
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Dissertations, Theses, and Student Research
Papers in Mathematics Mathematics, Department of

Spring 3-14-2012

Combinatorics Using Computational Methods Combinatorics Using Computational Methods

Derrick Stolee
University of Nebraska-Lincoln, s-dstolee1@math.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathstudent

 Part of the Discrete Mathematics and Combinatorics Commons, Science and Mathematics Education

Commons, and the Theory and Algorithms Commons

Stolee, Derrick, "Combinatorics Using Computational Methods" (2012). Dissertations, Theses, and Student
Research Papers in Mathematics. 30.
https://digitalcommons.unl.edu/mathstudent/30

This Article is brought to you for free and open access by the Mathematics, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, and
Student Research Papers in Mathematics by an authorized administrator of DigitalCommons@University of Nebraska
- Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/mathstudent
https://digitalcommons.unl.edu/mathstudent
https://digitalcommons.unl.edu/mathematics
https://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent/30?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages

COMBINATORICS USING COMPUTATIONAL METHODS

by

Derrick Stolee

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Mathematics and Computer Science

Under the Supervision of Professor Stephen G. Hartke and Professor N. V.
Vinodchandran

Lincoln, Nebraska

May, 2012

COMBINATORICS USING COMPUTATIONAL METHODS

Derrick Stolee, Ph. D.

University of Nebraska, 2012

Advisers: S. G. Hartke and N. V. Vinodchandran

Computational combinatorics involves combining pure mathematics, algorithms,

and computational resources to solve problems in pure combinatorics. This thesis

provides a theoretical framework for combinatorial search, which is then applied

to several problems in combinatorics.

Chain Counting: Linek asked which numbers can be represented as the number

of chains in a width-two poset. By developing a method for counting chains in

posets generated from small configurations, constructions are found to represent

every number from five to 50 million, providing strong evidence that all numbers

are representable.

Ramsey Theory on the Integers: Van der Waerden’s Theorem states that for suf-

ficiently large n the numbers 1, 2, . . . , n cannot be r-colored while avoiding monochro-

matic arithmetic progressions. Finding the minimum n with this property is an

incredibly difficult problem. We develop methods to compute the minimum n as

well as optimal colorings when trying to avoid two generalizations of arithmetic

progressions.

p-Extremal Graphs: For an integer p ≥ 1, a p-extremal graph is a graph with

the maximum number of edges over all graphs of order n with p perfect match-

ings. We describe the structure of p-extremal graphs in terms of a finite number of

fundamental graphs and then discover these fundamental graphs using a compu-

tational search.

Uniquely Kr-Saturated Graphs: A graph G is uniquely Kr-saturated if G con-

tains no copy of Kr, but adding any missing edge to G creates exactly one copy of

Kr as a subgraph. Very little was known about uniquely Kr-saturated graphs, but

by adapting a technique from combinatorial optimization we found several new

examples of these graphs. One of these graphs led to the discovery of two new

infinite families of uniquely Kr-saturated graphs.

Some results in space-bounded computational complexity are also presented.

First, two nondeterministic complexity classes defined by the number and struc-

ture of computation paths are shown to be equal. Second, a log-space algorithm is

developed to solve reachability problems on directed graphs that are embedded in

surfaces of low genus.

iv

DEDICATION

To Katie, for everything.

v

Acknowledgements

They say it takes a village to raise a child. Imagine how many people it takes to

train a Ph.D.! Over the past five years, I have benefited from the solid support of

two departments, members of the research community, and my family and friends.

I want to thank you all for helping me arrive here at this milestone along my aca-

demic journey.

First and foremost, I thank my amazing wife, Katie, for her constant love and

support. It certainly was not easy to put up with me while I was stressed about

finishing, obsessed over a proof1, or constantly checked computations. Katie took

all this in stride, feeding me when I forgot to eat, pulling me away from work when

I was frustrated, and convincing me that it would all be OK in the end. I can only

hope that I can reciprocate this support as she tackles her own Ph.D. thesis in the

coming year.

My most sincere thanks go to my advisors Stephen and Vinod, for taking me in

as an over-eager graduate student and putting up with me for the past few years.

You have given me more opportunities than I can count and for that I am very

grateful.

Thanks to my committee members Jamie Radcliffe, Stephen Scott, and Christina

Falci. Jamie, thanks for always being available to answer a question whenever
1For example, the months of October, November, and December of 2011 were spent obessing

over the proof of Theorem 11.3, which fills 33 pages of this thesis.

vi

I stopped by. It’s a shame we didn’t have the chance to work together more.

Stephen (Scott), while you may not be aware of it, your description of the for-

ward/backward algorithm for hidden Markov models during your Pattern Recog-

nition course inspired much of the language used for the tabulation method in

Chapter 5. Christina, I hope your experience on my committee has given you a

nice view of what pure graph theory is all about.

Steve Goddard and Judy Walker both had significant impacts on my under-

graduate career, helped guide me towards graduate school, and mentored me

through my Ph.D. experience2. Steve, thanks for giving me my first research job,

which got me hooked even though I had no idea what I was doing. I’ll never for-

get how you patiently3 mentored me for my undergraduate thesis, and how that

changed my approach to completing this thesis. Judy, your combinatorics course

gave me the first taste of what “real” math was like and convinced me to pursue

graduate school in mathematics.

I also thank the faculty and staff at the Holland Computing Center, especially

David Swanson, Brian Bockleman, and Derek Weitzel for their extremely helpful

advice during the design, development, and execution of my software. Thanks to

the Holland Computing Center and the Open Science Grid for providing access

to significant computational resources, without which some of the results of this

thesis would have less impact4. Further, I apologize for that time I crashed the

Prairiefire supercomputer so badly the machines needed to be hard-rebooted5.

Thanks to Douglas B. West for allowing me to participate in the Combinatorics

Research Experience for Graduate Students (REGS) at the University of Illinois at

2I am also quite proud of being witness to both Steve and Judy’s transitions from humble asso-
ciate professors to full professors and chairs of their departments.

3I believe his first words after my defense were “I’m surprised you got this done.”
4If I have seen further it is by standing on the shoulders of giant robots.
5At least you have my executable available to test against your safeguards.

vii

Urbana-Champaign. The contents of Chapters 4 and 9 originated as collaborations

at REGS. Further, our collaboration provided me with a critical awareness of qual-

ity writing and that my writing leaves much to be desired.

To Michael Ferrara, who not only provides good problems but provides excel-

lent company6. Thanks for inviting me to Denver to work on some truly interesting

problems. I was flattered that you asked for my computational expertise towards

your “white whale” problem, and I was not surprised that you solved it without

my help.

To Paul S. Wenger, whose interests overlap with mine in too many ways to

count7. Thanks for letting me stay with you whenever I’m in town, and know that

you’re always welcome at my place. Also, thank you for telling me about unique

saturation, where after months of work we know a lot more about the problem,

but mostly we now know the problem is even more complicated than previously

thought (see Chapter 11).

Thanks to Eric Allender, David Mix Barrington, and Lance Fortnow, three lead-

ers of computational complexity, for treating a lowly, unproven graduate student

as a colleague and friend. Sometimes, theoretical computer science can feel like a

cutthroat and competetive research area, but you made me feel welcome. I plan to

emulate your attitude towards young researchers in the future.

Thanks to my good friend, Joe Geisbauer, for always being available to listen

to my problems, provide advice, and facilitate distraction (when appropriate). If

anyone asks how to succeed in graduate school while maintaining sanity and fo-

cusing on living life in the present-tense, I don’t have the answers but recommend

6Somehow, whenever Mike visited Lincoln, we ended up having a party at my house. Of course
the rule was “do math first, eat wings later.”

7If Paul and I are in the same town, we find a way to (1) go on a run, (2) do some math, and (3)
go out for a beer (and not necessarily in that order).

viii

they talk to Joe, who has the right idea. I must voice my enthusiasm for Joe’s most

recent work in applied duck shield research8.

Almost every UNL math graduate student who attended from 2007 to 2011

should probably thank Zahava Wilstein, and I am no exception. In addition to be-

ing a very fun officemate, Zahava was a social catalyst in the department: hosting

grad student parties, pursuing interactions with the quietest of grad students, and

being an all-around pleasant person.

To my officemate and academic younger brother, James Carraher, whose calm

and quiet demeanor reminds me that you don’t need to be outspoken to have an

impact. James is the kind of person that people pursue for help and advice, because

he has all the answers, all the patience, and all the humility.

Thanks to all my comrades-at-arms (fellow Mathematics and Computer Science

graduate students) that have made the graduate experience much more pleasant

than it could have been.

Finally, thanks to all of my collaborators on projects finished and unfinished,

written and unwritten, and published, submitted, in preparation, or to be fin-

ished another day: Pranav Anand, Chris Bourke, Jane Butterfield, Henry Escuadro,

Brady Garvin, Ralucca Gera, Ellen Gethner, Adam S. Jobson, Travis Johnston, An-

dré Kézdy, Elizabeth Kupin, Timothy D. LeSaulnier, Jared Nishikawa, Kevin G.

Milans, Andrew Ray, Ben Reiniger, Tyler Seacrest, Hannah (Kolb) Spinoza, Bren-

don Stanton, Raghunath Tewari, and Matthew Yancey.

8One of Joe’s research problems involved the integral
∫ 1

0 Du(x + shei)ds.

ix

GRANT INFORMATION

This work was supported in part by the University of Nebraska Presidential Fel-

lowship, the University of Nebraska Othmer Fellowship, a Nebraska EPSCoR First

Award, and National Science Foundation grants DMS-0354008, DMS-0914815, and

CCF-0916525.

x

Contents

Acknowledgements v

Contents x

List of Figures xx

List of Tables xxiii

List of Algorithms xxv

0 Introduction 1

I Fundamentals of Combinatorial Search 11

1 Graph Theory 12

1.1 Substructures . 13

1.2 Connectivity . 13

1.3 Matching Theory . 14

1.4 Extremal Graph Theory . 14

2 Automorphisms 16

2.1 Fundamental Theorems for Automorphism Groups of Graphs . . . 16

xi

2.2 Automorphism Groups of a Graph and a Vertex-Deleted Subgraph 22

2.2.1 Definitions and Basic Tools . 24

2.2.2 Deletion Relations with the Trivial Group 26

2.2.3 Deletion Relations Between Any Two Groups 28

2.2.4 Generalizations . 30

2.2.5 Discussion . 33

3 Combinatorial Search 35

3.1 An Illustrated Guide to Combinatorial Search 36

3.1.1 Labeled and Unlabeled Objects 36

3.1.2 Base Objects and Augmentations 37

3.1.3 Search as a Poset . 37

3.1.4 Algorithm Structure . 38

3.1.5 Sub-solutions and Pruning . 39

3.1.6 Number of Paths to Each Unlabeled Object 42

3.1.7 Count and Cost Tradeoff . 44

3.1.8 Partitioning and Parallelization 46

3.2 The TreeSearch Library . 47

3.2.1 Subtrees as Jobs . 48

3.2.2 Job Descriptions . 49

3.2.3 The TreeSearch Algorithm . 49

4 Chains of Width-2 Posets 52

4.1 Products and Powers of Two . 55

4.2 An Even Number of Chains . 56

4.3 Configurations and Parameterized Posets 58

4.3.1 Canonical Maximal Chains . 60

xii

4.4 Generating Configurations and Formulas 65

4.5 Evaluating Formulas . 67

4.5.1 Results . 70

5 Ramsey Theory on the Integers 72

5.1 Arithmetic Progressions and van der Waerden Numbers 73

5.1.1 Lower Bounds on Wr(k) . 74

5.1.2 Upper Bounds on Wr(k) . 74

5.2 Quasi-Arithmetic Progressions . 76

5.3 Pseudo-Arithmetic Progressions . 80

5.4 Exponential Lower Bounds . 80

5.5 PAP Numbers of High Diameter . 84

5.6 Search Algorithms . 88

5.6.1 Coloring [n] While Avoiding (k, d)-QAPs 88

5.6.2 Constraint Propagation . 89

5.6.3 Coloring [n] While Avoiding (k, d)-PAPs 90

5.6.4 Conditions and Implications for Propagation 91

5.7 Skew-Symmetric Colorings . 93

5.8 Discussion . 94

II Isomorph-Free Generation 97

6 Canonical Deletion 98

6.1 Objects, Augmentations, and Deletions 99

6.2 Augmentations and Orbits . 102

6.3 Canonical Labelings . 105

6.4 Canonical Deletions . 106

xiii

6.5 Efficiency Considerations . 110

6.6 Big Augmentations . 112

7 Ear Augmentations 116

7.1 The search space and ear augmentation 118

7.2 Augmenting by orbits . 120

7.3 Canonical deletion of ears . 121

7.4 Full implementation . 121

7.5 Generating all 2-connected graphs 123

8 The Edge-Reconstruction Conjecture 126

8.1 Background . 126

8.2 The Search Space . 128

8.3 Canonical deletion inRN . 130

8.3.1 Results . 131

9 Extremal Graphs with a Given Number of Perfect Matchings 133

9.1 The Excess is Positive . 137

9.2 Lovász’s Cathedral Theorem . 138

9.3 Extremal Graphs are Spires . 142

9.4 Extremal Chambers . 144

9.5 Graphs with an Odd Number of Vertices 149

9.6 Constructive Lower Bounds . 151

9.7 A Conjectured Upper Bound . 154

9.8 Exact Values for Small p . 155

9.9 Connection with 2-Connected Graphs 161

9.10 Searching for p-extremal elementary graphs 165

xiv

9.11 Structure of Free Subgraphs . 168

9.12 The Evolution of Barriers . 176

9.13 Bounding the maximum reachable excess 182

9.14 Results and Data . 187

9.15 Discussion . 193

III Orbital Branching 196

10 Orbital Branching 197

10.1 Variable Assignments . 198

10.2 Constraint Symmetries . 202

10.3 Orbital Branching . 204

10.4 Branching Rules . 207

10.5 Orbital Branching and Canonical Deletion 208

11 Uniquely Kr-Saturated Graphs 211

11.1 Summary of results . 213

11.1.1 Computational method . 214

11.1.2 New r-primitive graphs . 215

11.1.3 Algebraic Constructions . 215

11.2 Orbital branching using custom augmentations 218

11.2.1 Orbital Branching . 219

11.2.2 Custom augmentations . 220

11.2.3 Implementation, Timing, and Results 224

11.3 Infinite families of r-primitive graphs using Cayley graphs 225

11.3.1 Two Generators . 226

11.3.2 Three Generators . 228

xv

11.4 Sporadic Constructions . 261

11.4.1 Uniquely K4-Saturated Graphs 262

11.4.2 Uniquely K5-Saturated Graphs 264

11.4.3 Uniquely K6-Saturated Graphs 264

IV Reachability Problems in Space-Bounded Complexity 269

12 Space-Bounded Computational Complexity 270

12.1 Turing Machines . 270

12.2 Complexity Classes . 273

12.2.1 Time-Bounded Complexity Classes 273

12.2.2 Space-Bounded Complexity Classes 274

12.2.3 Space-bounded Reductions . 276

12.2.4 Configurations . 277

12.3 Relations . 279

12.4 The Big Results . 279

13 ReachUL = ReachFewL 281

13.1 Necessary Lemmas . 282

13.1.1 Oracle Machines . 283

13.1.2 Converting from Few Graphs to Distance Isolated Graphs . . 285

13.1.3 Converting Distance Isolated Graphs to Unique Graphs 286

13.2 ReachFewL = ReachUL . 287

13.3 Discussion . 288

14 Reachability in Surface-Embedded Acyclic Graphs 290

14.0.1 Outline . 295

xvi

14.0.2 Notation . 296

14.1 Topological Embeddings and Algorithms 297

14.2 Forest Decomposition . 299

14.2.1 Paths within a single tree . 301

14.2.2 Reachability within a single tree 303

14.3 Topological Equivalence . 309

14.4 Global Patterns . 314

14.4.1 Full Patterns . 317

14.4.2 Nesting Patterns . 319

14.5 The Pattern Graph . 322

14.6 Discussion . 327

Bibliography 329

A Symbols 345

B TreeSearch User Guide 346

B.1 Introduction . 346

B.1.1 Acquiring TreeSearch . 347

B.2 Strategy . 347

B.2.1 Subtrees as Jobs . 348

B.2.2 Job Descriptions . 349

B.2.3 Customization . 349

B.3 Integration with TreeSearch . 350

B.3.1 Virtual Functions . 350

B.3.2 Helper Methods . 354

B.3.3 Compilation . 354

xvii

B.4 Execution and Job Management . 355

B.4.1 Management Scripts . 355

B.4.1.1 Expanding jobs before a run 355

B.4.1.2 Collecting data after a run 356

B.5 Example Application . 356

B.6 Example Workflow . 357

B.6.1 Create the Submission Template 357

B.6.2 Generate initial jobs . 357

B.6.3 Compact data . 358

B.6.4 Evaluate Number of Jobs . 358

B.6.5 Submit Script . 359

B.7 Summary . 360

B.8 Acknowledgements . 360

C ChainCounting User Guide 361

C.1 Acquiring ChainCounting . 361

C.1.1 Acquiring Necessary Libraries 361

C.1.2 Full Directory Structure . 362

C.2 Execution . 362

D Progressions User Guide 363

D.1 Acquiring Progressions . 363

D.1.1 Acquiring Necessary Libraries 363

D.1.2 Full Directory Structure . 364

D.2 Execution . 364

D.2.1 Progessions-Specific Arguments 364

xviii

E EarSearch User Guide 366

E.1 Introduction . 366

E.2 Acquiring EarSearch . 366

E.2.1 Acquiring Necessary Libraries 366

E.2.2 Full Directory Structure . 367

E.3 Data Management . 368

E.3.1 Graphs . 368

E.3.2 Augmentations and Labels . 368

E.3.3 EarNode . 368

E.4 Pruning . 369

E.5 Canonical Deletion . 370

E.6 Solutions . 370

E.7 Example 0: 2-Connected Graphs . 370

E.8 Example 1: Unique Saturation . 371

E.8.1 Application-Specific Data . 371

E.9 Example 2: Edge Reconstruction . 372

E.9.1 Application-Specific Data . 373

E.10 Example 3: p-Extremal Graphs . 374

E.10.1 Application-Specific Data . 376

E.10.2 Perfect Matching Algorithms 376

F Saturation User Guide 379

F.1 Acquiring Saturation . 379

F.1.1 Acquiring Necessary Libraries 379

F.1.2 Full Directory Structure . 380

F.2 Execution . 381

xix

F.2.1 saturation.exe . 381

F.2.2 cayley.exe . 382

F.3 TreeSearch Arguments . 383

xx

List of Figures

2.1 Converting a labeled directed edge to an undirected unlabeled gadget. 25

2.2 The vertex deletion construction. 29

2.3 An example construction for Theorem 2.21 with π = 213. 31

2.4 Deleting vertices in a construction for Theorem 2.21 with π = 213. . . . 32

2.5 Graph G with Aut(G) ∼= Z2 and Aut(G− v) ∼= Z3. 34

3.1 The search space as a poset. 38

3.2 Sub-solutions and pruning space. 40

3.3 Ideal and non-ideal paths in the search space. 42

3.4 An interval of partial solutions. 43

3.5 Search in a tree-like poset. 44

3.6 Balancing number of nodes and cost per node. 45

3.7 Partitioning the search space and parallelizing. 46

3.8 A partial job description. 48

4.1 Examples of posets with few cover edges. 54

4.2 A configuration of order four and a parameterized poset. 60

4.3 Posets from Figure 4.1 with parameters listed. 61

4.4 The five maximal chains of C4 other than L and R. 66

xxi

6.1 Augmentations A(X) and deletions D(X). 101

6.2 Graph augmentations and deletions. 102

6.3 Orbits, Augmentations, and Deletions. 104

6.4 Internally disjoint augmentation paths. 105

6.5 The canonical deletion tree. 115

7.1 An ear ε in a 2-connected graph G where G− ε is separable. 119

9.1 Two graphs with eight perfect matchings 136

9.2 The graph B(6) . 138

9.3 An example cathedral construction. 140

9.4 The saturated graphs from Figure 9.1 and their cathedral structures. . . 141

9.5 The smallest p-extremal configurations, for 2 ≤ p ≤ 10 157

9.6 Lower bounds on cp and conjectured upper bound Cp. 161

9.7 The p-extremal elementary graphs where 1 ≤ p ≤ 27. 191

9.8 The p-extremal elementary graphs with 1 ≤ p ≤ 10 [38, 63]. 191

10.1 Comparing Branch-and-Bound with Orbital Branching. 205

11.1 Visual description of the branching process. 223

11.2 Key to later figures . 229

11.3 Observation 11.8 and a 2-block Bj. 229

11.4 Observation 11.9 and a block Bk. 230

11.5 Observation 11.10 and a 4-block Bj. 231

11.6 The two-stage discharging method. 231

11.7 Claim 11.12, σ(Fk) = 3t + 3. 235

11.8 Claim 11.14.1, building P (k) and frames Fjk , Fj′k
. 243

11.9 Claim 11.14.1, Case 1.ii. 243

xxii

11.10 The blocks involved in the proof of Claim 11.14.2. 246

11.11 Claim 11.14.3, Case 1: |B`| = 4 and |Bi| = 2, shown with D ≥ 4. 250

11.12 Claim 11.14.3, Case 2: |B`| = 4 and |Bi| = 2, shown with D ≥ 4. 252

11.13 Claim 11.14.3, Case 3: |B`| = 4 and |Bi| = 4, shown with D ≥ 4, D′ ≥ 3. 253

11.14 Claim 11.14, Case 2. 260

11.15 Claim 11.14, Case 2.ii. 260

11.16 Uniquely K4-saturated graphs on 10–13 vertices. 263

11.17 Construction 11.21, G(A)
18 , is 4-primitive, 7-regular, on 18 vertices. 265

11.18 Construction 11.22, G(B)
18 , is 4-primitive, 7-regular, on 18 vertices. 265

11.19 Construction 11.23, G(A)
16 , is 5-primitive and irregular, on 16 vertices. . . 265

11.20 Construction 11.24, G(B)
16 , is 5-primitive, 9 regular, on 16 vertices. 267

11.21 Construction 11.25, G(A)
15 , is 6-primitive, 10 regular, on 15 vertices. . . . 267

11.22 Construction 11.26, G(B)
15 , is 6-primitive, 10 regular, on 15 vertices. . . . 268

11.23 Construction 11.27, G(C)
16 , is 6-primitive, 10 regular, on 16 vertices. . . . 268

14.1 Splitting G at a curve C. 298

14.2 An example execution of ReachLocal(x, y, R). 306

14.3 Reachable classes as in Lemma 14.27. 314

14.4 Entrance and exit of a pattern. 315

14.5 The edges used in the proof of Lemma 14.31 in an LXR pattern. 317

14.6 Most-interior edge for a nesting pattern. 321

14.7 Nesting patterns which are adjacent in the pattern graph. 323

B.1 A partial job description. 348

B.2 The conceptual operation of the doSearch() method. 351

B.3 The full operation of the doSearch() method. 352

xxiii

List of Tables

4.1 Number Nk of configurations with k cover edges, up to isomorphism. . . 67

4.2 Smallest non-representable numbers. 70

5.1 Known values and bounds for van der Waerden numbers, Wr(k). 73

5.2 Values and bounds on Q2
k−i(k). 78

5.3 Values and bounds on Q3
k−i(k) . 79

5.4 Values and bounds on Q4
k−i(k) . 79

5.5 Values and bounds on Q5
k−i(k) . 79

5.6 Values and bounds on P2
k−i(k). 81

5.7 Values and bounds on P3
k−i(k) . 81

5.8 Values and bounds on P4
k−i(k) . 82

5.9 Values and bounds on P5
k−i(k) . 82

5.10 Color-Assignment Rule . 91

5.11 QAP Backward Table Update . 92

5.12 QAP Forward Table Update . 92

5.13 Backward Domain Removal Rule . 92

5.14 QAP Backward Table Update . 92

5.15 QAP Forward Table Update . 92

5.16 Backward Domain Removal Rule . 92

xxiv

5.17 Forward/Backward Domain Removal Rule 93

5.18 Values. 95

7.1 Comparing gN and the time to generate GN. 124

7.2 Comparing gN,E and the time to generate GN,E. 125

8.1 Comparing |RN| and the time to checkRN. g(N) = 1 + blog2(N!)c. . . 132

9.1 Excess cp (at np), bound Np on extremal chambers. 155

9.2 New values of np and cp. Conjecture 9.41 states that cp ≤ Cp. 190

9.3 Time analysis of the search for varying p values. 190

10.1 List of example branching rules. 210

11.1 Newly discovered r-primitive graphs. 215

11.2 Cayley complement parameters for r-primitive graphs over Zn. 217

11.3 CPU Times for the uniquely Kr-saturated graph search. 224

14.1 Graph classes and space complexity of reachability. 327

14.2 Graph classes and time-space complexity. 328

A.1 Symbols . 345

B.1 List of virtual functions in the SearchManager class. 350

B.2 List of members in the SearchManager class. 351

xxv

List of Algorithms

3.1 CombinatorialSearch1(X) . 39

3.2 GraphSearch1(G) . 39

3.3 CombinatorialSearch2(X) . 41

3.4 GraphSearch2(G) . 41

3.5 DoSearch() . 51

4.1 EvaluateC(N, a, b, k, i, j) . 68

6.1 CanonicalDeletion(n, X) . 108

6.2 GraphCanonicalDeletion(n, G) . 109

7.1 DeletecF(G) . 122

7.2 SearchF (G, N) . 123

9.1 Search(H(i), N(i), p, c) . 188

9.2 Generate(p, c) . 189

10.1 BranchAndBoundP(x) . 202

10.2 OrbitalBranchingP(x) . 205

11.1 SaturatedSearch(n, r, T) . 222

13.1 ReachFewSearch(G, u, v) . 287

14.1 ReachLocal(x, y, d). 307

1

Chapter 0

Introduction

Computational Combinatorics involves blending pure mathematics, algorithms,

and computational resources to solve problems in in pure combinatorics by find-

ing examples and counterexamples, discovering conjectures, and proving theo-

rems. My main research goal is to fully investigate new interactions between the

theoretical side of pure mathematics and the practical side of algorithms and com-

putation in order to push the limits of knowledge in combinatorics.

The development and proliferation of computational methods will accelerate

the field of combinatorics. This is because using computational methods at every

step of the research process can help researchers quickly gain intuition on a prob-

lem. Further, thinking about problems algorithmically can lead to new theoretical

developments. This can take the form of conjectures that are found experimentally

and proven mathematically (for example, see Theorems 11.2 and 11.3 in Chap-

ter 11). More interestingly, an algorithmic perspective creates new problems whose

solutions may reveal something new and interesting for the original problem (for

example, see Theorem 9.65 and Lemma 9.74 in Chapter 9).

Previous computational efforts in combinatorics focused on generating objects

2

that appear frequently; the goal was to enumerate and examine many examples.

I extend the current computational techniques to be more effective in the case of

rare objects. These techniques address the fact that most combinatorial objects

are unlabeled, but all computer representations are labeled. The techniques either

attempt to reduce duplication of an isomorphism class or remove duplicates alto-

gether. Knowing which technique to use for a given problem requires experience

and experimentation. A black-box approach rarely suffices, so I further develop

each technique for the current problem. Using the algorithmic perspective, I prove

structural and extremal theorems of pure combinatorics which allows the algo-

rithm to examine fewer examples.

Combinatorial problems demonstrate some of the most general (and most dif-

ficult) types of symmetry. By developing computational methods to handle the

case of combinatorial objects, the techniques may also be effective in practical op-

timization problems where symmetry is present.

