface. 

3.1.1 Inadequacy of Preceding Silo DEM Simulations 

Many 2D and 3D discrete element method simulation of silos have been done for the 

study of the silo wall pressure distributions, shear/ normal stress, discharge rates, and 

mass flow index analyses, in order to determine whether the discharge process was a 

funnel flow (where discharge velocities of particles closer to central discharge axis are 

significantly higher than those closer to the silo side walls within the silo)  or mass flow 

(where discharge velocities of particles are similar at different region while discharging 

from the silo), however, not much has been carried out in order to analyze the surface 

contour of the granular material while the silo is discharging. The majority of the studies 

reviewed fell short of developing an algorithm by which volume of bulk material was to 

be established, or, the objectives of the authors did not involve volume measurements of 

bulk solids in storage bins. 
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Additionally, most of the studies have been performed using models with number of 

particles not exceeding 20000. This is a limitation imposed by DEM utilization as the 

time of the simulation increases sharply when the number of particles considered for the 

model augments and, as a result, numerous studies have embarked on modeling a 2D 

(which is less time-consuming as well as less intense computationally), rather than a 

more accurate 3D simulation. Consequently, these models did not precisely represent a 

real silo discharge process, thus not addressing the important details. Furthermore, most 

of the published research has been done for silos with a conical hopper at their base, as 

opposed to this study in which, a flat-bottom silo has been selected for the volume 

measurement studies. 

3.2 Need for this Thesis Study 

As explained earlier, a large industry, dedicated to manufacturing of level sensor for use 

in large silos has been formed in order to fulfill the conspicuous need for obtaining 

dependable volume measurement for bulk material inventories. In the existing market 

today, various kinds of level sensing devices are readily offered for purchase which are 

either very costly or, these devices do not determine accurate values of bulk material 

inventory levels in storage bins and as a result, storage companies studies expressed their 

dissatisfaction because of the low accuracy obtained when these devices were purchased 

and used in silos. 

Limited studies (if any) were performed solely on determining the level of grain in silos; 

mainly, grain companies were not aware of the volume geometry and size of grains 
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within silos despite the fact that, for the management, having a good knowledge of 

inventory level approximation inside large bins may seem farfetched.  

On the other hand, various studies have proposed some innovative techniques for 

investigating the flow pattern of bulk solids in discharging silos and the resulting 

stress/pressure patterns along the silo side walls. There were only a few number of 

studies emphasizing 3-D modeling of a silo in order to identify the stage-by-stage pattern 

of topography in a discharging silo (dynamic study). The majority of the studies 

undertaken used distinct element method simulation were in 2D or, in case of a 3D 

model, the dimension of the models were so small that, smaller number of particles can 

be used to fill up the storage silo. Due to a limitation in existing DEM simulation 

packages where, an increase in number of particles to be used in model, would increase 

the simulation time quadratically and therefore, the necessary computational capacity for 

the computers has to be increased accordingly. 

In the current thesis, a distinct (discrete) element method numerical model was developed 

in order to dynamically exhibit a discharging silo and the ensuing topography pattern 

changes on the bulk material surface in the silo model. In doing so, at any given time 

during the simulation, the discharge can be halted temporarily and the remaining bulk 

material volume in silo be calculated accurately. 

This thesis simulation model, when operating in conjunction with DEM fundamental 

rules, imitates the approximate pattern of irregular surface contours given the correct 

constitutive as well as secondary material factors (such as normal /shear stiffness, friction 

coefficient) of the particles as input parameters. This piece of knowledge in turn, is 
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assumed to be indicative of the (scaled) locations of the points with lowest and/or highest 

descent during a certain simulation time. Of course, these point locations were 

determined and measured with respect to the cylinder’s central axis and the side walls. 

By capitalization on this piece of information (information as to the approximate 

locations of peaks and valleys on material surface) obtained from simulation at this stage, 

an idea as to the optimal location for the level-sensing devices (exactly above these 

distinct points) would be known. Thus, after some discharge process, the remaining 

volume of the bulk material could be determined easily by interpolating the points 

located between highest and lowest values. Figure 3.2 shows the proper mounting of 

level sensors just on top of the points with high and low surface levels (with respect to 

silo height, z). This will decrease the number of level sensing devices needed to be used 

while reducing the estimation error of the remaining volume of grains in the silo. The 

model is expected to increase both the efficiency and accuracy of inventory review 

(perpetual or periodic) processes in the grain companies. 

 

 

 

 

L1

1 

L21 

Figure 3.1 Possible representation of optimized locations for level-sensing devices L1 

and L2, just above the peak and valley of bulk surface, respectively. This picture shows 

partially the top of a silo with radius R. 

Linear Interpolation 

Level-sensing Devices 
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Once a better understanding of potential locations for level-sensing devices was revealed, 

companies can save on capital by more precise monitoring of inventory volume in the 

silos at all times. The points given below could perhaps be valuable inputs for 

management consideration in production. 

1. Improved inventory accuracy; since a single-point imprecise measurement could 

cost thousands of dollars in inventory miscalculations. 

2. Prevention of profit loss in situations when significantly different measurement 

values at different parts create considerable volume measurement discrepancies in 

silos with very large dimensions. 

3. Measurements, when the material build-up within the silo resembles cone-up 

shape, are completely different than when the material build-up resembles cone-

down shape. This inaccuracy could lead to unaccounted discrepancies when the 

inventory level is being monitored. 

4. By detecting non-homogeneity in the bulk material surface, loads could be 

adjusted for the measurement of mass/ volume of the bulk material inside the silo. 

5. Well-timed discovery of the disproportionate build-up explained in number four, 

can circumvent the businesses the possible damages which can affect the silo 

walls and its surroundings or worse yet, prevent the possible collapse of 

overloaded silo walls. 

 

3.3 Objectives 

 The specific goals of this study are enumerated as below. 
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1. Develop a numerical model (distinct element method simulation) of a silo 

filled with bulk material, by assigning the real material properties to the model 

parameters and, visually studying the dynamic (discharge) behavior of bulk 

material and the surface topographies throughout the simulation. 

2. Monitor various model output parameters such as porosity, location, velocity, 

stress, contact and, unbalanced forces throughout the simulation and 

establishing correlation among these parameters wherever possible. 

3. Validate the numerical model by means of a laboratory experiment by 

monitoring the discharge of a physical silo model with different materials. 

4. Determine the difference in volume measurements of both materials using 

single point measurement, as opposed to multiple point measurements. 

5. Identify important parameters affecting the error values in point 

measurements of bulk material in storage silos. 

The current thesis is being performed for the aim of introducing an algorithm by which 

the volume of the bulk material in large silos can be calculated dynamically throughout 

the discharge. Once the results are obtained, ‘level point measurements’ in the numerical 

model are established. This is performed in order to validate the efficiency, as well as the 

accuracy of single point measurement technique which is most commonly practiced in 

industry using simple level sensing devices such as plumb-bobs. 
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Chapter-4 

 

METHODOLOGY 

 

4.1 Overview 

Three different numerical models of silos filled with bulk material were designed for this 

thesis. The discharge processes were initiated in order to study the flow patterns, as well 

as topography geometries of bulk material surface. Numerous graphs including, particle 

velocities, location, stresses on the silo walls and more, were analyzed to establish a 

correlation among these factors with regards to optimal placement of level sensors in 

real-world industrial silos. 

Later, the numerical models were validated both visually and numerically by a laboratory 

experiment set up. In the laboratory, a physical silo model’s discharges were analyzed in 

order to validate the numerical models. 

The volume measurement analyses were also performed both in numerical and physical 

models, in order to calculate the percentage error incurred in real-world single-point level 

measurements of bulk material in silos. 

Finally, after calibration of some input parameters for numerical model, secondary runs 

of simulation models were performed in order to obtain improved results. 

4.2 Model Development 

In this thesis, three distinct numerical models were developed as a case study as follows; 
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1. A flat-bottom cylindrical silo filled with spherical particles (50000+) with 

mechanical properties of the Polyethylene plastics; the discharge design in this 

model occurred from center, at the bottom of the silo. In order to validate the 

accurateness of mechanical properties (such as stiffness, friction coefficient 

values) for those of Polyethylene plastic pellets, a numerical triaxial test (shear 

box test) was performed in order to validate the correctness of the values assigned 

to these particles. 

2.  All the design parameters in this model were exactly the same as the first one 

except, the discharge point was at the side (bottom), as opposed to the center. 

3.  For this model, the silo design was exactly the same as the first model, except 

that, instead of Polyethylene plastic, corn kernel properties were assigned to the 

spherical particles. Also, the dimensions of the particles were larger than those in 

models 1 and 2 and as a result, the number of particles filling the silo was smaller 

(about 14000+). Triaxial tests were not performed for corn kernels, as a number 

of studies have already validated the mechanical property values for corn particles 

and for this reason, in the current thesis these values were used directly as inputs 

to the model. 

For all three models, various types of graphs were monitored in order to establish a 

better conclusion. 

Pair-wise comparison of numerical results and laboratory results (volume measurements 

during discharge at different stages) were used for the validation procedure for the 

models. 
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4.3 Description of Running the Simulation Package 

Particle flow code in 3-D (PFC3D), a proprietary discrete element method simulation of 

Itasca Company, was utilized for this thesis. This software package requires writing 

specific codes in PFC and FISH languages for running. The codes can be read by 

PFC3D either as a text file or in a batch processing fashion by writing every command 

in the command line of the package.  

The codes for this study were written for dynamic discharge of silo models along with 

numerical triaxial test for Polyethylene plastics. Inputs for the specific models were 

given such as viscous damping ratio of system, wall and particles stiffness and, particles 

bulk density, to name a few. Then the model was run in discrete fashion (time-steps) 

once appropriate gravitational acceleration (g) and other parameters necessary for the 

model were assigned. 

The output of these DEM models included visual monitoring of bulk material flow, as 

well as many other useful graphs enabling the study of factor value changes ( such as 

velocity of specific particles, mean unbalanced force between particles). Additionally, 

the volume of remaining material in the bin can be calculated at any point during 

simulation when using the software program. 

 

4.4 Validating the Numerical Models by Laboratory Experiment Procedures 

A prototype cylindrical bin (with specific height and diameter) model was considered 

for the purpose of the simulation model validation. Aspect ratio D/H was maintained in 

the physical model the same as in numerical one, in order for the scaling between two 

models would be applicable. After the initial filling stage (with Polyethylene plastic 
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pellets for the first two models and later corn kernels for the third one), the discharge 

processes were initiated from bottom center or side, depending on the specific design. A 

rectangular window facilitated observing the discharge process and taking multiple 

photographic snapshots were taken throughout the grain discharge. 

 

4.5 Actual Procedure 

By following an initial theoretical model, operating based on real values and obtaining 

relevant results, the model outputs were compared to values with the real-life system 

behaviors and then the numerical model parameters were readjusted followed by 

retesting such that the behavior of the numerical test complied with that of the real one. 

This method was named as ‘progressive readjustment’ or, ‘micro-parameter calibration’. 

because the real micro-parameters properties can only be arrived at by applying a 

number of minor modifications in macro-parameters of the model. The approach taken 

in this thesis research was the predictive design analysis. 

Following the completion of discharge processes both for numerical and laboratory 

models, the comparison was made between the results in order to check the accuracy of 

numerical model as being able to predict the real-life silo discharge processes. This was 

performed by visual comparison of surface pattern and, volume measurement of bulk 

material at different points in all the numerical and physical models. 

After this stage, the values of some parameters were changed (when necessary) and then 

the calibrated numerical models were run for a second time as an interactive approach in 

order to obtain improved results. 
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4.5.1 Brief Overview of Elements to be Considered in Particle Flow Code 3D Model 

 

4.5.1.1 Spherical Elements Resembling Granular Particles 

Particle Flow Code 3D, was a distinct (discrete) element method simulation software. 

This software, being similar to most DEM software solutions, represents particles as 

spherical objects with specified friction coefficients, densities and other micro/macro 

properties assigned by the users. The circular particles are stiff while the contacts have 

flexible properties. Therefore, the output of a system could be investigated by modifying 

the input parameters within the element and contact stages and, the granular system 

behavior was obtained by design from the contact model and its corresponding 

attributes. 

Particles are each automatically given a distinct ID number so that these particles can be 

tracked throughout the simulation; for instance, the vertical velocities, locations in 

specified coordinates, stress states and interaction forces, could be graphed for the 

particles and later be analyzed by history commands. 

4.5.1.2 Boundary Conditions of the Model (Walls or Sheets of Particles) 

The PFC3D makes use of wall logic as boundary conditions applied to the model of 

interest. These walls could be generated at any dimension with any shape including the 

planar, finite, infinite, or general walls (cylindrical or disc). 

Once a wall was created with desired dimensions, its mechanical properties such as 

stiffness as friction coefficient values can easily be ascribed in the command line of the 

software. The wall material was selected as corrugated metal for this study. 
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4.5.1.3 Initial Condition of the Models 

The initial condition for the models was considered particles at rest, filled up to 75 

percent of the vessel’s height. This state of static was achieved by cycling the generated 

particles inside the vessel until their kinetic energy value (from the interaction forces 

and to some degree, the locked-in stresses between particles) converges to a value close 

to zero. When the unbalanced forces come close to a nonzero value, it was a sign that 

incessant movement of particles was taking place within the model. Since DEM 

software packages work in a time-marching fashion, PFC3D automatically calculates a 

stable time-step (discrete) for every model which stays constant (unless an external 

disturbance was added to the model) throughout the simulation. 

 

4.5.1.4 Porosity Considerations 

Desired porosity and required particle number trade-off must be carefully considered; 

“the standard objective in creating an irregular packing was to fill a given space with 

particles at a given porosity, and to ensure that the assembly was at equilibrium” (Itasca, 

1999). As a solution for this issue, one can generate the specified number of particles 

within a vessel and then multiply the radius of these particles by a constant value (radius 

expansion method). Thus, in this case, the number of particles remains constant but the 

porosity increases or decreases according to the constant being larger or less than unity. 

All the cited issues have to be considered carefully and if necessary, a couple of models 

should be run in order to ensure that the model was able to reliably predict the actual 

system. 
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4.5.1.5 Contact Representation for the Models 

Linear contact model was considered for all the designs. This model includes contact-

bond behavior and provides sliding behavior with constant stiffness. 

4.5.2 Laboratory Experiment for Validation and Calibration Purpose 

A cylindrical bin was used for actual discharge process observation. Two kinds of grains 

were considered for this experiment namely, polyethylene plastics and corn. For 

measuring the surface level of the material in the silo, a laser level sensor device was 

utilized. 
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Chapter -5 

 

RESULTS  

 

5.1 Development of Numerical Models -Background 

 

The exact replication of granular material behavior is not straightforward. Finite element 

method simulation attempts in modeling granular particles lacks accuracy because 

continuous simulation techniques boundary conditions are assumed fixed. The issue of 

inflexible boundary condition was solved with distinct element method (DEM), as it 

assumes a discontinuity in the state of stresses between granular particles. 

Granular particles have a discontinuous structure within the space they occupy which was 

gauged by the porosity number (or average bulk density) that calculates the ratio of the 

free space between packed particles to the total space in which they reside. Thus, granular 

stress as well as pressure studies should be performed so that a relationship between 

stress values and uneven surface topographies to be determined. 

Granular particles such as different types of grains, coal, and rocks were considered as 

neither fully solid, nor liquid and, as a result, the stress state calculations were adjusted as 

an average value across a given space occupied with bulk material. “Information on 

stresses, properties and discontinuities for granular material can only be known to some 

degrees at best and the concept of stress in a discontinuous medium is different from that 

in a continuum one” (Itasca, 2009). 
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In granular material flow studies, the random distribution of particles pattern, which 

almost always shows irregularities, was not fully quantifiable. 

Since the real-life study of granular material behavior and its resultant stress analyses are 

difficult, the numerical model of this thesis used to determine the most significant factors 

influencing the pattern of the particles assembly. The issue of lack of knowledge in 

understanding the mechanisms shaping the grains behavior stems from data scarcity in 

ethanol plants and grain storage industries. it is generally difficult to have access to the 

far-reaching regions of a silo for measurements or even  taking a 3D photographs within 

a large silo (because of dust and lack of light). 

A numerical laboratory setup for study in order to observe the grains behavior, as well as 

changes arising from different mechanical properties of granular material was 

established. 

The Iterative approach was opted for the models of this study. In Table 5.1 below, a 

range of modeling situations faced by researchers in geo-engineering depending on the 

degree of data availability, is given (Itasca, 1999). 

 

 

Table 5.1 General spectrum of modeling situations (Itasca, 1999). 
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The PFC3D (Itasca™) can be utilized both in a fully predictive model and, as a numerical 

laboratory setup if so needed. The approach taken in this research was the predictive 

design analysis. 

In order to verify a certain laboratory results of a bulk material, it was essential to 

perform some numerical tests that imitate these test results. Later, adjusting certain input 

model parameters up to the moment the numerical results conform to those of the 

physical model continued. Once these modified values were obtained through trial and 

error then these improved parameters were used as input for the DEM simulation system. 

Moreover, for the purpose of reducing simulation efforts, a couple of tests on the extreme 

values were performed and then proper values could be estimated via linear interpolation. 

The detailed results of these experiments (experimental and numerical) are also given in 

this chapter. 

5.1.1.1 Model 1-Plastic pellets, center discharge 

For this study, a cylindrical flat-bottom silo was designed (by writing specific codes in 

PFC3D language). A sketch of this numerical design is given in Figure 5.1 and this 

container model was used for all three models. 

 

Figure 5.1 Cylindrical container model used in the study, with its top and bottom 

walls centered at X=0.8, Y=0 and, Z=0 meters. A specific wall at the center bottom 

or side bottom serves as discharge gate, depending on the design. 
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This model was created with 5000+ circular particles located in a cylindrical wall with a 

diameter, D, of 1.6 meters and height of 1 meter. At the bottom of the cylinder, 5 planar 

walls were added to contain the particles. One of these walls (at the bottom center) is 

removed later for the gravity-induced discharge to happen. The location of this single 

discharge point is at the center of the silo bottom; this discharge portal is a 0.04m   

0.052m rectangle. Colored particles were used to represent layers for better interpretation 

of the flow pattern. 

The normal and shear stiffness values were assigned to the particles and walls at the same 

stage. The values used for this model are summarized in Table 5.2.  

These values were obtained by direct measurement or calibration methods by performing 

numerical triaxial test and validated for polyethylene plastic.  

Once the boundaries (walls) and particles in it were generated, a viscous damping of 0.6 

was considered in the model in order to dissipate the energy of the particles while 

cycling.  

 

Propert ies  Values 

          Part icles Normal St iffnes s ,  Kn p       [N/m]  0.5   10
6
 

           Part icles Shear St iffness,  Ksp            [N/m]  0.5   10
6
 

          Part icles Fr ict ion Coefficient  ,  µp    0.25 

          Part icles Densit y,  ρp                       [ Kg/m
3  

]  1210 

          Part icles Po isson’s Rat io, νp   0.40 

          Viscous Damping Rat io,  ζ  0.60 

          Walls Normal St iffness,  Kn w  1  10
8
 

          Walls Shear St iffness,  Ks w  0.5   8
 

          Walls Fr ict ion Coefficient ,  µw  0.2 

Table 5.2 Material Properties used in the numerical model 1. 
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In Figure 5.2, an image of cylindrical vessel filled with particles can be seen. 

 

 

 

 

5.1.1.2 Model 2-Plastic pellets, side discharge 

The side discharge model had the grains discharging from corner-bottom instead of 

center. A picture of discharge point location for this model is given in Figure 5.3 as seen 

from the bottom of the silo 

 

 

Figure 5.2 Model 1-plastic pellets, center discharge (; a cylindrical container filled with 

circular particles (resembling polyethylene plastic) of radii distributed uniformly 

between 0.008 to 0.012 meters. 

Figure 5.3 Side-discharge point, seen from the 

bottom of the silo. 
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5.1.1.3 Model 3-Corn kernel, center discharge 

This model was created with 14500+ circular particles located in a cylindrical wall with a 

diameter, D, of 1.6 meters, and height of 1 meter. At the bottom of the cylinder, 5 planar 

walls were added to contain the particles. A rectangular flat wall (serving as discharge 

point) was removed later so that the gravity induced discharge occurred. The location of 

this single discharge point was at the center of the silo bottom; its dimensions were also 

0.04m   0.052m. Colored particles were used to represent layers for better interpretation 

of the flow pattern. 

Particle size was chosen so that they equal the longitude value of the ‘tear-shape’ clumps 

proposed by Coetzee et al., (2006), however in this study the clump logic was not 

considered. The (initial) values chosen for the corn were particles with diameters 

uniformly distributed between 0.008 to 0.012 meters. As a reference, a depiction of real 

corn kernel is given in Figure 5.4. 

 

 

 

The normal and shear stiffness values were assigned to the particles and walls at the same 

stage. The values used for this model are summarized in Table 5.3. These values have 

been obtained by direct measurement or calibration methods (triaxial test) before and 

Figure 5.4  Physical corn grain dimensions in mm 

(Coetzee et al, 2006). 
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validated for corn. The irregular shape of some particles renders direct measurement 

techniques somewhat infeasible. “Direct measurement methods allow the value of a 

property to be obtained independent of the characteristics of the contact model” 

(Montellano et al, 2011). 

By developing a code, particles were generated so that the initial target porosity of 0.50 

was achieved. This code written in FISH programming language, automatically reiterated 

the generation of particles until the target porosity of the sample within vessel was 

achieved (by making use of radius expansion algorithm). The principle methodology is 

briefly described here: 

Porosity is defined as; n= 1 –Vp/V, where Vp is the sum of all particles’ volume and V is 

the volume of the vessel. Therefore, one can rewrite the following equalities; 

 

Now, assuming that n0 is the initial porosity and R0 initial radii, one then can write; 

        

Finally the radius multiplier, m (the constant by which the initial radii of all spheres 

should be multiplied by so that a certain target porosity can be reached in the container) 

can be calculated by 

    (Itasca, 1999) 

     (Itasca, 1999) and 
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The code that was written based on the equation, reiterates the calculation process in an 

algorithm until the target initial porosity of 50 percent was achieved. Of course, the size 

of the spherical particles were increased or decreased depending on the available space 

they fill and this caused a lack of control in assigning specific particle diameters. In the 

trade-off between porosity and radii, the particle size was compromised in this model. 

This method is called the automatic radius expansion method. In Figure 5.5, it can be see 

that the particles appear larger than in the first two models, yet the porosity requirement 

was fulfilled by this densely packed model in the last one. 

 

Propert ies  Values 

Part icles Normal St iffness ,  Kn p       [N/m]  4.5   10
5
 

Part icles Shear St iffness,  Ksp            [N/m]  4.5   10
5
 

          Part icles Fr ict ion Coefficient  ,  µp    0.30 

Part icles Density,  ρp                       [ Kg/m
3  

]  820 

          Part icles Po isson’s Rat io,  νp   0.55 

          Viscous Damping Rat io,  ζ  0.6 

          Walls Normal St iffness,  Kn w  1  10
8
 

          Walls Shear St iffness,  Ks w  0.5   8
 

          Walls Fr ict ion Coefficient ,  µw  0.2 

 

 

    (Itasca, 1999) 

Table 5.3 Material mechanical properties used in the corn numerical model. 

Figure 5.5 Model 3-Corn grains, center discharge: Cylindrical container filled 

with circular particles with an initial porosity of 0.50. 
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5.2 Running of the Simulation Models 

5.2.1 Specific Procedures 

After two hundred thousand complete simulation trials (time-steps) for each simulation 

model using the software, the models reached their initial resting stage where the 

dynamic as well as unbalanced locked-in forces between particles were considered very 

small. This can be inspected visually in the snapshot images taken from certain times 

during simulation as the particles settle down without considerable spaces among them. 

Subsequently, a number of cycling was performed in order for the particles to interact 

with each other (without including the gravitational or frictional forces of the walls or 

circular particles surfaces. This means that only contact forces were activated once 

stiffness values at this initial cycling stage were assigned. 

Once more, after about a couple of hundreds more cycles (which are the number of 

events per time unit), friction coefficients, along with the gravity force were also included 

in the model. 

At this stage, the system simulation was cycling within the enclosed cylinder until the 

ratio of maximum unbalanced forces between particles and maximum contact force 

values (mechanical ratio) converges to at least 0.001, or less. 

The convergence of the mechanical ratio value to approximately zero was an indication 

of the particulate system being at the rest, meaning that the total resultant energy of the 

contact forces among particles had reached a negligible value.  
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5.2.2 Specific Results from Three Simulation Models 

5.2.2.1 Model 1- Center Discharge of Polyethylene Plastic Pellets 

The simulation started when the discharge gate in the bottom of the silo was removed. In 

Figure 5.6 this initial state can be seen. 

Velocity intensity profiles, as well as the displacement vectors for the particles, are also 

given in Figures 5.8.As the plastic pellets move downward due to the gravitational force, 

their velocities also were affected. By examining the pictures of velocity and 

displacement vectors, one can see that only the upper portion and more specifically, the 

surface of the granular material had acceleration, since most of the assembly was stagnant 

just before the discharge.  

 

 

The intensity of contact forces among particles and particle-wall can be accessed using 

PFC3D software. This is given in Figure 5.7. 

 

 

Figure 5.6 Initial contour state of center-discharge process. 
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The strength of the chain forces was smaller in the center area of the bin shown in Figure 

5.7 and due to the lack of the lack of friction between wall and particles caused by the 

center draw-point.  

After about more than 2 million time steps trials of the simulation (discrete force-

displacement calculation increment), some bulk exited the system, leaving the surface 

shape of the material more concave. This can be seen in Figure 5.8. The velocity as well 

as displacement vectors are given in Figure 5.9. 

  

Figure 5.7 Contact forces as seen vertically from bottom. 

 

 

Figure 5.8 Initial velocity vectors (left) and, displacement vectors (right) – plastic 

pellets, center discharge 
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The contact forces at this point in the simulation are depicted in Figure 5.11. 

 

Figure 5.9 Contour state of center-discharge process well into discharge progression. 

 

 

Figure 5.10 Velocity vectors (left) and, displacement vectors (right) well into discharge 

progression. 

Figure 5.11 Contact forces as seen vertically from below at the middle of discharge process. 
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A closer look at above Figures indicates relatively higher velocities closer to the central 

axis, when compared to of those closer to the walls. This is due to the proximity of 

discharge gate to the particles located closer to the central axle, as these particles can 

more freely flow out of the system because these spheres cannot bear wall friction forces.  

Finally, after about 2.6 million time steps, most of the grains exited the system with only 

a few remaining inside, and this part of simulation was therefore concluded. Figure 5.12 

demonstrates this condition. Also, the velocity and displacement vector representations 

are provided in Figure 5.13. 

 

 

  

  

 

Figure 5.12 Contour state of center-discharge process in the end of 

discharge. 

 

 

Figure 5.13 Velocity vectors (left, as seen from below) and, displacement vectors (right, 

as seen from bottom) in the end of discharge process. 
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Overall, the surface topography throughout the discharge simulation leaves the traces 

given in  

Figure 5.14, as seen from side cross-section. It is discernible that surface region in the 

middle of the silo has a much sharper decline in level through the time than have the 

regions closer to the side walls since, this is a center discharge process. 

 

 

5.2.2.2 Model 2- Side Discharge of Polyethylene Plastic Pellets  

All the graphical analyses performed for center discharge in the earlier part, were also 

performed on the silo discharge system. In Figure 5.15, an initial stage of flow for the 

side discharge simulation is given. 

 

Figure 5.14 Surface topography decrescence traces 

through center discharge process. 

 

 

Figure 5.15 Initial stages of side-discharge of the silo. 
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The velocity and displacement vectors for this initial stage are also provided in Figure 

5.16. 

  

 

It is easily recognized from pictures that the particles in the side region have higher 

velocities, as the discharge was located in the side part (dense vectors in the right side). 

The particles in the other side virtually do not move in this early stage of discharge. 

After more than 2 million simulation time steps, the discharging silo resembles the one in 

Figure 5.17 below. 

 

 

 

Figure 5.16 Velocity (left) and displacement vectors for initial stage of side discharge (right) 

Figure 5.17 Midway through side discharge process of plastic pellets. 
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And the velocity as well as displacement vectors for particles are provided in Figure 5.18. 

  

 

 

Again, one can spot larger vector density in the right side, indicating higher velocities and 

bigger displacements in the region closer to the discharge gate. 

In the last section, the discharge process comes to an end, which is given in Figure 5.19 

velocity and displacement vector schemes for the end part of discharge are provided in 

Figure 5.20 as well. 

 

 

Figure 5.18 Velocity (left) and displacement vectors (right), for half way through side 

discharge of plastic pellets. 

Figure 5.19 Final stages of side discharge of plastic pellets. 
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Overall, the surface topography during side discharge simulation leaves the shape given 

in Figure 5.21 as seen from side cross-section. One can detect that surface region in right 

side of the silo has a much sharper decline in level through the time than one has in left or 

center side. 

 

 

5.2.2.3 Model 3- Center Discharge of Corn with Initial Porosity of 0.50 

 

Figure 5.22 shows the initial stage of the simulation in which the particles were resting 

inside the bin with a noticeable higher angle of repose at the peak. Additionally, the dark 

Figure 5.20 Velocity (left) and displacement vectors (right), for final part of side 

discharge of plastic pellets. 

Figure 5.21 Surface topography decrescence through side 

discharge process. 
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region in the middle of the pack characterizes the contact forces among particles at rest, 

with ticker line being an indication of larger locked forces. Notice that the dark region 

was not present on the free surface of the pack. 

 

 

Once the simulation started with removing the center gate at the bottom, the initial stages 

of velocity, as well as displacement vectors of particles could be monitored. This is 

presented in Figure 5.23. 

  

 

By studying the patterns in Figure 5.24 above, again, one may notice that velocity of corn 

particles was higher in the upper levels, closer to surface. As for displacements, the 

Figure 5.22 Initial stages of corn center discharge course. 

Figure 5.23 Velocity (left) and displacement (right) vectors for initial stage corn discharge. 



67 

 

values seem to be of equal values in the center parts, while slightly stagnant closer to the 

side walls. 

After approximately 1.75 million time steps towards discharge, the topography of the 

corn inside the bin looks like the picture given in Figure 5.24. 

 

 

The contact force graph at this stage is given in Figure 5.25 below; it is evident that wall-

particle contacts at the base were larger than particle-particle contact forces. 

 

 

Figure 5.24 Remaining corn particles in the bin halfway through discharge. 

Figure 5.25 Contact forces halfway through 

discharge of corn particles. 
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Velocity and displacement state at this moment is provided in Figure 5.26. The contact 

forces at this stage can be seen in Figure 5.27. 

  

 

 

 

 

Lastly, the discharge process practically finishes when the particles no longer exit the bin 

(particles located at the side bottom region), the scheme of this stage is displayed in 

Figure 5.28. 

Figure 5.26 Velocity (left) and displacement (right) vectors of corn particles 

halfway through discharge. 

Figure 5.27 Contact forces for the final stage of corn discharge. 
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Velocity and displacement of particles at this stage is displayed in Figure 5.29 below. 

  

 

 

5.3 Laboratory Study Procedure 

5.3.1 General Description 

A physical silo model was used for the purpose of the model validation. This cylindrical 

silo has a diameter of 19 inches at the base and height of 23 inches .The silo was filled 

approximately half of the height with material. Aspect ratio D/H of 1.6 was preserved in 

the physical model as in the numerical one, so that the scaling between two models would 

be acceptable. Both the numerical and physical models were cylindrical with a symmetric 

Figure 5.28 Final stage of corn discharge simulation. 

Figure 5.29 Velocity (left) and displacement (right) vectors at the final stage of corn discharge. 
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axle in center (imaginary). The model has a rectangular shaped window in its side so that, 

observing the material discharge and movements associated with it and taking 

photographs at certain points throughout the discharge process was possible. A picture of 

the model could be seen below in Figure 5.30. 

 

 

It is clearly seen in the above picture that, at various locations along the window, the 

maximum height for the corresponding initial filling levels for the three models were 

marked in red stickers. Also, in order to facilitate level measurement process from the top 

of the model silo, the top cap, a circular transparent sheet of plastic, was marked at 

several locations so that, the matching coordinates between the numerical design and the 

physical model could be achieved. In Figure 5.31 the picture of the top cap, as seen from 

above, is given. 

Once the coordinates (X, Y, and Z) were designated for the physical silo, the bottom part 

of the silo which was a flat circular part containing different sliding mechanisms was 

installed. These sliding mechanisms would serve as discharge points. For this study, the 

Figure 5.30 Model silo used for validation. 
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center gates, as well as the outermost rectangular discharge points were used for 

experiment. A photograph of the discharge mechanism is given in Figure 5.32 as well. 

The location of the discharge gates in the model can be seen in Figure 5.33. 

 

  

 

 

 

 

Figure 5.31 A picture of the silo model lid 

with coordinates marked at different 

locations. 

Figure 5.32 Discharge gates at the bottom. 

Figure 5.33 Discharge mechanisms at the bottom of the model. 
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For measuring the surface level of the material in the silo, a laser level sensor device was 

utilized. The level sensor was positioned vertically over the pre-marked coordinates on 

the top cap and then by moving it to different points, the distance between the device and 

the maximum surface level was measured and recorded. The picture of the device is 

given in Figure 5.34. The silo was filled with polyethylene plastic particles, thereafter 

with corn kernels and their ensuing discharges were studied.  