One part of this thesis presents results from space-bounded computational com-

plexity. Space-bounded complexity has some common features with computa-

tional combinatorics. When restricting to logarithmic space, the entire memory

can only contain a few pointers to vertices or edges of a larger graph. Thinking of

combinatorial search as a walk on a large graph (where the vertices are combina-

torial objects and edges correspond to augmentations), we see a connection. The

similarity ends there, since space-bounded complexity is not concerned with time

efficiency and algorithms frequently iterate over every possible vertex in order to

perform simple operations. The two main results in this thesis have very different

goals but have the common feature that the proofs greatly depend on techniques

from pure graph theory.

3

Contents of this Thesis

This thesis is split into four parts:

Part 1: Fundamentals of Combinatorial Search.

Part 2: Isomorph-Free Generation.

Part 3: Orbital Branching.

Part 4: Reachability Problems in Space-Bounded Complexity.

The first three parts deal with computational combinatorics. Part 1 includes

basic descriptions of graph theory, automorphisms of graphs, and a high-level de-

scription of combinatorial search. This part is finished by two chapters which de-

scribe two different combinatorial problems and the computational approach to

solve them.

These first two problems largely avoid the issue of isomorphism among com-

binatorial objects. Parts 2 and 3 discuss two techniques to deal with combinatorial

objects with large numbers of isomorphic duplicates.

Part 2 concerns isomorph-free generation, a technique to remove all but one

representative of an isomorphism class. This technique is then extended to a spe-

cific case of building graphs by ear augmentations. These ear augmentations are

used for two problems: verifying the Edge Reconstruction conjecture on 2-connected

graphs and generating p-extremal graphs. The latter problem requires a significant

portion of pure graph theory in order to show that a finite computation can solve

the problem and then even more theory is developed to make the algorithm effi-

cient.

Part 3 describes orbital branching, a generalization of the branch-and-bound

technique from combinatorial optimization. This technique is then customized to

4

tackle a relatively new problem in structural graph theory, resulting in several new

graphs of a given type including two new infinite families.

Finally, Part 4 is an investigation into space-bounded computational complex-

ity theory. After a short introduction to the area, two very different results are

presented. One involves showing two complexity classes are equal. The other

finds a new algorithm to solve reachability on a larger class of planar graphs than

previously known.

A few appendices are included to further expand some details which support

the main narrative. Appendix A contains a description of the symbols used in

the algorithms of this work. Appendices B, C, D, and E document the software

packages which were created as part of this work.

These parts and their included chapters are now described in further detail.

Part 1: Fundamentals of Combinatorial Search

Chapter 1 contains the basic definitions and notation from graph theory that I will

use during the rest of the work.

In Chapter 2, I discuss a crucial issue of isomorphism of graphs and their au-

tomorphism groups. This includes a brief survey of some results dealing with

automorphism groups of graphs as well as some recent results. Section 2.2 is

based on joint work with Stephen G. Hartke, Hannah (Kolb) Spinoza, and Jared

Nishikawa [60], while Theorem 2.21 is from [125].

Chapter 3 discusses the philosophy of combinatorial search. By using a toy

example, I describe a mathematical framework that will be used for later compu-

tational experiments. I also introduce how the TreeSearch software library [122]

abstracts the structure of a combinatorial search and allows for parallelism on a

5

supercomputer.

Chapter 4 considers which numbers can be represented as the number of chains

in a poset of width two. Instead of generating posets and counting the chains, I

develop a method to generate posets by adding points to a small collection of con-

figurations and from these configurations create formulas for counting the number

of chains in the resulting posets. By evaluating these formulas on many inputs, I

find that every number up to 50 million can be represented, providing significant

evidence that every number is representable. This chapter is based on joint work

with Elizabeth Kupin and Ben Reiniger [76].

Chapter 5 investigates Ramsey Theory on the integers, where the numbers from

1 to n are colored while attempting to avoid certain monochromatic patterns. The

most famous type of pattern is an arithmetic progression, which is the subject of both

van der Waerden’s Theorem [140] and Szemerédi’s Theorem [130, 131]. Arithmetic

progressions are generalized in two different ways, to quasi-arithmetic progres-

sions and pseudo-arithmetic progressions. Using a computational approach using

constraint propagation, I extend the known bounds on extremal colorings, includ-

ing some exact values. New theorems and conjectures result from the data. This is

joint work with Adam Jobson and André Kézdy [71].

Part 2: Isomorph-Free Generation

Chapter 6 is an original description of a computational technique developed by

Brendan McKay [92]. This technique guarantees exactly one representative of ev-

ery isomorphism class is visited during a combinatorial search. The remaining

chapters of this part customize this technique for the given problems.

Chapters 7 extends McKay’s technique to work when the augmentation step is

6

adding an ear: adding a path by attaching the endpoints to vertices in the current

graph. This leads to a natural way to generate 2-connected graphs (the graphs

which can be built from ear augmentations). Chapter 8 exploits this technique to

verify the Edge Reconstruction conjecture on 2-connected graphs. These chapters

are based on [124].

In Chapter 9, I investigate an extremal graph theory problem: which graphs

have the maximum number of edges when the number of vertices and number of

perfect matchings is fixed? Intuitively, more perfect matchings imply more edges

are possible. By describing the structure of this infinite family of extremal graphs,

I reduce the problem to a finite search to a set of fundamental graphs which are

then combined to create the infinite family. The structure theorems allow the ear

augmentation method to be exploited both theoretically and practically to greatly

extend the knowledge on this problem. This chapter is based on joint work with

Stephen G. Hartke, Douglas B. West, and Matthew Yancey [63] and [123].

Part 3: Orbital Branching

Chapter 10 is an original description of a computational technique developed by

James Ostrowski, Jeff Linderoth, Fabrizio Rossi, and Stefano Smriglio [102]. This

technique extends the branch-and-bound technique from combinatorial optimiza-

tion. Orbital branching works to reduce the number of isomorphic duplicates, but

does not remove them entirely. Instead, it utilizes the symmetries of partial solu-

tions during the execution to place value on more than one variable at a time. This

technique differs mostly from isomorph-free generation in that it immediately co-

operates with constraint propagation.

In Chapter 11 I investigate uniquely Kr-saturated graphs. Unique saturation

7

was recently defined by Cooper, Lenz, LeSaulnier, Wenger, and West [34] and then

studied in great detail for the case of uniquely Ck-saturated graphs. By extend-

ing the technique of orbital branching to be more effective searching for uniquely

Kr-saturated graphs, several new graphs are discovered. By investigating these

graphs, a new algebraic construction is developed and used to find two new infi-

nite families. This chapter is based on joint work with Stephen G. Hartke [62].

Part 4: Reachability Problems in Space-Bounded

Complexity

This fourth part of the thesis has a very different flavor than the rest of the work.

Part 4 contains my contributions to the area of computational complexity, specif-

ically that in space-bounded complexity. Most space-bounded complexity prob-

lems reduce to a reachability problem (or path-finding problem) on a certain class

of graphs.

Chapter 12 describes space-bounded complexity starting with the definition of

Turing machines and space-bounded complexity classes. The chapter finishes with

the major theorems of space-bounded complexity.

Chapter 13 is based on joint work with Brady Garvin, Raghunath Tewari, and

N. V. Vinodchandran [48], where we collapse two complexity classes. These classes

are defined by the type of graphs where reachability can be solved. By carefully

combining reductions, hashing results, and oracle queries, we prove equality be-

tween the classes.

Chapter 14 is based on joint work with N. V. Vinodchandran [127], where I

significantly increase the class of planar graphs that have deterministic log-space

8

algorithms for reachability. This extends the previous-best result which is joint

with Chris Bourke and N. V. Vinodchandran [126].

Techniques Used

This thesis encompasses the majority of my research productivity over the past

few years. During this time, I learned several mathematical techniques. Below is a

collection of these techniques and how they are used in this work.

1. Computational. This is the main technique. Chapters 4, 5, 8, 9, and 11 all con-

tain results whose proofs use computation. Several other theorems use com-

putation indirectly, as I use experimental computation during early stages of

research to gain intuition for a problem.

2. Structural. Knowledge about the structure of a graph can be very useful when

building a computational method. In Chapter 9, I begin by developing struc-

tural theorems about p-extremal graphs and then use that structure to de-

velop a computational method.

3. Extremal. In Chapter 5, I prove exact values of an extremal function. In Chap-

ter 9, I use the previously mentioned structural theorems to prove an ex-

tremal theorem which is used to significantly speed up the computational

method.

4. Probabilistic. The probabilistic method uses random experiments to prove ex-

istence of a combinatorial object. I use the Lovász Local Lemma in Chapter 5

to prove a lower bound on an extremal function.

9

5. Discharging. This method involves defining a charge function and then pass-

ing around charge among elements while preserving the total charge sum.

I use a two-stage discharging method to prove Theorem 11.3 in Chapter 11.

This method provides a clean way to compute the clique number of a certain

graph family.

6. Face-Melting Case Analysis. The previously mentioned discharging proof has

a clean proof when the graph preserves its symmetry. Adding an edge re-

moves this symmetry, and counting the number of maximum cliques in this

new graph reduces to a long and detailed case analysis.

7. Reductions. In Chapter 13, I use reductions to prove that two complexity

classes are equal. In Chapter 14, I use log-space reductions in a novel way

(I compress the input) in order to lower the required resources for solving the

problem.

List of Papers

Below is a list of the papers which share content with this thesis.

[48] B. Garvin, D. Stolee, R. Tewari, and N. V. Vinodchandran. ReachUL = Reach-

FewL. 17th Annual International Computing and Combinatorics Conference, 2011.

[60] S. G. Hartke, H. Kolb, J. Nishikawa, and D. Stolee. Automorphism groups of

a graph and a vertex-deleted subgraph. Electron. J. Combin., 17(1):Research

Paper 134, 8, 2010.

[62] S. G. Hartke and D. Stolee. Uniquely Kr-saturated graphs, 2012. preprint.

10

[63] S. G. Hartke, D. Stolee, D. B. West, and M. Yancey. On extremal graphs with

a given number of perfect matchings, 2011, preprint.

[71] A. Jobson, A. Kézdy, and D. Stolee. A new variant of van der Waerden num-

bers, 2012. in preparation.

[76] E. Kupin, B. Reiniger, and D. Stolee. Counting chains in width-two posets

with few cover edges, 2012. in preparation.

[123] D. Stolee. Generating p-extremal graphs, 2011. preprint.

[124] D. Stolee. Isomorph-free generation of 2-connected graphs with applications.

Technical Report #120, University of NebraskaÐLincoln, Computer Science and

Engineering, 2011.

[125] D. Stolee. Automorphism groups and adversarial vertex deletions, 2012.

preprint.

[127] D. Stolee and N. V. Vinodchandran. Space-efficient algorithms for reachabil-

ity in surface-embedded graphs. 27th Annual IEEE Conference on Computa-

tional Complexity, 2012. to appear.

11

Part I

Fundamentals of Combinatorial

Search

12

Chapter 1

Graph Theory

The main combinatorial object of this thesis is a graph. This chapter introduces

the basic definitions and major theorems regarding some of the aspects of graph

theory that will be used in later chapters. The major definitions and results can

also be found in standard texts such as Bollobás [16, 18], Diestel [37], or West [146].

Definition 1.1. A graph G is a pair (V, E), where V is a set of vertices and E is a

set of edges. When the pairs V, E are not specified in advance, the vertices of G are

denoted V(G) and the edges E(G). The sizes of these sets are n(G) = |V(G)| and

e(G) = |E(G)|.

Typically, E is a subset of unordered pairs of V. In such a case, G is simple and

undirected. A directed graph is a graph G where the edges E are a subset of ordered

pairs.

There is a natural form of isomorphism between graphs.

Definition 1.2. Two graphs H and G are isomorphic, denoted H ∼= G, if there is

a bijection π : V(H) → V(G) so that for all pairs u, v ∈ V(H) there is an edge

uv ∈ E(H) if and only if π(u)π(v) ∈ E(G). Such a map π is called an isomorphism.

13

1.1 Substructures

Definition 1.3. For two graphs H and G, H is a subgraph of G, denoted H ⊆ G, if

there is an injection π : V(H) → V(G) so that for all edges uv ∈ E(H) there is an

edge π(u)π(v) ∈ E(G).

Definition 1.4. Let G be a graph and S a subset of V(G). The subgraph G[S] induced

by S is the graph on vertex set S with an edge between vertices u, v ∈ S if and only

if uv ∈ E(G). A graph H is an induced subgraph of G if there exists a set S ⊆ V(G)

so that H ∼= G[S].

Definition 1.5. A set of vertices S ⊆ V(G) is independent if there are no edges

between any two vertices in S. The maximum size of an independent set in G is

denoted α(G).

Definition 1.6. A set of vertices S ⊆ V(G) is a clique if there is an edge between

every pair of vertices in S. The maximum size of a clique in G is denoted ω(G).

Essentially, an independent set of size r is an induced subgraph of Kr while a

clique of size r is a copy of Kr as a subgraph1.

1.2 Connectivity

Definition 1.7. A graph is connected if every pair u, v ∈ V(G) admits a path be-

tween u and v. G is disconnected otherwise.

Definition 1.8. For an integer k ≥ 1, G is k-connected when every subset S ⊆ V(G)

with |S| < k ≤ n(G)− 1 has G− S connected.

1Observe that a Kr subgraph is also an induced subgraph.

14

1.3 Matching Theory

Definition 1.9. A set of edges M ⊆ E(G) is a matching if no two edges in M share

an endpoint. The largest matching size is denoted α′(G). Since every edge requires

two vertices, α′(G) ≤ bn(G)
2 c.

Definition 1.10. If n(G) is even, a matching M of size n(G)/2 is perfect since every

vertex in G is incident to exactly one edge in M. If G has a perfect matching, then

G is matchable. Let Φ(G) denote the number of perfect matchings in G.

The two most well-studied characterizations of matchable graphs are Hall’s

Theorem for bipartite graphs and Tutte’s Theorem for general graphs.

Theorem 1.11 (Hall [58]). A bipartite graph G with bipartition V(G) = X ∪ Y has a

matching that saturates X if and only if for all S ⊆ X, |S| ≤ |N(S)|.

Theorem 1.12 (Tutte [138]). A graph G is matchable if and only if for all sets S ⊆ V(G),

the number of odd components in G− S is at most |S|.

1.4 Extremal Graph Theory

Definition 1.13. Fix a graph H. A graph G is H-saturated if G does not contain H

as a subgraph and for every nonedge e ∈ E(G), G + e contains at least one copy of

H.

One of the most fundamental theorems in extremal graph theory is Turán’s

theorem.

Theorem 1.14 (Turán [137]). Fix r ≥ 3. The maximum number of edges in an n-vertex

Kr-saturated graph is
(

1− 1
r−1

)
n2

2 (1− o(1)).

15

When considering the maximum number of edges in an H-saturated graph for

an arbitrary non-bipartite H, what really matters is the chromatic number of H.

Theorem 1.15 (Erdős, Stone, Simonovits [42, 44]). Fix H with χ(H) ≥ 3. The maxi-

mum number of edges in an n-vertex H-saturated graph is
(

1− 1
χ(H)−1

)
n2

2 (1− o(1)).

This extremal question can be reversed by asking what is the minimum number

of edges required to be H-saturated.

Theorem 1.16 (Erdős, Hajnal, Moon [43]). Fix r ≥ 3. The minimum number of edges

in an n-vertex Kr-saturated graph is (r−2
2) + (r− 2)(n− r + 2).

16

Chapter 2

Automorphisms

In this chapter, we discuss the automorphisms of graphs.

Definition 2.1. Given a graph G, a bijection π : V(G) → V(G) is an automorphism

if for every pair u, v ∈ V(G), the pair uv is an edge in E(G) if and only if the pair

π(u)π(v) is an edge of E(G). The set of automorphisms of G forms a group under

composition, denoted Aut(G).

We shall review some theorems about automorphisms of graphs. The reader

should discover a feeling that the symmetries of graphs are very fragile and diffi-

cult to completely understand.

2.1 Fundamental Theorems for Automorphism

Groups of Graphs

A graph is called rigid if it has a trivial automorphism group.

17

Theorem 2.2 (See Bollobás [17]). Let G ∼ Gn,p for p = 1
2 and let ε > 0. The graph G

is rigid with probability

Pr[Aut(G) ∼= I] ≥ 1− 2ne−(n−1)pε2/2 − n221−(n−1)p(1−ε),

which tends to 1 as n tends to infinity.

While this seems to imply that very few graphs have any symmetry at all, we

can actually encode any type of symmetry into a graph.

Definition 2.3 (Frucht [47]). Given a group Γ generated by elements S = {σi}i∈I ,

the Cayley graph C(Γ, S) = (Γ, E) is the edge-labeled directed graph with vertex set

Γ and an edge x → y with label σ if σ ∈ S and y = σx.

Theorem 2.4 (Sabidussi [115]). Let Γ be a finite group generated by S with n = |Γ|. The

Cayley graph C(Γ, S) has automorphism group Γ. The labeled edges can be replaced with

simple undirected gadgets of order log |S| to form a graph C′(Γ, S) of order O(|Γ| log |S|)

with automorphism group isomorphic to Γ.

For a while, this stood as the best upper bound on the size of an undirected

graph with given automorphism group. Then, Sabidussi presented in 1958 a com-

plete characterization of the minimum-order graphs with a k-order cyclic automor-

phism group for each k ≥ 2.

Definition 2.5. Let Γ be a finite group. We define the minimum graph order α(Γ)

to be

α(Γ) = min{n(G) : G = (V, E), Aut(G) ∼= Γ},

the minimum order of a simple graph with automorphism group isomorphic to Γ.

18

Lemma 2.6 (Sabidussi [114]). Let m ≥ 2 be an integer.

α(Zm) =



2 if m = 2,

3m if m ∈ {3, 4, 5},

2m if m = p3 ≥ 7, p prime,

∑t
i=1 α(Zp

ei
i
) where m = ∏t

i=1 pei
i for p1, . . . , pt distinct primes.

It was not until 1974 when László Babai proved that those three cyclic groups

were the only finite groups that required three vertices per element. All other finite

groups with n elements are representable by a graph of order 2n.

Theorem 2.7 (Babai [9]). If Γ is a finite group not isomorphic to Z3, Z4, or Z5, then

there exists a graph G with Aut(G) ∼= Γ and |V(G)| ≤ 2|Γ|.

Proof. If Γ is cyclic, we are done by Sabidussi’s theorem.

If Γ ∼= V4, we have V4
∼= Aut(K4 − e).

Now, assume |Γ| > 6. Let S = {α1, . . . , αt} be a minimal generating set of Γ.

Create two graphs G1 = (Γ, E1), G2 = (Γ, E2).

In G1, for each element γ ∈ Γ and each i ∈ {1, . . . , t− 1}, place an edge between

αiγ and αi+1γ. Note that each vertex set {α1γ, . . . , αtγ} is a path in G1. If there

exists an edge between αiγ and αjγ with j > i + 1, this contradicts minimality of

S, since there exists γ′ ∈ Γ, ` ∈ {1, . . . , t− 1} so that

αiγ = α`γ′, αjγ = α`+1γ′.

This gives γ′ = α−1
`+1αjγ and hence αi = α`α−1

`+1αj.

In G2, for each element γ ∈ Γ, place an edge between γ and α1γ.

19

Both Gs (s ∈ {1, 2}) are regular with degree ds. We have d2 = 2. If d1 = d2, then

these graphs have the same degree.

Define G3 by case: if d1 6= d2, then G3 = G2; if d1 = d2, then G3 = G2. Note that

G3 is regular with degree d3 6= d1, since if d1 = d2, then d3 = n− 1− d2 = n− 3 >

6− 3 = 4 > d2 = d1.

Define G = (Γ× {1, 3}, E) where E = E′1 ∪ (E3 × {3}) ∪ E′, where

E′s = {{(γ, s), (δ, s)} : {γ, δ} ∈ Es},

E′ = {{(γ, 1), (γ, 3)} : γ ∈ Γ}

∪ {{(γ, 3), (αiγ, 1)} : γ ∈ Γ, i ∈ {1, . . . , t}}.

Claim 2.8. Aut(G) ∼= Γ.

First, note that Γ is isomorphic to a subgroup of Aut(G). Given δ ∈ Γ, πδ :

V(G)→ V(G) is defined as

πδ(γ, s) = (γδ, s) ∀γ ∈ Γ, s ∈ {1, 3}

Note that πδ defines a bijection on each edge set E′1, E′3, E′ as

{(αiγ, 1), (αi+1γ, 1)} πδ7−→ {(αiγδ, 1), (αi+1γδ, 1)} (E′1)

{(γ, 3), (α1γ, 3)} πδ7−→ {(γδ, 3), (α1γδ, 3)} (E′3 or E′3)

{(γ, 1), (γ, 3)} πδ7−→ {(γδ, 1), (γδ, 3)} (E′)

{(γ, 3), (αiγ, 1)} πδ7−→ {(γδ, 3), (αiγδ, 1)} (E′)

20

It remains to show any permutation in Aut(G) is represented by πδ for some

δ ∈ Γ.

Let γ ∈ Γ be any element. Define the subgraph Aγ be the induced subgraph

of G given by (γ, 3), (γ, 1), (α1γ, 1), . . . , (αtγ, 1). As mentioned previously, the ver-

tices (α1γ, 1), . . . , (αtγ, 1) induce a path in G. It is also true that there is no edge

from (γ, 1) to (αiγ, 1) for any i ∈ {1, . . . , t}. If such an i existed, then there exists

an ` ∈ {1, . . . , t− 1} and γ′ ∈ Γ (γ′ 6= γ) so that

γ = α`γ′, αiγ = α`+1γ′.

However, this implies αi = α`+1α−1
` , which contradicts minimality of S.

Hence, (γ, 1) is a leaf in Aγ.

Let π ∈ Aut(G) be a permutation of V(G). Consider an element γ ∈ Γ and

γ′ = π(γ). Since π(Aγ) = Aγ′ , and (γ, 1) is the only leaf in Aγ, π(γ, 1) = π(γ′, 1)

since (γ′, 1) the only leaf in Aγ′ .

So, π can be considered as a permutation of Γ that also acts on G. Let π be such

a permutation given by a non-trivial automorphism of G.

Now, let γ be any element with π(γ) 6= γ and define δ = γ−1π(γ).

Claim 2.9. For any element γ′ ∈ Γ, π(γ′) = γ′δ.

It is sufficient to prove that if π(γ) = γδ, then for all i ∈ {1, . . . , t} has π(αiγ) =

αiγδ. If this is true, then for all γ′ ∈ Γ, the sequence of generators αj1 · · · αjk = γ′γ−1

gives γ′ = αj1 · · · αjk γ and iteration on the number of generators in the right-hand-

side product gives π(γ′) = γ′δ.

Since the only vertex (αiγ, 1) in Aγ that has (αiγ, 3) adjacent to (γ, 3) is (α1γ, 1).

Hence, π(α1γ) = γδ. Moreover, the path (α1γ, 1)(α2γ, 1) . . . (αtγ, 1) in Aγ is now

21

embedded uniquely into π(Aγ) = Aγδ as (α1γδ, 1)(α2γδ, 1) . . . (αtγδ, 1). This

proves the claim.

Based on this construction of Babai, the worst-case order of a graph G with

automorphism group Γ is O(n) where n = |Γ|. Unfortunately, we cannot hope for

better asymptotics than that (or much better constants, even), since there is a very

close lower bound for the alternating group.

Theorem 2.10 (Liebeck [82]). If n ≥ 23, then the minimum order of a graph with auto-

morphism group isomorphic to An is at least 1
2(n
bn/2c).

By Stirling’s approximation, the above lower bound is approximately 2n
√

2πn
,

while |An| = n!
2 = 2θ(n log n).

Frequently, dropping the labels and directions from Cayley graphs provides

a useful graph construction. It is important that this unlabeled, undirected Cayley

graph C(Γ, S) may have automorphism group larger than Γ.

A graph G is vertex-transitive if for any pair of vertices u, v ∈ V(G) there is an

automorphism σ ∈ Aut(G) so that σ(u) = v. These graphs are highly symmetric.

While all Cayley graphs are vertex-transitive, the reverse is not always true. The

following proposition gives a partial result to when a vertex-transitive graph can

be guaranteed to be a Cayley graph.

Proposition 2.11 (Folklore). Let p be a prime. A vertex-transitive graph of order p is

isomorphic to the unlabeled, undirected Cayley graph C(Zp, S) for some set S ⊆ Zp.

Proof. Let G be a vertex-transitive graph with n(G) = p a prime. Since G is vertex-

transitive, the entire vertex set V(G) is an orbit under the action of Aut(G). Since

the length of an orbit is the index of the stabilizer, p = |V(G)| = [StabG(V(G)) :

Aut(G)], so p divides |Aut(G)|. Thus, there is an automorphism σ ∈ Aut(G) of

22

order p. Fix any vertex v of G and notice that σ(i)(v) = v if and only if p divides

i. Therefore, we can label all vertices of G as vi = σ(i)(v) for all i ∈ {0, . . . , p− 1}.

There is an edge between vi and vj if and only if there is an edge between v0 and

vj−i. Therefore, let S = {i : v0vi ∈ E(G)} and G ∼= C(Zp, S).

2.2 Automorphism Groups of a Graph and a

Vertex-Deleted Subgraph

The Reconstruction Conjecture of Ulam and Kelley famously states that the iso-

morphism class of all graphs on three or more vertices is determined by the iso-

morphism classes of its vertex-deleted subgraphs (see [55] for a survey of classic

results on this problem). A frequent issue when attacking reconstruction problems

is that automorphisms of the substructures lead to ambiguity when producing the

larger structure.

This section considers the relation between the automorphism group of a graph

and the automorphism groups of the vertex-deleted subgraphs and edge-deleted

subgraphs. If a group Γ1 is the automorphism group of a graph G, and another

group Γ2 is the automorphism group of G − v for some vertex v, then we say Γ1

deletes to Γ2. This relation is denoted Γ1 → Γ2. A corresponding definition for edge

deletions is also developed. Our main result is that any two groups delete to each

other, with vertices or edges.

These relations also appear in McKay’s isomorph-free generation algorithm

(see Chapter 6 and [92]), which is frequently used to enumerate all graph isomor-

phism classes. After generating a graph G of order n, graphs of order n + 1 are

created by adding vertices and considering each G + v. To prune the search tree,

23

the canonical labeling of G + v is computed, usually by nauty, McKay’s canonical

labeling algorithm [93, 61]. Finding a canonical labeling of a graph reveals its auto-

morphism group. Since G was generated by this process, its automorphism group

is known but is not used while computing the automorphism group of G + v. If

some groups could not delete to the automorphism group of G, then they certainly

cannot appear as the automorphism group of G + v which may allow for some im-

provement to the canonical labeling algorithm. The current lack of such optimiza-

tions hints that no such restrictions exist, but this notion has not been formalized

before this work.

One reason why this problem has not been answered is that the study of graph

symmetry is very restricted, mostly to forms of symmetry requiring vertex tran-

sitivity. These forms of symmetry are useless in the study of the Reconstruction

conjecture, as regular graphs are reconstructible. On the opposite end of the spec-

trum, almost all graphs are rigid (have trivial automorphism group) [17]. Graphs

with non-trivial, but non-transitive, automorphisms have received less attention.

Graph reconstruction and automorphism concepts have been presented together

before [10, 81]. However, there appears to be no results on which pairs of groups al-

low the deletion relation. While our result is perhaps unsurprising, it is not trivial.

The reader is challenged to produce an example for Z2 → Z3 before proceeding.

For notation, G always denotes a graph, while Γ refers to a group. The trivial

group I consists of only the identity element, ε. All graphs in this chapter are

finite, simple, and undirected, unless specified otherwise. All groups are finite.