 

 

5.3.2 Discharging Process 

Starting from an initially full tank (according to the maximum heights for the center, side 

and corn discharge which are 8.1, 6.75 and 10.2 inches respectively), the discharge gate 

was slide open to allow material to flow out of the silo. The grain flows were suspended 

at various times according to the discharge rate (weight of exiting material per second), in 

order that this time matched up with the exact time, when the weight of the exiting 

material in the numerical model equaled that of the physical model. The material weight 

also was scaled in physical model according to the ‘squared diameters ratio times heights 

  

Figure 5.34 Laser level sensor 

device. 
Figure 5.35 Polyethylene particles discharging out of the 

system. 
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ratios between numerical and physical models’ proportion’ for comparison in validation. 

This expression is given in Equation 5.1 (The scale obeys the cylindrical volume formula 

of πr
2
h, which means the radii ratio squared times the heights ratio in the discharge rate 

expression; ρ.v/t). 

 

At every stoppage throughout discharge process, the surface levels of remaining material 

in silo were gauged with the laser sensors at the designated points on the lid. These data 

were also obtained with two distinct techniques for the numerical counterpart for the 

comparison; one method follows the experimental process, the other one takes into 

account the remaining number of particles in silo at the distinct interval and, the average 

porosity value associated with it. The volume of the remaining material at every stage 

was calculated with the inclusion of the height as being the average values of the records 

obtained by the sensor device. These processes were repeated for the three models (center 

discharge, side discharge for plastic and, center discharge for corn). The ρ value was the 

average bulk density of grains, which can be obtained from literature for the prototype, 

and was substitute in numerical model for its associated porosity value. 

A sketch of fundamental volume measurements at specific time periods during laboratory 

discharge can be seen in Figure 5.36. 

Equation 5.1  
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5.4 Comparing Simulation and Laboratory Results 

5.4.1 Model 1- Center Discharge of Polyethylene Plastic Grains 

Visual Comparison 

For model 1, the contrast was made at intervals of 9, 15, 20, 24 and 27 seconds into 

discharging. At these specified intervals, the numerical simulations, as well as laboratory 

test discharge processes were halted temporarily in order to assist in detecting 

similarities. A couple of pair-wise comparisons are given in Figure 5.37. By studying the 

pictures, one can detect strong resemblance between the numerical and laboratory results, 

however, since a scale factor had been included, there were visible differences 

dimension-wise (height and width of the granular pack). 

Time Numerical Simulation Laboratory Discharge Model 

 9 sec. 

  

Figure 5.36 Random measurements of point levels for granular pack. 

 



75 

 

 9 sec. 

  

15 sec. 

  

20 sec. 

  

24 sec. 

  

27 sec. 

  

 

 

  

 

5.4.2 Model 2 -Side Discharge of Polyethylene Plastic Grains 

Visual Comparison 

The comparison was carried out at intervals of 14, 17, 22, and 34 seconds after the 

beginning of the discharge for the middle discharge test. At these specified intervals, the 

numerical simulations, as well as laboratory test discharge processes were halted 

temporarily in order to facilitate the exposure of similarities. The pair-wise comparison is 

given in Figure 5.38. By studying the pictures, one can also identify reasonable 

Figure 5.37 Visually comparing numerical simulation with laboratory results in center 

discharge of Polyethylene plastic pellets. 
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resemblance between numerical and laboratory results, however, since a scale factor had 

been included, as had been in middle discharge, there were evident differences 

dimensionally (height and width of the granular pack). There were some discrepancies, 

which could be attributed to the errors in scaling of the physical model dimensions up to 

those of the numerical model. Also, the static forces between plastic pellets in the 

laboratory were large, causing the particles to be repellent because of the negatively 

polarized forces among them. 

Time Numerical Simulation Laboratory Model Discharge 

14 sec. 

  

17 sec. 

  

22 sec. 

  

22 sec. 

  

34 sec. 
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34 sec. 

  

 

 

 

5.4.3 Model 3- Center Discharge of Corn grains 

Visual Comparison 

The comparison again was performed at intervals of 8, 14, 20, and 27 seconds after 

discharging began.  

At these specified intervals, the numerical simulations, as well as laboratory test 

discharge processes were halted temporarily for contrasting. The photographs for pair-

wise comparison were given in Figure 5.39. 

By studying the pictures, one can observe reasonable resemblance between numerical and 

laboratory results, however, since a scale factor had been included, there were visible 

differences dimensionally (height and width of the granular pack). 

 

 

 

 

 

Figure 5.38 Comparing numerical results with laboratory side discharge results. 
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Time Numerical Simulat ion Laboratory Model Discharge  

8 sec.  

  

14 sec.  

  

14 sec.  

  

20 sec.  

  

27 sec.  

  

 

 

 

 

 

 

 

Figure 5.39 Comparing numerical results with laboratory side discharge results. 
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Chapter-6  

 

DETAILED RESULTS 

6.1 Chapter Summary 

In this section thorough validation processes, based on point volume measurements and 

granular discharge rates, are explained. A number of graphs, representing patterns of 

particles velocities at different locations, mean contact and unbalanced forces, particles 

displacements in terms of their velocities, and more were investigated in order to 

establish the optimal installation point for level sensing devices. 

Point-based volume measurements were calculated both for numerical model and for 

laboratory model and then, these values were compared to determine error values, taking 

the laboratory test as being the correct one. Furthermore, re-runs of simulation models 

based on adjusted input values (mechanical properties of grains and frictional 

coefficients) were presented at the end of the chapter. 

Finally, the triaxial shear test performed for polyethylene plastic is explained in this 

chapter. 

6.2 Investigation of Various Parameters in Models 

6.2.1 Model 1- Center Discharge of Polyethylene Plastic Pellets-Velocity change 

analyses of particles in Z-direction against their corresponding position in X, Y and, 

Z coordinates  
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In a series of graphs (Figure 6.1), obtained as simulation history data, the discharge 

velocity of designated particles with regards to their X coordinates in our system was 

observed. 

  

  

  

 

  

 

Figure 6.1 Vertical velocities [m/s
2
] charts of certain particles vs. their respective X-

positions [m] in the silo. 

a. b. 

c. d. 

e. f. 
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Graphs a, d, e, and f in 6.1 suggest that the designated particles velocities sharply 

increase in the negative direction when approaching above the discharge gate (which 

corresponds to about 0.8 meters in X direction). Other than within the mentioned range, 

the Z velocity of particles tended to oscillate slightly over a constant negative value 

outside the bin.  

Graphs b and c in the same Figure depict the Z-velocity in the 0.8 to 1.6 m range of X 

direction, which does not encompass the discharge area. However, one may observe 

several large oscillations within 1.3-1.5 meters into X direction. These large fluctuations 

might have happened due to the energy of the locked particles being release when 

advancing towards the side walls. 

Figure 6.2 depicts velocities in Z direction versus particles respective Y directions. 

  

 

  

a. 
b. 

c. d. 

Figure 6.2 Velocity [m/s
2
]  charts of certain spheres vs. their respective Y-positions [m] in the silo. 
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By studying the change of vertical velocity when Y changed for the same particle in the 

Figure above, one can determine that the velocity vacillates in the negative region around 

a constant value except for case a in which the particle passed the discharge gate region 

hence its sharp velocity increase in negative Z direction at about 0.8 m into Y direction. 

The particles speed graphed above were located very close to the side walls and that is 

why no excess velocity value is present. 

In the following graphs (Figure 6.3), several particles were selected for study of their 

respective X, Y, and Z positions throughout the simulation. The patterns these particles 

leave are represented in the same graph for every X, Y, and Z position values for 

facilitating a better view of the whole system. 

  

 

 

a. b. 

c. 

Figure 6.3  X, Y, and Z positions [m] of a collection of particles (a, b, and c graphs 

respectively) at different regions vs. time [s]. 



83 

 

The divergence of positions beyond the model silo’s dimension in graphs (a) and (b), 

which represent X and Y coordinates respectively, indicate their exit from the system, 

hence the larger values. As for graph c, which represents vertical coordinates of particles, 

one may observe that after approximately about 2 million time-steps, the particles exit the 

system thus their subjective altitudes plummet sharply beyond that time step to negative 

values. Initial location history of these particles were out of range for this graph, 

therefore, one may not see locations above level zero. In the following graphs (6.4) 

several other parameters were studied which deemed necessary in determining level 

sensing device’s optimal locations. 

  

a.     b. 

  

c.      d. 

  
e. 

Figure 6.4  a) X-velocity [m/s
2
]  of a ball vs. time [s] b) Z-velocities [m/s

2
]  of a couple of particles vs. time[s] 

c) Z position[m] of a ball vs. its Y position[m] d) Z position[m] of a ball vs. its X position[m] and, e) Z velocity 

[m/s
2
]  of a ball vs. its vertical position [m]. 
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In addition to graphs previously given, forces produced in Z and X axes directions to the 

cylindrical wall are depicted in Figure 6.5 below. 

 

 

There were spikes in force values roughly corresponding to 2.2 million time step (into 

final stages of discharge), which could have resulted from the locked-in forces between 

particles being released abruptly, as the possible bonds between particles were breaking. 

 

6.2.2 Model 2- Side Discharge of Polyethylene Plastic Pellets-Velocity Change 

Analyses of Particles in Z-Direction against Particles’ Resultant Position in X, Y and, 

Z Coordinates  

In a series of graphs (Figure 6.6), obtained as simulation history data, one might monitor 

the discharge velocity of a couple of designated particles with regards to their X 

coordinates in the system. 

Figure 6.5  X and Y forces[N] generated from particle movements on the 

cylindrical wall in time [s]. 
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In the charts above, the sharp increase in velocities happens just above the discharge gate 

(close to right side wall) for both cases above, when the particles pass through discharge 

area. It is furthermore noticeable in Figures above that in other regions of the silo, the 

velocity fluctuates more or less around a constant value. 

Figure 6.7 exhibits velocities in Z direction versus particles respective Y coordinates for 

two distinct particles (selected systematically based on their location’s importance in the 

granular pack). 

  

 

 

Figure 6.6 Vertical velocity [m/s
2
] charts of certain particles vs. their respective X-positions [m] 

in the silo. 

Figure 6.7 Vertical velocity [m/s
2
] charts of certain particles vs. their respective Y-positions [m] 

in the silo. 
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In Figure 6.7 above, one might spot a constant velocity as the particles move down by 

gravity. However there also is some pointed increase in velocities close to the central axis 

(roughly on 0.05 and 0.02 m in Y axis respectively) of the silo, which seems anomalous 

since in this case, the discharge happens in the right gate at the bottom. This sharp 

increase in velocity as particles advance in Y direction was not explicable at this stage.  

In another set of charts, vertical velocities of some grains (located at different part of 

silo), are monitored against their vertical positions. This is given in Figure 6.8. 

 

  

a.                                                                                       b. 

 

 

 

In Figure 6.8 graph (a), a decreasing trend in vertical velocity, as the particle approaches 

the bottom, is recognizable. This could be due to the fact that this individual particle did 

not make its way out of the system and as a result, it just subsided in the bottom and 

Figure 6.8 Vertical velocity [m/s
2
] charts of certain particles vs. their respective vertical 

positions [m] in the silo. 

c.

c. 
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stopped to move completely. In contrast, graphs (b) and (c) in the same Figure, 

demonstrate oscillating velocities with a constant mean, as the discharge process 

approaches to an end. This might verify the fact that, these two particles might have not 

exited the system but would have eventually, in case the simulation continued until much 

bigger time steps. 

Figure 6.9 exhibits selected particles’ vertical positions with respect to their axial position 

during discharge. 

  

 

Figure 6.10 is given to demonstrate vertical (Z) velocities and vertical paths of a 

collection of particles during discharge process. 

  

  

Figure 6.9 X path [m] vs. vertical path [m] (left) and, Y path [m] vs. vertical path [m] 

(right) of two pre-selected grain particles. 

Figure 6.10 Vertical velocities [m] (left) and vertical positions [m] (right) of a 

collection of particles during simulation [s]. 
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The quick decline of particles’ velocity and their respective levels after approximately 1.2 

million time steps, imply their exit of the system in the chart above. 

Mean contact and, mean unbalanced forces within particle system during the whole 

discharge process were also recorded as a history file. In Figure 6.11 below, as the 

simulation approached a relatively steady-state discharge, these forces also decreased, 

and later stayed at a constant value. This indicates that the unbalanced and contact forces 

among particles had reached to a balanced state. 

  

 

 

Axial, as well as vertical forces tolerated by encompassing cylindrical wall and bottom 

walls, were analyzed through discharge, which is provided in Figure 6.12.  

  

 

Figure 6.11 Mean contact forces [N] (left), and mean unbalanced forces [N] (right) of the 

system through discharge process. 

a. b.

. 
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Finally, the porosity of granular pack (which corresponds to its bulk density), was 

monitored through discharge process which is provided in Figure 6.13. 

 

 

 

From picture above that porosity initially fluctuated around 90 percent values and later on 

dropped to about 75 percent and then while the simulations approached an end, the 

porosity increased sharply. This increase indicate a rather emptiness where the 

measurement sphere had initially been located, since naturally the content of grain in silo 

decreases by time. 

Figure 6.12 (a):Y force [N] of cylindrical wall vs. time [s], (b): X force [s] of cylindrical wall 

vs. time [s] (c): Z force [N] of flat-bottom wall vs. time [s] and, (d): Y force [N] of  the 

cylindrical wall vs. its X force [N]. 

c.

.. 

d. 

Figure 6.13 Porosity of grains for side discharge of plastic pellets vs. time [s]. 
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6.2.3 Model 3- Center Discharge of Corn with Initial Porosity of 0.50- Vertical 

Velocity Changes of Corn Particles with Respect to Their Axial X, Y, and Z 

Coordinates in the System 

 

  

a.                                                                                           b. 

 

 

  

It is visible from charts in Figure 6.14 that the velocity of discharging particles increases 

as they approached the exit (c). The sharp increase in velocity of particles in graphs (a) 

and (b) at the same Figure implies the exit of the designated particle from system, causing 

an unrestricted (frictionless) free falling. 

In the remaining part of this section, vertical and axial force changes upon cylindrical as 

well as bottom walls are studied. The figures in graph 6.15 display the force patterns. 

c. 

Figure 6.14 Vertical (Z) velocities[m/s
2
]   vs. X coordinate [m] (a), vs. Y coordinate [m] (b), and vs. height 

[m] for corn center discharge simulation. 
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As the time proceeds, the applied vertical and axial forces decreased to a negligible 

constant value and continued in this way until the end. As the system has reached the 

steady-state discharge course, with contact forces between particles were in equilibrium. 

Average stress value within particles as well as mean unbalanced force analyses were 

provided in Figure 6.16. The same rule applies to these when moving forward some 

considerable amount of time into the discharge. 

Lastly, the porosity of system, from the beginning until the end of discharge, is tracked 

by the history file in Figure 6.17. It is understood that the porosity had remained constant 

from the onset until the advanced stages at the 40 percent values. 

Figure 6.15 X force [N] (left) and Z force [N] (right) endured by cylindrical and bottom flat walls 

with time [s]. 
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6.3 Volume Measurement Validation 

The height of the remaining granular pack and the resulting volume was also calculated 

and compared for both the numerical and laboratory model, in order to compute the 

percentage error that might arise in silo volume measurements.  

6.3.1 Model 1- Center Discharge of Polyethylene Plastic Pellets 

Below the comparison among values of numerical model and of physical model for 

center discharge of Polyethylene plastics is given in Table 6.1. 

 Figure 6.16 Mean unbalance force [N] (left) and average stress [KPa] 

tolerated by the particles (right) in corn discharge simulation [seconds]. 

Figure 6.17 Porosity value of discharging corn in the silo vs. time [s]. 
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9.92E+00 1.51E+01 2.00E+01 2.40E+01 2.73E+01

18.44% 14.30% 16.94% 11.91% 33.53%

0.223 0.108 0.147 0.098 0.204

3.52% 6.55% 10.78% 6.14% 0.86%

21.197% 9.828% 2.463% 17.780% 2.688%

Avg. Volume Difference [m^3]

Height STD [m]

 volume discrep. [m3]

Discharge Time [sec]

Avg. Height Difference percent

Table 6.1 Volume calculations for center discharged plastic pellets-18 point measurements. 

Table 6.2 Volume calculations for center discharged plastic pellets 3 point measurements. 
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When solely considering single point measurements, the calculation error also increased 

significantly as the results in Table shows above. On the other hand, when the point 

measurements were selected at the 1/6 of diameter from the side walls of the silo, error 

values decreased considerably which was evident from comparing the results from Table 

9.92E+00 1.51E+01 2.00E+01 2.40E+01 2.73E+01

20.46% 17.42% 22.60% 10.41% 34.13%

0.258 0.193 0.206 0.078 0.156

0.65% 5.25% 6.35% 7.87%

25.690% 19.519% 16.660% 10.882% 27.987%

Avg. Volume Difference [m^3]

Height STD [m]

 volume discrep. [m3]

Discharge Time [sec]

Avg. Height Difference percent

9.92E+00 1.51E+01 2.00E+01 2.40E+01 2.73E+01

22.83% 19.38% 19.04% 11.21% 23.47%

0.153 0.130 0.070 0.022 0.000

1.83% 4.11% 8.10% 7.83%

27.025% 20.245% 23.354% 11.960% 18.497%

Avg. Volume Difference [m^3]

Height STD [m]

 volume discrep. [m3]

Discharge Time [sec]

Avg. Height Difference percent

9.92E+00 1.51E+01 2.00E+01 2.40E+01 2.73E+01

20.92% 13.71% 18.12% 4.85% 34.13%

0.255 0.150 0.177 0.035 0.156

23.058% 18.928% 21.300% 9.277% 23.195%

Avg. Volume Difference [m^3]

Height STD [m]

 volume discrep. [m3]

Discharge Time [sec]

Avg. Height Difference percent

Table 6.3 Volume calculations for center discharged plastic pellets 2 points (located at about 1/6 

diameter of silo’s side walls) measurements. 

 

Table 6.4 Volume calculations for center discharged plastic pellets 2 (randomly selected points) 

measurements. 

 

Table 6.5 Volume calculations for center discharged plastic pellets (Only 1 random point) 

measurements. 
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6.3 to those of the Table 6.4 in which the measurement points were selected randomly at 

the silo’s lid.  

6.3.2 Model 2 -Side Discharge of polyethylene plastic Grains 

Volume Measurement Validation 

The same volume measurement validation between numerical and laboratory results for 

side discharge is given in the following section. 

 

 

Numerical/ physical discharge

Time [second] 1.75E+01 1.90E+01 2.19E+01 3.43E+01 1.75E+01 1.47E+01 2.19E+01 3.43E+01

Time-step [seconds/step] 3.21E-06 1.93E-06 1.10E-06 8.90E-07 3.21E-06 1.93E-06 1.10E-06 8.90E-07

Steps 784581 1158381 2007503 2624276 784581 1158381 2007503 2624276

0.554 0.528 0.375 0.339 0.469 0.484 0.455

0.575 0.511 0.368 0.322 0.494 0.367 0.484 0.377

0.448 0.388 0.295 0.222 0.479 0.377 0.338

0.46 0.38 0.2 0.19 0.391 0.255 0.177 0.574

0.512 0.471 0.347 0.27 0.372 0.396

0.563 0.496 0.346 0.313 0.479 0.474 0.348

0.554 0.528 0.375 0.339 0.474 0.474 0.460

0.556 0.51 0.356 0.3 0.474 0.479 0.416

0.511 0.449 0.327 0.284 0.469 0.465 0.372

0.434 0.354 0.287 0.267 0.484 0.382 0.289

0.5 0.456 0.328 0.255 0.474 0.421 0.338 0.357

0.452 0.382 0.286 0.212 0.435 0.323 0.235 0.231

0.548 0.496 0.35 0.328 0.484 0.484 0.406 0.387

0.515 0.474 0.323 0.265 0.484 0.466 0.348

0.516 0.456 0.339 0.285 0.504 0.479 0.396 0.396

0.571 0.5 0.376 0.328 0.489 0.484 0.357

0.45 0.36 0.284 0.212 0.401 0.274 0.177 0.206

0.461 0.391 0.355 0.35 0.465 0.455

Average Height 0.510 0.452 0.329 0.282 0.462 0.419 0.344 0.363

Estimate Volume of Materail in Silo [m^3] 1.03 0.91 0.66 0.57 0.930 0.842 0.691 0.730

Height Standard Deviation [m] 0.05 0.06 0.04 0.05 0.037 0.075 0.106 0.096

Real Volume of Materail in Silo [m^3] 1.038 1.018 0.668 0.517

Number of grains in silo 44233 37969 25543 19774

porosity 0.7 0.8 0.78 0.78

1.75E+01 1.90E+01 2.19E+01 3.43E+01

10.94% 10.43% 17.28% 21.65%

0.115 0.090 0.113 0.119

6.31% 9.01% 10.44% 10.96%

9.322% 7.254% 4.617% 11.056%

Avg. Volume Difference [m^3]

Height STD [m]

 volume discrep. [m3]

Discharge Time [sec]

Avg. Height Difference percent

 Model 2-Side Discharge -Simulation
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 Model 2-Side Discharge- Lab Discharge

Table 6.6 Volume calculations for side discharged plastic pellets-18 point measurements. 
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1.75E+01 1.47E+01 2.19E+01 3.43E+01

7.73% 19.16% 68.86% 14.19%

5.06% 12.23% 85.06% 8.44%

6.03% 4.03% 44.04% 10.61%

24.876% 33.55% 25.13% 3.57%

Time

Average Height Difference percent

Average Volume Difference [m^3]

Height Standard Deviation [m]

percent volume diff [m3]

1.75E+01 1.47E+01 2.19E+01 3.43E+01

5.81% 20.05% 37.72% 21.70%

5.27% 15.02% 21.54% 9.25%

7.12% 5.27%

1.53% 11.56% 7.64% 29.26%

Average Height Difference percent

Average Volume Difference [m^3]

Height Standard Deviation [m]

percent volume diff [m3]

Time

1.75E+01 1.47E+01 2.19E+01 3.43E+01

8.90% 10.73% 24.62% 12.88%

8.16% 3.12% 11.67% 0.055

7.37% 6.60% 9.80% 5.86%

9.94% 6.18% 5.17% 36.039%

Time

Average Height Difference percent

Average Volume Difference [m^3]

Height Standard Deviation [m]

percent volume diff [m3]

1.75E+01 1.47E+01 2.19E+01 3.43E+01

10.84% 23.78% 37.72% 21.70%

9.81% 17.21% 21.54% 9.25%

2.77% 16.36% 21.09% 71.33%percent volume diff [m3]

Average Height Difference percent

Time

Average Volume Difference [m^3]

Height Standard Deviation [m]

Table 6.7 Volume calculations for side discharged plastic pellets 3 point measurements. 

 

Table 6.8 Volume calculations for side discharged plastic pellets 2- point (1/6D) measurements. 

 

Table 6.9 Volume calculations for side discharged plastic pellets 2 random point 

measurements. 

 

Table 6.10 Volume calculations for side discharged plastic pellets single point measurements. 
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6.3.3 Model 3 (Center Discharge of Corn) 

Volume Measurement Validation 

 

 

 

 

 

Numerical/ physical discharge

Time [second] 7.97E+00 1.39E+01 2.05E+01 2.76E+01 7.97E+00 1.39E+01 2.05E+01 2.76E+01

Time-step [seconds/step] 3.50E-06 2.85E-06 2.57E-06 2.31E-06 3.50E-06 2.85E-06 2.57E-06 2.31E-06

Steps 849832 2044670 2515850 3074990 849832 2044670 2515850 3074990

0.724 0.579 0.492 0.417 0.72 0.656 0.455

0.74 0.581 0.494 0.417 0.681 0.589 0.398 0.39

0.79 0.587 0.474 0.365 0.59 0.46 0.32

0.739 0.568 0.486 0.414 0.53

0.77 0.48 0.357 0.313 0.686 0.532 0.33

0.756 0.583 0.494 0.4 0.656 0.552 0.443 0.42

0.7 0.552 0.492 0.416 0.7 0.48 0.376

0.759 0.581 0.497 0.414 0.633 0.61 0.57

0.743 0.485 0.412 0.326 0.643 0.56 0.412 0.31

0.789 0.523 0.447 0.367 0.59 0.43 0.28

0.864 0.523 0.423 0.371 0.693 0.442 0.36

0.861 0.588 0.477 0.371 0.644 0.34

0.833 0.6 0.492 0.412 0.633 0.6 0.5 0.29

0.823 0.534 0.413 0.316 0.623 0.62 0.289

0.73 0.45 0.357 0.313 0.69 0.557 0.3

0.794 0.596 0.5 0.412 0.694 0.67 0.533 0.28

0.821 0.588 0.49 0.39 0.721 0.67 0.477 0.31

0.8 0.56 0.398 0.391 0.72 0.58 0.46 0.37

Average Height 0.780 0.553 0.455 0.379 0.671 0.606 0.473 0.331

Estimate Volume of Materail in Silo [m^3] 1.57 1.11 0.92 0.76 1.35 1.22 0.95 0.67

Height Standard Deviation [m] 0.05 0.04 0.05 0.04 0.04 0.05 0.05 0.04

Real Volume of Materail in Silo [m^3] 0.376 0.290 0.202 0.140

Number of grains in silo 14765 10599 7116 5225

porosity 0.39 0.418 0.435 0.41

7.97E+00 1.39E+01 2.05E+01 2.76E+01

12.48% 10.59% 10.58% 11.93%

0.198 0.116 0.133 0.092

8.00% 7.94% 14.34% 9.68%

13.986% 9.691% 3.814% 12.703%

Avg. Volume Difference [m^3]

Height STD [m]

 volume discrep. [m3]

Discharge Time [sec]

Avg. Height Difference percent

Model 3 -50% Porosity - Center Discharge Maize
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Model 3 -50% Porosity - Center Discharge Maize

7.97E+00 1.39E+01 2.05E+01 2.76E+01

11.09% 8.76% 9.12% 12.94%

0.181 0.346 0.075 0.102

1.54% 7.34% 9.14% 10.71%

4.502% 21.038% 6.451% 15.237%

Time

Average Height Difference percent

Average Volume Difference [m^3]

Height Standard Deviation [m]

percent volume diff [m3]

Table 6.11 Volume calculations for center discharged corn-18 point measurements. 

Table 6.12 Volume calculations for center discharged corn- 3 point measurements. 
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6.4 General Comparison  

At this section, the average values of all three models were considered as a whole for 

comparison purpose. 

 

 

 

7.97E+00 1.39E+01 2.05E+01 2.76E+01

11.09% 8.76% 9.12% 12.82%

0.181 0.103 0.075 0.101

1.54% 7.34% 9.14% 10.88%

17.247% 3.129% 6.451% 15.128%

Average Height Difference percent

Average Volume Difference [m^3]

Height Standard Deviation [m]

percent volume diff [m3]

Time

7.97E+00 1.39E+01 2.05E+01 2.76E+01

7.97% 5.45% 19.43% 6.47%

0.119 0.008 0.097 0.027

5.76%

16.213% 3.747% 2.648% 15.990%

Time

Average Height Difference percent

Average Volume Difference [m^3]

Height Standard Deviation [m]

percent volume diff [m3]

7.97E+00 1.39E+01 2.05E+01 2.76E+01

12.18% 13.95% 2.65% 20.51%

20.11% 16.49% 2.61% 16.08%

18.305% 3.129% 3.542% 15.128%percent volume diff [m3]

Average Height Difference percent

Time

Average Volume Difference [m^3]

Height Standard Deviation [m]

Table 6.13 Volume calculations for center discharged corn 2- point (1/6D) 

measurements. 

 

Table 6.14 Volume calculations for center discharged corn 2 random point measurements. 

 

Table 6.15 Volume calculations for center discharged corn single point measurements. 

 



99 

 

 

 

 

 

 

  

 

 

 

 

  

3 point center PP 3 point side PP 3 point corn

19.03% 27.49% 10.48%

15.58% 27.70% 17.59%

5.57% 16.18% 7.18%

10.79% 21.78% 11.81%

Height Standard Deviation [m]

percent volume diff [m3]

Discharge

Average Height Difference percent

Average Volume Difference [m^3]

2 points (1/6D) center PP 2 points (1/6D) side PP 2 points (1/6D) corn

21.01% 21.32% 10.45%

17.80% 12.77% 11.49%

5.03% 6.19% 7.22%

20.15% 12.50% 10.49%

Average Volume Difference [m^3]

Height Standard Deviation [m]

percent volume diff [m3]

Discharge

Average Height Difference percent

2 random point center PP 2 random point side PP 2 random point corn

19.19% 14.28% 9.83%

7.49% 7.11% 6.26%

5.47% 7.41% 5.76%

20.22% 14.33% 9.65%

Height Standard Deviation [m]

percent volume diff [m3]

Discharge

Average Height Difference percent

Average Volume Difference [m^3]

Table 6.16 Average values for 18-point discharges throughout the complete simulation. 

Table 6.17 Average values for 3-point discharges throughout the complete simulation. 

Table 6.18 Average values for 2-point (1/6D) discharges throughout the 

complete simulation. 

Table 6.19 Average values for 2-point discharges throughout the complete simulation. 
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 1 point center PP  1 point side PP  1 point corn

18.34% 23.51% 12.32%

19.64% 14.45% 13.82%

19.15% 27.89% 10.03%

Average Volume Difference [m^3]

Height Standard Deviation [m]

percent volume diff [m3]

Discharge

Average Height Difference percent

Average Height Difference percent 19.00%

Average Volume Difference [m^3] 19.929%

Height Standard Deviation [m] 0.09

percent volume diff [m3] 14.49%

3-point measurements for 3 models

Average Height Difference percent 17.85%

Average Volume Difference [m^3] 14.31%

Height Standard Deviation [m] 6.14%

percent volume diff [m3] 14.82%

2-point (1/6D) measurements for 3 models

Average Height Difference percent 14.80%

Average Volume Difference [m^3] 6.996%

Height Standard Deviation [m] 0.06

percent volume diff [m3] 15.15%

2-point (random) measurements for 3 models

Table 6.20 Average values for single-point discharges throughout the 

complete simulation. 

Table 6.21 Average values for 18-point measurements for 3 models. 

Table 6.22 Average values for 3-point measurements for 3 models. 

Table 6.23 Average values for 2-point (1/6D) measurements for 3 models. 

Table 6.24 Average values for 2-point (random) measurements for 3 models. 
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6.5 Validation by Discharge Flow Rate Values 

 

  is the mass flow rate which can be calculated as it is given in formula 5.1 where, Δm 

is the discharged mass and Δt is the time during which discharge took place. 

 

 

For the numerical simulation discharge rate, one should consider porosity of the pack, 

number of discharged particles and their average radius. By using the expression;    = 

18.06%

17.51%

19.02%

Height Standard Deviation [m]

percent volume diff [m3]

Single random point measurements for 3 models

Average Height Difference percent

Average Volume Difference [m^3]

Table 6.25 Average values for single point (random) measurements for 3 models. 

Table 6.26 Comparing Discrepancies in volume (%) of center and side discharges. 

Equation 6.1 



102 

 

(4/3)ρ.n. .r
3.ϕ/t, for all three models (porosity being represented by ϕ, n the number of 

remaining particles, ρ bulk density and r the average radius of spheres), discharge rate of 

every stage could be estimated. As for the physical model discharge rate, simply 

weighing the discharged particles at specified intervals would give an estimate of 

discharge rate as well. 

Table 6.27 summarizes the discharge rate values for the numerical model. 

 

 

  

 

 

 

Center discharge pp time  [sec] center discharge pp [kg/sec] side discharge pp time [sec] side discharge pp [kg/sec] maize discharge time [sec] center discharge corn [kg/sec]

15.00 10.05 17.00 10.51 8.00

20.00 4.61 15.00 24.78 14.00 3.37

24.00 12.89 22.00 26.59 20.00 7.83

27.00 14.03 34.00 17.78 27.50 5.37

Average rate [kg/sec] 0.48 0.91 0.24

Discharge gate area adjusting  factor [m2] 0.092 0.092 0.092

Validation discharge rate [kg/sec] 0.044 0.083 0.022

Center discharge pp time  [sec] center discharge pp [kg/sec] side discharge pp time [sec] side discharge pp [kg/sec] maize discharge time [sec] center discharge corn [kg/sec]

15.00 1.05 17.00 1.17 8.00

20.00 0.45 15.00 1.70 14.00 0.27

24.00 1.16 22.00 2.09 20.00 0.65

27.00 1.05 34.00 1.44 27.50 0.47

Average rate [kg/sec] 0.043 0.073 0.020

center discharge pp [kg/sec] side discharge pp [kg/sec] center discharge corn [kg/sec]

0.895 0.889

0.902 0.931 0.919

0.910 0.921 0.917

0.925 0.919 0.912

Average rate percentage error 0.023 0.122 0.080

Discrete percentage error

Table 6.27 Average and discrete discharge rate values for numerical models. 

Table 6.28 Average and discrete discharge rate values for physical model discharges. 

Table 6.29 Average and discrete percentage errors. 
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6.6 General Volume Measurement Results 

From the results above, it was computed that the average percentage error for all the 18 

point measurements to be 12.38, for 3 point measurements 14.79, 2 specific point 

measurements 14.38, 2 random point measurements 14.85 and, for single point 

measurements 19, were computed. The average error in volume calculations for 3 points 

measurement was higher than 2 point (located at 1/6 of silo diameter from side walls) 

measurements, as the latter one is often deliberately selected to minimize error values and 

this result attests to this fact. 

As for all 3 model results comparison, for plastic pellet center discharge, the average 

volume percentage error for all the point measurements was about 17.68, for plastic pellet 

side discharge this value was roughly 16.72, and finally for the corn (center discharge) 

this value is around 10.50. 