The automorphism group of G is denoted Aut(G) and the stabilizer of a vertex v

in a graph G is denoted StabG(v).

24

2.2.1 Definitions and Basic Tools

We begin with a formal definition of the deletion relation.

Definition 2.12. Let Γ1, Γ2 be finite groups. If there exists a graph G with |V(G)| ≥

3 and vertex v ∈ V(G) so that Aut(G) ∼= Γ1 and Aut(G− v) ∼= Γ2, then Γ1 (vertex)

deletes to Γ2, denoted Γ1 → Γ2. Similarly, the group Γ1 edge deletes to Γ2 if there

exists a graph G and edge e ∈ E(G) so that Aut(G) ∼= Γ1 and Aut(G − e) ∼= Γ2.

If a specific graph G and subobject x give Aut(G) ∼= Γ1 and Aut(G− x) ∼= Γ2, the

deletion relation may be presented as Γ1
G−x−→ Γ2.

To determine the automorphism structure of a graph, vertices that are not in

the same orbit can be distinguished by means of neighboring structures. A useful

gadget to make such distinctions is the rigid tree T(n), where n is an integer at

least 2. Build T(n) by starting with a path u0, z1, . . . , zn. For each i, 1 ≤ i ≤ n, add a

path zi, xi,1, xi,2, . . . , xi,2i, ui of length 2i + 1. This results in a tree with n + 1 leaves.

Note that each leaf ui is distance 2i + 1 to a vertex of degree 3 (except for un, which

is distance 2n + 2). Thus, the leaves are in disjoint orbits and T(n) is rigid. Also, if

any leaf ui is selected with i ≥ 1, T(n)− ui is rigid. This gives an example of the

deletion relation I → I. For notation, let J be a set and {Tj}j∈J be disjoint copies of

T(n). Then ui(Tj) designates the copy of ui in Tj. This is well-defined since there

is a unique isomorphism between each Tj and T(n).

By Theorem 2.4, for every group Γ, there exists a simple, unlabeled, undirected

graph G with Aut(G) ∼= Γ. The construction is derived from the well-known Cay-

ley graph1. Define C(Γ) to be a graph with vertex set Γ and complete directed

edge set, where the edge (γ, β) is labeled with γ−1β, the element whose right-

1In most uses of the Cayley graph, a generating set is specified. For simplicity, we use the entire
group.

25

multiplication on γ results in β. The automorphism group of C(Γ) is Γ, and the

action on the vertices follows right multiplication by elements in Γ. That is, if

γ ∈ Γ, the permutation σγ will take a vertex α to the vertex αγ.

This directed graph with labeled edge sets is converted to an undirected and

unlabeled graph by swapping the labeled edges with gadgets. Specifically, order

the elements of Γ = {α1, . . . , αn} so that α1 = ε. For each edge (γ, β), subdivide

the edge labeled αi = γ−1β with vertices x1, x2, and attach a copy Tγ,β of T(i) by

identifying u0(Tγ,β) with x1. Note that i ≥ 2 in these cases, since αi 6= ε. See Figure

2.1 for an example of this process.

γ
αi // β

T(i)

γ x1 x2 β

A directed edge labeled αi. An unlabeled undirected gadget.

Figure 2.1: Converting a labeled directed edge to an undirected unlabeled gadget.

Denote this modified graph C′(Γ). We refer to it as the Cayley graph of Γ.

Note that the automorphisms of C′(Γ) are uniquely determined by the permu-

tation of the group elements and preserve the original edge labels, since the trees

T(i) identify the label αi and have a unique isomorphism between copies. Hence,

Aut(C′(Γ)) ∼= Aut(C(Γ)) ∼= Γ.

Lemma 2.13. Let Γ be a group and G = C′(Γ). Then the stabilizer of the identity element

ε (as a vertex in G) is trivial. That is, StabG(ε) ∼= I.

Proof. Every automorphism of G is represented by right-multiplication of Γ. Hence,

every automorphism except the identity map will displace ε.

26

2.2.2 Deletion Relations with the Trivial Group

Now that sufficient tools are available, we prove some basic properties.

Proposition 2.14. (The Reflexive Property) For any group Γ, Γ→ Γ.

Proof. Let Γ be non-trivial, as the trivial case has been handled by the rigid tree

T(n). Let G be the Cayley graph C′(Γ). Create a supergraph G′ by adding a domi-

nating vertex v with a pendant vertex u. Now, u is the only vertex of degree 1, and

v is the only vertex adjacent to u. Hence, these two vertices are distinguished in G′

from the vertices of G. Removing v leaves G and the isolated vertex u. Thus, Γ is

the automorphism group for both G′ and G′ − v.

A key part of our final proof relies on the trivial group deleting to any group.

An additional vertex is considered with a special property on its stabilizer in the

deleted graph.

Lemma 2.15. Let Γ be a finite group. There exists a graph H and two vertices x, y ∈ V(H)

so that

1. Aut(H) ∼= I.

2. Aut(H − x) ∼= Γ.

3. StabH−x(y) ∼= I.

Proof. Let G = C′(Γ). Let n = |Γ|. Order the group elements of Γ as α1, . . . , αn.

Create a supergraph, H, by adding vertices as follows: For each αi, create a copy Tαi

of T(2n) and identify u0(Tαi) with the vertex αi in G (Here, 2n is used to distinguish

these copies from the edge gadgets), and add a vertex x that is adjacent to ui(Tαi)

for all i. For each αi, the leaf of Tαi adjacent to v distinguishes αi. Hence, no non-

trivial automorphisms exist in H. However, H − x restores all automorphisms π

27

from Aut(G) by mapping Tαi to Tπ(αi) through the unique isomorphism. Finally,

let y = α1. Since all automorphisms of G are given by left multiplication of group

elements, only the trivial automorphism stabilizes α1, so StabH−x(y) ∼= I.

Note that this proof uses a very special vertex that enforces all vertices to be

distinguished. Before producing examples where deleting a vertex removes sym-

metry, it may be useful to remark that such a distinguished vertex cannot be used.

Lemma 2.16. Let G be a graph and v ∈ V(G). Then, automorphisms in G that stabilize v

form a subgroup in the automorphism group of G− v. That is, StabG(v) ≤ Aut(G− v).

Proof. Let π ∈ StabG(v). The restriction map π|G−v is an automorphism of G −

v.

The implication of this lemma is removing a vertex with a trivial orbit cannot

remove automorphisms. However, we can remove all symmetry in a graph using

a single vertex deletion.

Lemma 2.17. For any group Γ, Γ→ I.

Proof. Assume Γ 6∼= I, since the reflexive property handles this case. Let G = C′(Γ)

and n = |Γ|.

Let G1, G2 be copies of G with isomorphisms f1 : G → G1 and f2 : G → G2.

Create a graph G′ from these two copies as follows. For all elements γ in Γ, create

a copy Tγ of T(n) and identify u0(Tγ) with f1(γ) and un(Tγ) with f2(γ). Note that

Aut(G′) ∼= Γ, since no vertices from G1 can map to G2 from the asymmetry of the

Tγ subgraphs, and any automorphism of G1 extends to exactly one automorphism

of G2.

Any automorphism π of G′ − f1(ε) must induce an automorphism π|G2 of G2.

But the vertices of G1 must then permute similarly (by the definition π(f1(x)) =

28

f1 f−1
2 π f2(x)). Since f1(ε) is not in the image of π, π stabilizes f2(ε). Lemma 2.13

implies π must be the identity map. Hence, Aut(G′ − f1(ε)) ∼= I.

2.2.3 Deletion Relations Between Any Two Groups

We are sufficiently prepared to construct a graph to reveal the deletion relation for

all pairs of groups.

Theorem 2.18. If Γ1 and Γ2 are groups, then Γ1 → Γ2.

Proof. Assume both groups are non-trivial, since Lemmas 2.15 and 2.17 cover these

cases. Let G1 = C′(Γ1). Then identify v1 ∈ V(G1) as the vertex corresponding to

ε ∈ Γ1. Note that StabG1(v1) ∼= I as in Lemma 2.13. Also by Lemma 2.15, there

exists a graph G2 and vertex v2 so that I
G2−v2−→ Γ2. Define ni = |Γi|. Order the

elements of Γ1 as α1,1, α1,2, . . . , α1,n1 so that α1,1 = ε = v1.

We collect the necessary properties of G1, G2, v1, v2 before continuing. First, G1

has automorphisms Aut(G1) ∼= Γ1 and v1 is trivially stabilized (StabG1(v1) ∼= I).

Second, G2 is rigid (Aut(G2) ∼= I) but G2− v2 has automorphisms Aut(G2− v2) ∼=

Γ2. The following construction only depends on these requirements.

Let H1, . . . , Hn1 be copies of G2. Construct a graph G by taking the disjoint

union of G1, H1, . . . , Hn1 , and adding edges between α1,i and every vertex of Hi,

for i = 1, . . . , n1. Since Aut(Hi) ∼= I, the automorphism group of G cannot permute

the vertices within each Hi. However, the vertices of G1 can permute freely within

Aut(G1) ∼= Γ1, since Hi
∼= Hj for all i, j. Hence, Aut(G) ∼= Γ1.

When the copy of v2 in H1 is deleted from G, the automorphisms of H1− v2 are

Γ2. However, the vertex v1 of G1 is now distinguished since it is adjacent to a copy

of G2 − v2, unlike the other elements of Γ1 in G1 which are adjacent to a copy of

G2. This means the permutations of G1 must stabilize v1. Since StabG1(v1) = I by

29

Lemma 2.16, the only permutation allowed on G1 is the identity. However, H1− v2

has automorphism group Γ2. Hence, Aut(G− v2) ∼= Γ2.

G

Г

G G
G

1

1

2
2

2

v1

G

G - v
G

G

1

2
2

2

v1

2

Г2

G with Aut G ∼= Γ1. G− v2 with Aut G− v2
∼= Γ2.

Figure 2.2: The vertex deletion construction.

Figure 2.2 presents a visualization of the automorphisms in this construction

before and after the deletion. A very similar construction produces this general

result for the edge case.

Theorem 2.19. If Γ1 and Γ2 are groups, then there exists a graph G and an edge e ∈ E(G)

so that Γ1
G−e−→ Γ2.

Proof. Set ni = |Γi|. Let G1 = C′(Γ1) with v1 corresponding to ε ∈ Γ1 and order the

elements of Γ1 similarly to the proof of Theorem 2.18.

Form G2 by starting with C′(Γ2) and making a copy Tγ of T(2n2) for each ele-

ment γ ∈ Γ2, identifying γ ∈ V(C′(Γ2)) with u0(Tγ). Now, add an edge e between

u2n2(T1) and u2n2−1(T1). This distinguishes the element ε as a vertex in C′(Γ2) and

hence is stabilized. So, Aut(G2) ∼= I and if e is removed all group elements are

symmetric again, so Aut(G2 − e) ∼= Γ2.

Notice that G1, G2, v1, e satisfy the requirements of the construction of G in The-

orem 2.18. Hence, the same construction (with e in place of v2) provides an exam-

ple of edge deletion from Γ1 to Γ2.

30

Note that the graph produced for Theorem 2.19 can be used for the proof of

Theorem 2.18 by subdividing e and using the resulting vertex as the deletion point.

2.2.4 Generalizations

Theorem 2.18 can be extended to a sequence Γ0, Γ1, . . . , Γk of finite groups using

two types of vertex deletions: single deletions or iterated deletions.

Question 2.20. Let Γ0, Γ1, . . . , Γk be finite groups. Do there exist a graph G and

vertices v1, . . . , vk ∈ V(G) so that Aut(G) ∼= Γ0 and for all i ∈ {1, . . . , k},

1. (Single Deletions) Aut(G− vi) ∼= Γi?

2. (Iterated Deletions) Aut(G− v1 − · · · − vi) ∼= Γi?

In fact, both of these types of deletions can be combined in an even more gen-

eral situation. Suppose that an adversary selects finite groups Γ0, Γ1, . . . , Γk and a

number ` ≥ 1. You then produce a graph G with Aut(G) ∼= Γ0. The adversary then

selects a map π : {1, . . . , `} → {1, . . . , k} and asks for ` vertices v1, . . . , v` so that

for all i ∈ {1, . . . , `} the automorphism group of G− v1 − · · · − vi is isomorphic to

Γπ(i). By carefully constructing G, you can be prepared for any such query from

the adversary.

Theorem 2.21 (Adversarial Iterated Deletions). Let Γ0, Γ1, . . . , Γk be finite groups and

fix ` ≥ 1. There exists a graph G with Aut(G) ∼= Γ0 so that for all maps π : {1, . . . , `} →

{1, . . . , k}, there exist vertices vπ
1 , . . . , vπ

k ∈ V(G) where Aut(G − vπ
1 − · · · − vπ

i) ∼=

Γπ(i) for all i ∈ {1, . . . , k}.

Proof. Note that the case k = 1 holds by Theorem 2.18.

31

For every i ∈ {1, . . . , k}, Lemma 2.15 implies there is a graph Hi with vertices

xi, yi ∈ V(Hi) so that Aut(Hi) is trivial, Aut(Hi − xi) ∼= Γi, and StabHi−xi(yi) is

trivial. By Theorem 2.18, there exists a connected graph H0 and vertex v0 ∈ V(H0)

so that Aut(H0) ∼= Γ0 and Aut(H0− v0) is trivial. Observe that StabH0(v0) is trivial.

Construct the graph G starting from H0 in ` iterations. Let G0 = H0 and we

will build Gi from Gi−1.

v0 H0

x(1,v0)
1 y(1,v0)

1 H(1,v0)
1

x
(2,uπ

1)
1 y

(2,uπ
1)

1 H
(2,uπ

1)
1

x
(3,uπ

2)
1 y

(3,uπ
2)

1 H
(3,uπ

2)
1

x(1,v0)
2 y(1,v0)

2 H(1,v0)
2

x
(2,uπ

1)
2 y

(2,uπ
1)

2 H
(2,uπ

1)
2

x
(3,uπ

2)
2 y

(3,uπ
2)

2 H
(3,uπ

2)
2

x(1,v0)
3 y(1,v0)

3 H(1,v0)
3

x
(2,uπ

1)
3 y

(2,uπ
1)

3 H
(2,uπ

1)
3

x
(3,uπ

2)
3 y

(3,uπ
2)

3 H
(3,uπ

2)
3

Figure 2.3: An example construction for Theorem 2.21 with π = 213.

Consider i ≥ 1. For every vertex v ∈ V(Gi) and j ∈ {1, . . . , k}, create a copy

H(i,v)
j of Hj and connect all vertices in H(i,v)

j to v. Let x(i,v)
j and y(i,v)

j denote the

copies of xj and yj in H(i,v)
j .

Now, let G = G`. All automorphisms of G set-wise stabilize V(G0), so auto-

morphisms of G induce automorphisms of G0 = H0. Since an isomorphic graph

was attached to every vertex of G0 and those graphs have trivial automorphism

32

v0 H0

vπ
1 uπ

1 Hπ
1

vπ
2 uπ

2 Hπ
2

vπ
3 uπ

3 Hπ
3

(a) G

v0 H0

vπ
1 uπ

1 Hπ
1

uπ
2 Hπ

2

vπ
3 uπ

3 Hπ
3

(b) G− vπ
1

v0 H0

uπ
1 Hπ

1

uπ
2 Hπ

2

vπ
3 uπ

3 Hπ
3

(c) G− vπ
1 − vπ

2

v0 H0

uπ
1 Hπ

1

uπ
2 Hπ

2

uπ
3 Hπ

3

(d) G− vπ
1 − vπ

2 − vπ
3

Figure 2.4: Deleting vertices in a construction for Theorem 2.21 with π = 213.

group, Aut(G) ∼= Γ0.

Fix a map π : {1, . . . , `} → {1, . . . , k}. Let vπ
1 = x(1,v0)

π(1) and uπ
1 = y(1,v0)

π(1) , and for

i ∈ {2, . . . , k} let vπ
i = x

(i,uπ
i−1)

π(i) and uπ
i = y

(i,uπ
i−1)

π(i) . For all i ∈ {1, . . . , k}, let Hπ
i be

the copy of Hπ(i) containing vπ
i .

Deleting vπ
1 from G modifies the neighborhood of v0, but not the neighborhood

of any other vertex in V(G0). Therefore, all automorphisms of G− vπ
1 stabilize v0.

Since StabH0(v0) is trivial, all automorphisms of G− vπ
1 point-wise stabilize V(G0).

However, the copy of Hπ(1) containing vπ
1 now has automorphisms Aut(Hπ(1) −

vπ
1) ∼= Aut(Hπ(1) − xπ(1)) ∼= Γπ(1).

33

Consider i ∈ {2, . . . , `}. Deleting vπ
i from G − vπ

1 − · · · − vπ
i−1 modifies the

neighborhood of uπ
i−1 but not the neighborhood of any other vertex in that copy of

Hπ(i−1) − vπ
i−1. Therefore, uπ

i−1 is stabilized, and so all automorphisms of Hπ
i−1 −

vπ
i−1
∼= Hπ(i−1) − xπ(i−1) stabilize that copy of yπ(i−1) and so are trivial automor-

phisms. However, Hπ
i lost its copy of vπ

i and now has automorphisms Aut(Hπ
i −

vπ
i) ∼= Aut(Hπ(i) − xπ(i)) ∼= Γπ(i).

2.2.5 Discussion

While we have constructions for almost any relationship between the automor-

phism groups of graphs and its vertex-deleted subgraphs, there remain open ques-

tions when restricted to special classes of graphs. For instance, the automorphism

groups of trees are fully understood [118]. Let GT be the class of groups that are

represented by the automorphism groups of trees and GF represented by automor-

phisms of forests2. The constructions in this chapter are not trees, so new methods

will be required to answer the following questions. If we restrict to trees, can any

group in GT delete to any group in GF? Or, if we restrict to deleting leaves (and

hence stay connected) can all pairs of groups in GT delete to each other?

Another interesting aspect of our construction is that the resulting graphs are

very large, with the order of the graphs cubic in the size of the groups. Which of

these relations can be realized by small graphs? Can we restrict the groups that

can appear based on the order of the graph? By Theorem 2.7, the current-best up-

per bound on the order of a graph G with automorphism groups isomorphic to a

given group Γ is |V(G)| ≤ 2|Γ| and Aut(G) ∼= Γ. This has particular application

to McKay’s generation algorithm, where only “small" examples are usually com-

puted (for example, all connected graphs up to 11 vertices were computed in [91]).

2An elementary proof shows that GT = GF.

34



Figure 2.5: This graph G has Aut(G) ∼= Z2 and Aut(G− v) ∼= Z3.

To demonstrate that this is not trivial, see Figure 2.5 for a graph showing Z2 → Z3.

While Theorem 2.18 shows that there exists a graph where some vertex can be

deleted to demonstrate the deletion relations, our constructions have many other

vertices that behave in very different ways when they are deleted. When relating to

the Reconstruction conjecture, this raises questions regarding the combinations of

automorphism groups that appear in the vertex-deleted subgraphs. For instance,

if the multiset of vertex-deleted automorphism groups is provided, can one recon-

struct the automorphism group? This question only gives the groups, but not the

vertex-deleted subgraphs. An example is that n copies of Sn−1 must reconstruct to

Sn, but it is unknown whether the graph is Kn or nK1. Since Aut(G) = Aut(G),

this ambiguity will always naturally arise. Can it arise in other contexts? Is the

automorphism group recognizable from a vertex deck?

35

Chapter 3

Combinatorial Search

The goal of combinatorial search is to generate combinatorial objects that satisfy

a given structural or extremal property. Combinatorial search techniques differ

from local search techniques in that the method must be exhaustive: every object of

a given order must be generated. This allows for a definitive result after executing

the search.

Questions that have been answered using combinatorial search include:

1. Is there a projective plane of order 10? (Lam, Thiel, Swiercz [78].)

2. When do strongly regular graphs exist? (Many different works [121, 33, 94])

3. How many Steiner triple systems have order 19? (Kaski, Östergård [72])

4. What is the sixth van der Waerden number W2(6)? (Kouril, Paul [75])

5. Does the Reconstruction Conjecture hold on small graphs? (McKay [91])

Throughout this thesis, I will always use a specific type of combinatorial search.

Starting from a list of base objects, I will build objects piece-by-piece by perform-

ing some augmentations to the base objects. Typical augmentations include adding

36

vertices or edges to a graph. In later chapters, I will use more complicated augmen-

tations which are tied to the structure of the target objects. This chapter contains

a high-level description of the search technique, the concerns that arise, and how

those concerns are mitigated. Finally, a brief description of the TreeSearch library

is given to show how combinatorial search can be parallelized using a common

framework.

3.1 An Illustrated Guide to Combinatorial Search

In this section, we shall describe a way to visualize combinatorial search in a way

that touches on most of the computational and mathematical concerns. Through-

out the description, we shall refer to a common example of generating graphs us-

ing edge augmentations.

3.1.1 Labeled and Unlabeled Objects

Suppose a combinatorial search is defined by searching for combinatorial objects

from a family L of labeled objects. Under the appropriate definition of isomorphism

for those objects, let∼ be the isomorphism relation and U be the family of unlabeled

objects: the equivalence classes under ∼. Let P : L → {0, 1} be a property, and we

wish to generate all objects X in L where P(X) = 1. We shall assume the property

P is invariant under isomorphism (∼): for all unlabeled objects X ∈ U and labeled

objects X, X′ ∈ X , P(X) = P(X′). In this case, we can define P(X) for an unlabeled

object X to be equal to P(X) for any labeled object X ∈ X .

Example. Let L be the set of graphs of order n. Then U is the family of unlabeled

graphs where the standard relation of isomorphism (∼=) is used between graphs.

37

The property P could be P(G) = 1 if and only if G is 4-regular and G has chromatic

number three.

3.1.2 Base Objects and Augmentations

A combinatorial search consists of a set B ⊂ L of base objects and an augmentation.

Let B ⊂ L be a set of labeled objects For a labeled object X ∈ L, the augmenta-

tion defines a set A(X) of augmented objects. Let D(X) be the set of deleted objects,

defined as

D(X) = {Y ∈ L : Y ∈ A(X)}.

We shall consider our objects as being built up, so the set of augmented objects

A(X) can be called the above objects while the deleted objects D(X) are the down-

ward objects.

For isomorphism concerns, we shall assume that for an unlabeled objectX ∈ U ,

any two labeled objects X, X′ ∈ X have a bijection πX,X′ : A(X) → A(X′) so that

for all Y ∈ A(X), Y ∼ πX,X′(Y). This allows us to define the augmented and

deleted objects A(X) and D(X) for unlabeled objects X ∈ U as well.

Example. For enumerating all graphs of order n, the empty graph of order n can

serve as a base object. The augmentation step from a graph G ∈ L may be adding

an edge to E(G). Therefore, A(G) = {G + e : e ∈ E(G)} and D(G) = {G− e : e ∈

E(G)}.

3.1.3 Search as a Poset

This relationship between augmented and deleted objects defines a partial order�

on objects in L. For X, Y ∈ L, let X � Y be a cover relation if and only if Y ∈ A(X)

(equivalently, X ∈ D(Y)). Extending these cover relations by transitivity makes

38

� a partial order over L. By our assumptions on unlabeled objects, � defines a

partial order over U .

The combinatorial search is complete if every unlabeled object X ∈ U with

P(X) = 1, there is a base object Y ∈ B so that Y � X for some X ∈ X . A complete

search ensures that every unlabeled object is visited at least once.

Figure 3.1 visualizes the poset (U ,�) and shows the unlabeled objects with

property P as dots.

Solutions

Figure 3.1: The search space as a poset.

Example. When generating graphs by edge augmentations, two unlabeled graphs

G and H have G � H if and only if G is isomorphic to a subgraph of H. Since the

empty graph is a subgraph of every graph, this search is complete.

3.1.4 Algorithm Structure

Consider the search space as a directed graph H with vertex set V(H) = L (every

vertex is a labeled object) and edge set E(H) given by an edge from every X ∈ L

to every Y ∈ A(X). This graphH is also the Hasse diagram of the poset (L,�).

39

The combinatorial search algorithm is a depth-first search on H starting at ev-

ery base object in B. This very basic view of the process is given as Algorithm 3.1.

Algorithm 3.1 CombinatorialSearch1(X)
if P(X) ≡ 1 then

Output X
end if
for all Y ∈ A(X) do

call CombinatorialSearch1(X)
end for

Example. Algorithm 3.2 demonstrates a specific instance of Algorithm 3.1 where

the objects are graphs, the augmentation involves adding edges, and the property

P(G) = 1 if and only if G is 4-regular and has chromatic number three.

Algorithm 3.2 GraphSearch1(G)
if δ(G) ≡ ∆(G) ≡ 4 and χ(G) ≡ 3 then

Output G
end if
for all edges e ∈ E(G) do

call GraphSearch1(G + e)
end for

Note that this process generates all labeled objects regardless of whether they

can eventually lead to solutions. Further, the algorithm must operate on labeled

graphs, so it currently does not remove multiple representatives of the same unla-

beled object.

3.1.5 Sub-solutions and Pruning

A labeled object X (or unlabeled object X) is a sub-solution if there exists a labeled

object Y (or unlabeled object Y) with X � Y and P(Y) = 1 (or X � Y and P(Y) =

1). In the poset, the sub-solutions form a down-set generated by the objects with

40

property P. Since these objects have some sequence of augmentations which lead

to a solution, we must generate every unlabeled sub-solution at least once.

We also hope that we could immediately detect when our current object is not

a sub-solution (there is no sequence of augmentations which leads to a solution).

If we could immediately determine if the object is not a sub-solution, we could

ignore these objects and generate only the sub-solutions. Unfortunately, the space

of objects where we can efficiently detect that the object is not a sub-solution is

not the complement of the sub-solution space. Figure 3.2 shows the regions of

sub-solutions and those that are detectably not sub-solutions and there is a gap.

Pruning space

Sub-solutions

Figure 3.2: Sub-solutions and pruning space.

Suppose we create a procedure called Detect(X) which takes a labeled object

X ∈ L and returns 1 only if X is not a sub-solution. We can modify the combinato-

rial search to utilize this procedure, as in Algorithm 3.3.

Example. For our example of generating 4-regular graphs with chromatic num-

ber three, a graph G with maximum degree ∆(G) at least five cannot extend to

a 4-regular graph by adding edges. Similarly, a graph with chromatic number at

least four cannot extend to a three-chromatic graph. Algorithm 3.4 demonstrates a

41

Algorithm 3.3 CombinatorialSearch2(X)
if P(X) ≡ 1 then

Output X
end if
if Detect(X) ≡ 1 then

return
end if
for all Y ∈ A(X) do

call CombinatorialSearch2(X)
end for

specific instance of Algorithm 3.3 by detecting non-sub-solutions using ∆(G) and

χ(G).

Algorithm 3.4 GraphSearch2(G)
if δ(G) ≡ ∆(G) ≡ 4 and χ(G) ≡ 3 then

Output G
end if
if ∆(G) ≥ 5 or χ(G) ≥ 4 then

return
end if
for all edges e ∈ E(G) do

call GraphSearch1(G + e)
end for

An ideal path through the search space is to always remain within the sub-

solutions and always hit a solution no matter what path is taken. However, this

is not always possible. Sometime the augmentation will lead to an object which is

not a sub-solution, but it takes a few more steps before reaching an object which is

detectably not a sub-solution. Figure 3.3 demonstrates this issue.

In a non-ideal path, the number of steps between reaching a non-sub-solution

and actually detecting that there is no solution greatly changes the run time of an

algorithm. In this region, the algorithm is thrashing: augmenting in all possible

ways for several steps before backtracking, with no hope of finding a solution.

42

(a) Ideal path. (b) Non-ideal path.

Figure 3.3: Ideal and non-ideal paths in the search space.