As it is evident from the results, corn discharge process was the most confirming (to the 

laboratory results), followed by center discharge of plastic pellet. 

Considering MFIs, the mass discharge rate error is highest in side discharge as well 

(about 12 percent) followed by corn mass discharge rate (about 8 percent). 

In Table 6.30 below, the change in volume measurement errors with decreasing the 

measurement point numbers is summarized. 
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6.7 Recommendations 

6.7.1 Calibration of the Simulation Parameters 

Since high static forces were present between polyethylene plastic particles in the 

laboratory, the simulation results did not match exactly to those of the real model. In 

order to compensate for this static energy, it was decided to increase the friction 

coefficient among spheres in model 1 and 2 up to 0.65. Likewise, the friction coefficient 

between particles and walls was raised to 0.60. Besides, the viscous damping values for 

all the models were decreased to 0.30. 

As for decreasing the discrepancies in corn discharge results and its numerical model 

results, the friction coefficients among corn particles and wall-corn particles to 0.55 and 

0.6 respectively were increased; this is decided because the corn kernels had heavy 

amount of dust with them which might have increased the friction forces at all directions 

pp center discharge pp side discharge maize center discharge

Single 0.58% 21.90% 0.23%

point 

measurement

error increase from three point to single point measurement

Table 6.30 Volume measurement error value change comparisons with respect to 18-point measurements. 

Table 6.31 Volume measurement error value comparison between three and single 

point measurement. 
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in particle-particle and wall-particle touch points. This increase in friction would address 

the discrepancies and cause the gap (error) between numerical results and laboratory 

results to be diminished. 

The rest of the input parameters (mechanical properties and dimensions) were kept 

unchanged and the three simulation runs for plastic pellets and corn were repeated. The 

re-run results for the three models are given in Table 6.32 below. It is easily seen from 

Table 6.33 that the discrepancies in volume have decreased to about 11 percent down 

about 3.47 from 14.47 percent for 18 point measurements. 

 

 

 

Numerical Simulation Results

Time [second] 9.95E+00 1.45E+01 2.20E+01 2.54E+01 2.81E+01 2.15E+01 2.10E+01 2.39E+01 3.23E+01 8.22E+00 1.43E+01 2.23E+01 2.90E+01

Time-step [seconds/step] 1.72E-05 3.50E-06 2.30E-06 1.74E-06 1.29E-06 3.31E-06 1.91E-06 1.70E-06 9.00E-07 3.80E-06 2.83E-06 2.95E-06 2.52E-06

Steps 564149 1517888 2129090 2261495 2519994 784590 1158380 2007512 2624274 849833 2044648 2515839 3074998

0.51 0.494 0.49 0.394 0.23 0.57 0.57 0.405 0.301 0.724 0.649 0.494 0.39

0.491 0.432 0.414 0.377 0.291 0.572 0.54 0.5 0.42 0.711 0.64 0.5 0.401

0.54 0.522 0.46 0.3 0.236 0.444 0.42 0.42 0.355 0.7 0.604 0.433 0.347

0.442 0.41 0.41 0.38 0.256 0.5 0.487 0.346 0.222 0.727 0.58 0.48 0.4

0.512 0.453 0.42 0.362 0.271 0.524 0.52 0.49 0.267 0.728 0.562 0.517 0.32

0.524 0.505 0.428 0.38 0.24 0.549 0.513 0.505 0.49 0.704 0.52 0.482 0.368

0.493 0.446 0.438 0.37 0.2 0.53 0.53 0.488 0.46 0.761 0.603 0.55 0.39

0.411 0.4 0.39 0.352 0.248 0.555 0.47 0.39 0.39 0.74 0.6 0.557 0.502

0.502 0.49 0.4 0.33 0.211 0.539 0.43 0.358 0.336 0.74 0.554 0.41 0.297

0.467 0.324 0.367 0.325 0.193 0.503 0.5 0.353 0.316 0.731 0.57 0.469 0.308

0.48 0.426 0.31 0.31 0.191 0.5 0.468 0.328 0.35 0.708 0.611 0.449 0.39

0.526 0.5 0.395 0.333 0.25 0.434 0.42 0.37 0.27 0.752 0.66 0.403 0.345

0.62 0.47 0.47 0.394 0.256 0.55 0.55 0.352 0.35 0.697 0.57 0.57 0.3

0.542 0.506 0.445 0.346 0.15 0.56 0.504 0.3 0.269 0.74 0.575 0.54 0.298

0.489 0.398 0.311 0.294 0.155 0.553 0.491 0.36 0.324 0.725 0.598 0.436 0.32

0.59 0.526 0.46 0.348 0.277 0.53 0.407 0.366 0.33 0.741 0.614 0.562 0.375

0.457 0.52 0.443 0.4 0.253 0.511 0.429 0.307 0.202 0.78 0.609 0.493 0.404

0.518 0.502 0.49 0.4 0.24 0.49 0.444 0.33 0.33 0.739 0.56 0.44 0.37

Average Height 0.506 0.462 0.419 0.355 0.230 0.523 0.483 0.387 0.332 0.730 0.595 0.488 0.363

Volume of Materail in Silo [m^3] 1.02 0.93 0.84 0.71 0.46 1.05 0.97 0.78 0.67 1.47 1.20 0.98 0.73

Height Standard Deviation [m] 0.05 0.06 0.05 0.03 0.04 0.04 0.05 0.07 0.08 0.02 0.04 0.05 0.05
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2nd Round-Model 2-Side Discharge 2nd Round-Model 3 -50% Porosity - Center Discharge2nd round- Model 1-Center Discharge 

Table 6.32 Volume measurement results of calibrated simulation for three models. 
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6.8 Triaxial Shear Test Simulation 

6.8.1 General Description 

In order to establish the relationships between input parameters, a numerical triaxial shear 

test was performed so that, the associated stress-strain curves could be attained. This test 

is useful especially when dealing with inverse modeling with unknown micro-properties. 

The bulk properties of any granular material could be established by developing a series 

of test upon the material of interest. These tests can be carried out numerically simulating 

analogous tests usually performed in laboratory environment. Triaxial test can be utilized 

in obtaining an estimation of the elastic-plastic response of any synthetic material.  If it 

was required to match certain laboratory results of a specific granular material such as 

corn, it was necessary for us to perform numerical tests which simulate the laboratory 

results. Later, one can adjust the input values for the model until the time when the 

behavior of the numerical sample equals that of the real one. The resulting fine-tuned 

values then could be used as better inputs for the real simulation (with larger particles). 

Once the Young’s modulus and average strain values were obtained using the relevant 

stress-strain graphs, these value were compared to the values given in literature. If these 

center Plastic 

pellet
 side Plastic pellet center  maize

Total 

Average

10.88% 15.73% 7.55% 11.39%

10.10% 13.04% 9.54% 10.89%

7.65% 11.24% 5.96%

10.06% 10.42% 5.48% 8.65%

Calibrated Results and Lab Results Discrepancies

Discharge

Average Height Difference 

Average Volume Difference [m^3]

Height Standard Deviation [m]

percent volume diff [m3]

Table 6.33 Calibrated simulation and laboratory results comparison. 
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values match, the initial parameters used as input to simulation model were assumed to 

be correct. 

To this end, a shear box consisting of packed particles in a cylindrical confining wall was 

used; this cylindrical wall simulates the confinement upon the sample and for creating the 

effects of external compressing forces, two walls, one in top and the other one in the 

bottom of the cylindrical sample were generated. These walls simulate the loading 

platens.  

The sample was loaded in a strain-managed mode; a constant velocity in vertical 

direction to the walls was assigned so that the walls can move closer, compressing the 

sample. During the whole stages the lateral (radial) velocities of the confining cylindrical 

wall were managed mechanically by means of a numerical servo-system. The code for 

this servomechanism was written in FISH programming language. Once the confinement 

process starts from all directions, the stress-strain endured by the granular sample 

(polyethylene) were established in the macro level through adding up the forces acting on 

walls and mapping out the corresponding gap between the moving top and bottom walls. 

Finally, several material stress-strain response graphs can be obtained by selecting certain 

stress/ strain values and tracing them throughout the test. Throughout the simulated test, 

the porosity of the sample was also kept unchanged. 

It was important to note that this numerical shear-box test was only performed for 

Polyethylene plastic since the mechanical properties for corn particles had been obtained 

in the earlier studies and were used directly as input parameter for the model 3 (corn, 

center discharge). 
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6.8.2 Sample Preparation for Triaxial Test for Polyethylene Plastic Pellets  

An initial mass of particles was first created that contains 8615 circular particles; the 

dimension of the sample containing the particles was 4 2 meters with initial porosity of 

40% for this test. A couple of mechanical properties ascribed to the model include; shear 

and normal stress for walls and particles density. The initial radii of the sample particles 

range between 0.035 to 0.07 meters.  

In Figure 6.18, the resulting compact sample can be seen. The corresponding PFC3D 

codes are given in the appendix (C). 

 

 

6.8.3 Stress State Computation with Servo Control Process  

At this stage, the stress state was established and controlled for the sample throughout the 

test. The confining stress was kept constant by modifying the cylindrical wall’s velocity 

through a simulated servomechanism. The radial and axial strains were calculated by the 

formula given below in which, L was the resultant length of the sample and L0 the initial 

length of it. 

Figure 6.18 Initial sample of compact assembly 

prepared for the triaxial test. 
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6.8.4 Computation of Elastic Properties of the Sample 

Since the sample was ready for the test, the elastic test could be performed at this stage to 

obtain the resulting graph for the axial deviatory stress against strain for elastic load/ 

unload test. The complete code for this test was also given in appendix (C). The resulting 

slope in this graph was the average Young’s modulus value for the material under shear 

test. 

The Young’s Modulus (E) value can be derived from the slope of the stress-strain graph 

5.1 and establishing the ratio below; 

 

In the formula above, σa was the axial stress, εa the axial strain, σd the axial deviatoric 

stress, and since the confining stress was constant via the servo system, then Δσa =Δσd . εv 

= εx + εy + εz  was the volumetric strain, σd = σa - σc was the axial deviatoric stress and 

finally, σc was the mean confining stress. The results from numerical experiment were 

given in Figures 6.19 and 6.20. 

 

Sample strain calculation (Itasca, 1999). 

                       Young’s Modulus (Itasca, 1999). 



110 

 

 

 

 

 

 

From the graphs above, Young’s modulus can be calculated as: 

E =  

   

   
 =   

       

       
    10 

8 
  0.25 GPA 

Figure 6.19 Axial deviatoric stress [KPa] vs. axial strain for elastic load/unload test. 

Figure 6.20 Volumetric strain vs. axial strain for elastic load/unload test. 
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Additionally, the Poisson’s ratio ν, can be calculated by formula below: 

 

Therefore in this case, ν   0.5   (1- 
   

   
 )   0.30; these values approximately correspond 

to the Polyethylene plastic mechanical properties. 

6.8.5 Test of Stress Failure for the Sample 

Because bonding between particles for the actual simulation was not considered, at this 

stage this test was performed with no contact bonds among particles.  

At this final step graphs, representing axial deviatory stress versus the axial stain, were 

produced. The complete codes written for this stage can be seen in appendix (C). 

 

 

 

                         Poisson’s ratio (Itasca, 1999) 

Figure 6.21 Axial deviatoric stress [KPa] and confining stress [KPa] vs. axial strain for 

grains without bond. 
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In the final stages, grains were considered to be bonded with strengths of 0.05 and 0.2 

MN respectively and then observe the deviatoric stress and confining stress against axial 

strain for these granular matters. The resulting graphs were given in Figures 6.22 and 

6.23. 

It was discernible from the following two graphs that granular materials with larger 

contact bond strengths, fail at a much larger stress as it was the case in the latter one, the 

failure stress has not been reached yet. 

The same applies to the graphs demonstrating volumetric strain against axial strain for 

the same materials with bond strengths of 0.05 and 0.1 MN respectively, as it was evident 

in the graphs 6.24 and 6.25. In the test with larger contact bond strength, the failure stress 

point has not been reached in the range of the graph. 

 

 

 

Figure 6.22 Axial deviatoric stress [KPa] and confining stress [KPa] vs. axial strain for 

bonded granular material with contact-bond strength of 0.05 MN. 
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Figure 6.23 Axial deviatoric stress [KPa] and confining stress [KPa] vs. axial strain for 

bonded granular material with contact-bond strength of 0.1 MN. 

Figure 6.24 Volumetric strain vs. axial strain for bonded material with contact-bond 

strength of 0.05 MN 
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The Poisson’s ratio and Young’s modulus values were very close to those of 

polyethylene, hence, the ascribed stiffness values would be accurate to continue with. 

 

 

 

 

 

 

 

 

 

 

Figure 6.25 Volumetric strain vs. axial strain for bonded material with contact-bond 

strength of 0.1 MN 
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Chapter-7 

 

DISSCUSSIONS 

 

7.1 Specific Discussions 

7.1.1 Modeling 

A goal of this study was to f determine the optimum location of level-sensing devices (in 

such a way that with minimum number of installed sensors, the most accurate volume 

measurement of the bulk material could be achieved), using DEM simulation models as 

case study. 

Another objective for this study was to investigate the feasibility of finding out the error 

value of remaining granular material volume in silo after some discharge (so that a more 

accurate inventory Figure can be read at any point in time), again, using DEM simulation 

models. This thesis contrasts the volume accuracy incurred between when measured with 

only one or two level sensors with the accuracy when several level sensing devices were 

deployed . 

Once several surface levels were determined during different stages of discharge, the 

results were then compared to values when only one or two point levels were used. The 

volume of the material within the silo was calculated according to the volume formula for 

cylinder (V=πr
2
h) and, the height at any point was substituted in the formula as 

arithmetic average of measured levels. The more measurement points that was utilized, 
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the more accurate the volume calculation was expected be because the surface contour of 

the material was inconsistent, hence unequal levels. 

 

7.1.2 Simulation Models 

7.1.2.1 Model 1 (polyethylene plastic pellets, side discharge) 

For the center discharge of polyethylene plastic grains, as the graphs revealed, the 

velocity of particles near the free surface was larger at the initial stages. This trend 

changed after a considerable time passed so that all the particles more or less moved 

down with similar vertical velocities. This stage implies that a steady-state condition had 

been reached. 

Moreover, once one studied the contour of the material throughout the simulation time, 

one noticed the bulk material takes the V shape and the valley part of it corresponds to the 

vicinity of the exit port located almost right in the middle of the system at the bottom. 

Axial displacement of particles in X and Y directions tended to show different patterns 

depending on the location of the particles. As the particles advanced towards the middle 

axis in the axial direction, the displacement values also increased (since as the proceeded, 

most of the particles find their way towards the exited at different levels). Later, most of 

the particles showed very large displacement values, implying their exit in different axial 

direction (positive and negative coordinates). By inspecting the vertical velocities of 

some particles at different locations, one can easily deduce that by time, these values 
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increased sharply in the negative direction. As the particles descended, their vertical 

speeds increase logarithmically.  

In the same way, by following X and Y axial velocities, one can observe a series of 

steadily fluctuating values all through the way, with only partial disturbances at the 

beginning of discharge. 

The axial forces tolerated by cylindrical walls were also showing constant pattern, with 

values fluctuating around zero, however, at points along the downstream, some 

unexplainable sharp fluctuation in force values were experienced. This incident, 

happening well after discharge process had begun, could not be accounted for in this 

study. One might attribute the increase in force values to the release of locked-in stresses 

between packed particle groups and the resulting energy upon release, could increase the 

system’s vibration that also triggers more disturbances. Visual comparison between 

laboratory discharge photographs with simulation screen captures, at specific time slots 

implied the accuracy of the numerical model to some degree. 

As the particles approach to the central axis of the cylindrical bin, their vertical velocities 

increased, regardless of the level of the region the particle was located previously. The 

velocity shifts could undermine the technique of locating the level sensing devices farther 

from central axis, since such sensor placement may not be useful as previously was 

believed. 

In the volume measurement section, the discrepancy between 18-point and 2-point 

measurements (points located at 1/6 of the diameter from side walls) was about 1 percent 

(19 vs. 20 percent) through the whole discharge period. The reliability of 2-point 
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measurement (at 1/6D) results were better than those of multiple point measurement 

method for center discharge, because the former was more or less the only viable option 

in industry. However the calibrated numerical model results indicate a 9 percent 

difference between these two methods (10 vs. 19 percent), so it was unclear from this 

study whether or not opting out multiple point measurement method would be a wise 

choice. 

7.1.2.2 Model 2 (polyethylene plastic pellets, side discharge) 

For the side discharge of the polyethylene plastic grains, initially the velocity of particles 

at the surface region of the bulk was higher than it was at the rest as it was the case for 

center discharge. However, after some time the steady-state discharge dominates the flow 

process, hence the similar vertical velocities for all particles. 

Vertical velocity of particles sharply increased when X was 0.32 meters and Y was 0.8 

meters. The former increase exactly corresponds to the location of the discharge point at 

the right, as opposed to the -0.03 and 0.05 meters which roughly were in the proximity of 

central axis. This sudden increase in velocity could be attributed to release of kinetic 

energy when aggregated particles collide with one another, and the amount of energy was 

proportional to the coefficient of restitution of the plastic particles. 

The latter charts continued to study the effect of vertical level of specific particles on 

their velocities in the same perpendicular direction. The results were that, some particles 

maintained rather constant values while descending, whereas other particles velocities 

logarithmically increased while discharging, and later the values remained constant until 

the rest of simulation which also could be a sign of their departing the system. 
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Vertical velocity of particles generally sharply accelerated in gravity force direction after 

a couple of hundreds of timesteps, as the particles decreased altitude. These were also 

investigated comprehensively in graphical formats. 

Observing the values for mean unbalanced and mean contact forces were of great 

importance prior to initiating a discharge process, since before any dynamic analysis, the 

particles system should arrive at a balanced state (with virtually zero locked-in stress 

values) so that no interference between these forces with dynamic analysis of the system 

could be guaranteed.  

To this end, these forces were monitored carefully for the model and their pattern indicate 

decreasing values until the values approach zero and then maintain a negligible value 

until the end of simulation. 

Likewise, axial forces in side discharge model first reached to a peak value in the 

beginning of discharge process, but later decreased to a constant non-zero value until the 

end of discharge process. 

Concerning volume measurement validation of simulation results, the difference between 

18-point and 2-point measurements (points located at 1/6 of the diameter from side walls) 

was about 4.5 percent (8 vs. 12.49 percent) for the whole discharge time. The calibrated 

numerical model however, indicates an error of 2.42 percent (8 versus 10.42 percent). 

7.1.2.3 Model 3 (corn discharge, center discharge) 

For the central discharge of corn kernels with an initial porosity of 50 percent, a similar 

series of analyses was performed as for the plastic grain discharge simulations. 
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As it was presented in the former chapter, since the corn particles were considerably 

larger than plastic grains, the contact forces between them were larger. This fact was 

graphically apparent in the simulation screen shots provided in the former chapter. 

Vertical velocities versus axial positions indicate a constantly fluctuating values with 

small amplitude and therefore, velocity values were independent of axial position of corn 

grains until they approached above (and around) central point. At the central axle region, 

the velocities sharply increase. With regards to the vertical velocity relationship with the 

altitude, it was observed that the velocity sharply increase as the particles descended, a 

very similar case to those of the polyethylene plastic grains. 

Vertical forces initially start fluctuating by large amplitude but later on, as the system 

approached a steady-state discharge process, the oscillation in force values decreases to 

near zero value as the vertical unbalanced forces cancel out one another. The same 

behavioral pattern was observable in mean unbalanced and mean contact forces among 

particles. 

With regards to volume measurement validation, the discrepancy between 18-point to 2-

point measurements (points located at 1/6 of the diameter from side walls) was about 

0.50 percent (10 vs. 10.5 percent) through the whole discharge process. As for the 

calibrated model, the error actually increased about negative 4.52 percent (10 vs. 5.48 

percent). 

7.2 Laboratory Experiment for Validation 

Laboratory discharge processes were performed for three models and then these results 

were compared to numerical models. The physical silo model in the laboratory results 
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were scaled up for the comparison purposes (cylindrical geometry with the same aspect 

ratio of the numerical models). One important measurement process was performed on 

the point levels located roughly afar the side walls about 1/6 of the silo diameter. These 

locations typically are used in grain storage facilities such as ethanol plants. 

In large industrial silos usually one or two measurement devices (i.e. plumb-bob, laser) 

were mounted at this special distance from bin side walls. This location was unique since 

when the initial compaction of the material in silo had a cone-up shape, the error quantity 

decreases because of cancelling out of void volume values with horizontal leftover 

volumes in the side (proof of this fact is very straightforward). A schematic of a level 

sensing device and its location above with the bin was given in Figure 7.1 

 

 

 

For the abovementioned reasons, the tests were specifically performed at those special 

locations (left or right with respect to central axis), in order to find out whether this 

practice was accurate in estimating the volume of grains in silos. As the results indicated, 

Figure 7.1 Level sensor installed at 1/6 of the bin 

diameter. 



122 

 

this procedure improved accuracy of reading slightly when compared to single point 

measurement method. 

The chief rationale of this research were investigating the flow pattern of granular 

material in silo, and estimating the volume of bulk material inside at any point by, while 

taking into account the nonlinear force structure between them. The nonlinear and 

somewhat random distribution of particles on surface, and also the resulting amorphous 

contours formed on the free surface were the main factors preventing more accurate 

volume measurements from being calculated. 

One general hypothesis that, particles closer to the discharge point accelerate towards exit 

more rapidly than do particles at side regions, was shown to be true in this study. 

 Large discrepancies were not incurred by industry operations who most commonly settle 

for the single or double point measurements in order to estimate the remaining granular 

bulk in very large silos (a percentage discrepancy around 5.0 to 6.5 if the simulation 

represents the condition as close to reality as possible). The issue arises most of the time 

in industry was that in silos with diameters as large as 100 feet, the error values amount 

to much larger discrepancies in volume, resulting in much heftier inventory valuation 

errors. 

The symmetrical geometry of cylindrical bins provides valuable advantage when 

affording multiple point measurements in terms of time, personnel, or equipment in 

industry, is not feasible. With respect to the type of grains in a production facility, the 

error amount in auditing can change as well. In the present study as the discharge rate 

model for corn particle was more predictive than were those for polyethylene plastic 
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grains. Also, the average error value in single and 2 (both types), and 3 point 

measurements for corn discharge was less than those for plastic grains, while for multiple 

point measurements, the value of error was the least in plastic grain simulation. As a 

result, the method of volume measurements in silos should be customized to the type of 

grains to be or discharged. 

As for different types of discharge, side or center, the results in this case showed that on 

average, center discharge was more predictable than side discharge (error % of 12.93 vs. 

16.60, respectively). Consequently, one might as well contend that side discharge process 

in industries should be practiced less frequently, if not avoided completely. 

Finally, in the adjusted models, the results appeared to match more closely with those of 

the laboratory and while some improved results which was the result of progressive 

calibration were experienced. Rather than selecting particles’ mechanical properties 

based on numerical Triaxial test (which was performed for the first runs), the second 

rounds’ parameters were selected purely based on the response of physical discharge 

model, so that the new simulation more closely represent the actual process. The question 

of which model is the most predictive for the large industrial silo discharge processes, is 

hard to answer within the scope of this study, since the dimension factor must act a 

governing part in this case. 

Regarding the optimum locations, and the number of level sensing devices, it was 

identified in this study that the commonly practiced method of placing two sensors at the 

distance from side walls of exactly 1/6 of diameter is sufficient if the error values around 

10 percent would be tolerated by the management. However, as explained earlier, a more 
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thorough experimental design, tackling the effects of every factor contributing to the 

measurement error increase, can be carried out for getting more conclusive results. 

 

7.3 Limitations 

Some of the constraints faced in this study might have been overcome by holding 

important assumptions while other factors still can be regarded as a foundation for 

inaccuracies or even impediments. A couple of possibly important factors which might 

have affected the process of obtaining more accurate results for this study are listed 

below. 

1. One issue is the time, as well as computationally prohibitive nature of DEM; by 

using a personal computer with a fair processing speed / memory, to simulate 

particle flow in a silo model with a diameter of 1.6 meters and a height of 1 meter, 

one can expect to get results in two weeks for each model (complete discharge). 

Modeling a silo with real-life dimensions can take half a dozen months per model 

if an average computer is being used for it; thus, more accurate models require 

much more powerful computers with parallel processing capabilities. 

 

2. In the physical models which were used for the validation/ verification purposes, 

the proportion of particles dimension to the silo dimension is much larger than it 

is in real-life industrial silos. Even in the numerical model for polyethylene plastic 

grains, since the dimensions were larger than those of the physical one, the exact 
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same ratio is not maintained albeit the scaling factor were used in order to 

decrease this difference. 

 

 

3. Real industrial silos which are used for grain storage are difficult to see inside 

them because of several factors including dust, height, lack of light, and lack of 

accessible windows among other things. Most of the silos during the time this 

research was being developed, were only partially full (due to the harvest season), 

and also getting permission to climb on a very tall silo was a challenge, so it was 

not practical to include a full-size silo discharge process results in our study. 

 

4. Nonlinear nature of bulk material behavior when stocked or in flow makes a more 

accurate study of it less practical. Particles form a random structure at any given 

time and a slightest disturbance makes them rearrange in a totally different 

random shape. One of the few non-random shapes that bulk material can take is 

the so-called hill with a specific angle of repose which is related to friction 

coefficient of particles. Other than that, bulk materials neither flow like liquid, nor 

have specific shapes like solids. Consequently, along with DEM, complicated 

molecular dynamics research application should be performed at the same time, 

so that a better understanding of relationships between arbitrary forces and the 

shape of bulk material either at flow, or stagnant, could be reached. 
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5. For the reason specified in part 4, one needs to investigate the effect of size in 

simulating the discharge of bulk matter from silos, and in that case the result of 

the models presented in this paper might show some dissimilarity with those of 

the larger, more complex models. 

 

6. The shape of corn kernels is not a completely round sphere, as was represented in 

the numerical model earlier, rather, grains have a V (or tear-drop) shape. This 

issue could have been solved by using clumps or super-particles by bonding two 

or more particles. In this study, nonetheless, this design was not constructed as the 

version of software availability for this paper lacked this feature.  

 

7.4 Future Work and Extension /Recommendations 

Obviously a much larger numerical model could be constructed using computers with 

high computational capacity, or with ones’ with parallel processing capabilities. In doing 

so, more predictive models could be produced. The ratio of granular particles’ 

dimensions to silo dimensions could be maintained more closely in this model. 

The experiments could be carried out using various types of material, so that an 

experimental design set could be constructed and different factors influence on discharge 

rate and pattern could be studies one at a time with this method. 

The granular particles could be represented as clumps, as explained earlier, so that an 

enhanced contact force prediction and thus improved volume measurements might be 

achieved. 
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For more accurate volume estimation, various speed sensors could be installed at surface 

of bulk material at different locations on silo and, following the discharge, the log file of 

sensor signals can be studied to see if there is a connection between higher axial or 

vertical speeds of particles and, the rate with which these particles descent towards 

discharge point; If there is a strong correlation then the availability number of level-

sensing devices could be installed exactly above those region with higher velocity. 

Additionally, as explained earlier, after some discharge process, the remaining volume of 

the bulk material could be determined easily by linear interpolation of the points located 

between highest and lowest values for all the models. This procedure would require a 

computer program to construct an algorithm to systematically estimate the curved surface 

topographies linearly.  

Lastly, for a more precise outcome, other external factors such as, temperature, moisture 

content of grains, dryness, and so on, should be taken into account, either directly in the 

model or, by performing subsequent experimental designs. 
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Appendix-A 

DISTINCT ELEMENT METHOD (DEM) 

 

A.1 General Description  

There are two major approaches for the analysis of behavior of granular particles in 

micro-structure level: continuum and discrete. 

Continuum analysis of granular materials is very difficult because the calibration of a 

constitutive model includes lots of material constants without clear physical meaning. 

The discrete approach has an exceptional advantage in identifying micromechanics of 

particulate matter by modeling these grains as packed assemblies of discrete constituents 

since “the particle arrangement can be modeled explicitly and the material constants have 

clear physical meaning” (Fu, 2005). 

Substantial attempts were done in order to define the material parameters for DEM and 

FEM models so that making logical evaluations between the two methods to be practical 

(Rotter et al., 1998). 

Discrete element method first was applied for the purpose of addressing problems in 

mechanics of rock by Cundall and Stack in 1979. In DEM, the interaction amongst 

particles is considered as “a dynamic process that achieves a static equilibrium when the 
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internal forces are balanced” (Mani et al., 2003). This procedure is an explicit numerical 

method proposed to serve as a model of dynamic behavior of particle-particle or, particle-

walls interactions, if these particles are confined in some kind of storage bin.  

A complete nonlinear and dynamic behavior of distinct particles, interacting with one 

another, could be captured using numerical method of DEM. 

DEM  has  provided  a numerical  means  for analyzing  the  progressive  movements  

and interactions  of  bodies  in  granular  assemblies.  Its algorithm applies Newton’s 

second law to each particle within the system. The continual movement of  each  body  

results  from  the  non-equilibrium  of different  forces  exerted  on  it.  DEM  explicitly 

models  the  dynamic  motion  and  mechanical interaction  of  each  body  at  discrete  

points  in  time, with each point being termed as a time step. For this purpose, integration 

of equations of motion and contact laws is necessary (Nazeri et al., 2002). 

The force-displacement relationship principle applies for these particles if they are in a 

compressed state. DEM considers each and every particle as a rigid body with their 

movements and contacts being traced easily and the resulting forces caused by interaction 

of these elements with one another could be calculated. 

A DEM simulation operates under a time-marching algorithm in which the dynamic 

movements and non-linear behavior of the confined or flowing particles’ stresses are 

identified during each time-step. Selecting a stable time-step (could be a fraction of a 

second), is a key factor for the simulation’s fast convergence to a stable condition. In 

DEM spherical elements if used, are very efficient in terms of computational intensity 

and this also reduces the time dedicated for these types of simulation problems. Unlike 
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finite element method, the boundary conditions are not considered fixed in DEM and so, 

highly flexible boundary conditions could be applied when using the latter method. An 

important point here is that, a real representation of element shapes in DEM as far as 

limitations allow, is a determining factor in getting acceptable results. Most of the 

software programs dedicated for DEM simulations are equipped with automatic contact 

detection capability among particles which is a valuable feature in addressing such 

problems as granular flow in silo and many other similar models. When the particle 

shapes are irregular, however, this contact detection algorithm might not operate as 

efficient since, DEM would require much more time-steps to arrive at a solution. 

In the macroscopic level, we might observe friction, contact plasticity (recoil), and 

possible cohesion ,adhesion or electrostatic attraction between colliding spheres and in 

addition to those forces mentioned,  in a much larger scales, we might witness the gravity 

force attractions between particles because of the large mass they possess.( these forces 

usually are accounted for between large astronomical objects). Coulomb forces 

(electrostatic attraction or repulsion of particles having electric charge), Pauli repulsion (a 

quantum mechanical principle stating that no two identical  particles with half-

integer spin may occupy the same quantum state concurrently) and, Van Der Waals force 

(sum of the attracting or repulsive forces between molecules) could exist among the 

interacting particles. 

Generally, the continuum approach works at macroscopic level and, the distinct method 

works at micro level. In continuum approach, the macroscopic behavior of granular flow 

is described by the balance equations facilitated with constitutive relations and boundary 

conditions and, the most pressing issue with continuum methods lies in the determination 

http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Identical_particles
http://en.wikipedia.org/wiki/Spin_(physics)
http://en.wikipedia.org/wiki/Quantum_state
http://en.wikipedia.org/wiki/Molecule
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of suitable constitutive relations. However, in DEM approach, it is not necessary to frame 

global hypotheses such as steady-state, uniform constituency, and constitutive relations 

(Zhu and Yu, 2002).In Table A.1, the parameters generally used for discrete and 

continuum systems are contrasted for the equation of balance. 

 

 

In distinct element method, the particles are considered rigid bodies but minor overlap 

between them is allowed through a stiffness model. All the deformations, however, take 

place in the contacts. An illustration of contact forces as well as resultant deformations in 

a packed assembly of grains is given in Figure A.1. The thicker black lines is an 

indication of contact forces (hence stresses) are more dominant in those areas, as seen in 

the right Figure below. 

Table A.1 Quantities included in the balance equations of discrete and continuum system (Zhu, and Yu, 2002). 
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A.2 Boundary conditions in DEM Simulation 

True representation of particles’ boundary conditions is very important in modeling when 

their dynamics are influenced by shape and mechanical performance of the boundary. 

DEM can represent two forms of boundary condition namely, imaginary (periodic) and 

physical (real). Periodic boundaries allow a particle to pass across one side of the 

problem domain and automatically reappear on the opposite boundary in the same 

position and same initial velocity as the original particle; “they do not require any contact 

detection” (Mani, 2003). The use of periodic boundary conditions necessitates having 

information on initial conditions of particles (Kremmer and Favier, 2001). As mentioned 

earlier, the particles in DEM are considered as rigid bodies nevertheless, a small overlap 

between them is permitted at the contact points. For a granular material, since the stress 

changes with time (especially when the systems is slightly disturbed or vibrated), the 

system can be regarded as a semi-static one. Computations of contact forces and their 

related displacements in a packed or flowing assemblage are performed by tracing each 

and every particle movement and at the same time, solving associated Newtonian 

equation of motion. The governing formula is given by the equation 8.1 below. 