To reduce the run time, the gap between sub-solutions and detectably non-sub-

solutions must be reduced. This step requires modifying the augmentation step or

proving a theorem.

3.1.6 Number of Paths to Each Unlabeled Object

Consider an unlabeled object X and a base object Y ∈ B. Let Y be the unlabeled

object for Y. The interval between Y and X contains all unlabeled object Z so that

Y � Z � X (Figure 3.4 shows such an interval). As stated before, every object

Z in this interval must be generated at least once in order to guarantee that the

search is complete.

However, if we are not careful, the Hasse diagram on this interval can be a

tightly woven network. The number of times a labeled object X ∈ X is generated

is equal to the number of paths in this graph.

Example. When generating a 4-regular graph G on n vertices by edge augmen-

tations, there are a total of 2n total edges in G. If we assume that almost every

subgraph of G is distinct up to isomorphism (which is not that much of an as-

sumption, see Theorem 2.2), then there are 22n objects in the down-set generated

43

Figure 3.4: All nodes in the interval between a base example and a solution must
be visited.

by G. Not only is that a large number of subobjects, but there are up to (2n)! dif-

ferent ways to order the edges and build G by adding edges in that order. Since

(2n)! = 2θ(n log n), this is asymptotically worse than just generating all subobjects.

Further, this is based on the number of ways to build G as a labeled object. If G

is a rigid graph, there are n! different labeled graphs isomorphic to G, and hence

n! · (2n)! possible ways to generate this isomorphism class. To avoid such drastic

costs, something must be done to reduce isomorphic copies of G.

In an ideal world, every unlabeled object is generated at most once. Thus, there

is at most one path in the Hasse diagram from any base object to any unlabeled

object. This creates a tree structure to the poset, as seen in Figure 3.5. In Chapter 6,

we describe a technique that performs this exact feat. In Chapter 10, we describe

a different technique that reduces the number of paths, but cannot guarantee that

every unlabeled object appears at most once.

44

Figure 3.5: At most one path from a base example to any node creates a tree.

3.1.7 Count and Cost Tradeoff

There is an important tradeoff to consider when designing computational searches.

The total computation time can be modeled as the amount of computation per

object: C(X). Thus,

Total Time = ∑
X

C(X) = Number of Objects×Average Computation per Object.

Depending on the problem considered, different augmentation steps can change

either the number of objects in the space or the average computation per object.

Figure 3.6 models computation time as the amount of black in the figure. In Fig-

ure 3.6(a), there are many nodes but they require very little cost per node. In con-

trast, Figure 3.6(b) has fewer nodes but each requires more cost. Which has less

computation time? How could you tell before implementing and executing the

search?

Similar tradeoffs occur with different methods to reduce isomorphic duplicates.

One technique may remove all duplicates, but be overwhelmingly expensive to

45

(a) Many nodes, small cost per node. (b) Fewer nodes, more cost per node.

Figure 3.6: Adjusting the search technique leads to different performance.

perform the computations. Another technique may be very quick per object, but

suffers from combinatorial explosion in the number of isomorphic duplicates that

appear. Finding the balance between these costs requires experience and experi-

mentation.

Example. When generating graphs, it is almost always the case that generating

isomorphic duplicates leads to combinatorial explosion. Using a technique such

as canonical deletion (see Chapter 6) to remove isomorphic duplicates is a well-

studied technique. However, this techniques works for augmenting by edges or

augmenting by vertices. It is almost always the case that augmenting by edges

requires at least as much computation per node as augmenting by vertices, except

the number of objects that are visited is significantly more for edge augmentations.

This is because edge augmentations visit every subgraph while vertex augmenta-

tions only visit induced subgraphs. Since induced subgraphs include knowledge

about non-edges, more is known about the supergraphs that can be generated later,

and non-sub-solutions may be detected earlier.

However, there are always counterexamples to the common theme: In Chap-

ter 9 we will find that augmenting by ears is very similar to augmenting by edges,

46

but it allows a certain invariant to be monotonic in these augmentations where it

would not necessarily be for vertex augmentations. Further, in this example the ear

augmentations are intimately tied to the structure of the target graphs and greatly

assists the detection of non-sub-solutions.

In Chapter 11, we also go against the typical pattern by allowing isomorphic

duplicates in favor of a shorter computation time per object. While this increases

the number of labeled objects in total, the reduced amount of computation is signif-

icant and allows the search to expand to graphs of order 20 while other techniques

became intractable around 14 vertices.

3.1.8 Partitioning and Parallelization

If we are given a tree-like search space, we can partition the search space by sub-

trees.

Given a base object Y ∈ B, the objects at the ith level (denoted Li) are those

which are generated from Y by performing i augmentations. The objects in Li then

partition the space above the ith level: for X ∈ Li, let P(X) = {Z : X � Z}. That

is, the up-sets P(X) are disjoint and hence partition the space.

(a) Subtrees at a given level. (b) Subtrees as independent jobs.

Figure 3.7: Partitioning the search space and parallelizing.

47

From this partition, since the recursive algorithm does not preserve information

between recursive calls at the same level, these parts of the search space can be run

independently. With appropriate communication protocols, every part P(X) can

be run in a different process or even a different computation node. This allows

for arbitrary parallelism by generating all objects in Li for some i then running the

search starting at every X ∈ Li.

The following section discusses a software library called TreeSearch which en-

ables this parallelization.

3.2 The TreeSearch Library

The previously described process of combinatorial search was purposely abstract.

For all of the computational experiments described in this thesis, they are all imple-

mented using a common library called TreeSearch. This library abstracts the recur-

sive search, including the augmentation step, pruning, and outputting solutions.

In addition, the library manages tracking statistics and distributing independent

jobs to a supercomputer.

The distributed nature of TreeSearch is somewhat superficial. There is no actual

communication or parallel programming occuring in the library itself. Instead,

the library is built to manage the input and output files from parallel jobs in the

Condor scheduler [134]. Condor is a scheduler that works for clusters and grids.

In particular, the Open Science Grid [107], a collection of supercomputers around

the country, has a running Condor scheduler. My access point is the UNL Campus

Grid (designed by Weitzel [143]) as part of the Holland Computing Center.

48

3.2.1 Subtrees as Jobs

This tree structure allows for search nodes to be described via the list of children

taken at each node. Typically, the breadth of the search will be small and these

descriptions take very little space. This allows for a method of describing a search

node independently of what data is actually stored by the specific search appli-

cation. Moreover, the application may require visiting the ancestor search nodes

in order to have consistent internal data. With the assumption that each subtree

is computationally independent of other subtrees at the same level, one can run

each subtree in a different process in order to achieve parallelization. These path

descriptions make up the input for the specific processes in this scheme.

Figure 3.8: A partial job description.

Each path to a search node qualifies as a single job, where the goal is to expand

the entire search tree below that node. A collection of nodes where no pair are in

an ancestor-descendant relationship qualifies as a list of independent jobs. Recog-

nizing that the amount of computation required to expand the subtree at a node is

not always a uniform value, TreeSearch allows a maximum amount of time within a

given job. In order to recover the state of the search when the execution times out,

the concept of partial jobs was defined. A partial job describes the path from the

root to the current search node. In addition, it describes which node in this path

is the original job node. The goal of a partial job is to expand the remaining nodes

49

in the subtree of the job node, without expanding any nodes to the left of the last

node in this path. See Figure 3.8 to an example partial job and its position in the

job subtree.

3.2.2 Job Descriptions

The descriptions of jobs and partial jobs are described using text files in order to

minimize the I/O constraints on the distributed system. The first is the standard

job, given by a line starting with the letter J. Following this letter are a sequence of

numbers in hexadecimal. The first two should be the same, corresponding to the

depth of the node. The remaining numbers correspond to the child values at each

depth from the root to the job node.

A partial job is described by the letter P. Here, the format is the same as a

standard job except the first number describes the depth of the job node and the

second number corresponds to the depth of the current node. For example, the job

and partial job given in Figure 3.8 are described by the strings below:

J 3 3 10 14 2

P 3 5 10 14 2 4 3

3.2.3 The TreeSearch Algorithm

Algorithm 3.5 details the full algorithm for TreeSearch execution. By running this

algorithm after loading a job description (into an array called “job"), it will run the

combinatorial search until either:

1. It completes and all objects are generated.

2. The amount of time spent goes beyond the specified KILLTIME.

50

3. The number of solutions is more than the maximum number of solutions:

MAXNUMSOLS.

In the case of early termination, the position of the search is stored as a partial job

to be run at a later date (or to be used as the start of a job generation mode).

The TreeSearch algorithm requires customization of the following methods:

1. pushNext() and pushTo(label): these methods encode the action of augment-

ing. The pushNext() method performs the next available augmentation, while

the pushTo(label) method performs the augmentation encoded by the given

label.

2. prune(): this method attempts to detect if the current object is not a sub-

solution. Returns 1 if it detects a non-sub-solution, 0 otherwise.

3. isSolution(): this method attempts to detect if the current object satisfies the

required property. Returns 1 if the object is a solution.

4. writeSolution(): this method writes the necessary data of a solution to stan-

dard output. This is typically in the form of a standard format of a graph

output, such as an adjacency matrix or string encoding of an adjacency list.

If the data is particularly long (and you want to avoid transmission over net-

work), this method can be ignored during execution as the job description

of that node is also output and the combinatorial object can be reconstructed

from the augmentation steps.

5. pop(): This method reverses the previous augmentation from a pushNext()

or pushTo() method.

For more information on compiling, integrating with, or running TreeSearch, the

full software documentation is available as Appendix B.

51

Algorithm 3.5 DoSearch() — Recursive algorithm for TreeSearch.
Check if there are reasons to halt.
if mode ≡ GENERATE and depth ≥MAXDEPTH then

call writeJob()
return 0

end if
if runtime ≥ KILLTIME then

call writePartialJob()
Signal early termination.
return -1

end if
if mode ≡ LOADJOB then

call pushTo(job[depth])
result← doSearch()
call pop()
if result < 0 or depth < JOBDEPTH then

Do not continue with other augmentations.
return result

end if
In this case, we are in a partial job and must continue augmenting.

end if
Attempt all possible augmentations.
while pushNext() 6≡ −1 do

if prune() ≡ 0 then
if isSolution() ≡ 1 then

numsols← numsols +1
call writeSolutionJob()
call writeSolution()
if numsols ≥MAXNUMSOLS then

call writePartialJob()
Signal early termination.
return -1

end if
end if
result← doSearch()
if result < 0 then

Early termination was signaled.
call pop()
return result

end if
end if
call pop()

end while
return 0

52

Chapter 4

Chains of Width-2 Posets

In this chapter, we focus on finite posets as our combinatorial object.

Definition 4.1. A finite partially ordered set (or poset) is a pair (X,≤) where X is

a finite set and ≤ is a relation between elements of X so that the following three

properties hold for all x, y, z ∈ X:

1. (Reflexive) x ≤ x.

2. (Antisymmetry) x ≤ y and y ≤ x implies x = y.

3. (Transitivity) x ≤ y and y ≤ z implies x ≤ z.

Given a poset P = (X,≤), two elements x, y ∈ X are comparable if x ≤ y or

y ≤ x. A chain is a subset S ⊆ X so that all pairs x, y ∈ S are comparable. In a chain

S, the elements of S can be listed as s1, s2, . . . , sk so that si ≤ sj if and only if i ≤ j.

We shall be concerned with the number of chains in a given poset.

Definition 4.2. Let ch(P) be the number of chains in P. This number includes the

empty set.

Chains also define another invariant of a poset: width.

53

Definition 4.3. The width of a poset P = (X,≤) is the minimum number w of

disjoint chains S1, S2, . . . , Sw so that X = ∪w
i=1Si.

If a poset has width one, then the poset is a single chain. The number of chains

in these posets is simple to calculate: ch(P) = 2|P|. For larger width, the number

of chains is not easy to compute.

Proposition 4.4. For every integer N, there is at least one poset PN with ch(PN) = N.

Proof. Consider the binary representation of N: Suppose N = ∑k
i=0 xi2i where xi ∈

{0, 1} for each i. Let Cj denote a chain of j elements (for j ≥ 0). Taking P =
⋃k

i=0 Cixi

results in a poset with N′ = 1 + ∑k
i=0 xi(2i − 1) ≤ N chains. By adding N − N′

incomparable elements to P, we find a poset with exactly N chains.

One problem with this construction is that it requires up to 2 log(n) disjoint

chains, giving a non-constant width.

In this work, we ask: is there is a constant width w so that all postive integers

are represented by the number of chains in a poset of width at most (or exactly) w?

While we are not aware of any constant w that is sufficient, we ask if it holds for

w = 2.

Definition 4.5. We say a number k ∈N is representable if there is a poset P of width

exactly two so that ch(P) = k. If k = ch(P), we say k is represented by P.

Question 4.6 (Linek [83]). Is there an integer k0 so that for all k ≥ k0 there is a poset

of width two so that ch(P) = k?

We shall provide strong evidence that the answer to this question is yes with

k0 = 5. By finding an automated method to count the number of chains in posets of

width two, we find constructions that represent every number from 5 to around 7.3

54

million. These constructions further suggest that very few relations are required

between elements from the two chains that partition the poset.

Suppose we have a poset P of width two, so there are two chains L and R that

cover the entire poset. We will visualize L and R as vertical chains on the left and

right side (respectively). Let n = |L|, m = |R|, L = {`1, . . . , `n}, R = {r1, . . . , rm},

where the elements `i and rj are labeled so that `i ≤ `i+1 and rj ≤ rj+1.

Definition 4.7. Given x < y, we say y covers x if there is no z so that x < z < y. If

y covers x and |L ∩ {x, y}| = |R ∩ {x, y}| = 1, we say the pair (x, y) is a cover edge.

By the above definition, the Hasse diagram of P can be drawn as two vertical

lines for L and R, with `1, r1 at the bottom and `n, rm at the top, and left-to-right

edges for cover edges (`i, rj) and right-to-left edges for cover edges (rj, `i). For

example, see Figure 4.1 for posets with one, two, three, and four cover edges.

P1 P2 P3 P4
ch(P1) = ch(P2) = ch(P3) = ch(P4) = 364

Figure 4.1: Examples of posets with few cover edges.

As an exercise, count the numbers of chains in the posets P1, P2, P3, and P4 of

Figure 4.1. We count ch(P1) = 344, ch(P2) = 353, ch(P3) = 357, and ch(P4) = 364.

Definition 4.8. The cover number for an integer k, denoted cov(k), is the minimum

number of cover edges in a poset of width two with k chains.

55

This work will develop several counting formulas for ch(P) when P has a small

number of cover edges. Using this technique, formulas are generated for all con-

figurations on two to five cover edges and the formulas are evaluated on a large

variety of inputs corresponding to the number of points in L and R between the

cover edges. We find that all numbers up to 106 (except 2 and 4) are representable

by the number of chains in a width-two poset with at most six cover edges.

4.1 Products and Powers of Two

We begin by constructing representable numbers from products of representable

numbers.

Definition 4.9. Given two posets P1, P2, the join P1 ∨ P2 is the poset P on the base

set P1 ∪ P2 and relation x ≤P y if and only if x, y ∈ P1 and x ≤P1 y, x, y ∈ P2 and

x ≤P2 y, or x ∈ P1 and y ∈ P2.

Proposition 4.10. If P1 is a poset of width two and P2 is a poset of width at most two, then

the poset P = P1 ∨ P2 has width exactly two and ch(P) = ch(P1) · ch(P2).

Proof. Any selection of two chains C1 and C2 in P1 and P2 uniquely defines a chain

in P1 ∨ P2.

Corollary 4.11. Suppose k is represented by a poset P. For all i ≥ 0, k2i is representable

and cov(k2i) ≤ cov(k) + 1.

Proof. Let P′ be a chain of i elements. The join P ∨ P′ has k2i chains. If L, R is a

partition of P with the smallest number of cover edges, then taking L′ = L ∪ P′

and R′ = R is a partition of P ∨ P′ into two chains with at most one more cover

edge than P.

56

Corollary 4.12. If a number k factors as k = 2ik1k2 · · · k`, where each k j is representable,

then k is representable with cov(k) ≤ 1 + 2(`− 1) + ∑`
j=1 cov(k j).

Proof. Let P1, . . . , P` be width-two posets representing k1, . . . , k` and let P′ be a

chain of i elements. The poset P = P1 ∨ P2 ∨ · · · ∨ P` ∨ P′ represents k. If the

poset Pj has a chain partition Lj ∪ Rj and P′ = L′ ∪ R′, then we shall use the chain

partition L = ∪`
j=1Lj ∪ L′ and R = ∪`

j=1Rj ∪ R′ for P. The number of cover edges

in P with respect to L and R is at most the sum of the cover edges in the Pj, the two

cover edges per join Pj ∨ Pj+1 and one cover edge for the final join with P′.

4.2 An Even Number of Chains

In the previous section, we found that any representable number k provides a poset

to represent all numbers k2i for any exponent i while adding at most one cover

edge. We shall proceed to search for posets which represent odd numbers k, since

all even products of such k will be representable. First, we shall consider which

structures in width-two posets force an even number of chains.

Corollary 4.13. Let P be a poset and x ∈ P. The number of chains contained in the down-

set of x is even (ch(D[x]) ≡ 0 (mod 2)). The number of chains contained in the up-set

of x is even (ch(U[x]) ≡ 0 (mod 2)).

Proof. Note that D[x] ∼= (D[x] − x) ∨ {x} and U[x] ∼= {x} ∨ (U[x] − x). Hence,

ch(D[x]) = 2 ch(D[x]− x) and ch(U[x]) = 2 ch(U[x]− x).

Definition 4.14. Let P be a poset of width two with chain partition L, R. A cover

edge (`i, rj) is simple if there does not exist a cover edge (rj′ , `i′) with i < i′ and

j > j′. Symmetrically, an edge (rj, `i) is simple if there does not exist a cover edge

(`i′ , rj′) with i > i′ and j < j′.

57

A cover edge is simple if and only if the standard drawing of the Hasse diagram

(with respect to L, R) has the cover edge uncrossed.

Theorem 4.15. If P is a poset with a simple cover edge, then ch(P) is even.

Proof. By symmetry, assume the simple cover edge is a left-to-right edge (`i, rj). We

shall consider two induced sub-posets P1, P2. The poset P1 contains the elements

{`1, . . . , `i, r1, . . . , rj−1}. The poset P2 contains the elements {`i+1, . . . , `n, rj, . . . , rm}.

Let A = ch(P1), B = ch(P2). Also, let D = ch(D[`i]) and U = ch(U[rj]).

The number of chains in P is given by BD + UA − UD: Since `i is below all

elements of P2, any chain in D[`i] can be combined with any chain in P2 to create

a chain of P; Similarly, rj is above all elements of P1, so any chain in U[rj] can be

combined with any chain in P1 to create a chain of P. Since the (`i, rj) is simple,

rj−1 6≤ `i+1 and so we have counted every chain in P, but we have double-counted

the chains which are a union of chains in U[rj] and D[`i].

Since D and U are even, every term of this count is even and hence ch(P) is

even.

Observe that Theorem 4.15 cannot become an “if and only if" condition since

the poset P4 in Figure 4.1 has 364 chains but no simple cover edges.

Now we know even numbers are representable when their odd factors are rep-

resentable and posets with simple cover edges result in an even number of chains.

In the following section, we will generate formulas for ch(P) when the set of cover

edges is fixed and the number of points in L and R between the cover edges is var-

ied. We shall focus on finding odd numbers, so we will ignore the configurations

with simple cover edges.

58

4.3 Configurations and Parameterized Posets

In this section we define configurations to be the minimal width two posets with k

“independent" split relations. From these configurations, we insert points between

the split relations to generate larger posets with k split relations. By analyzing the

structure of these posets, we create formulas to count the number of chains in the

posets without needing to generate the actual poset.

Definition 4.16 (Configurations). Let k ≥ 1 be given. A configuration of order k is a

width-two poset C = (L ∪ R,≤) where

1. k = |L| = |R|,

2. every ` ∈ L has exactly one split relation containing `, and

3. every r ∈ R has exactly one split relation containing r.

Observe that the split relations between the left and right chains of a configura-

tion C induce a perfect matching between L and R in the Hasse diagram of C. The

edges of this matching can be directed according to the direction of the relation.

Since these relations are cover relations, the edges from L to R must be parallel (i.e.

for an edge `i → rj there is no edge `i′ → rj′ with i′ < i and j < j′). Similarly, the

edges from R to L are parallel.

Therefore, all configurations with k relations can be generated by selecting a

function σ : {1, . . . , k} → {−1, +1} where

σ(i) =


+1 if the split relation containing `i is ordered `i ≤ rj,

−1 if the split relation containing `i is ordered rj ≤ `i.

59

and then selecting a perfect matching M ⊆ E(Kk,k) where the incoming and out-

going edges from L are parallel.

Definition 4.17 (Parameterized Posets). Let k ≥ 1 and C = (L ∪ R,≤) be a config-

uration of order k. Fix integer vectors a = (a0, a1, . . . , ak) and b = (b0, b1, . . . , bk)

where ai, bj ∈ N = {0, 1, 2, . . . }. Set Aj = j + ∑
j−1
i=0 ai, Bj = j + ∑

j−1
i=0 bi, A =

k + ∑k
i=0 ai and B = k + ∑k

i=0 bi. The parameterized poset generated by C, denoted

PC(a0, a1, . . . , ak; b0, b1, . . . , bk), is the poset on elements

L′ = {x0 ≤ x1 ≤ · · · ≤ xA} and R′ = {y0 ≤ y1 ≤ · · · ≤ yB},

for all split relations `j ≤ rj′ in C, there is a split relation xAj ≤ yBj′
, and for all split

relations rj ≤ `j′ there is a split relation yBj ≤ xAj′
.

Observe that the parameterized poset PC(a; b) can be built by inserting ai points

between `i and `i+1 (for i = 0, insert a0 points before `1; for i = k, insert ak points

after `k) and inserting bj points between rj and rj+1 (for j = 0, insert b0 points before

r1; for j = k, insert bk points after rk). Figure 4.2 shows an example configuration

and parameterized poset. Also, Figure 4.3 demonstrates how the posets in Figure

4.1 can be generated as parameterized posets by listing the parameters a and b.

From the set of k-order configurations, we can generate all width-two posets

with k independent split relations by selecting an appropriate set of parameters.

Further, the parameterized posets have simple relations if and only if the configu-

rations have simple relations. Therefore, to search for odd representable numbers,

we only need to consider configurations with no simple relations. What is even

more interesting is that we can count the number of chains in PC(a; b) without

generating the poset and using a chain-counting algorithm. First, we define this

60

`1

`2

`3

`4

r1

r2

r3

r4

(a) A configuration C4 of order 4.

x0

x1

x2

x3

x4

x5

x6

y0

y1

y2

y3

y4

y5

y6

(b) PC4(1, 1, 0, 0, 1; 0, 1, 0, 2, 0).

Figure 4.2: A configuration of order four and a parameterized poset.

counting function.

Definition 4.18 (Counting Functions). Let k ≥ 1, C be a configuration of order k.

The counting function generated by C is the function on domain (a; b) ∈ Nk+1 ×

Nk+1 defined as fC(a; b) = ch(PC(a; b)).

Given a configuration C, we can algorithmically write an algebraic formula to

represent fC. The strategy is to partition the chains of PC(a; b) by assigning every

chain S ⊂ PC(a; b) a canonical maximal chain. Since the maximal chains of PC(a; b)

correspond to maximal chains of C, we can write a formula for fC by iterating over

all maximal chains S ⊂ C and counting the number of chains in PC(a; b) whose

canonical maximal chains correspond to S.

4.3.1 Canonical Maximal Chains

We shall consider a configuration C, paramaters a = (a0, a1, . . . , ak) and b =

(b0, b1, . . . , bk), and count the number of chains in PC(a; b). We first partition the

chains of PC(a; b) by assigning each chain Z in PC(a; b to a canonical maximal

61

a0

a1

b0

b1

a0

a1

a2

b0

b1

b2

a0

a1

a2

a3

b0

b1

b2

b3

a0

a1

a2

a3

a4

b0

b1

b2

b3

b4

P1 P2 P3 P4

Figure 4.3: Posets from Figure 4.1 with parameters listed.

chain m(Z) in C.

The selection of m(Z) is given as a greedy algorithm. If Z ⊆ L′ or Z ⊆ R′, then

m(Z) is equal to L or R, respectively. Otherwise, Z has some alternating pattern

between L′ and R′. We select elements of C that induce the relations necessary

for these alternations, and remove ambiguity by making a greedy decision: for a

pair zk, zk+1 where zk ∈ L and zk+1 ∈ R, we select a cover relation `i ≤ rj from C

among all such relations where zk ≤ xAi ≤ yBj ≤ zk+1 by taking the relation with

yBj closest to zk+1 (a similar choice is made for the other direction). In the sense of

tracing m(Z) on the Hasse diagram on PC(a; b), we draw a path that hits all the

points of Z while changing from L′ to R′ (or R′ to L′) at the latest possible cover

relation.

Definition 4.19 (Canonical Maximal Chains). Let Z be a non-empty chain in PC(a; b).

Define a map m(Z) from chains in PC(a; b) to chains in C as follows:

1. If Z ⊆ L′, then m(X) = L.

2. If Z ⊆ R′, then m(X) = R.

3. Otherwise, Z∩ L′ 6= ∅ and Z∩ R′ 6= ∅. List the elements of Z as z1, z2, . . . , zm

for m = |Z|. Let i1, i2, . . . , i` and j1, j2, . . . , jk be all indices so that zit ∈ L but

62

zit+1 ∈ R for all t ∈ {1, . . . , `}, and zjt ∈ R but zjt+1 ∈ L for all t ∈ {1, . . . , k}.

a) For all t ∈ {1, . . . , `}, let i(L)
t be the smallest index so that there is an

index j(L)
t where zit ≤ x

i(L)
t
≤ y

j(L)
t
≤ zit+1. Define Lt = {x

i(R)
t−1

, . . . , x
i(L)
t
}.

b) For all t ∈ {1, . . . , k}, let j(R)
t be the smallest index so that there is an

index i(R)
t where zjt ≤ y

j(R)
t
≤ x

i(R)
t
≤ zjt+1.

c) If i1 < j1, then let I = {x0, . . . , x
i(L)
1
}, for even t ∈ {2, . . . , `} let St =

{y
j(L)
t−1

, . . . , y
j(R)
t
}, and for odd t ∈ {2, . . . , k} let St = {x

i(R)
t−1

, . . . , x
i(L)
t
}.

d) If j1 < i1, then let I = {y0, . . . , y
j(R)
1
} for even t ∈ {2, . . . , k} let St =

{x
i(R)
t−1

, . . . , x
i(L)
t
}, and for odd t ∈ {2, . . . , `} let St = {y

j(L)
t−1

, . . . , y
j(R)
t
}.

e) If i` > jk, let T = {x
i(R)
k

, . . . , xA}.

f) If jk > i`, let T = {y
j(L)
`

, . . . , yB}.

Finally, set

m(Z) = I ∪
(
∪k

t=2St

)
∪ T.

Lemma 4.20. Let k ≥ 1 and C = (L ∪ R,≤) be a configuration of order k. Let S be

a maximal chain of C so that S ∩ L 6= ∅ and S ∩ R 6= ∅. Given a, b ∈ Nk+1, set

Aj = j + ∑
j−1
i=0 ai, Bj = j + ∑

j−1
i=0 bi, A = k + ∑k

i=0 ai and B = k + ∑k
i=0 bi. Suppose the

chain S contains t cover edges of C.

• There exist integers i1 < i2 < · · · < it and j1 < j2 < · · · < jt so that xim and yjm

are the two elements of L′ and R′ involved in the mth split relation of S.