Figure A.1 Contact-only deformation and the contact forces between grains (Preh & Poisel, 2007). 



137 

 

M   + D   + R (x) =F            

   ,    and x are acceleration, velocity, and displacement vectors, respectively in the 

equation above. M is the displaced mass, D is the damping coefficient, R is the internal 

restoring force, and F is the external force. The damping coefficient helps dissipate 

kinetic energy. In most of the packages the time-step is adjusted automatically according 

to local conditions. It is important to mention that the velocities and accelerations within 

each time-step are presumed to be constant in DEM simulations. 

This time-step could be so small that during a single time-step, the disturbance in one 

particle cannot spread from one particle further than its instant neighbors, therefore, in 

the cumulative time-steps, the contact forces acting between all particles are established 

by their own interaction with the neighbor particle. 

“The calculations are performed alternatively by applying Newton’s second law to the 

particles and the force-displacement law to the contacts” (Fu, 2005). The first equation 

identifies the movement of each particle within each contact, while the second law 

updates the contact force resulting from relative movement in every contact.  

The main purpose of DEM is to sufficiently characterize a certain phenomenon; “it 

therefore requires the use of contact models that represent the characteristics of the 

simulated material as reliable as possible” (Montellano et al, 2011). However, DEM also 

needs that the values used for the numerical model to represent the properties of the real 

physical model. Consequently, the initial values which are acquired for the particles are 

established either by classic direct measurement, or by calibrating the existing simulation 

parameters so that, the behavior of the model represents that of the real situation. This 

Equation A.1  
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happens since there is no such method currently with which, the exact behavior of the 

granular matter to be replicated and thus, progressive calibration of the model based on 

observation of real model becomes important. A calculation cycle outline is given in 

Figure diagram A.2.   

As seen in the diagram, calculation cycles require the repeated application of the law of 

motion to each particle, and a constant updating of wall positions. At the start of each 

time-step, the set of contacts is updated from the known particle and wall positions. The 

force-displacement law is then applied to each contact to update the contact forces based 

on the relative motion between the two entities at the contact and the contact constitutive 

model. Subsequently, the law of motion is applied to each particle to update its velocity 

and position according to the resulting force and moment stemming from the contact 

forces, as well as other forces acting on the particle (Itasca, 1999). 

 

 

A.3 Force-Displacement Law 

This law describes the relative displacement between two particles at the contact and the 

acting contact force on these particles. In Figures A.3 and A.4, Particle-particle and 

Figure A.2 Calculation cycle in DEM simulation (Itasca, 2011) 
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particle-wall (or with any other fixed boundary in DEM) force diagrams are shown 

respectively. U
n
 is the overlap between the contacting entities, b, w and ni represent ball 

and wall and normal unit vector of the contact respectively. 

 

 

 

 

Where; 

Figure A.3 Ball-Ball contact (Itasca, 2011) 

Figure A.4 Ball-Wall contacts (Itasca, 

1999)  
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,         

 

Equation A.2 (Itasca, 1999) 

U
n
, which is the overlap, is the relative contact displacement in the normal direction is 

given by the expressions: 

 

 

 

And the position of the contact point is determined by expressions: 

 

 

Fi which is the forced between ball-ball or ball-wall could break down into a normal and 

shear component about the contact plane and, its normal component is given by 

expressions A.5 and A.6. 

,                       

Equation A.3 (Itasca, 1999) 

       Equation   A.4 (Itasca, 1999) 

Equation A.5 (a), and A.6 (b) (Itasca, 1999) 

(a) (b) 
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Fn and Fs indicate normal and shear components of F vector, respectively. Kn and Ks 

represent the normal and shear stiffness at the contact.  

In a commonly utilized linear model for two entities in contact, A and B, normal and 

shear stiffness values are given by Equation A.7. 

 

 

A.4 Simplified Hertz-Mindlin Model 

This model is a nonlinear contact formula between particles (unlike the more commonly 

used linear model). It was proposed by Mindlin in 1954. In order to work with this 

model, we need to provide the elastic constants, namely, shear modulus (G) and 

Poisson’s ratio (ν) as inputs. The normal secant and shear tangent stiffness for this model 

are given as follows: 

 

U
n
 is the overlap between spheres and   

  is the normal contact force. 

 

Equation A.8 (Itasca, 1999). 

 

 

………. 

Equation A.7 (Itasca, 1999) 
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A.5 Slip Model 

In most of the DEM programs, a limit is set to the shear force value of     
  in the 

following formula (8.9) on the spheres dependent on the normal force applied on the 

sphere and the coefficient of friction µ. 

 

Therefore, when shear force rises above the maximum shear force assigned for the 

contact, the updated shear force is redefined as the maximum shear force. 

 

A.6 Rolling 

When one desires to simulate the behavior of non-spherical particles with irregular 

shapes (for instance, sand grains), they should account for the resistance for free rolling 

that these particles show. We can observe an effect of rolling resistance in Figure A.5 .In 

the lack of spherically symmetric particle shapes. The ‘rolling resistance’ effect has to be 

added to the model later. A number of researchers (including Manchanda (2011)), felt a 

need to control the rolling of spherical particles to reproduce the stress-strain response 

observed in the simulation. However, rolling resistance models available in the literature 

today are very complicated to work with. 

The rolling resistance is therefore stemmed from the deformation of the rolling part or 

wall and, it is a function of material of particles or the ground. 

Equation A.9 (Itasca, 1999) 

Equation A.10 (Itasca, 1999) 
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A.7 Motion Law 

As discussed earlier, the motion of a rigid component is established by the resulting force 

and moment vectors working upon it.  This can be explained as the translational 

movement of a point on the component, along with rotational movement of the 

component itself. If we consider ωi and ω’I  as angular velocity and angular acceleration 

respectively, the equation of motion can be given by two vectors; one vector is the 

resulting force against the translational movement ,and the other one is the resulting 

moment of inertia of the rotational motion.  

This means that we can express the translational motion in the vector form of:  Fi = m (  - 

gi) where, Fi is the resultant some of all externally applied forces acting on the particle, m 

is the total mass of the particle, and gi is the body force acceleration vector (Itasca,1999). 

Equation of rotational motion for particles can be derived from Euler’s equation; Mi =I 

ω’i= (
 

 
 m R

2 
) ω’I , where I is the principal moment of inertia of the particle and R is the 

radius of the spherical particle.  

Most of the DEM software products operate on principle of spherical particle, so at this 

case, the calculation of moment of inertia for a spherical particle is adequate. Yet, many 

DEM packages let the users create their own super particles by combining two or more 

Figure A.5 Rolling resistance effect on particles (Preh and poisel, 2007). 
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spheres with different radius together so that they can sufficiently represent real world 

irregular particle shapes like wheat beans or rocks.  

The package which is used for this study, PFC3D (Particle Flow 3D, Itasca), employs a 

Clump Logic and then solves the equation of motion, as well as force-displacement 

equations based on this logic. Once particles are added to a super particle (clump), the 

components of the said clump act as a rigid single particle with different geometry. 

Moreover, once a clump is created, then the component particles never break apart, no 

matter how much stress is applied on them, either normal or shear. 

A.8 Time-step Establishment 

The calculated solutions in DEM are stable on condition that the selected time-step will 

not go above the critical time-step. Thus, in DEM some methods are applied in order to 

estimate a critical time-step in the beginning of every cycle. We know that for a mass-

spring system (in one dimension), with a mass of m, spring stiffness of k, the movement 

of the mass is governed by –k x= m   and the critical time-step of this system is given by: 

tcrit = 
 

 
, where   = 2   

 

 
 . By applying these equations on a multi-mass-spring system, 

the critical time-step for discrete element simulation is given by; 

 

Where, K
tran

 and K
rot

 are the translational and rotational stiffness, respectively. 

Equation A.11 (Itasca, 1999) 
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These are some basic parameters needed for performing a discrete element simulation. In 

the Figure A.6, for better understanding of the forces and moments at each contact 

between two spherical particles, a simple depiction is given. 

A.9 Damping System Model 

Generally in most software packages, damping is applied in a DEM model for the energy 

produced by particle movements to be dispersed in order for the system to achieve a 

stable state in a shorter time span. Damping force is added to the equation of motion in 

order to damp the accelerated movement. This is the case with the PFC3D package 

which is used for this simulation study. “Damping works by decreasing the kinetic energy 

a certain number of times each simulation cycle” (Fu, 2005). Damping force is regulated 

by α in such a way that; αdc =π Df  where, Df = 
     

    
      , αdc is damping coefficient, Df 

is a fraction of critical damping,       is the energy removed per cycle and,      is the 

mean kinetic energy at the instant of removal. 

 

 

 

Figure A.6 Illustration of contact forces between two 

spheres (Itasca, 1999). 
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A.10 Contact Models 

Most of the popular DEM simulation packages, including PFC, offer maximum of three 

models for the constitutive model contacts. These include; 

 A stiffness model (principle contact model), mostly linear or, simplified Hertz-

Mindlin 

 A slip (frictional) model (optional) 

 A bonding model (optional) 

 

A.10.1 Linear Contact Model 

This stiffness contact model associates the forces on the contact point and the resultant 

relative displacement in the normal and/ or shear directions. In Figure A.7, normal 

component of the stiffness model is illustrated. 

 

 

 

 

Figure A.7 Representation of normal component of 

stiffness as a spring-mass system in a linear contact 

model (Preh and Poisel, 2007). 
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The normal stiffness is secant stiffness because it corresponds to the normal force in 

normal displacement direction. 

 

Additionally, in Figure A.8, the shear element of the stiffness model is shown. 

 

 

 

The shear stiffness is a tangent stiffness, as it corresponds to the increase of shear force to 

the increase of shear displacement (partial displacement,  ) 

 

 

A.10.2 Bonds  

A contact bond can be imagined as a pair of elastic springs (or a point of glue), with 

constant normal and shear stiffness acting at the contact point. These two springs have 

specified shear and tensile normal strengths; “however, the existence of a contact bond 

eliminates the slip possibility” (Itasca, 2011). 

Equation A.12  Normal spring force with nonlinear stiffness 

(Preh and Poisel, 2007). 

 

Figure A.8 Representation of shear component of 

stiffness model as a spring-mass system in a linear 

contact model (Preh and Poisel, 2007). 

Equation A.13 Shear (tangential) spring force (Itasca, 1999). 
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Figure A.9 shows a contact bond added between two balls with different radii.  

 

 

 

 In contrast, parallel bond consists of material which behaves like cementation between 

two particles. This type of contact has a radius less than those of the contacting particles. 

Figure A.10 illustrates this type of bond. The radius of the cementation should be an 

input to the model. 

This bond adds extra material (deposited between two spheres in contact and, if normal 

and/ or shear stress surpass bond strength, it can break off. 

 

 

 

Figure A.9   This ‘glue like’ contact acts over a 

very small area in the contact point and does not 

show resistance to moment (Itasca, 1999). 

Figure A.10 This ‘rigid, cementation’ 

contact acts over large area in the contact 

point and shows resistance to moment as 

well (Itasca, 1999). 
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Appendix-B 

CODES USED FOR SIMULATION MODELS (PARTIAL) 

B.1 Models 1 and 2 (Center and side discharge of polyethylene plastic pellets) Codes 

 

plot create W_master1 

plot set back white cap size 25 

plot add wall blue  

plot add ball orange 

plot add axes black 

wall id=3 face (-.1,-.8,0) (.6,-.8,0) (.6,.8,0) (-.1,.8,0) kn=1e8 ks=1e5 

wall id=4 face (-.1,-.05,0) (-.1,-.9,0) (1.7,-.9,0) (1.7,-.05,0) kn=1e8  ks=1e5  

wall id=5 face (.9,-.8,0) (1.7,-.8,0) (1.7,.8,0) (.9,.8,0) kn=1e8  ks=1e5 

wall id=6 face (1.7,.05,0) (1.7,.9,0) (-.1,.9,0) (-.1,.05,0) kn=1e8  ks=1e5 

wall id=1 ty cy end1 .8 0 0 end2 .8 0 1  rad .8 .8 kn=1e8  edgecheck on 

wall id=2 face (-.1,.80,1) (1.60,.8,1)  (1.60,-.8,1) (-.1,-.80,1)  kn=1e8   

wall id=7 face (.3,-.17,0) (1.2,-.17,0) (1.2,.1,0) (.3,.1,0) kn=1e8 

def  ff_cylinder 
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    ff_cylinder = 0 

  _brad = fc_arg(0) 

  _bx   = fc_arg(1) 

  _by   = fc_arg(2) 

  _bz   = fc_arg(3) 

  _rad  = sqrt((_bx-.8)^2 + _by^2) 

  rad_cz =.8 

 height =1 

  if _rad + _brad > rad_cz  then 

     ff_cylinder = 1 

  end_if 

 end 

 def expand 

rad_cz  = .8 

  nrad_cz= -.8 

   d_cz    =1.6 

height=1 
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   command 

    gen id 1 150000  rad  0.008  0.012  x 0  d_cz   y  nrad_cz  rad_cz  z  0  height  & 

     filter  ff_cylinder  

   prop dens 1210  kn=.5e6  ks=.5e6 

   end_command  set gen_error off 

command 

 gen id 150001 300000 rad  0.008  0.012  x 0  d_cz   y  nrad_cz  rad_cz  z  0  height    & 

  filter  ff_cylinder  

prop dens 1210 kn=.5e6 ks=.5e6 

end_command  set gen_error off 

command  

gen id  300001  350000  rad  0.008  0.012  x 0  d_cz   y  nrad_cz  rad_cz  z  0  height  & 

  filter  ff_cylinder  

prop dens 1210 kn=.5e6 ks=.5e6 

end_command  set gen_error off 

end 

set gen_error off 
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expand 

def expand2 

rad_cz  = .8 

  nrad_cz= -.8 

   d_cz    =1.6 

height=1 

   command 

    gen id 350001 400000  rad  0.008  0.012  x 0  d_cz   y  nrad_cz  rad_cz  z  0  height  & 

     filter  ff_cylinder  

   prop dens 1210  kn=.5e6  ks=.5e6 

   end_command  set gen_error off 

command 

 gen id 400001 450000 rad  0.008  0.012  x 0  d_cz   y  nrad_cz  rad_cz  z  0  height    & 

  filter  ff_cylinder  

prop dens 1210 kn=.5e6 ks=.5e6 

end_command  set gen_error off 

command  
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gen id  450001 500000  rad  0.008  0.012  x 0  d_cz   y  nrad_cz  rad_cz  z  0  height  & 

  filter  ff_cylinder  

prop dens 1210 kn=.5e6 ks=.5e6 

end_command  set gen_error off 

end 

set gen_error off 

expand2 

pause 

hist ball xp  .8   .1   .5   id=4 

hist ball yp .8  .1  .5  id=5 

hist ball zp  .8 .1 .5  id=6 

hist ball zvel .8  .1 .5 id=7 

hist wall xforce id =1  

hist wall zforce id=6 

hist wall zforce id=7 

hist ball zvel .2 .05 .7 

hist ball zvel .8 .05 .7 
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hist ball zvel 1.3 .05 .7 

hist ball zvel 1.2 .09 .6 

set display history 1 

hist write 1 Table 1 

hist write 2 Table 2 

hist write 6 Table 3 

hist write 4 Table 4 

hist write 5 Table 5 

group clus1 range x 0 1.6 y -.8 .8 z 0 .2 

group clus2 range x 0 1.6 y -.8 .8 z .2 .4 

group clus3 range x 0 1.6 y -.8 .8 z .4 .6 

group clus4 range x 0 1.6 y -.8 .8 z .6 .8 

group clus5 range x 0 1.6 y -.8 .8 z .8 1 

 

hist ball s11 .7 -.1 .2 

hist ball s12 .7 -.1 .2 

hist diagnostic muf 
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hist energy body 

hist ball xp  .8   .1   .5   id=4 

hist ball yp .8  .1  .5  id=5 

hist ball zp  .8 .1 .5  id=6 

hist ball zvel .8  .1 .5 id=7 

hist wall xforce id =1  

hist wall zforce id=6 

set display history 1 

hist write 1 Table 1 

hist write 2 Table 2 

hist write 6 Table 3 

hist write 4 Table 4 

hist write 5 Table 5 

hist write 7 Table 6 

group clus1 range x 0 1.6 y -.8 .8 z 0 .2 

group clus2 range x 0 1.6 y -.8 .8 z .2 .4 

group clus3 range x 0 1.6 y -.8 .8 z .4 .6 
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group clus4 range x 0 1.6 y -.8 .8 z .6 .8 

group clus5 range x 0 1.6 y -.8 .8 z .8 1 

hist ball s11 .7 -.1 .2 

hist ball s12 .7 -.1 .2 

hist diagnostic muf 

hist energy body 

damp default local 0.0 

damp default viscous norm 0.4 

measure id 1 x .3 y -.5 z .4 radius .1 

measure id 2 x 1 y .1 z .5 radius .1 

measure id 3 x .8 y 0 z .1 radius .1 

measure id 4 x 0 y 0 z .3 radius .1 

measure id 5 x 1.2 y .2 z .6 radius .35 

hist id=8 measure poros id=2 

hist id=9 measure poros id=1 

hist id=10 measure poros id=3 

hist id=11 measure ed23 id=1 
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hist id=12 measure s12 id=3 

hist id=13 measure sliding_fraction id=2 

hist id=14 measure poros id=5 

hist ball zvel 1.6 .1 .5  id=138 

hist ball xvel .8  .1 .5 id=139 

hist ball yvel .8  .1 .5 id=140 

 