• For all m ∈ {1, . . . , t}, let i′m be the minimum i so that im < i ≤ im+1 and the

relation on `i has the form `i ≥ rj (if no such i exists let i′m = im+1 when m < t and

i′m = k when m = t).

63

• Let j′m be the minimum j so that jm < j ≤ jm+1 and the relation on rj has the form

rj ≥ `i (if no such j exists let j′m = jm+1 when m < t and j′m = k when m = t).

• If the minimum element of S is in L, let IS =
(

2Ai1 − 1
)

and s = 0.

• If the minimum element of S is in R, let IS =
(

2Bj1 − 1
)

and s = 1.

• If the maximum element of S is in L, let TS =
(

2
(Ai′t
−Ait) − 1

)
2
(A−Ai′t

+1)
.

• If the maximum element of S is in R, let TS =
(

2
(Bj′t
−Bjt) − 1

)
2
(B−Bj′t

+1)
.

Then, the number of chains in PC(a; b) with canonical maximal chain induced by S is

chS(a; b) = IS ×
t−1

∏
m=1

m≡s (mod 2)

[(
2(Ai′m

−Aim) − 1
)

2(Aim+1
−Ai′m

+1)
]

×
t−1

∏
m=1

m 6≡s (mod 2)

[(
2(Bj′m

−Bjm) − 1
)

2(Bjm+1
−Bj′m

+1)
]
× TS.

Proof. To count the number of chains X ⊆ PC(a; b) so that m(X) = S, we may select

subsets of S by the segments of S ∩ L and S ∩ R. For S to be the canonical maximal

chain of a set X, every segment of S ∩ L or S ∩ R corresponds to a segment of L′

or R′ in PC(a; b) and these segments must contain at least one element of X. The

indices Ai1 , . . . , Ait and Bj1 , . . . , Bjt mark the end of these segments within PC(a; b).

For a segment {`im , . . . , `i′m , . . . , `im+1} of S ∩ L, X must contain a non-empty set

within {xAim
, . . . , xAi′m

− 1}, or else the algorithm to create m(X) would not have

selected rjm ≤ `im as a cover edge, since there is a cover relation ending at `i′m .

There are Ai′m − Aim elements between the corresponding elements of PC(a; b) and

Aim+1 − Ai′m + 1 remaining elements in the segment. There are

(
2(Ai′m

−Aim) − 1
)

2(Aim+1
−Ai′m

+1)

64

possible ways to select a subset of this region so that the cover relation rjm ≤ `im is

selected.

By symmetry, there are

(
2(Bj′m

−Bjm) − 1
)

2(Bjm+1
−Bj′m

+1)

possible ways to select a subset of a segment {yBjm
, . . . , yBj′m

, . . . , yBjm+1
} correspond-

ing to a segment {rjm , . . . , rj′m , . . . , rjm+1} of S ∩ R so that the cover relation `im ≤ rjm

is selected.

The initial segments and terminal segments are counted by IS and TS using a

similar formula. Note that IS counts the number of non-empty sets in the initial

segment, while TS needs to check for a non-empty set before the next cover edge.

Theorem 4.21. For a configuration C of order k,

fC(a; b) =
(

2k+∑k
i=0 ai − 1

)
+
(

2k+∑k
j=0 bj − 1

)
+ 1 + ∑

S⊂C, max’l chain
S∩L 6=∅,S∩R 6=∅

chS(a; b).

Example 4.22. Consider the configuration C4 from Figure 4.2(a). Theorem 4.21

65

states the function fC4 can be computed by the formula

fC4(a; b) =
(

24+a0+a1+a2+a3+a4 − 1
)

(L)

+
(

24+b0+b1+b2+b3+b4 − 1
)

(R)

+ 1 (∅)

+
(

2a0+1 − 1
) (

2b3+1 − 1
) (

2b4+1
)

(S1 = {`1, r3, r4})

+
(

2a0+a1+a2+3 − 1
) (

2b4+1 − 1
)

(S2 = {`1, `2, `3, r4})

+
(

2b0+1 − 1
) (

2a2+a3+2 − 1
) (

2a4+1
)

(S3 = {r1, `2, `3, `4})

+
(

2b0+b1+2 − 1
) (

2a4+1 − 1
)

(S4 = {r1, r2, `4})

+
(

2b0+1 − 1
) (

2a2+2 − 1
) (

2b4+1 − 1
)

. (S5 = {r1, `2, `3, r4})

The five maximal chains S1, . . . , S5 other than L and R are shown in Figure 4.4.

Proof of Theorem 4.21. Every non-empty chain T in PC(a; b) reduces to some canon-

ical maximal chain in C. There are 2|L| − 1 non-empty chains T ⊆ L and 2|R| − 1

non-empty chains T ⊆ R. (Observe |L| = k + ∑k
i=0 ai and |R| = k + ∑k

j=0 bj.) All

other non-empty chains intersect both L and R, and thus are counted by chS(a; b)

for some maximal chain S ⊂ C where S∩ L 6= ∅ and S∩ R 6= ∅. Finally, the empty

set is a chain, which contributes exactly one to the total number. Summing these

terms results in the specified formula.

4.4 Generating Configurations and Formulas

Fix k ≥ 2 to be a number of cover edges of a configuration. We can generate all

configurations C with k cover edges by first selecting a vector p = (p1, . . . , pk) ∈

66

`1

`2

`3

`4

r1

r2

r3

r4

(a) S1 = {`1, r3, r4}.
`1

`2

`3

`4

r1

r2

r3

r4

(b) S2 = {`1, `2, `3, r4}.
`1

`2

`3

`4

r1

r2

r3

r4

(c) S3 = {r1, `2, `3, `4}.

`1

`2

`3

`4

r1

r2

r3

r4

(d) S4 = {r1, r2, `4}.
`1

`2

`3

`4

r1

r2

r3

r4

(e) S5 = {r1, `2, `3, r4}.

Figure 4.4: The five maximal chains of C4 other than L and R.

{−1, +1}k where pi specifies the direction of the relation on `i:

pi =


+1 the cover edge on `i is `i ≥ rj for some j

−1 the cover edge on `i is `i ≤ rj for some j
.

For the elements `1, `2, . . . , `k of L, let rj1 , rj2 , . . . , rjk be the elements of R so that

`i is in a cover relation with rji for all i ∈ {1, . . . , k}. Then, since the cover edges

correspond to cover relations, all relations `i, `i′ with the same sign (pi = pi′) must

be parallel (rji < rji′). By iterating over all feasible orderings of R, we can construct

all possible configurations with k cover edges.

67

Since we are only concerned with representing odd numbers, we can imme-

diately ignore configurations with simple cover edges, as Theorem 4.15 implies

these configurations can only induce parameterized posets with an even number

of chains. The rest of the configurations can be reduced to one representative per

isomorphism class, by computing isomorphism among the Hasse diagrams using

standard isomorphism tools (such as [93]). Table 4.1 shows how many configura-

tions with k cover edges exist up to isomorphism, for k ∈ {2, . . . , 6}.

k 2 3 4 5 6

Nk 1 1 3 5 17

Table 4.1: Number Nk of configurations with k cover edges, up to isomorphism.

Now, for every remaining configuration C, we can automatically generate the

formula fC(a; b) using Lemma 4.20 and Theorem 4.21. Since there are very few

configurations for k ≤ 6 and generating the formulas is a very quick operation, we

do not describe this process in detail. However, what takes more time is to evaluate

the formulas on many inputs and determine what numbers are representable by

these parameterized posets.

4.5 Evaluating Formulas

After generating the formulas fC for every configuration C with at most k cover

edges, we must evaluate the formulas on all inputs a, b. However, there are an

infinite number of formulas, so we must select a finite subset to check.

Observe that if a, b and a′, b′ are parameter sets so that ai ≤ a′i for all i and

bj ≤ b′j for all j, then fC(a; b) ≤ fC(a′; b′). Therefore, if we select values for

a, b in sequential order (i.e. set a1, a2, . . . , ai for increasing i until i = k, then set

68

b1, b2, . . . , bj for increasing j until j = k) then specifying the unassigned coordi-

nates to be zero and evaluating fC on those values provides a lower bound on

fC(a; b) for all later extensions. By specifying an integer N to be the maximum

integer we wish to represent, we can fully determine which integers in {1, . . . , N}

are representable as fC(a; b). Algorithm 4.1 demonstrates this process.

Algorithm 4.1 EvaluateC(N, a, b, k, i, j)
if i < k then

ai+1 ← 0
while fC(a; b) ≤ N do

call EvaluateC(N, a, b, k, i + 1, j)
ai+1 ← ai+1 + 1

end while
else if j < k then

bj+1 ← 0
while fC(a; b) ≤ N do

call EvaluateC(N, a, b, k, i, j + 1)
bj+1 ← bj+1 + 1

end while
else

Mark fC(a; b) as representable
end if

The EvaluateC(N, a, b, k, i, j) algorithm was implemented using TreeSearch. The

while loops in Algorithm 4.1 makes a selection of the next parameter to fix, which

makes a very natural selection for the labels for TreeSearch. Therefore, the labels of

a job description can be exactly the values of a0, a1, . . . , ak, b0, b1, . . . , bk in order, up

to the number of fixed positions. Notice that there is a built-in pruning mechanism

in the while loop, where we avoid parameters a, b so that fC(a; b) > N.

One problem is that marking integers as representable is not something that is

immediately parallelizable. There are two ways to approach this issue:

1. Every process keeps a list of numbers found to be representable, these num-

bers are reported at the end of execution, and the lists are combined by taking

69

a union.

2. Every process keeps a list of numbers not found to be representable, these

numbers are reported at the end of execution, and the lists are combined by

taking an intersection.

Both of these approaches suffer some drawbacks. For instance, the list of rep-

resentable numbers is expected to be large, but it could be that the list of non-

representable numbers is large. Thus, simply reporting the list can take a signif-

icant amount of communication and storage. Further, performing the merging

operation (union or intersection, respectively) is non-trivial for such a large data

set.

There is a third option for parallelizing the approach that may be more suitable:

3. Every process is assigned an interval I` = {N`−1 + 1, . . . , N`} and reports the

list of numbers in this range not found to be representable.

The benefit of this approach is that every process is responsible for the full list

of all representable numbers in that interval, and we can find the first interval so

that there are missed numbers. Each process is essentially calling EvaluateC with a

different upper bound N, except only marking numbers that are at least N`−1 + 1.

Thus, if ` is minimum so that I` contains a non-representable number, then the

process checking this interval has the sharpest upper bound N` for the pruning

operation while still finding the smallest non-representable numbers.

Selecting which interval I` to check can be integrated in the job descriptions for

TreeSearch, but instead was implemented as part of the command line arguments

and the intervals were split manually before being sent to parallel computation

nodes.

70

k ≤ 2 471 499 853 883 929

k ≤ 3 1,003 1,515 1,771 1,899 1,963

k ≤ 4 3,586,097 3,814,169 3,833,477 3,840,217 3,845,441

k ≤ 5 95,731,511 97,882,839 97,949,367 97,978,827 98,205,771

Table 4.2: Smallest odd numbers not found to be representable by parameterized
posets with k cover edges.

4.5.1 Results

After evaluating the formulas fC for configurations C with at most 5 cover edges

and for many inputs, we found many parameterized posets that represent a large

number of odd integers. Table 4.2 lists the first five odd numbers that were not

found to be representable by a parameterized poset with at most k cover edges,

where k ∈ {2, 3, 4, 5}. The k ≥ 5 case has a large gap from the third to fourth

number due to the use of intervals and not completely searching the space in the

time alloted.

These computations provide proof of the following theorems.

Theorem 4.23.

1. If n < 471 is odd, then n is representable and cov(n) ≤ 2.

2. If n < 942 is even, then n is representable and cov(n) ≤ 3.

Theorem 4.24.

1. If n < 1003 is odd, then n is representable and cov(n) ≤ 3.

2. If n < 2006 is even, then n is representable and cov(n) ≤ 4.

Theorem 4.25.

1. If n < 3, 586, 097 is odd, then n is representable and cov(n) ≤ 4.

71

2. If n < 7, 172, 194 is even, then n is representable and cov(n) ≤ 5.

Remark 4.26. The following theorem is based on a recent run of the algorithm with

an upper bound of 50,000,000 where a representation using five cover edges was

found for every odd number in range. Another search is being executed with an

upper bound of 100,000,000.

Theorem 4.27.

1. If n < 50, 000, 000 is odd, then n is representable and cov(n) ≤ 5.

2. If n < 100, 000, 000 is even, then n is representable and cov(n) ≤ 6.

These results provide significant evidence that the answer to Linek’s question is

“yes.” In addition, this suggests that the cover numbers cov(n) grow very slowly.

To guide the investigation of this problem, we make the following conjecture.

Conjecture 4.28. All n ≥ 5 are representable. As n grows, cov(n) = O(log log n).

72

Chapter 5

Ramsey Theory on the Integers

One of the earliest problems in combinatorics led to the development of Ramsey

Theory. The general idea is that absolute disorder is impossible. For example, no mat-

ter how the edges of Kn are colored using r colors, there will be a monochromatic

copy of K` (for n sufficiently large, given r and `). Another way to consider this

problem is that a sufficiently dense graph must contain a copy of K`.

One of the earliest problems in Ramsey Theory came about in a very number-

theoretical setting. The idea is to color the numbers {1, 2, 3, . . . , n} while trying

to avoid giving certain structures (called arithmetic progressions) the same color.

This chapter investigates this extremal coloring problem for two generalizations of

arithmetic progressions. By considering the structure of these structures, we de-

velop methods of constraint propagation which greatly reduces the time required

to compute the extremal functions.

73

r\k 3 4 5 6 7 8

2 9 35 178 1,132 > 3,703 > 11,495

3 27 > 292 > 2,173 > 11,191 > 48,811 > 238,400

4 76 > 1,048 > 17,705 > 91,331 > 420,217

5 > 170 > 2,254 > 98,740 > 540,025

6 > 223 > 9,778 > 98,748 > 916,981

Table 5.1: Known values and bounds for van der Waerden numbers, Wr(k).

5.1 Arithmetic Progressions and van der Waerden

Numbers

A progression is a set of integers X = {x1 < x2 < · · · < xk}. The length of the

progression is |X|.

A progression X = {x1 < x2 < · · · < xk} is a k-term arithmetic progression (k-AP)

if there exists an ` with ` = xi+1 − xi for each i ∈ {1, . . . , k− 1}.

An r-coloring of {1, . . . , n} is a function c : {1, . . . , n} → {0, . . . , r− 1}. A k-AP

x1 < x2 < · · · < xk is monochromatic if all colors c(xi) are the same. An r-coloring

is k-AP-avoiding if there does not exist a monochromatic k-AP.

Theorem 5.1 (van der Waerden [140]). Given integers r ≥ 2 and k ≥ 3, there exists an

Nr,k so that for all n ≥ Nr,k there is no k-AP-good r-coloring of {1, . . . , n}.

Given integers r ≥ 2 and k ≥ 3, the van der Waerden number Wr(k) is the mini-

mum n so that there does not exist a k-AP-avoiding r-coloring of {1, . . . , n}. Equiv-

alently, Wr(k) is one larger than the maximum n so that there exists a k-AP-good

r-coloring of {1, . . . , n}.

The van der Waerden numbers have been determined exactly for very few pa-

74

rameters r, k. Table 5.1 lists known values and bounds on Wr(k) for small values of

r and k. In fact, the value W2(5) = 1, 132 was determined recently by Kouril and

Paul [75].

5.1.1 Lower Bounds on Wr(k)

As with all Ramsey-type problems, lower bounds are easier to prove than upper

bounds since lower bounds only require existence.

The current-best lower bound is given as a concrete construction in the special

case of k = p + 1 where p is a prime.

Theorem 5.2 (Berlekamp [14]). If p is a prime, W2(p + 1) ≥ p2p.

In general, we have an exponential lower bound. One of the first exponential

lower bounds was proven using the Lovász Local Lemma [41] and is given as

Theorem 5.3.

Theorem 5.3. Fix r ≥ 2. For all k ≥ 3, Wr(k) ≥ rk−1

ek (1 + o(1)).

We will see a proof of this lower bound in conjunction with more general lower

bounds in Section 5.4. Szabó [128] proved Theorem 5.4 gives the current-best lower

bound for the two-color case.

Theorem 5.4 (Szabó [128]). Fix ε > 0. For k sufficiently large, W2(k) ≥ 2k

kε .

5.1.2 Upper Bounds on Wr(k)

Proving non-existence of a k-AP-good coloring is harder than proving existence,

so upper bounds are very difficult. Efforts to prove upper bounds on Wr(k) have

led to some of the most famous advancements in combinatorics.

75

The first use of Szemerédi’s Regularity Lemma [132] appeared in the proof of

Szemerédi’s Theorem (Theorem 5.5), a more general version of van der Waerden’s

Theorem.

Theorem 5.5 (Szemerédi [130, 131]). For every k ≥ 3 and ε > 0, there exists an N(k, ε)

so that if N ≥ N(k, ε) and S ⊆ {1, . . . , n} with |S| ≥ εN, then S contains a k-AP.

Szemerédi’s Theorem implies van der Waerden’s Theorem, since any r-coloring

of {1, . . . , n} contains a color class S with |S| ≥ 1
r n. The infinite version of Sze-

merédi’s Theorem is given as

Corollary 5.6. If S ⊆ N has positive upper density (lim supn→∞
|S∩{1,...,n}|

n > 0), then

S contains arbitrarily long arithmetic sequences.

Since Szemerédi’s Regularity Lemma was used, the bound on N(k, ε) given is

astronomical. However, Gowers [50] provided a new proof of Szemerédi’s The-

orem using combinatorics and functional analysis while proving a much lower

bound on N(k, ε).

Theorem 5.7 (Gowers [50]). For k ≥ 3 and ε > 0, N(k, ε) ≤ 22ε−22k+9

.

Corollary 5.8. For k ≥ 3 and r ≥ 2, Wr(k) ≤ 22r22k+9

.

This tower of height five is the current-best upper bound on Wr(k). While

Gower’s proof is a significant piece of mathematics, it is far from the upper bound

conjectured by Graham:

Conjecture 5.9 (Graham [51]). W2(k) ≤ 2k2
.

Szemerédi’s Theorem is an important generalization of van der Waerden’s The-

orem, but it is only a special case of a conjecture of Erdős:

76

Conjecture 5.10 (Erdős [40]). Let S ⊆ N have ∑x∈S
1
x diverge. Then, S contains arbi-

trarily long arithmetic sequences.

An important special case of this conjecture was proven by Green and Tao [53].

Theorem 5.11 (Green, Tao [53]). The primes contain arbitrarily long arithmetic se-

quences.

We now consider a different generalization of van der Waerden numbers by

relaxing conditions on arithmetic progressions.

5.2 Quasi-Arithmetic Progressions

Fix a progression X = {x1 < x2 < · · · < xk}. The low difference of X is the

minimum of consecutive differences: ` = min{xi+1 − xi : i ∈ {1, . . . , k − 1}}.

The intermediate diameters of X are the values di = (xi+1 − xi)− `. The maximum

intermediate diameter, max{di : i ∈ {1, . . . , k− 1}}, is called the diameter of X.

A progression is a (k, d)-quasi-arithmetic progression (a (k, d)-QAD) if it has k

terms and diameter at most d.

An r-coloring of {1, . . . , n} is (k, d)-QAP-avoiding if it does not contain a monochro-

matic (k, d)-QAP. The quasi-arithmetic progression number Qr
d(k) is the minimum n

so that every r-coloring of {1, . . . , n} has a monochromatic (k, d)-QAP.

Quasi-arithmetic progressions were defined by Brown, Erdős, and Freedman

[24] to generalize a structure that appeared in the original proof of Szemerédi’s

Theorem. Their main result is the equivalence of Erdős’ conjecture (Conjecture

5.10) into a similar statement regarding quasi-arithmetic progressions.

Theorem 5.12 (Brown, Erdős, Freedman [24]). Fix d ≥ 1. The following are equiva-

lent:

77

1. Every set S ⊆N where ∑x∈S
1
x diverges contains a k-AP for all k ≥ 3.

2. Every set S ⊆N where ∑x∈S
1
x diverges contains a (k, d)-QAP for all k ≥ 3.

There are two distinct approaches to studying the numbers Qr
d(k). The first

approach is to fix a small diameter d and attempt to show Qr
d(k) behaves similar to

van der Waerden numbers. Vijay [141] demonstrated the only known exponential

lower bound on Qr
d(k) is given exactly when d = 1.

Theorem 5.13 (Vijay [141]). Q2
1(k) ≥ 1.08k.

The second approach is to fix a parameter i and let the diameter be d = k− i.

Landman [79] first found exact values of Q2
k−i(k) for i ∈ {1, 2}. Jobson, Kézdy,

Snevily, and White [70] found many more values of Q2
k−i(k) when i ≤ k/2.

Theorem 5.14 (Jobson, Kézdy, Snevily, White [70]). Let k ≥ 3, i ≥ 1 with 2i ≤ k. If

k = mi + r with 0 ≤ r < i, then

Q2
k−i(k) ≤ 2ik− 4i + 2r + 1

and equality holds when 1 ≤ r < i/2 and r ≤ m + 1.

Table 5.2 lists all known values and bounds on Q2
k−i(k), including updated

bounds computed by methods described in this chapter. Tables 5.3, 5.4, and 5.5

list values and bounds on Qr
k−i(k) for r ∈ {3, 4, 5} as found by our methods.

The constraint ` ≤ xi − xi−1 ≤ ` + d for (k, d)-QAPs is very localized, but

allows for accumulated flexibility when k is large. In the next section, we define

a new variant of arithmetic progressions which place a more global constraint on

the differences xi − xi−1.

78

k\i 1 2 3 4 5 6 7

3 5 9 9

4 7 11 19 35

5 9 17 29 33 178

6 11 19 27 49 67 1132

7 13 25 37 65 73 127 > 3703

8 15 27 39 51 93 119 > 262

9 17 33 45 65 115 127 > 210

10 19 35 55 67 83 155 > 182

11 21 41 57 75 101 184 > 196

12 23 43 63 83 103 123 > 223

13 25 49 73 97 115 145 > 255

14 27 51 75 99 123 147 171

15 29 57 81 107 133 ≤ 161 197

16 31 59 91 115 151 ≤ 175 199

17 33 65 93 129 153 ≤ 189 215

18 35 67 99 131 165 195 ≤ 231

19 37 73 109 139 173 217 ≤ 247

20 39 75 111 147 183 219 ≤ 263

Bold underlined values and bounds were found in this work. Values below the
jagged line are within the range of Theorem 5.14, while boxed numbers are those
where the theorem cannot guarantee equality.

Table 5.2: Values and bounds on Q2
k−i(k).

79

k \ i 2 3 4 5

3 17 27

4 38 64 > 292

5 103 > 166 > 176 > 2,173

6 > 138 > 185

Table 5.3: Values and bounds on Q3
k−i(k)

k \ i 2 3 4 5

3 37 76

4 > 102 > 128 > 1,048

5 > 176 > 272 > 536 > 17,705

6 > 301 > 402

Table 5.4: Values and bounds on Q4
k−i(k)

k \ i 2 3 4 5

3 > 80 > 170

4 > 119 > 165 > 2,254

5 > 263 > 553 > 900 > 98,740

6 > 626

Table 5.5: Values and bounds on Q5
k−i(k)

80

5.3 Pseudo-Arithmetic Progressions

Recall the definition of quasi-arithmetic progression used the low difference and

intermediate diameters of a progression.

A progression X = {x1 < x2 < · · · < xk} is a (k, d)-pseudo-arithmetic progression

(a (k, d)-PAP) if the intermediate diameters sum to at most d: ∑k−1
i=1 di ≤ d.

An r-coloring of {1, . . . , n} is (k, d)-PAP-avoiding if it does not contain a monochro-

matic (k, d)-PAP. The pseudo-arithmetic progression number Pr
d(k) is the minimum n

so that every r-coloring of {1, . . . , n} has a monochromatic (k, d)-PAP.

The following inequalities are immediate from the definitions:

Wr(k) = Qr
0(k) ≥ Qr

1(k) ≥ Qr
2(k) ≥ Qr

3(k) ≥ · · · ≥ Qr
k−1(k) > r(k− 1).

Wr(k) = Pr
0(k) ≥ Pr

1(k) ≥ Pr
2(k) ≥ Pr

3(k) ≥ · · · ≥ Pr
k−1(k) > r(k− 1).

Pr
1(k) ≥ Qr

1(k) ≥ Pr
k−1(k).

Table 5.6 lists all known values and bounds on P2
k−i(k), including updated

bounds computed by methods described here. Tables 5.7, 5.8, and 5.9 list values

and bounds on Pr
k−i(k) for r ∈ {3, 4, 5} as found by our methods.

In Section 5.4, prove that for every fixed d ≥ 0, the numbers Pr
d(k) have an

exponential lower bound that is similar to the lower bound on Wr(k) given in

Theorem 5.3.

5.4 Exponential Lower Bounds

Theorem 5.3, an exponential lower bound on Wr(k), was one of the first applica-

tions of the Lovász Local Lemma.

81

k \ i 1 2 3 4 5 6 7

3 5 9 9

4 7 11 19 35

5 9 33 33 39 178

6 11 27 51 61 99 1132

7 13 73 73 84 146 > 254 > 3703

8 15 51 99 117 > 200 > 310 > 520

9 17 129 129 > 152 > 288 > 424 > 544

10 19 87 163 > 208 > 334

11 21 201 > 200 > 260

12 23 129 > 242 > 282

13 25 289 > 292 > 302

14 27 179 > 338 > 352

15 29 393 > 392 > 398

16 31 237 > 446 > 454

Table 5.6: Values and bounds on P2
k−i(k).

k \ i 2 3 4 5

3 17 27

4 41 74 > 292

5 > 178 > 189 > 215 > 2,173

6 > 217 > 269

Table 5.7: Values and bounds on P3
k−i(k)

82

k \ i 2 3 4 5

3 37 76

4 > 111 > 177 > 1,048

5 > 285 > 309 > 651 > 17,705

6 > 292 > 626

Table 5.8: Values and bounds on P4
k−i(k)

k \ i 2 3 4 5

3 75 > 170

4 > 128 > 142 > 2,254

5 > 198 > 825 > 1300 > 98,740

6 > 1, 254

Table 5.9: Values and bounds on P5
k−i(k)

Lemma 5.15 (Lovász Local Lemma [41]). Let A1, . . . , Am be events so that Pr[Ai] = p

and for any event Ai, there are at most d other events mutually dependent on Ai. If

ep(d + 1) < 1, then the probability that none of the events A1, . . . , Am occur is positive:

Pr[∩m
i=1Ai] > 0.

Proof sketch for Theorem 5.3. Randomly color (uniformly and independently) [N] with

colors {1, . . . , r}. Given a k-arithmetic progression X, the event AX where X is

monochromatic has probability p = r−(k−1). The number of k-APs Y that intersect

X in at least one element is bounded above by the number of intersection positions

of X (k) times the number of positions in Y that element has, times the number of

possible differences ` (N
k−1). This results in ∆ = kN(1− o(1)). When the inequal-

ity ep(∆ + 1) < 1 holds, there exists an r-coloring of [N] which does not have a

83

monochromatic k-AP. It suffices to take any N < rk−1

ek (1 + o(1)).

This proof technique fails for bounding quasi-arithmetic numbers Q2
d(k) when

d ≥ 1. The reason is due to the degree of the dependency digraph when applying

the Local Lemma. The following lemmas compare the degree of this digraph in the

quasi-arithmetic progression and pseudo-arithmetic progression cases. We then

use these lemmas to prove exponential lower bounds using the Local Lemma.

First, we find the dependence degree for (k, d)-QAPs is exponential in k with

base d + 1.