 

 

(Partial) History Codes 

hist ball zvel  0  .1  .5  id=141 

hist ball zvel  0 -.1  .5  id=142 

hist ball zvel 1  -.5   .5  id=143 

hist ball zvel 1  -.13 .5  id=144 

hist ball zvel .8  .1 .6  id=145 

hist ball zvel .8  .1 .6  id=146 

 



158 

 

hist ball zvel 1.6  .8  .6 id=147 

hist ball zvel 1.6  .8  .6 id=148 

hist ball zvel .3  .3  .3 id=149 

hist ball zvel .3  .8  .2 id=150 

hist ball zvel .75  0  .65 id=151 

hist ball zvel .75  0  .70 id=152 

hist ball zvel .75  0  .1 id=153 

hist ball zvel 0.1  0  .25 id=154 

hist ball zvel .1   0  .45 id=155 

hist ball zvel  0  -.06  .6 id=156 

hist ball xp  .88   .16   .29   id=157 

hist ball yp  .88  .16  .12  id=158 

hist ball xp  .88   .16   .59   id=159 

hist ball yp  1.5  -.16  .3   id=160 

hist ball xp  1.5   -.16   .4   id=161 

hist ball yp .6  .6  .3  id=162 

hist ball xp  .6  .6   .6   id=163 
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hist ball yp .6  .6  .5  id=164 

hist wall  xforce  id= 1 

hist wall yforce  id=1 

hist wall zforce  id=4 

hist wall zforce  id=1 

hist ball xp  .8   .1   .314   id=180 

hist ball yp .8   .1  .314  id=190 

hist ball zp  .8 .1 .314  id=200 

hist ball xp  .8   .11   .2   id=21 

hist ball yp .8   .11  .2  id=22 

hist ball zp  .8  .11 .2  id=23 

hist ball xp  .8   .1   .1   id=24 

hist ball yp .8   .1  .1   id=25 

hist ball zp  .8  .1 .1  id=26 

hist ball zp  1.2  0  .5  id=50 

hist ball xp  1.2   .1   .2   id=51 

hist ball yp  1.2   .1  .2  id=52……………………… Truncated 
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B.2 Model 3 (Corn discharge, center discharge)-Desired porosity 0.50 with radius 

multiplication method 

 

plot create W_master 

plot set back white cap size 25 

plot add wall blue  

plot add ball orange 

plot add axes black 

def ff_cylinder 

  ff_cylinder = 0 

  _brad = fc_arg(0) 

  _bx   = fc_arg(1) 

  _by   = fc_arg(2) 

  _bz   = fc_arg(3) 

  _rad  = sqrt((_bx-.8)^2 + _by^2) 

  rad_cy =.8 

 height =1 



161 

 

  if _rad + _brad > rad_cy then 

    ff_cylinder = 1 

  end_if 

 if _bz + _brad > 1  then 

     ff_cylinder=1 

      end_if 

end 

def expand 

  n_stiff = 4.5e5  

  s_stiff = 4.5e5   

  rad_cz  = .8 

  nrad_cz= -.8 

   d_cz    =1.6 

  height  = 1    

  tot_vol = height * pi * rad_cz^2.0 

  poros   = 0.50  ; desired final porosity 

  num     = 15000  ; number of particles 
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  rat     = 1.5    

  mult    = 1.6   ; initial radius multiplication factor 

  n0      = 1.0 - (1.0 - poros) / mult^3 

  r0      = (3.0*tot_vol*(1.0 - n0)/(4.0*pi*num))^(1.0/3.0) 

  rlo = 2.0 * r0 / (1.0 + rat) 

  rhi = rat * rlo 

 command 

    gen id 1 15000  rad  rlo  rhi  x 0  d_cz   y  nrad_cz  rad_cz  z  0  height  & 

     filter ff_cylinder  

   prop density 820 ks=s_stiff  kn=n_stiff 

   end_command  set gen_error off 

 get_poros 

  _mult = ((1.0 - poros) / (1.0 - pmeas))^(1.0/3.0) 

  command 

    initial radius mul _mult 

wall id=1 ty cy end1 .8 0 0 end2 .8 0 1  rad .8 .8 kn=1e8  edgecheck on 

wall id=2 face (-.1,.80,1) (1.60,.8,1)  (1.60,-.8,1) (-.1,-.80,1)  kn=1e8   
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wall id=3 face (-.1,-.8,0) (.774,-.8,0) (.774,.8,0) (-.1,.8,0) kn=1e8 

wall id=4 face (-.1,-.02,0) (-.1,-.8,0) (1.6,-.8,0) (1.6,-.02,0) kn=1e8   

wall id=5 face (.826,-.8,0) (1.6,-.8,0) (1.6,.8,0) (.826,.8,0) kn=1e8   

wall id=6 face (1.6,.02,0) (1.6,.8,0) (-.1,.8,0) (-.1,.02,0) kn=1e8  

wall id=7 face (.6,-.1,0) (1,-.1,0) (1,.1,0) (.6,.1,0) kn=1e8  

pause 

    cycle 2000  

    prop fric 0.3 

    wall prop friction .20 

  set grav 0 0 -9.81 

   cycle 1000  

  end_command 

end 

def get_poros 

  sum = 0.0 

  bp  = ball_head 

  loop while bp # null 
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    sum = sum + (4.0/3.0) * pi * b_rad(bp)^3 

    bp  = b_next(bp) 

  end_loop 

  pmeas = 1.0 - sum / tot_vol 

end 

set gen_error off 

expand 

get_poros 

print pmeas 

pause 

hist ball xp  .8   .1   .5   id=4 

hist ball yp .8  .1  .5  id=5 

hist ball zp  .8 .1 .5  id=6 

hist ball zvel .8  .1 .5 id=7 

hist wall xforce id =1  

hist wall zforce id=6 

set display history 1 
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hist write 1 Table 1 

hist write 2 Table 2 

hist write 6 Table 3 

hist write 4 Table 4 

hist write 5 Table 5 

hist write 7 Table 6 
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Appendix-C 

CODES FOR NUMERICAL TRIAXIAL TESTS (PARTIAL) 

 

SET random   ; reset random-number generator 

; ---------------------------------------------------- 

set gen_error off 

def make_walls  ; create walls: a cylinder and two plates 

  extend = 0.1 

  rad_cy = 0.5*width 

  w_stiff= 1e8 

 

  _z0 = -extend 

  _z1 = height*(1.0 + extend) 

  command 

    wall type cylinder id=1 kn=w_stiff end1 0.0 0.0 _z0 end2 0.0 0.0 _z1 & 

      rad rad_cy rad_cy 

  end_command 
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  _x0 = -rad_cy*(1.0 + extend) 

  _y0 = -rad_cy*(1.0 + extend) 

  _z0 = 0.0 

  _x1 =  rad_cy*(1.0 + extend) 

  _y1 = -rad_cy*(1.0 + extend) 

  _z1 = 0.0 

  _x2 =  rad_cy*(1.0 + extend) 

  _y2 =  rad_cy*(1.0 + extend) 

  _z2 = 0.0 

  _x3 = -rad_cy*(1.0 + extend) 

  _y3 =  rad_cy*(1.0 + extend) 

  _z3 = 0.0 

  command 

    wall id=5 kn=w_stiff face (_x0,_y0,_z0) (_x1,_y1,_z1) (_x2,_y2,_z2) & 

     (_x3,_y3,_z3) 

  end_command 
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  _x0 = -rad_cy*(1.0 + extend) 

  _y0 = -rad_cy*(1.0 + extend) 

  _z0 = height 

  _x1 = -rad_cy*(1.0 + extend) 

  _y1 =  rad_cy*(1.0 + extend) 

  _z1 = height 

  _x2 =  rad_cy*(1.0 + extend) 

  _y2 =  rad_cy*(1.0 + extend) 

  _z2 = height 

  _x3 =  rad_cy*(1.0 + extend) 

  _y3 = -rad_cy*(1.0 + extend) 

  _z3 = height 

  command 

    wall id=6 kn=w_stiff face (_x0,_y0,_z0) (_x1,_y1,_z1) (_x2,_y2,_z2) & 

     (_x3,_y3,_z3) 

  end_command 
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end 

; ---------------------------------------------------- 

def assemble  ; assemble sample 

  s_stiff=0.0 ; initial stiffnesses  

  n_stiff=1e8 

  tot_vol = height * pi * rad_cy^2.0 

  rbar    = 0.5 * (rlo + rhi) 

  num     = int((1.0 - poros) * tot_vol / (4.0 / 3.0 * pi * rbar^3)) 

  mult    = 1.6   ; initial radius multiplication factor 

  rlo_0   = rlo / mult 

  rhi_0   = rhi / mult 

 

  command 

    gen id=1,num rad=rlo_0,rhi_0 x=-1.0,1.0 y=-1.0,1.0 z=0.0,height & 

     filter ff_cylinder 

    prop dens=820 ks=s_stiff kn=n_stiff 

  end_command 
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  ii = out(string(num)+' particles were created') 

  sum = 0.0 ; get actual porosity 

  bp  = ball_head 

  loop while bp # null 

    sum = sum + 4.0 / 3.0 * pi * b_rad(bp)^3 

    bp  = b_next(bp) 

  end_loop 

  pmeas = 1.0 - sum / tot_vol 

  mult = ((1.0 - poros) / (1.0 - pmeas))^(1.0/3.0) 

  command 

    ini rad mul mult 

    cycle 1000 

    prop ks=1e8 fric 0.20 

    cycle 250 

  end_command 

end 

; ---------------------------------------------------- 
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def cws  ; change lateral wall stiffnesses 

  command 

    wall type cylinder id 1 kn=w_stiff 

  end_command 

end 

; ---------------------------------------------------- 

def ff_cylinder 

  ff_cylinder = 0 

  _brad = fc_arg(0) 

  _bx   = fc_arg(1) 

  _by   = fc_arg(2) 

  _bz   = fc_arg(3) 

  _rad  = sqrt(_bx^2 + _by^2) 

  if _rad + _brad > rad_cy then 

    ff_cylinder = 1 

  end_if 

end 
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; ---------------------------------------------------- 

macro zero 'ini xvel 0 yvel 0 zvel 0 xspin 0 yspin 0 zspin 0' 

 SET height=4 width=2 rlo=0.035 rhi=0.07 poros=0.40 

make_walls 

assemble 

 SET w_stiff= 1e8 ; make lateral wall stiffness=1/10 of ball stiffness 

cws 

cyc 500 

zero 

plot create assembly 

plot set back white 

plot set cap size 25 

plot set mag 1.25 

plot set rot 30 0 40 

plot add ball orange 

-------------------------------------------- 

def get_ss ; determine average stress and strain at walls 
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  new_rad = w_radend1(wadd1) 

  rdif  = new_rad - rad_cy 

  zdif  = w_z(wadd6) - w_z(wadd5) 

  new_height = height + zdif 

  wsrr  = -w_radfob(wadd1) / (new_height * 2.0 * pi * new_rad) 

  wszz  = 0.5*(w_zfob(wadd5) - w_zfob(wadd6)) / (pi * new_rad^2.0) 

  werr  = 2.0 * rdif / (rad_cy + new_rad) 

  wezz  = 2.0 * zdif / (height + new_height) 

  wevol = wezz + 2.0 * werr 

end 

; ---------------------------------------------------- 

def get_gain  

  alpha = 0.5  

  count = 0 

  avg_stiff = 0 

  cp    = contact_head  ; find avg. number of contacts on lateral walls 

  loop while cp # null 
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    if c_gobj2(cp) = wadd1 

      count = count + 1 

      avg_stiff = avg_stiff + c_kn(cp) 

    end_if 

    cp = c_next(cp) 

  end_loop 

  avg_stiff = avg_stiff / count 

  gr = alpha * height * pi * rad_cy * 2.0 / (avg_stiff * count * tdel) 

  count = 0 

  avg_stiff = 0 

  cp = contact_head      ; find avg. number of contacts on top/bottom walls 

  loop while cp # null 

    if c_gobj2(cp) = wadd5 

      count = count + 1 

      avg_stiff = avg_stiff + c_kn(cp) 

    end_if 

    if c_gobj2(cp) = wadd6 
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      count = count + 1 

      avg_stiff = avg_stiff + c_kn(cp) 

    end_if 

    cp = c_next(cp) 

  end_loop 

  ncount = count / 2.0 

  avg_stiff = avg_stiff / count 

  gz = alpha * pi * rad_cy^2.0/ (avg_stiff * ncount * tdel) 

end 

; ---------------------------------------------------- 

def servo 

  while_stepping 

  get_ss                  

  udr = gr * (wsrr - srrreq) 

  w_radvel(wadd1) = -udr 

  if z_servo = 1         ; switch stress servo on or off 

    udz = gz  * (wszz - szzreq) 
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    w_zvel(wadd5) = udz 

    w_zvel(wadd6) = -udz 

  end_if 

end 

; ---------------------------------------------------- 

def iterate 

  loop while 1 # 0 

    get_gain 

    if abs((wsrr - srrreq)/srrreq) < sig_tol then 

      if abs((wszz - szzreq)/szzreq) < sig_tol then 

        exit 

      end_if 

    end_if 

    command 

      cycle 100 

    end_command 

  end_loop 
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end 

; ---------------------------------------------------- 

def wall_addr 

  wadd1 = find_wall(1) 

  wadd5 = find_wall(5) 

  wadd6 = find_wall(6) 

end 

wall_addr 

zero 

 SET srrreq=-1e6 szzreq=-1e6 sig_tol=0.005 z_servo=1 

iterate  ; get all stresses to requested state 

sav tt_str.SAV 

return 

------------------------------------------------------ 

def set_ini ; set initial strains 

  wezz_0  = wezz 

  wevol_0 = wevol 
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end 

def conf                       

  devi  = wszz - wsrr         ; deviatoric stress 

  deax  = wezz - wezz_0       ; axial strain 

  devol = wevol - wevol_0     ; volumetric strain 

  conf  = wsrr                ; confining stress 

end 

; ---------------------------------------------------- 

def accel_platens 

  _niter = _nsteps / _nchunks 

  loop _chnk (1,_nchunks) 

    if _close = 1 then 

      _vel = _chnk*(_vfinal/_nchunks) 

    else 

      _vel = -_chnk*(_vfinal/_nchunks) 

    end_if 

    _mvel = -_vel 
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    command 

      wall id 5 zvel= _vel 

      wall id 6 zvel= _mvel 

      cycle _niter 

    end_command 

  end_loop 

end 

set_ini 

history id=1 conf 

history id=2 devi 

history id=3 deax 

history id=4 devol 

history id=11 werr 

history id=12 wezz 

SET hist_rep=50 

SET z_servo=0 

zero 
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sav tt_init.SAV ; ready for modulus and failure tests 

return 

res tt_init.sav 

prop   fric 10.0  s_bond=1e15  n_bond=1e15 

set _vfinal= 0.1  _nsteps= 2000  _nchunks= 80 

set _close = 1  ; load 

accel_platens 

cyc 2000 

zero 

set _close = 0  ; unload 

accel_platens 

cyc 2000 

save triax_5.SAV 

return 

res tt_init.sav 

prop fric=0.5 

set _vfinal= 0.1  _nsteps= 2000  _nchunks= 80 
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set _close= 1  ; load 

accel_platens 

cyc 40000 

zero 

set _close= 0  ; unload 

accel_platens 

cyc 4000 

zero 

set _close= 1  ; load 

accel_platens 

cyc 20000 

save triax_6.SAV 

return 

res tt_init.sav 

prop fric=0.3 n_bond=1e5 s_bond=0.5e8 

set _vfinal= 0.1  _nsteps= 2000  _nchunks= 80 

set _close= 1  ; load 
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accel_platens 

cyc 20000 

zero 

set _close= 0  ; unload 

accel_platens 

cyc 5000 

zero 

set _close= 1  ; load 

accel_platens 

cyc 40000 

save triax_7.SAV 

return 

res tt_init.sav 

prop fric=0.5 n_bond=1e5 s_bond=1e5 

set _vfinal= 0.1  _nsteps= 2000  _nchunks= 80 

set _close= 1  ; load 

accel_platens 
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cyc 30000 

zero 

set _close= 0  ; unload 

accel_platens 

cyc 12000 

zero 

set _close= 1  ; load 

accel_platens 

cyc 37000 

save triax_8.SAV 

return 
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