Lemma 5.16. Consider N ≥ k ≥ 3 and let X be a (k, d)-QAP in [N]. Then, there are

at most Nk(d + 1)k−1(1 + o(1)) (k, d)-QAPs Y ⊆ [N] that intersect X in at least one

point.

Proof. We shall select four parameters based on X and N that specify a unique

(k, d)-QAP Y ⊆ Z, and hence we will (over) count the number of such Y. There

are k elements x ∈ X. There are k positions in Y where x could be. If Y ⊆ [N], the

low difference of Y is between 1 and N/(k− 1). Finally, there are (d + 1)k−1 ways

to select the excess differences d2, . . . , dk so that 0 ≤ di ≤ d for each i ∈ {2, . . . , k}.

Thus there are at most Nk(d + 1)k−1(1 + o(1)) such (k, d)-QAPs Y.

In contrast, for fixed d, the dependence degree is polynomial in k.

Lemma 5.17. Consider N ≥ k ≥ 3 and let X be a (k, d)-PAP in [N]. Then, there are at

most 1
d! k

d+1N (k, d)-PAPs Y ⊆ [N] that intersect X in at least one point.

Proof. We shall select four parameters based on X and N that specify a unique

Y ⊆ Z, and hence we will (over) count the number of such Y. There are k elements

x ∈ X. There are k positions in Y where x could be. If Y ⊆ [N], the low difference of

Y is between 1 and N/(k− 1). Finally, there are (k−1
d) ≤ 1

d! (k− 1)d ways to select

84

the excess differences d1, d2, . . . , dk so that ∑k
i=1 dj = d (and hence ∑k

i=2 di ≤ d).

Thus there are at most 1
d! Nk2(k− 1)d−1 ≤ 1

d! Nkd+1 such (k, d)-PAPs Y.

A simple application of the Lovász Local Lemma proves the following theo-

rems.

Theorem 5.18. Fix r ≥ 2 and d ≥ 0. Qr
d(k) ≥ 1

ek

(
r

d+1

)k−1
(1 + o(1)).

Theorem 5.19. Fix r ≥ 2 and d ≥ 0. Pr
d(k) ≥ d!rk−1

ekd+1 (1 + o(1)).

Proof sketch. Randomly color (uniformly and independently) [N] with colors {1, . . . , r}.

The event that a given (k, d) quasi- or pseudo-arithmetic progression is monochro-

matic has probability p = r−(k−1). The degree ∆ of the dependency digraph on

these events is bounded above by Lemmas 5.16 and 5.17. When the inequality

ep(∆ + 1) < 1 holds, there exists an r-coloring of [N] which does not have a

monochromatic (k, d) quasi- or pseudo-arithmetic progressions.

Note that Theorem 5.18 is non-trivial only when the number of colors is larger

than the diameter (specifically, r > d + 1). However, Theorem 5.19 provides an

exponential lower bound on Pr
d(k) for all r ≥ 2 when d is fixed. This is likely not

the best lower bound on Pr
d(k).

5.5 PAP Numbers of High Diameter

We shall determine some bounds on P2
k−i(k) for small values of i. The following

lemma is one of the simplest constraints on a (k, d)-PAP-avoiding coloring, but is

a crucial step to proving upper bounds on P2
k−i(k) for i ∈ {1, 2}.

Lemma 5.20. If an r-coloring of {1, . . . , n} is (k, d)-PAP-avoiding, then every set of k + d

consecutive elements in {1, . . . , n} has at most k− 1 elements of the same color.

85

Proof. If there are k elements of the same color in an interval of length k + d, these

elements form a (k, d)-PAP with low-difference 1.

Theorem 5.21. P2
k−1(k) = 2(k− 1) + 1

Proof. Note that any assignment of two colors so that each color class has order at

most k− 1 will not contain any monochromatic progressions of length k, let alone

monochromatic (k, k− 1)-PAPs, so the coloring given by the block representation

0k−11k−1 shows P2
k−1(k) > 2(k − 1). However, any assignment of two colors to

{1, . . . , 2(k − 1) + 1} must have at least one color class of order at least k and by

Lemma 5.20 this contains a monochromatic (k, k− 1)-PAP.

Theorem 5.22. For k ≥ 3, P2
k−2(k) ≤ 2(k− 1)2 + 1.

Proof. Let n = 2(k − 1)2 + 1. We shall prove that every 2-coloring of {1, . . . , n}

must contain a monochromatic (k, k− 2)-PAP.

Fix an arbitrary 2-coloring of {1, . . . , n}. By Lemma 5.20, every set Fj = {j, j +

1, . . . , j + k + d − 1} of k + d consecutive elements has at most k − 1 elements in

each color class. Since k + d = 2(k − 1), there are exactly k − 1 elements in each

color class within Fj for each j ∈ {1, . . . , n− 2(k− 1)+ 1}. Also note that the frames

Fj and Fj+1 intersect in 2(k− 1)− 1 positions, so the color at position j and position

j + 2(k− 1) must be the same. Thus, the set X = {1 + 2(k− 1)t : t ∈ {0, . . . , k− 1}}

is a monochromatic k-AP in this coloring, a contradiction.

We now show some lower bounds for P2
k−i(k) when i ∈ {2, 3}.

Proposition 5.23. For k odd, P2
k−2(k) > 2(k− 1)2. For all k, P2

k−3(k) > 2(k− 1)2.

Proof. We will show that the 2-coloring of {1, . . . , 2(k − 1)2} given by alternating

blocks of size k − 1 avoids (k, k − 2)-PAPs when k is odd and avoids (k, k − 3)-

PAPs when k is even. (Note that since P2
k−3(k) ≥ P2

k−2(k), this suffices to show

86

P2
k−3(k) > 2(k− 1)2 for all k.) The block representation of this coloring is

(
0k−11k−1

)k−1
.

Let B1, B2, . . . , Bk−1 be the blocks of color zero.

We proceed by contradiction. So that we may discuss both cases simultane-

ously, let d be any sum diameter. Assume X = {x1 < x2 < · · · < xk} is a

monochromatic progression of length k within this coloring. Without loss of gen-

erality, all elements of X have color zero. Let ` be the low-difference of X and

suppose that the sum diameter is at most d.

Let h be the number of blocks Ba so that X ∩ Ba 6= ∅. Each block has k − 1

elements, so X is not contained within any block. Further, there are only k − 1

blocks, so there are two consecutive elements xj, xj+1 within the same block. Thus,

` ≤ k− 2.

Each consecutive pair xj, xj+1 in different blocks has xj+1 − xj ≥ k, so these

pairs contribute at least k− ` to the sum diameter of X. Since there are h− 1 such

pairs, we have (h− 1)(k− `) ≤ d. Therefore, h ≤
[
1 + d

k−`

]
.

Since consecutive differences in X are at least `, the number of elements within

X and any block Ba is at most

|X ∩ Ba| ≤
⌈

k− 1
`

⌉
,

which implies k ≤ h
⌈

k−1
`

⌉
.

Finally, we have

k ≤
⌈

k− 1
`

⌉
h ≤

⌈
k− 1

`

⌉
·
[

1 +
d

k− `

]
. (5.1)

87

We now split into cases for k odd or k even and use Equation 5.1 to complete

the proof.

Case 1: k is odd and d = k− 2. If ` = 1, the inequality h
[
1 + k−2

k−1

]
implies that

h = 1, but X spans at least two blocks, a contradiction.

If ` = 2, then
⌈

k−1
`

⌉
= k−1

2 . Hence, Equation 5.1 yields k ≤ k−1
2

[
1 + k−2

k−2

]
=

k− 1, a contradiction.

If ` ≥ 3, let k = p` + q, where 0 ≤ q < `. Note that
⌈

k−1
`

⌉
∈ {p − 1, p}, so

Equation 5.1 implies

p` ≤ k ≤ p
[

1 +
k− 2
k− `

]
,

which reduces to ` ≤ 1 + k−2
k−` . With some algebra, observe that this implies k− 1 ≤

`. This contradicts that ` ≤ k− 2.

Case 2: k is even and d = k− 3. The cases ` = 1 and ` ≥ 3 follow from Case 1.

If ` = 2, then
⌈

k−1
`

⌉
= k

2 . Hence, Equation 5.1 yields

k ≤ k
2

[
1 +

k− 3
k− 2

]
=

k
2

[
2(k− 2)− 1

k− 2

]
< k,

a contradiction.

Combining Theorem 5.22 and Proposition 5.23 gives the exact value for P2
k−2(k)

when k is odd.

Corollary 5.24. For k ≥ 3 odd, P2
k−2(k) = 2(k− 1)2 + 1.

Notice from the proof of Proposition 5.23 that the construction has a monochro-

matic (k, k − 2)-PAP X in the case that k was even and the low difference of X is

` = 2, since this difference is enough to pick up k/2 elements from two blocks and

the sum-diameter is large enough to span between those two blocks.

88

This ends the current knowledge on tight bounds for PAP numbers. Thus, to

learn more, we resort to computational methods.

5.6 Search Algorithms

In this section we discuss algorithms to exhaustively search for colorings of [n]

which avoid monochromatic quasi- and pseudo-arithmetic progressions with given

length (k) and diameter (d). The general strategy is a standard backtracking search

with varying levels of constraint propagation. We shall use tabulation to quickly

determine when monochromatic progressions appear and backtrack in those situ-

ations.

5.6.1 Coloring [n] While Avoiding (k, d)-QAPs

We begin with the (k, d)-QAP case and will later adapt the techniques to (k, d)-

PAPs. Define functions b : [r]× [n]× [d n
k−1e] → {0, . . . , k} and f : [n]× [d n

k−1e] →

{0, . . . , k} to be the backward and forward tables for a partial r-coloring c if the fol-

lowing conditions hold for all colors a ∈ [r] and pairs j, ` ∈ [n]× [d n
k−1e]:

1. If t = b(a, j, `), then there is a (t, d)-QAP with low difference ` that ends at j

with the first t− 1 terms having color a and there is no (t + 1, d)-QAP with

low difference ` that ends at j with the first t terms having color a.

2. If t = f (a, j, `), then there is a (t, d)-QAP with low difference ` that begins at

j with the last t− 1 terms having color a and there is no (t + 1, d)-QAP with

low difference ` that begins at j with the last t terms having color a.

When a color is assigned to a position j, the tables are updated by advancing

from position j with each low difference ` and allowed diameter d′ ≤ d. That

89

is, when c(j) is assigned to be a, the backward table value b(a, j + (` + d′), `)

is assigned to be at least b(a, j, `) + 1. To update the forward table, the value

f (a, j− (` + d′), `) is assigned to be at least f (a, j, `) + 1. If the colors are assigned

in increasing order, the backward tables advance at most one position at a time, as

the color c(j + ` + d′) will always be unset. However, updating the forward table

triggers a cascading effect as long as the color c(j− (` + d′)) agrees with the color

c(j). Hence, the forward table is not updated unless the forward table is necessary

for the constraint procedure. This procedure is discussed in the following section.

Using just the backward table, we have a tagulation approach that is very effi-

cient to update and is capable of exhaustively searching for all (k, d)-QAP-avoiding

2-colorings of [n]. What this procedure lacks is a “lookahead” mechanism to deter-

mine that a given partial coloring of [n] cannot extend to a full (k, d)-QAP-avoiding

coloring. In order to detect such a situation, colors must be assigned until the back-

ward table provides a contradiction.

We now define two levels of constraint propagation that provide the capability

to backtrack the search by assigning colors that must be present in any (k, d)-QAP-

avoiding extension of the current coloring. These techniques increase the compu-

tation cost per-node, but in some cases sufficiently decrease the number of gener-

ated colorings so that the method is much more efficient than the non-propagating

search.

5.6.2 Constraint Propagation

The essential idea of our constraint propagation is to remove potential assignments

of the color c(j) if assigning that color to c(j) would immediately create a monochro-

matic (k, d)-QAP. We set D(j) to be the domain of j, or the set of potential colors for

90

the position j. These sets are all initialized to D(j) = {1, . . . , r}. Our two levels

of propagation use different amounts of computation to determine when such an

event occurs.

Backward Propagation uses only the backward table. If there is a color a, po-

sition j, and low-difference ` so that b(a, j, `) = k − 1, then assigning c(j) = a

would color the final point in a (k, d)-QAP the same as the previous k − 1 posi-

tions. Hence, we remove the color a from D(j). If only one color remains in D(j),

then that color must be assigned to c(j). This requires the backward table to be up-

dated and may remove more colors from the domains of other positions, leading

to other propagations.

Forward/Backward Propagation uses the forward and backward tables in con-

junction to see when a position cannot be assigned a given color. If there is a color

a, position j, and low-difference ` so that f (a, j, `) + b(a, j, `) = k − 1, then j is

somewhere within a (k, d)-QAP which has k − 1 positions colored a. Hence, c(j)

cannot be assigned a or it would make this QAP be monochromatic.

5.6.3 Coloring [n] While Avoiding (k, d)-PAPs

Similar to the previous section, we aim to search for r-colorings of [n] that avoid

monochromatic-(k, d)-PAPs. The algorithms are essentially the same, except the

backward/forward tables are four-dimensional. The parameters a, j, `, d′ specify

a color, a position, a low-difference, and an upper bound on the difference sum.

Here, d′ ranges from 0 to d, inclusive.

1. If t = b(a, j, `, d′), then there is a (t, d′)-PAP with low difference ` that ends at

j with the first t− 1 terms having color a and there is no (t + 1, d′)-QAP with

low difference ` that ends at j with the first t terms having color a.

91

2. If t = f (a, j, `, d′), then there is a (t, d′)-QAP with low difference ` that begins

at j with the last t − 1 terms having color a and there is no (t + 1, d′)-QAP

with low difference ` that begins at j with the last t terms having color a.

When updating the backward and forward tables, the choices for the next step

vary with the difference d− d′. This difference d− d′ provides the amount of flex-

ibility remaining to keep the difference sum at most d.

The propagation rules are similar, however the forward/backward rule re-

quires special care. Here, we need to check if f (a, j, `, d′) + b(a, j, `, d′′) ≥ k − 1

for any values of d′, d′′ ∈ {0, . . . , d} so that d′ + d′′ ≤ d, since the difference sum

of the forward progression and the backward progression must combine to be at

most d.

5.6.4 Conditions and Implications for Propagation

To review the computational model for the three levels of constraint propagation,

Tables 5.10–5.17 list the conditions that trigger an implication during the search.

When a condition occurs, the implication is performed. After all implications are

performed, the search attempts to assign the color c(j) for the first position j that

has no assigned color. If the implication ever assigns D(j) = ∅, then the current

partial coloring of [n] has no extension which avoids a (k, d)-*AP.

*AP : QAP/PAP Condition : ∃j, |D(j)| ≡ 1

∅/F/B : ∅, B, &
F/B

Implication : a ∈ D(j); c(j)← a.

Table 5.10: Color-Assignment Rule

92

*AP : QAP Condition : ∃a, j, c(j)← a

∅/F/B : B, & F/B Implication : ∀` ∈ {1, . . . , L}, d′ ∈ {0, . . . , d},

b(a, j + ` + d′, `) max←− b(a, j, `) + 1.

Table 5.11: QAP Backward Table Update

*AP : QAP Condition : ∃a, j, c(j)← a

∅/F/B : F/B Implication : ∀` ∈ {1, . . . , L}, d′ ∈ {0, . . . , d},

f (a, j− (` + d′), `) max←− f (a, j, `) + 1.

Table 5.12: QAP Forward Table Update

*AP : PAP Condition : ∃a, j, `, d′, b(a, j, `, d′) ≥ k− 1

∅/F/B : B Implication : D(j)← D(j) \ {a}.

Table 5.13: Backward Domain Removal Rule

*AP : PAP Condition : ∃a, j, c(j)← a

∅/F/B : B, & F/B Implication : ∀` ∈ {1, . . . , L}, d′ + d′′ ∈ {0, . . . , d},

b(a, j + ` + d′′, `, d′ + d′′) max←− b(a, j, `, d′) + 1.

Table 5.14: QAP Backward Table Update

*AP : PAP Condition : ∃a, j, c(j)← a

∅/F/B : F/B Implication : ∀` ∈ {1, . . . , L}, d′ + d′′ ∈ {0, . . . , d},

f (a, j− (` + d′′), `, d′+ d′′) max←− f (a, j, `, d′) + 1.

Table 5.15: QAP Forward Table Update

*AP : PAP Condition : ∃a, j, `, d′, b(a, j, `, d′) ≥ k− 1

∅/F/B : B Implication : D(j)← D(j) \ {a}.

Table 5.16: Backward Domain Removal Rule

93

*AP : PAP Condition : ∃a, j, `, d′, f (a, j, `, d′) + b(a, j, `, d− d′) ≥ k− 1

∅/F/B : F/B Implication : D(j)← D(j) \ {a}.

Table 5.17: Forward/Backward Domain Removal Rule

5.7 Skew-Symmetric Colorings

A coloring c : {1, . . . , n} → {0, 1} is skew-symmetric if for all i ∈ {1, . . . , n},

c(i) = 1− c(n− i + 1). Skew-symmetric colorings are invariant under the action

of reversing the coloring and flipping the colors. Note that skew-symmetric col-

orings are only possible when n is an even number, as when n is odd the number

n+1
2 is invariant under the reversal so flipping the colors creates a different color-

ing. Many of the extremal (k, d)-QAP-avoiding colorings were skew-symmetric or

appeared very close to skew-symmetric. This led to the question of how large are

the Ramsey numbers for avoiding monochromatic (k, d)-QAPs or (k, d)-PAPs over

all skew-symmetric colorings.

Definition 5.25. Fix k ≥ 3 and d ≥ 0.

1. Let Qss
d (k) = n + 1 where n is the largest even number so that there is a skew-

symmetric 2-coloring of {1, . . . , n} that has no monochromatic (k, d)-QAP.

2. Let Pss
d (k) = n + 1 where n is the largest even number so that there is a skew-

symmetric 2-coloring of {1, . . . , n} that has no monochromatic (k, d)-PAP.

While finding the numbers Qss
d (k) and Pss

d (k) have independent interest, the

real focus of computing these numbers is to extend the lower bounds on Q2
d(k)

and P2
d (k) by searching exhaustively over a smaller search space. While there are

2n possible 2-colorings of {1, . . . , n}, there are 2n/2 possible skew-symmetric col-

orings. Thus, we can cover the entire space of skew-symmetric colorings more

94

quickly than we can cover all colorings. This leads to new lower bounds that our

previous search did not find.

To search for skew-symmetric colorings, we change our base set by a trans-

lation. A coloring c : {−(n − 1),−(n − 2), . . . ,−1, 0, 1, . . . , n} → {0, 1} is skew-

symmetric if c(i) = 1− c(1− i). To search over skew-symmetric colorings, we can

assign colors to the numbers 1, 2, 3, . . . and let the colors for 0,−1,−2, . . . be im-

plied by the skew-symmetric constraint. Then, the forward and backward tables

have the same properties as before, but over the range of colored positions.

5.8 Discussion

In this chapter, we investigated quasi-arithmetic progressions and defined pseudo-

arithmetic progressions in an attempt to better understand what makes van der

Waerden numbers so difficult to find. By developing a computational search with

constraint propagation, we exhaustively searched for extremal r-colorings that

avoid these progressions. In many cases (especially the case when r > 2), we could

not find the exact value in a reasonable amount of time and could only resort to

lower bounds given by constructions.

When lower bounds seem to be the only achievable results, local search is a

powerful tool to extend the lower bounds. Local search techniques sacrifice com-

pleteness (i.e. the search cannot determine nonexistence) in favor of a high prob-

ability of finding large solutions. Therefore, to further investigate the numbers

Qr
d(k) and Pr

d(k), local search techniques should be employed. This is left as future

work.

In the case of two colors (r = 2), we have several exact values of P2
k−i(k) for

small k and i. From these data points, we can form conjectures for the behavior

95

k i = 2 i = 3 i = 4 i = 5 i = 6 Key

3 9 9 9 Q2
k−i(k) P2

k−i(k)
9 9 9 Qss

k−i(k) Pss
k−i(k)

4 11 11 19 19 35
11 10 19 19 35

5 17 33 29 33 33 39 178
17 33 29 33 33 39 177

6 19 27 27 51 49 61 67 99 1132
19 27 27 51 49 59 67 99 1131

7 25 73 37 73 65 84 73 146 127 > 242 > 3703
25 73 37 73 65 83 73 135 123 255

8 27 51 39 99 51 117 93 > 200 119 > 294 > 256 > 452
27 51 39 99 51 109 91 183 119 311 > 262 > 520

9 33 129 45 129 65 > 152 115 > 269 127 > 385 > 210 > 540
33 129 45 129 65 155 115 289 127 > 424 > 204 > 544

10 35 87 55 163 67 > 184 83 > 324 155 > 177
35 87 55 163 67 209 83 > 334 > 152 > 492 > 182

11 41 201 57 ≥ 201 75 101 184 > 187
41 201 57 201 73 > 260 101 > 182 > 196

12 43 129 63 ≥ 243 83 103 123 > 223
43 129 63 243 83 > 282 103 123

13 49 289 73 ≥ 289 97 115 145 > 255
49 ≥ 289 73 > 292 97 > 302 115 145

14 51 179 75 99 123 147 171
51 179 75 > 338 99 > 352 123 147

15 57 393 81 ≥ 393 107 133 161 197
57 393 81 ≥ 393 105 > 398 133 161

16 59 237 91 115 151 215
59 237 91 > 446 115 > 454 151 169

17 65 93 129 153 215
65 93 129 153 > 180

18 67 99 131 165 195
67 99 131 165 195

19 73 109 139 173 217
73 109 137 173 217

20 75 111 147 183 219
75 111 147 183 219

Bold and underlined values are places where the skew-symmetric search found a
larger coloring than the standard method.

Table 5.18: Values.

96

of these numbers. However, any conjectures based on these numbers may be sub-

ject to error due to only considering small values. For instance, looking at small

odd values of k we may guess that P2
k−2(k) = P2

k−3(k). However, from the skew-

symmetric search, we found a 2-coloring of order 292 that avoids (13, 10)-PAPs, so

P2
13−3(13) > 292 while P2

13−2(13) = 289. Thus, without finding more exact values

of P2
k−3(k), it is unlikely to find a correct conjecture for the values as k increases

indefinitely.

97

Part II

Isomorph-Free Generation

98

Chapter 6

Canonical Deletion

This chapter provides an overview of McKay’s isomorph-free generation tech-

nique [92], commonly called canonical deletion. The technique guarantees that every

unlabeled object of a desired property will be visited exactly once. The word vis-

ited means that a labeled object in the isomorphism class is generated and tested

for the given property and possibly used to extend to other objects. Also, objects

that do not satisfy the property are visited at most once because we may be able to

use pruning to avoid generating objects that do not lead to solutions.

The canonical deletion technique is so called from its use of reversing the aug-

mentation process in order to guarantee there is exactly one path of augmentations

from a base object to every unlabeled object. Essentially, a deletion function is de-

fined that selects a part of the combinatorial object to remove, and this function

is invariant up to isomorphism. Then, when augmenting an object this augmen-

tation is compared to the canonical deletion of the resulting object to check if this

is the “correct” way to build the larger object. If not, the augmentation is rejected

and the larger object is not visited.

By following the canonical deletion from any unlabeled object, we can recon-

99

struct the unique sequence of augmentations that leads from a base object to that

unlabeled object. Further, this process is entirely local: it depends only on the cur-

rent object and current position within the search tree. This allows the process to

be effective even when parallelizing across computation nodes without needing

any communication between nodes, unlike some other isomorph-free generation

methods which require keeping a list of previously visited objects.

We begin this chapter by reviewing augmentations and deletions in Section 6.1.

Then, Section 6.2 discusses how to reduce augmentations by orbit calculations.

In Section 6.3, we present a useful tool called a canonical labeling that allows the

canonical deletion to be computed up to isomorphism, even though we are starting

with an arbitrary labeled object. Finally, we describe canonical deletions and the

full search process in Section 6.4. Some tips for optimizing this general process are

presented in Section 6.5.

6.1 Objects, Augmentations, and Deletions

Suppose we are searching for combinatorial objects from a family L of labeled ob-

jects. Under the appropriate definition of isomorphism for those objects, let ∼= be

the isomorphism relation and U be the family of unlabeled objects: the equivalence

classes under ∼=. Let P : L → {0, 1} be a property, and we wish to generate all

objects X in L where P(X) = 1. We shall assume the property P is invariant under

isomorphism (∼=): for all unlabeled objects X ∈ U and labeled objects X, X′ ∈ X ,

P(X) = P(X′). In this case, we can define P(X) for an unlabeled object X to be

equal to P(X) for any labeled object X ∈ X .

Example. Let L be the set of graphs of order n. Then U is the family of unlabeled

graphs where the standard relation of isomorphism (∼=) is used between graphs.

100

The property P could be P(G) = 1 if and only if G is 4-regular and G has chromatic

number three. One nice aspect of the property P is that all induced subgraphs

of 4-regular 3-chromatic graphs have maximum degree at most 4 and chromatic

number at most 3.

We require a set B ⊂ L of base objects and an augmentation. Let B ⊂ L be a set of

labeled objects where every pair X, Y ∈ B has X 6∼= Y.

For a labeled object X ∈ L, the augmentation defines a set A(X) of augmenta-

tions. An object in A(X) should specify enough information to determine how to

augment X to create a new object Y. Let D(X) be the set of deletions, which specify

the information to determine how to delete something from X to create a smaller

object Z.

There must be a bijection δ : ∪X∈LA(X) → ∪Y∈LD(Y) from augmentations to

deletions. In some sense, this bijection should be natural, in that an augmentation

A ∈ A(X) maps to δ(A) = D ∈ D(Y) if and only if performing the augmentation

A on X creates the object Y and performing the deletion D on Y results in X.

We shall consider our objects as being built up, so the set of augmented objects

A(X) can be called the above objects while the deleted objects D(X) are the down-

ward objects1. Figure 6.1 provides a visualization of these sets with respect to a

labeled object X.

Example. Suppose we wish to enumerate all connected graphs of order n. One

augmentation step is given by adding a vertex and specifying its neighborhood.

Since every connected graph contains an edge, we can start from K2 as a base

object (so B = {K2}).
1The sets A(X) and D(X) were originally called lower objects L(X) and upper objects U(X) by

McKay [92]. In addition to the problem that the letters L and U are already used for labeled and
unlabeled objects, the notation for L(X) and U(X) is confusing because McKay never explicitly
states which direction is “up”!

101

A(X)

D(X)

X

Figure 6.1: Augmentations A(X) and deletions D(X).

Every vertex augmentation is given by specifying the neighborhood of the new

vertex in the graph, so every augmentation is a pair (G, S) with S ⊆ V(G). To

guarantee connectedness, we can assume that S 6= ∅. To delete a vertex, we must

only specify the vertex, so we can let pairs (G, v) with v ∈ V(G) be a deletion

leading to the graph G− v. From this, let

A(G) = {(G, S) : S ⊆ V(G), S 6= ∅}, D(G) = {(G, v) : v ∈ V(G)}.

The natural bijection δ can be defined as mapping a graph, subset pair (G, S) to the

graph, vertex pair (H, v) where the graph H has vertex set V(G) ∪ {v} and H has

edges given by

E(H) = E(G) ∪ {uv : u ∈ S}.

Figure 6.2 shows an example graph G of order three with all deletions and

augmentations specified. The augmentations have white circles representing the

vertices in S while the deletions have red circles representing the vertex v to delete.

Further, the deletions, (G, v) ∈ D(G), are connected2 to the augmentations of the

2These connections are based on the action of the bijection δ or its inverse.

102

two graphs of order two and the augmentations, (G, S) ∈ A(G), are connected to

the deletions of the graphs of order four.

G

A(G)

D(G)

K2

Figure 6.2: Vertex augmentations A(G) and deletions D(G) for a graph G.

These definitions of augmentations and deletions are based on labeled objects.

In order to generate at most one labeled representative of every unlabeled object,

we must consider what isomorphism means in this context.

6.2 Augmentations and Orbits

For isomorphism concerns, we shall assume that for an unlabeled object X ∈ U ,

any two labeled objects X, X′ ∈ X have a bijection πX,X′ : A(X) → A(X′) and

103

σX,X′ : D(X)→ D(X′) so that the following statements hold:

1. For all Y ∈ A(X), the object W so that δ(Y) ∈ D(W) and object W ′ so that

δ(πX,X′(Y)) ∈ D(W ′) are isomorphic (W ∼= W ′).

2. For all Z ∈ D(X), the object W so that δ−1(Z) ∈ A(W) and the object W ′ so

that δ−1(σX,X′(Z)) ∈ A(W) are isomorphic (W ∼= W ′).

This allows us to define the augmented and deleted objects A(X) and D(X) for

unlabeled objects X ∈ U as well.

Example. If two graphs, G and H, are isomorphic via a bijection τ : V(G) →

V(H), then an augmentation (G, S) ∈ A(G) maps to (H, S′) where S′ = {τ(x) :

x ∈ S}. Further, a deletion (G, v) maps directly to (H, τ(v)). Therefore, any two

isomorphic graphs G and H have a bijection πG,H : A(G)→ A(H).

Now, we wish to remove isomorphic duplicates, so the most natural first step is

to remove duplicate augmentations. That is, if we are augmenting an object X via

two augmentations A, A′ ∈ A(X), we should make sure that A is not isomorphic

to A′ or else δ(A) and δ(A′) will be isomorphic. These types of decisions can be

made using the automorphism group of the object X.

Example. When augmenting a graph G by adding a vertex, if there is an auto-

morphism σ : V(G) → V(G) so that σ maps a set S ⊆ V(G) to a set S′, then the

augmentations (G, S) and (G, S′) create isomorphic graphs H and H′. Therefore,

we should compute all set orbits and select exactly one representative from each

orbit3.
3Since this calculation seems inefficient when the sets can have arbitrary size (i.e. ∆(G) is not

bounded), McKay’s paper [92] has a workaround to avoid duplications without sacrificing effi-
ciency.

104

It is an unfortunate fact that these local orbit calculations are not enough to

guarantee that we shall not create duplicate objects. There are several reasons,

including:

1. Augmentations that are not in orbit can create isomorphic objects. See Figure 6.3(a),

where two single-vertex neighborhoods are not in orbit but augmenting by

either creates the same unlabeled graph. Figure 6.3(b) shows this ambiguity

in the reverse direction, where two deletions from different orbits result in

the same graph.

u2

u1

(a) Augmenting G by neighborhoods {u1}
or {u2} result in isomorphic graphs, but u1
and u2 are in different orbits.

v2

v1

(b) Deleting H by vertices v1 or v2 results in
isomorphic graphs, but v1 and v2 are in dif-
ferent orbits.

Figure 6.3: Different orbits do not imply different augmentations and deletions.

2. There may be two internally disjoint sequences of non-isomorphic augmentations

which generate the same unlabeled object. Figure 6.4 shows two different se-

quences of three vertex augmentations starting from K2 that generate the

same unlabeled object. What is most important is that these paths are inter-

nally disjoint with respect to unlabeled objects. Thus, no amount of verifying

105

that isomorphic duplicates are avoided at the next level (or some constant

number of levels), eventually some objects will be repeated.

Figure 6.4: Two internally-disjoint augmentation paths leading to the same unla-
beled object.

These concerns demonstrate that a “bottom up” approach to avoiding dupli-

cate graphs is not satisfactory. The canonical deletion technique avoids this issue

by reversing the process: it makes sure that every unlabeled graph has a unique

sequence of deletions that leads to a base object.

6.3 Canonical Labelings

In order to avoid the previously mentioned pitfalls that lead to multiple labeled

representatives of an isomorphism class being visited in the search, we must utilize

a powerful tool that allows us to compute invariants.

Definition 6.1. For a family of labeled objects L whose unlabeled objects are U , a

canonical labeling is a function ` : L → L where for every unlabeled object U ∈ U

106

and every pair of labeled objects L, L′ ∈ U, the two labeled objects `(L) and `(L′)

are equal.

In this sense, the labeling function ` will relabel an object L to create another

labeled object `(L) of the same isomorphism class. The important behavior is that

`(L) is the same labeled object for the entire isomorphism class, so the object `(L)

is invariant for unlabeled objects.

Example. When the family of labeled objects L is a collection of undirected (or

directed) graphs, then a canonical labeling `(G) can be selected to be the graph

H ∼= G with lexicographically-least adjacency matrix. This choice of canonical

labeling fits the definition, but is difficult to compute. Instead, McKay’s nauty

library [93] was designed to efficiently compute canonical labelings. The algorithm

defines the map `, and is not easily described. See the survey paper by Hartke and

Radcliffe [61] for a full description of the nauty algorithm.

6.4 Canonical Deletions

Finally, we are able to describe the canonical deletion. This deletion is the most

fundamental concern to this search technique.

Definition 6.2. A canonical deletion function is a map del : L → ∪X∈LD(X) so that

del(X) ∈ D(X) and for any two isomorphic objects X ∼= X′ we have isomorphism

of their deletions: del(X) ∼= del(X′).

Example. When building graphs by vertex augmentations, a graph G has deletion

set D(G) = {(G, v) : v ∈ V(G)}. Thus, we need only select a single vertex up to

isomorphism. By computing the canonical labeling `(G), we find an ordering of

V(G) that is invariant up to isomorphism. Therefore, let v ∈ V(G) be the vertex

107

which maps to the smallest-index vertex in `(G) when using an isomorphism from

G to `(G). Since the isomorphism used above is arbitrary, this only determines the

canonical deletion up to vertex orbits, but this is still appropriately invariant under

isomorphism.

WARNING: When restricting to connected graphs, we must be sure that the

deletion we select leads to a connected graph. Therefore, the canonical deletion

should select the smallest-index vertex that is not a cut vertex.

Given access to a canonical deletion, we can now describe the full canonical

deletion algorithm, given as Algorithm 6.1.

The reason Algorithm 6.1 is correct is due to the fact that following the canon-

ical deletions del(X) in reverse allows you to reconstruct the unique sequence of

augmentations that correspond to those deletions (just in reverse order).

Definition 6.3. Given a labeled object X ∈ L, the deletion sequence from X is a

sequence X0, X1, X2, . . . , Xk of labeled objects so that

1. The first object X0 is equal to X.

2. For i ∈ {1, . . . , k}, δ−1(del(Xi−1)) ∈ A(Xi). That is, the canonical deletion

from Xi1 corresponds to an augmentation from Xi.

3. The last object Xk is a base object: Xk ∈ B.

Thus, the objects that are visited by Algorithm 6.1 are exactly those with dele-

tion sequences X0, X1, . . . , Xk where Prune(Xi) never holds and Xk ∈ B. In the call

to CanonicalDeletion(Xi−1), only the augmentation A ∈ A(Xi−1) that has δ(A) ∼=

del(Xi) will succeed in generating Xi, leading to the call CanonicalDeletion(Xi).

Since we are restricting to a single representative of the augmentation orbits, this

leads to exactly one generation of Xi.

108

Algorithm 6.1 CanonicalDeletion(n, X)
if Prune(X) then

There are no solutions “above” this object.
return

end if
if IsSolution(X) then

This object is a solution.
Output X

end if
if Order(X) ≥ n then

This object is too large to augment.
return

end if
for all augmentations A ∈ A(X), up to isomorphism do

Convert the augmentation into a deletion.
D ← δ(A).
Find the labeled object that corresponds to that deletion.
Y ← D−1(D).
Compute that object’s canonical deletion.
D′ ← del(Y).
Test if the current augmentation corresponds to that canonical deletion.
if D ∼= D′ then

Visit the object Y.
call CanonicalDeletion(n, Y)

end if
end for
return

Note 6.4. It is very important that we make the distinction that for an augmenta-

tion A ∈ A(X) we have δ(A) ∼= del(Y) for an augmented object Y and not simply

that X is isomorphic to the object resulting from performing the deletion del(Y)

on Y. This is due to the fact that multiple non-isomorphic deletions may lead to

the same unlabeled object. Recall that Figure 6.3(b) gave an example of such an

ambiguity.

Figure 6.5 presents an example of the complicated network that may exist be-

tween the augmentations and deletions of combinatorial objects, but that the canon-

109

ical deletion selects a subtree structure to this network. Specifically, the canonical

deletions are presented as thick lines and there is exactly one path from a given

object to the base object.

Example. Algorithm 6.2 is a specific implementation of the canonical deletion al-

gorithm for generating graphs by vertex augmentations.

Algorithm 6.2 GraphCanonicalDeletion(n, G)
if ∆(G) ≥ 5 or χ(G) ≥ 4 then

There are no solutions with G as an induced subgraph.
return

end if
if n(G) ≡ n and δ(G) ≡ ∆(G) ≡ 4 and χ(G) ≡ 3 then

This graph is a solution.
Output G
return

end if
if n(G) ≥ n then

This graph is too big for our target.
return

end if
for all orbits O of non-empty sets S ⊆ V(G) with |S| ≤ 4 do

Let S ∈ O be any representative.
Create the augmented graph.
H ← G + vS.
Compute that object’s canonical deletion.
(H, v′)← del(H).
Test if the current augmentation corresponds to that canonical deletion.
if vS and v′ are in the same H-orbit then

Visit the graph H.
call GraphCanonicalDeletion(n, H)

end if
end for
return

110

6.5 Efficiency Considerations

Based on my experience in creating specific implementations of the canonical dele-

tion algorithm, I contribute a few suggested methods for writing more efficient

software.

1. Deletion by filtering. Calling nauty is an expensive computation, so it should

be avoided whenever possible. However, we cannot exactly compute the

canonical deletion without it, but we can sometimes determine that our cur-

rent augmentation does not correspond to the canonical deletion without us-

ing nauty. Therefore, I instead create a method IsCanonical(H, A), where H

is the augmented graph and A is the augmentation I used to create H. Then,

the method can return False at the earliest time that it detects this is NOT

the canonical deletion. This process is then helped by a staged selection of

canonical deletion:

a) Start with an easy invariant metric, such as minimum degree of a vertex.

This restricts the possible deletions very quickly in most cases.

b) Define a sequence of more complicated invariant metrics, such as min-

imizing the sum of the squares of all the neighbor degrees. Such in-

variants can remove even more choices without being overly costly to

compute.

c) If all previous restrictions on the choice of canonical deletion did not

prove that the current augmentation is not canonical, we have two op-

tions. We can check if the list of feasible deletions that fit the previous

invariants has size exactly one. If so, then we know without a doubt

that this deletion is canonical. Otherwise, we need to select a deletion

111

using a canonical labeling and then check if the current augmentation is

in orbit with that canonical deletion. Both of these checks can be done

using a single call to nauty.

2. Reduced augmentation count. In the previous suggestion, we restricted the

choice of canonical deletion to a simple invariant minimization, such as mini-

mizing the vertex degree. Making such a restriction as part of your canonical

deletion can reduce the number of augmentations you attempt, for instance

by only augmenting vertices of degree at most δ(G) + 1.

3. Pruning in deletion. Again, since calling nauty is probably the most compu-

tationally expensive subroutine in this algorithm, it may be useful to check

if the augmented graph should be pruned even before finishing the canoni-

cal deletion. This may depend on how complicated your Prune(G) method

is, but if Prune(G) holds, there is no reason to visit that graph and hence no

reason to compute a canonical labeling.

4. Skipping augmentation orbit calculation. For some augmentations, it may be

difficult to completely compute the orbits of augmentations. Vertex augmen-

tations is such an example, because there are many possible neighborhood

sets. It may be more beneficial to ignore the automorphism calculation and

instead just attempt every augmentation. For every successful augmenta-

tion, store a canonical labeling of the augmented object. Then, the objects

generated from the current object are visited if and only if the augmentation

corresponds to the canonical deletion and that augmented object is not iso-

morphic to any previous augmentation. By storing a list of visited objects at

a given node, we are using the canonical labelings locally, which can be very

efficient. See McKay’s original paper [92] for more details about this strategy.

112

5. Experiment with the augmentation step. Depending on what type of objects

you are generating, there may be something special about their structure that

you can exploit in the augmentation step. McKay [92] provides an example

of generating triangle-free graphs by making the vertex augmentations only

use independent sets4. More radical experimentation of augmentations is

described in the next section.

6.6 Big Augmentations

One major insight of this thesis is the use of augmentations that are customized to

the given problem. Most previous implementations of canonical deletion focused

on using vertex or edge augmentations. By customizing the augmentation to the

specific problem, we can gain some properties that vertex or edge augmentations

lack, such as monotonicity of invariants, strength in pruning, or simply a smaller

set of objects to generate.

In Chapter 7, we develop a method to generate 2-connected graphs by ear aug-

mentations. While this can be used to generate 2-connected graphs, the technique

generates 2-connected graphs slower than using vertex augmentations and filter-

ing. In Chapter 8, we use this method to verify the Edge Reconstruction Conjecture

on 2-connected graphs. Since dense graphs are edge-reconstructible, the number

of graphs to verify decreases. Also, the augmentation step allows a method to

test pairs of graphs without needing to check all pairs, just pairs with the same

canonical deletion.

The ear augmentations become particularly powerful when applied to an ex-

tremal problem in Chapter 9. A graph of order n with p perfect matchings is p-

4Observe that in a triangle-free graph every vertex neighborhood is an independent set.

113

extremal if it has the maximum number of edges for that n and p. After proving

some structure theorems about the infinite family of p-extremal graphs, we find

that the structure of all p-extremal graphs depends on a finite5 list of fundamental

graphs. To determine this list of fundamental graphs, we find by the Lovász Two

Ear Theorem [85] that they can be built using a very restricted type of ear aug-

mentations. One important property of these augmentations is that the number of

perfect matchings is monotone: more augmentations leads to more perfect match-

ings. Vertex augmentations do not preserve the number of perfect matchings at

all. Further, there is a list of special subsets of the vertices called barriers. The list

of barriers is difficult to compute from scratch, but using ear augmentations we

can update the list using a very simple algorithm. Finally, by proving a new ex-

tremal theorem, we are able to use the ear augmentations to significantly prune

the search space as we can bound the number of edges possible in further aug-

mentations. Executing this search significantly extended the current knowledge of

p-extremal graphs.

In Chapter 11, we search for uniquely Kr-saturated graphs. The main approach is

to augment by a copy of K−r (a Kr with one edge deleted) at every step. We started

by implementing this augmentation within canonical deletion. This approach was

successful in that the search was more efficient than vertex augmentations. How-

ever, it was not significantly better than previous augmentations: we could gener-

ate all examples up to 14 or 15 vertices, while vertex augmentations with pruning

could generate all examples up to 13 vertices. Thus, in Chapter 11 we use a tech-

nique called orbital branching with a similar augmentation step and exhaustively

search for uniquely Kr-saturated graphs over a larger number of vertices.

Determining which of these techniques to use (and which augmentation to use)

5The list of fundamental graphs is finite for a fixed p.

114

requires experience, experimentation, and a bit of luck.

115

X
0

A
(X

0)

D
(X

1)
D

(X
2)

X
1

X
2

A
(X

1)
A

(X
2)

D
(X

3)
D

(X
4)

D
(X

5)

X
3

X
4

X
5

A
(X

3)
A

(X
4)

A
(X

5)

Fi
gu

re
6.

5:
Th

e
ca

no
ni

ca
ld

el
et

io
n

tr
ee

w
it

hi
n

th
e

la
tt

ic
e

of
au

gm
en

ta
ti

on
s

an
d

de
le

ti
on

s.

116

Chapter 7

Ear Augmentations

If a connected graph G has a vertex x so that G − x is disconnected or a single

vertex, then G is separable. Otherwise, G is 2-connected, and there is no single vertex

whose removal disconnects the graph. Many interesting graph families contain

only 2-connected graphs, so we devise a generation technique that exploits the

structure of 2-connected graphs.

A fundamental and well known property of 2-connected graphs is that they

have an ear decomposition. An ear is a path x0, x1, . . . , xk so that x0 and xk have

degree at least three and xi has degree exactly two for all i ∈ {1, . . . , k− 1}. An ear

augmentation on a graph G is the addition of a path with at least one edge between

two vertices of G. The augmentation process is also invertible: an ear deletion takes

an ear x0, x1, . . . , xk in a graph and deletes all vertices x1, . . . , xk−1 (or the edge x0x1

if k = 1). Every 2-connected graph G has a sequence of subgraphs G1 ⊂ · · · ⊂

G` = G so that G1 is a cycle and for all i ∈ {1, . . . , `− 1}, Gi+1 is the result of an

ear augmentation of Gi [146].

In this chapter, we describe a method for generating 2-connected graphs using

ear augmentations. While we wish to generate unlabeled graphs, any computer

117

implementation must store an explicit labeling of the graph. Without explicitly

controlling the number of times an isomorphism class appears, a singe unlabeled

graph may appear up to n! times. An isomorph-free generation scheme for a class of

combinatorial objects visits each isomorphism class exactly once. To achieve this

goal, our strategy will make explicit use of isomorphisms, automorphisms, and or-

bits. The technique used in this work is an implementation of McKay’s isomorph-

free generation technique [92], which is sometimes called “canonical augmenta-

tion" or “canonical deletion". See [73] for a discussion of similar techniques. We

implement this technique to generate only 2-connected graphs using ear augmen-

tations.

Almost all graphs are 2-connected [142], even for graphs with a small num-

ber of vertices1, so as a method of generating all 2-connected graphs, this method

cannot significantly reduce computation compared to generating all graphs and

ignoring the separable graphs. The strength of the method lies in its application

to search over ear-monotone properties and to use the structure of the search to

reduce computation. These strengths are emphasized in two applications of the

technique.

In Chapter 8, we verify the Edge Reconstruction Conjecture on small 2-connected

graphs. The structure of the search allows for a reduced number of pairwise com-

parisons between edge decks. Also, it is known that the Reconstruction Conjecture

holds if all 2-connected graphs are reconstructible. Since graphs with more than

1 + log(n!) edges are edge-reconstructible, we focus only on 2-connected graphs

with at most this number of edges, providing a sparse set of graphs to examine.

This verifies the conjecture on all 2-connected graphs up to 12 vertices, extending

1 To see the overwhelming majority of 2-connected graphs, compare the number of unlabeled
graphs [119] to the number of unlabeled 2-connected graphs [120].

118

previous results [91].

In Chapter 9, we use the technique to study graphs which have an extremal

number of edges in the class of graphs with exactly p perfect matchings. The ear-

augmentation technique is particularly effective due to a structural theorem which

uses ear decompositions.

For a 2-connected graph, a vertex of degree at least three is a branch vertex.

Vertices of degree two are internal vertices, as they are contained between the end-

points of an ear. Ears will be denoted with ε. For an ear ε, the length of ε is the

number of edges between the endpoints and its order is the number of internal ver-

tices between the endpoints. We will focus on the order of an ear. An ear of order

0 (length 1) is a single edge, called a trivial ear. Ears of larger order are non-trivial.

Given a graph G and an ear ε = x0, x1, . . . , xk, the ear deletion G− ε is the graph

G − x1 − x2 − · · · − xk−1, where all internal vertices of ε are removed. For an ear

ε = x0, x1, . . . , xk−1, xk where x0, xk ∈ V(G) but x1, x2, . . . , xk−1 are not vertices in

G, the ear augmentation G + ε is given by adding the internal vertices of ε to G and

adding the edges xixi+1 for i ∈ {0, . . . , k− 1}.

7.1 The search space and ear augmentation

In this section, we describe a general method for performing isomorph-free gener-

ation in specific families of 2-connected graphs.

Consider a family F of unlabeled 2-connected graphs. We say F is deletion-

closed if every graph G in F which is not a cycle has an ear ε so that the ear deletion

G− ε is also in F . For an integer N ≥ 3, FN is the set of graphs in F with at most

N vertices.

This requirement implies that for every graph G ∈ F , there exists a sequence

119

Figure 7.1: A 2-connected graph G and an ear ε whose removal makes G− ε sepa-
rable.

G ⊃ G1 ⊃ G2 · · · of ear deletions Gi+1 = Gi − εi where each graph Gi is in F and

the sequence {Gi} terminates at some cycle Ck ∈ F . By selecting an ear deletion

which is invariant to the representation of each Gi, we define a canonical sequence

of ear-deletions that terminates at such a cycle. While generating graphs of F ,

we shall only follow augmentations that correspond to these canonical deletions,

giving a single sequence of augmentations for each isomorphism class in F . This

allows us to visit each isomorphism class in F exactly once using a backtracking

search and without storing a list of previously visited graphs.

The search structure is that of a rooted tree: the root node is an empty graph,

with the first level of the tree given by each cycle Ck in FN. Each subsequent

search node is extended upwards by all canonical ear augmentations. Since the

search does not require a list of previously visited graphs, disjoint subtrees are

independent and can be run concurrently without communication. This leads to a

search method which can be massively parallelized without a significant increase

in overhead.

Note that being deletion-closed does not imply that every ear ε in G has G − ε

in the family. In fact, this does not even hold for the family of 2-connected graphs,

as removing some ears leave the graph separable. See Figure 7.1 for an example of

such an ear deletion.

120

Also, if F is deletion-closed, then so is FN. While the algorithms described

could operate over F , a specific implementation will have a bounded number (N)

of vertices to consider. Operating over FN allows for a finite number of possible

ear augmentations at each step.

To augment a given labeled graph G, enumerate all pairs of vertices x, y ∈ V(G)

and orders r ≥ 0 so that |V(G)|+ r ≤ N and attempt adding an ear between x and

y of order r. If an edge exists between x and y, then adding an ear of order 0 will

immediately fail. However, all other orders produce valid 2-connected graphs. We

then test if the augmentation G + ε is in F , discarding graphs which are not in the

family.

7.2 Augmenting by orbits

By considering the automorphisms of a given graph, we can reduce the number

of attempted ear augmentations. First, note that between a given pair of vertices,

multiple ears of the same order are in orbit with each other. Second, if ε1 is an ear

between x1 and y1 and ε2 is an ear between x2 and y2, then ε1 and ε2 are in orbit

if and only if they have the same order and the vertex sets {x1, y1}, {x2, y2} are in

orbit under the automorphism group of G. Third, if the sets of vertices {x1, y1} and

{x2, y2} are in orbit under the automorphism group of G, then the augmentations

formed by adding an ear of order r between x1 and y1 is isomorphic to adding an

ear of order r between x2 and y2.

This redundancy under graphs with non-trivial automorphism group is re-

moved by computing the orbits of vertex pairs, then only augmenting ears be-

tween a single representative of a pair orbit. Pair orbits are computed by applying

the generators of the automorphism group of G to the set of vertex pairs.

121

7.3 Canonical deletion of ears

While augmenting by orbits reduces the number of generated graphs, a canonical

deletion is defined to guarantee that each unlabeled graph in FN is enumerated

exactly once. This selects a unique ear ε = DeleteF (G) so that G− ε is in F and ε

is invariant to the labeling of G. That is, if G1 and G2 are isomorphic graphs with

deletions DeleteF (G1) = ε1 and DeleteF (G2) = ε2, then there is an isomorphism

π from G1 to G2 so that π maps ε1 to ε2.

In order to compute a representative DeleteF (G) that is invariant to the labels

of G, a canonical labeling of V(G) is computed. A canonical labeling is a map lab(G)

which maps graphs G to permutations πG : V(G) → {0, 1, 2, . . . , |V(G)| − 1} so

that for every labeled graph G′ ∼= G, the map φ : V(G) → V(G′) given by φ(v) =

π−1
G′ (πG(v)) for each v ∈ V(G) is an isomorphism from G to G′. In this sense, the

map πG is invariant to the labels of V(G). McKay’s nauty library [93, 61] is used

to compute this canonical labeling.

Once the canonical labeling is computed, the canonical deletion can be chosen

by considering all ears ε whose deletion (G− ε) remains inFN, and selecting the ear

with (a) minimum length, and (b) lexicographically-least canonical label of branch

vertices. Algorithm 7.1 details this selection procedure.

7.4 Full implementation

This isomorph-free generation scheme is formalized by the recursive algorithm

SearchF (G, N), given in Algorithm 7.2. The full algorithm SearchF (N) searches

over all graphs of order at most N in F and is initialized by calling SearchF (Ck, N)

for each k ∈ {3, 4, . . . , N}. Since the recursive calls to SearchF (G, N) are indepen-

122

Algorithm 7.1 DeleteF (G) — The Default Canonical Deletion in F
minOrder← n(G)
minLabel← n(G)2

bestEear← null
for all vertices x ∈ V(G) with deg x ≥ 3 do

for all ears e incident to x do
Let y be the opposite endpoint of e
label← min{n(G)πG(x) + πG(y), n(G)πG(y) + πG(x)}
r ← order of e
if G− e ∈ FN then

if r < minOrder then
minOrder← r
minLabel← label
bestEar← (x, y, r)

else if r = minOrder and label < minLabel then
minLabel← label
bestEar← (x, y, r)

end if
end if

end for
end for
return bestEar

dent, they can be run concurrently without communication.

For some applications, it is possible to determine that no solutions are reachable

under any sequence of ear augmentations. In such a case, the algorithm can stop

searching at the current node to avoid computing all augmentations and canonical

deletions. Let PruneF (G) be the subroutine which detects if such a pruning is

possible.

The framework for Algorithm 7.2 was implemented in the TreeSearch library

(see Chapter 3), a C++ library for managing a distributed search using the Condor

scheduler [134]. This implementation was executed on the Open Science Grid [107]

using the University of Nebraska Campus Grid [143]. Performance calculations in

this chapter are based on the accumulated CPU time over this heterogeneous set

123

Algorithm 7.2 SearchF (G, N) — Search all canonical augmentations of G in FN

if PruneF (G) = true then
return

end if
if G is a solution then

Store G
end if
R← N − n(G)
for all vertex-pair orbits O do
{x, y} ← representative pair of O
for all orders r ∈ {0, 1, . . . , R} do

G′ ← G + Ear(x, y, r)
(x′, y′, r′)← DeleteF (G′)
if r = r′ and {x′, y′} ∈ O then

SearchF (G′, N)
end if

end for
end for
return

of computation servers. For example, the nodes available on the University of Ne-

braska Campus Grid consist of Xeon and Opteron processors with a speed range

of 2.0-2.8 GHz. All code and documentation written for this chapter is available as

the EarSearch library, detailed in Appendix E.

7.5 Generating all 2-connected graphs

Using the isomorph-free generation scheme of canonical ear deletions, we can gen-

erate all unlabeled 2-connected graphs on N vertices or graphs on N vertices with

exactly E edges.

Definition 7.1. Let N and E be integers. Set gN to be the number of unlabeled 2-

connected graphs on N vertices and gN,E to be the number of unlabeled 2-connected

graphs on N vertices and E edges. GN is the family of 2-connected graphs on up to

124

N gN CPU time
5 10 0.01s
6 56 0.11s
7 468 0.26s
8 7123 10.15s
9 194066 5m 17.27s

10 9743542 7h 39m 28.47s
11 900969091 71d 22h 22m 49.12s

Table 7.1: Comparing gN and the time to generate GN.

N vertices. GN,E is the family of 2-connected graphs on up to N vertices and up to

E edges.

Robinson [113] computed the values of gN and gN,E, listed in [120, 112]. Note

that GN and GN,E are deletion-closed families, and can be searched using isomorph-

free generation via ear augmentations. We revisit the three main behaviors of the

algorithm: canonical deletion, pruning, and determining solutions.

Canonical Deletion: The canonical deletion algorithm in Algorithm 7.1 suffices

for the class of 2-connected graphs. Recall this algorithm selects from ears ε so that

G− ε remains 2-connected, selecting one of minimum length and breaking ties by

using the canonical labels of the endpoints.

Pruning: If the number of edges is fixed to be E, a graph with more than E edges

should be pruned. Also, a graph on n(G) < N vertices must add at least N −

n(G) + 1 edges during ear augmentations in order to achieve N total vertices. If

e(G) + (N− n(G) + 1) > E, then no graph on N vertices with at most E edges can

be reached by ear augmentations from G. In this case, the node can be pruned.

Solutions: A 2-connected graph is a solution if and only if n(G) = N, and if E is

specified then e(G) = E must also hold.

Table 7.1 compares the number of 2-connected graphs of order N and the CPU

time to enumerate all such graphs. Both the computation times and the sizes of

125

N E = 11 E = 12 E = 13 E = 14 E = 15 E = 16 E = 17 E = 18 E = 19 E = 20

10 9 121 1034 5898 23370 69169 162593 317364 530308 774876
0.01 0.16 1.73 12.99 65.88 167.12 472.68 972.62 2048.85 3631.71

11 11 189 2242 17491 94484 380528 1212002 3194294 7197026
0.02 0.38 5.52 56.10 260.53 1212.89 4069.09 13104.24 32836.53

12 13 292 4544 46604 334005 1747793 7274750 24972998
0.03 0.86 17.56 286.00 1226.71 6930.00 33066.80 125716.68

13 15 428 8618 113597 1031961 6945703 36734003
0.05 1.83 44.64 469.02 5174.92 39018.15 227436.84

14 18 616 15588 257656 2925098 24532478
0.08 3.82 90.51 1573.81 21402.18 183482.70

15 20 855 26967 519306 7654299
0.12 7.56 198.84 4567.43 76728.79

16 23 1176 44992 1111684
0.18 15.56 498.20 13176.05

Table 7.2: Comparing gN,E (above) and the time to generate GN,E (below, in sec-
onds).

the sets grow exponentially. Since the number of 2-connected graphs on N vertices

grows so quickly, to test the performance for larger orders, the number of edges

was also fixed to be slightly more than N. Table 7.2 shows these computation

times.

126

Chapter 8

The Edge-Reconstruction Conjecture

In this chapter, we apply the isomorph-free generation of 2-connected graphs to

test the Edge Reconstruction Conjecture. We restrict the search to sparse 2-connected

graphs and utilize the structure of the search tree in order to minimize pairwise

comparisons among the list of generated graphs.

8.1 Background

The Reconstruction Conjecture and Edge Reconstruction Conjecture are two of the

oldest unsolved problems in graph theory. Given a graph G, the vertex deck of G is

the multiset of unlabeled graphs given by the vertex-deleted subgraphs {G − v :

v ∈ V(G)}. The edge deck of G is the multiset of unlabeled graphs given by the

edge-deleted subgraphs {G − e : e ∈ E(G)}. A graph G is reconstructible if all

graphs with the same vertex deck are isomorphic to G. G is edge reconstructible if

all graphs with the same edge deck are isomorphic to G.

Conjecture 8.1 (The Reconstruction Conjecture). Every graph on at least three vertices

is reconstructible.

127

Conjecture 8.2 (The Edge Reconstruction Conjecture). Every graph with at least four

edges is edge reconstructible.

Bondy’s survey [19] discusses many classic results on this topic. Greenwell [54]

showed that the vertex deck is reconstructible from the edge deck, so a recon-

structible graph is also edge reconstructible. Therefore, the Edge Reconstruction

Conjecture is weaker than the Reconstruction Conjecture.

Yang [149] showed that the Reconstruction Conjecture can be restricted to 2-

connected graphs.

Theorem 8.3 (Yang [149]). If all 2-connected graphs are reconstructible, then all graphs

are reconstructible.

The proof considers a separable graph G and tests if the complement G is 2-

connected. If G is 2-connected, G is reconstructible (by hypothesis) and since the

vertex deck of G is reconstructible from the vertex deck of G, G is also recon-

structible. If G is not 2-connected, Yang reconstructs G directly using a number of

possible cases for the structure of G. There has been work to make Yang’s theorem

unconditional by reconstructing separable graphs such as trees [88], cacti [49, 96],

and separable graphs with no vertices of degree one [89], but separable graphs

with vertices of degree one have not been proven to be reconstructible.

Verifying the Reconstruction Conjecture requires that every pair of non-isomorphic

graphs have non-isomorphic decks. Running a pair-wise comparison on every pair

of isomorphism classes on n vertices is quickly intractable. McKay [91] avoided

this issue and verified the conjecture on graphs up to 11 vertices by incorporating

the vertex deck as part of the canonical deletion. McKay used vertex augmenta-

tions to generate the graphs, so a canonical deletion in this search is essentially

selecting a canonical vertex-deleted subgraph. His technique selects the deletion

128

based only on the vertex deck, so two graphs with the same vertex deck would be

immediate siblings in the search tree. With this observation, only siblings require

pairwise comparison, making the verification a reasonable computation. We use

a modification of McKay’s technique within the context of 2-connected graphs to

test the Edge Reconstruction Conjecture on small graphs. This strategy was first

proposed in unpublished work of Hartke, Kolb, Nishikawa, and Stolee [59].

8.2 The Search Space

To search for pairs of non-isomorphic graphs with the same edge deck, we adapt

McKay’s sibling-comparison strategy as well as a density argument. If a graph has

sufficiently high density, then the graph is edge reconstructible.

Theorem 8.4 (Lovász, Müller [84, 97]). A graph on N vertices and E edges with either

E > 1
2(N

2) or E > 1 + log2(N!) is edge reconstructible.

Note that for all N ≥ 11, 1 + log2(N!) < 1
2(N

2).

Definition 8.5. LetRN be the class of 2-connected graphs G with at most N vertices

and at most 1 + log2(N!) edges.

Note that this definition of RN bounds the number of edges as a function of N

which is independent of the number of vertices of a specific graph.

Corollary 8.6. For N ≥ 11, all 2-connected graphs G with at most N vertices and G /∈

RN are edge reconstructible.

We shall use RN as our search space. It is deletion-closed, since removing an

ear will always decrease the number of edges.

129

Within the context of the ear-augmentation generation algorithm, we gener-

ate 2-connected graphs. When trivial ears are added, these are the same as edge-

augmentations. We will show that if a non-trivial ear is added, then the resulting

graph is edge reconstructible and its edge deck does not need to be compared to

other edge decks. Hence, an edge deck must be compared only when the final aug-

mentation that generated the graph is an edge augmentation, where the canonical

deletion can be selected using the edge deck.

We begin by discussing graphs which are known to be reconstructible or edge

reconstructible.

Proposition 8.7. A 2-connected graph G is edge reconstructible if any of the following

hold:

1. There is an ear with at least two internal vertices.

2. There is a branch vertex v which is incident to only non-trivial ears.

3. G is regular.

Proof. (1) By reconstructing the degree sequence, we recognize that all vertices

have degree at least two. Since there is an ear with at least two internal vertices,

there is an edge internal to that ear with endpoints of degree two. In that edge-

deleted card, there are exactly two vertices of degree one, which must be connected

by the missing edge, giving G.

(2) Let d be the degree of v. By reconstructing the vertex deck, we can recognize

that the card for G− v is missing a vertex of degree d and that there are d vertices

of degree one in G− v. Attaching v to these vertices reconstructs G.

(3) For a d-regular graph G, every edge-deleted subgraph G − e has exactly two

vertices of degree d− 1 corresponding to the endpoints of e.

130

Graphs satisfying any of the conditions of Proposition 8.7 are called detectably

edge reconstructible graphs.

8.3 Canonical deletion inRN

In this section, we describe a method for selecting a canonical ear to delete from a

graph inRN.

If we are able to determine that G is edge reconstructible, then the canonical

deletion does not need to be generated from the edge deck. In such a case, we de-

fault to the canonical deletion algorithm DeleteF (G), where the canonical labeling

of G gives the lex-first ear ε of minimum length so that G− ε 2-connected.

If G is not detectably edge reconstructible, then all ears of G have at most one

internal vertex, and every branch vertex is incident to at least one trivial ear. These

properties allow us to find either a trivial ear or an ear of order one whose deletion

remains 2-connected. Compute the minimum r so that there exists an ear ε in G of

order r so that G− ε is 2-connected. We prefer to select a trivial ear when available.

Out of the choices of possible order-r ear deletions, count the multiplicities for

the degree set of the ear endpoints. Find the pair {d1, d2} of endpoint degrees

which has minimum multiplicity over all deletable ears of order r in G breaking

ties by using the lexicographic order. Out of the deletable ears of order r and end-

point degrees {d1, d2}, we must select a canonical ear using the edge deck. If r = 0,

any trivial deletable ear ε corresponds to the edge-deleted subgraph G− ε. By com-

puting the canonical labels of these cards and selecting the lexicographically-least

canonical string, we can select a canonical edge. If r = 1, there are two edges in

the ear that can be deleted to form edge-deleted subgraphs with a single vertex

of degree 1 connected to a 2-connected graph. We compute the canonical labels of

131

both cards, select the lexicographically-least canonical string, then find the lex-least

string of those strings.

Due to the nature of the reconstruction problem, this canonical deletion proce-

dure is not perfect. There are graphs G containing trivial ears ε1, ε2 whose deletions

G − ε1 and G − ε2 are isomorphic, but ε1 and ε2 are not in orbit within G. If the

edge-deleted subgraph G − ε1 is selected as the canonical edge card, the deletion

algorithm must accept both ε1 and ε2 as canonical deletions. This leads to a dupli-

cation of G in the search tree, but only in the limited case of a graph G which is

not detectably edge reconstructible and such ambiguity appears. A similar concern

occurs for the vertex-deletion case, but is not explained in [91].

To compare graphs with the same canonical deletion, we use three compar-

isons. The first compares the degree sequences. The second compares a custom

reconstructible invariant1, which is based on the degree sequence of the neighbor-

hood of each vertex. The third and final check compares the sorted list of canonical

strings for the edge-deleted subgraphs. During the search, there was no pair of

graphs which satisfied all three of these checks.

8.3.1 Results

With the canonical deletion DeleteR(G), RN was generated and checked for colli-

sions in the edge decks of graphs which are not detectably reconstructible. Table

8.1 describes the computation time for N ∈ {8, . . . , 12}.

With this computation, we have the following theorem.

Theorem 8.8. All 2-connected graphs on at most 12 vertices are edge reconstructible.

1 This invariant is not theoretically interesting, but is available in the source code. See the
GraphData::computeInvariant() method.

132

N g(N) |RN| Diff 1 Diff 2 Diff 3 CPU time
8 16 4804 145 177 187 8.01s
9 19 111255 6.19× 103 5.72× 103 4.77× 103 5m 33.85s

10 22 3051859 7.13× 105 6.00× 105 4.21× 105 6h 33m 40.59s
11 26 308400777 9.44× 107 7.28× 107 3.83× 107 32d 20h 38m 08.16s
12 29 25615152888 12.00× 109 9.60× 109 4.47× 109 10y 362d 13h 05m 39.13s

Table 8.1: Comparing |RN| and the time to checkRN. g(N) = 1 + blog2(N!)c.

This computation extends the previous result that all graphs of order at most

11 are vertex reconstructible [91]. To remove the 2-connected condition of Theo-

rem 8.8, there are three possible methods. First, prove Yang’s Theorem (Theorem

8.3) for the edge reconstruction problem. Second, Yang’s Theorem could be made

unconditional by proving that separable graphs are reconstructible or edge recon-

structible. Third, a second stage of search could be designed to combine a list of

two-connected graphs to form sparse separable graphs and test edge reconstruc-

tion on those cases.

133

Chapter 9

Extremal Graphs with a Given

Number of Perfect Matchings

For even n and positive integer p, Dudek and Schmitt [38] defined f (n, p) to be the

maximum number of edges in an n-vertex graph having exactly p perfect match-

ings. Say that such a graph with f (n, p) edges is p-extremal. We study the behavior

of f (n, p) and the structure of p-extremal graphs.

Although existence of a perfect matching can be tested in time O(n1/2m) for

graphs with n vertices and m edges [95], counting the perfect matchings is #P-

complete, even for bipartite graphs [139]. Let Φ(G) denote the number of perfect

matchings in G. Bounds on Φ(G) are known in terms of the vertex degrees in G.

For a bipartite graph G with n vertices in each part and degrees d1, . . . , dn for the

vertices in one part, Brègman’s Theorem [21] states that Φ(G) ≤ ∏n
i=1(di!)1/di .

Kahn and Lovász (unpublished) proved an analogue for general graphs (other

proofs were given by Friedland [46] and then by Alon and Friedland [5]). For

a graph G with vertex degrees d1, . . . , dn, the Kahn–Lovász Theorem states that

Φ(G) ≤ ∏n
i=1(di!)1/2di . Both results were reproved using entropy methods by

134

Radhakrishnan [108] and by Cutler and Radcliffe [36], respectively. Gross, Kahl,

and Saccoman [56] studied Φ(G) for a fixed number of edges; they determined the

unique graphs minimizing and maximizing Φ(G).

Maximizing the number of edges when Φ(G) and n are fixed has received less

attention. Hetyei proved that f (n, 1) = n2/4 (see [87, Corollary 5.3.14, page 173]).

We describe Hetyei’s construction inductively in a more general context.

Construction 9.1. The Hetyei-extension of G is the graph G′ formed from G by

adding a vertex x adjacent to all of V(G) and one more vertex y adjacent only

to x. Every perfect matching of G′ contains xy and a perfect matching of G, so

Φ(G′) = Φ(G). Starting with G = K2, Hetyei-extension yields graphs with one

perfect matching for all even orders.

When G has n vertices, |E(G′)| = |E(G)|+ n + 1. Since (k + 2)2/4 = k2/4 +

k + 1, we obtain f (n, 1) ≥ n2/4 for all even n. (Note that when G has a unique

perfect matching M, at most two edges join the vertex sets of any two edges of M;

hence f (n, 1) ≤ n/2 + 2
(n

2

)
= n2/4.)

More generally, when Φ(G) = p and |E(G)| = n2/4 + c, the Hetyei-extension

of G yields f (n + 2, p) ≥ (n + 2)2/4 + c. This observation is due to Dudek and

Schmitt [38].

In light of the observation in Construction 9.1, we let c(G) = |E(G)|− |V(G)|2/4

and call c(G) the excess of G. For fixed p, Dudek and Schmitt proved that the max-

imum excess is bounded by a constant.

Theorem 9.2 (Dudek and Schmitt [38]). For p ∈ N, there is an integer cp and a

threshold np such that f (n, p) = n2/4 + cp when n ≥ np and n is even. Also, −(p−

1)(p− 2) ≤ cp ≤ p.

135

Dudek and Schmitt determined cp and np for 1 ≤ p ≤ 6, although the proofs

for p ∈ {5, 6} were omitted since they were prohibitively long. They conjectured

that cp > 0 when p ≥ 2. We prove their conjecture in Section 9.1 by generalizing

Hetyei’s construction. The construction yields cp > 0 but does not generally give

the best lower bounds. We give better lower bounds in Section 9.6; first we must

analyze the structure of extremal graphs.

We develop a systematic approach to computing cp. With this we give shorter

proofs for p ≤ 6 and identify the values cp and np for 7 ≤ p ≤ 10. Later in this

chapter, we shall combine the ear-augmentation technique with these structure

theorems to determine cp and np for all p ≤ 27. The complete behavior of cp for

larger p remains unknown.

Definition 9.3. Let Fp denote the family of graphs that are p-extremal and have

excess cp; that is, Fp =
{

G : Φ(G) = p and |E(G)| = |V(G)|2
4 + cp

}
. Equivalently,

Fp is the set of p-extremal graphs with at least np vertices.

We study the extremal graphs as a subfamily of a larger family.

Definition 9.4. A graph is saturated if the addition of any missing edge increases

the number of perfect matchings.

Extremal graphs are contained in the much larger family of saturated graphs.

Figure 9.1 shows a saturated graph G1 with 12 vertices, eight perfect matchings,

and 27 edges. Although G1 is saturated, it is not 8-extremal, since the graph G2 in

Figure 9.1 has the same number of vertices and perfect matchings but has 39 edges.

Lovász’s Cathedral Theorem (see [87]) gives a recursive decomposition of all

saturated graphs; we describe it in Section 9.2. In terms of this construction, we

describe the graphs in Fp. In Sections 9.3 and 9.4, study of the cathedral con-

136

G1 with 27 edges G2 with 39 edges

Figure 9.1: Two graphs with eight perfect matchings

struction for extremal graphs allows us to reduce the problem of computing cp to

examining a finite (but large) number of graphs.

In Section 9.5, we extend f (n, p) to odd n and study the corresponding extremal

graphs. Section 9.6 gives constructions for improved lower bounds on cp. In Sec-

tion 9.7, we conjecture an upper bound on cp that would be sharp for infinitely

many values of p. The conjectured bound would be the best possible monotone

upper bound, if true. Section 9.8 mentions several conjectures and discusses a

computer search based on our structural results; the search found the extremal

graphs for 4 ≤ p ≤ 10.

We then take a second look at the problem, by using Lovász’s Two-Ears Theo-

rem directly in a new computational technique. Sections 9.9 through 9.13 contain

the description of the computational technique and optimization strategies. With

this new technique, we find the extremal graphs for 11 ≤ p ≤ 27.

137

9.1 The Excess is Positive

We begin with a simple construction proving the Dudek-Schmitt conjecture that

cp > 0.

The disjoint union of graphs G and H (with disjoint vertex sets) is denoted G +

H. The join of G and H, denoted G ∨ H, consists of G + H plus edges joining each

vertex of G to each vertex of H. Thus the Hetyei-extension of G is (G + K1)∨K1. A

split graph is a graph whose vertex set is the union of a clique and an independent

set.

Definition 9.5. The Hetyei graph with 2k vertices, produced iteratively in Construc-

tion 9.1 from K2 by repeated Hetyei-extension, can also be described explicitly. It

is the split graph with clique `1, . . . , `k, independent set r1, . . . , rk, and additional

edges `irj such that i ≤ j.

The Hetyei graph is the unique extremal graph of order 2k with exactly one

perfect matching. It has (2k)2

4 edges, so c1 = 0. In the constructions here and in

Section 9.6, the Hetyei graph is a proper subgraph, so the excess is larger.

In a graph having an independent set S with half the vertices, every perfect

matching joins S to the remaining vertices. Therefore, to study the perfect match-

ings in such a graph it suffices to consider the bipartite subgraph consisting of the

edges incident to S. In the Hetyei graph, the only perfect matching consists of the

edges `iri for all 1 ≤ i ≤ k.

For m ∈N, let w(m) denote the number of 1s in the binary expansion of m.

Definition 9.6. For p ≥ 2 and k = dlog2(p − 1)e + 1, let (xk−2, . . . , x0) be the

binary (k− 1)-tuple such that p− 1 = ∑k−2
j=0 2jxj. The binary expansion construction

for p, denoted B(p), consists of the Hetyei graph with 2k vertices plus the edges

138

{`i+2r1 : xi = 1} (see Fig. 9.2).

Figure 9.2: The graph B(6)

Theorem 9.7. If p ≥ 2, then Φ(B(p)) = p and c(B(p)) = w(p − 1). Thus cp ≥

w(p− 1) ≥ 1.

Proof. Name the vertices of B(p) as in the Hetyei graph. We construct perfect

matchings in B(p) by successively choosing the edges that cover r1, . . . , rk. The

matching {`iri : 1 ≤ i ≤ k} from the Hetyei graph is always present. If r1 is

matched to `i+2 instead of to `1 for some nonnegative i, then for r2, . . . , ri−1 exactly

two edges are available when we choose the edge to cover this vertex. For vertices

ri, . . . , rk in order, only one choice then remains. Therefore, each edge of the form

`i+2r1 lies in 2i−2 perfect matchings.

The edge `i+2r1 exists if and only if xi = 1 in the binary representation of p− 1.

Thus Φ(B(p)) = 1 + ∑k
i=2 2i−2xi−2 + 1 = 1 + p− 1 = p. Since B(p) is formed by

adding w(p− 1) edges to the Hetyei graph, c(B(p)) = w(p− 1).

9.2 Lovász’s Cathedral Theorem

As we have mentioned, Lovász’s Cathedral Theorem characterizes saturated graphs.

Since the extremal graphs are saturated, this characterization will be our starting

139

point. Chapters 3 and 5 of Lovász and Plummer [87] present a full treatment of

the subject. Another treatment appears in Yu and Liu [150]. A 1-factor of a graph

G is a spanning 1-regular subgraph; its edge set is a perfect matching. An edge is

extendable if it appears in a 1-factor.

Definition 9.8. A graph is matchable if it has a perfect matching. The extendable

subgraph of a matchable graph G is the union of all the 1-factors of G. An induced

subgraph H of G is a chamber of G if V(H) is the vertex set of a component of the

extendable subgraph of G.

Every vertex of a matchable graph G is incident to an extendable edge, so the

chambers of G partition V(G). Perfect matchings in G are formed by indepen-

dently choosing perfect matchings in the chambers of G.

Lemma 9.9. If a matchable graph G has chambers H1, . . . , Hk, then Φ(G) = ∏k
i=1 Φ(Hi).

The chambers form the outermost decomposition in Lovász’s structure (see

Fig. 9.3). When the extendable subgraph is connected, there is only one chamber

and no further breakdown.

Definition 9.10. A graph is elementary if it is matchable and its extendable sub-

graph is connected.

Tutte [138] characterized the matchable graphs. An odd component of a graph H

is a component having an odd number of vertices; o(H) denotes the number of odd

components. An obvious necessary condition for existence of a perfect matching

in G is that o(G− S) ≤ |S| for all S ⊆ V(G). Tutte’s 1-Factor Theorem states that

this condition is also sufficient.

Definition 9.11. A barrier in a matchable graph G is a set X ⊆ V(G) with o(G −

X) = |X|.

140

Figure 9.3: An example cathedral construction.

Lemma 9.12 (Lemma 5.2.1 [87]). If G is elementary, then the family of maximal barriers

in G is a partition of V(G), denoted P(G).

Construction 9.13 (The Cathedral Construction). A graph G is a cathedral if it con-

sists of (1) a saturated elementary graph G0, (2) disjoint cathedrals G1, . . . , Gt cor-

responding to the maximal barriers X1, . . . , Xt of G0, and (3) edges joining every

vertex of Xi to every vertex of Gi, for 1 ≤ i ≤ t. The graph G0 is the foundation of the

cathedral. The cathedral Gi may have no vertices when i > 0; thus every saturated

elementary graph is a cathedral (with empty cathedrals over its barriers).

Since the cathedral construction has a cathedral “above" each maximal barrier

of G0, the construction is recursive, built from saturated elementary graphs. Each

nonempty subcathedral Gi contains a saturated elementary graph Gi,0, and each

maximal barrier Xi,j ∈ P(Gi,0) has a cathedral Gi,j over it in Gi. Figure 9.3 illus-

trates the cathedral construction. Here cathedrals are indicated by dashed curves

(except for the full cathedral). Each foundation is indicated by a solid curve, as are

the barriers within it.

141

Theorem 9.14 (The Cathedral Theorem; Theorem 5.3.8 [87]). A graph G is saturated

if and only if it is a cathedral. The foundation G0 in the cathedral construction of G is

unique, and every perfect matching in G contains a perfect matching of G0.

Since each perfect matching in a cathedral G contains a perfect matching of G0,

the edges joining G0 to the cathedrals G1, . . . , Gt appear in no perfect matching.

Therefore, G0 is a chamber in G. Recursively, the foundations of the subcathedrals

are the chambers of G.

The saturated graphs of Figure 9.1 are cathedrals having the same chambers

(and hence the same number of perfect matchings). Their cathedral structures are

shown in Figure 9.4.

G1 with 27 edges G1 cathedral

G2 with 39 edges G2 cathedral

Figure 9.4: The saturated graphs from Figure 9.1 and their cathedral structures.

Let G ∈ Fp be a p-extremal graph. Since G is extremal, it is saturated, and

hence it is a cathedral. Recall that the Hetyei-extension of G is (G + K1) ∨ K1. The

complete graph K2 is a saturated elementary graph; its barriers are single vertices,

say {x1} and {x2}. Letting G1 = G and G2 = null , we obtain the Hetyei-extension

of G as a cathedral with G0 = K2.

142

9.3 Extremal Graphs are Spires

From the cathedral structures of the two graphs in Figure 9.4, it is easy to see why

G2 has many more edges. Nesting of cathedrals generates many edges from foun-

dations to the cathedrals over them. We introduce a special term for cathedrals

formed in this way.

Definition 9.15. A spire is a cathedral in which at most one maximal barrier in the

foundation has a nonempty cathedral over it, and that nonempty cathedral (if it

exists) is a spire. In particular, every saturated elementary graph is a spire.

In Figure 9.4, the graph G2 is a spire, while G1 is not. By the recursive definition,

the chambers of a spire G form a list (H0, . . . , Hk) such that each Hi is the founda-

tion of the spire induced by
⋃k

j=i V(Hj), and in Hi with i < k there is a maximal

barrier Yi that is adjacent to the vertices of the spire induced by
⋃k

j=i+1 V(Hi). We

then say that G is a spire generated by H0, . . . , Hk over Y0, . . . , Yk.

Our first goal is to prove that extremal graphs are spires.

Lemma 9.16. Every p-extremal graph is a spire such that in each chamber, the maximal

barrier having neighbors in later chambers is a barrier of maximum size.

Proof. Since a p-extremal graph is saturated, it is a cathedral. Let G be a cathe-

dral having nonempty cathedrals Gi and Gj over maximal barriers Xi and Xj in its

foundation, with |Xi| ≥ |Xj|. Let G′ be the cathedral obtained from G by removing

Gj from the neighborhood of Xj and attaching it instead as a cathedral over a bar-

rier in an innermost chamber of Gi. The cathedrals over the barriers of innermost

chambers are empty, so G′ is a cathedral.

The chambers of G and G′ are isomorphic, so Φ(G) = Φ(G′), but G′ has more

edges. We replaced |Xj| · |V(Gj)| edges with |Xi| · |V(Gj)| edges, and also new

143

edges were created incident to an innermost chamber over Xi. We conclude that in

a p-extremal graph, only one maximal barrier of the foundation has a nonempty

chamber over it. Also, that must be a largest barrier, since otherwise shifting to a

larger one increases the number of edges, again without changing the number of

perfect matchings. The claim follows by induction.

The number of edges in a spire is maximized by ordering the chambers greedily.

Lemma 9.17. Let {H0, . . . , Hk} be saturated elementary graphs. Let ni = |V(Hi)|, and

let si be the maximum size of a barrier in Hi. Among the spires having H0, . . . , Hk as

chambers, the number of edges is maximized by indexing the chambers so that s0
n0
≥ · · · ≥

sk
nk

.

Proof. For a spire G generated by H0, . . . , Hk indexed in a different order, let i be an

index such that si
ni

< si+1
ni+1

. Form a spire G′ from G by interchanging Hi and Hi+1 in

the ordering (always the spire after Hj is built over a largest barrier Yj of Hj).

In G′ and G, the edges from Yi ∪Yi+1 to other chambers are the same. Only the

edges joining V(Hi) and V(Hi+1) change. In G, there are sini+1 such edges, and in

G′ there are si+1ni of them. By the choice of i, the change increases the number of

edges. The number of perfect matchings remains unchanged.

Hence a p-extremal spire has its chambers ordered as claimed.

Note that always si
ni
≤ 1

2 for a chamber Hi in a spire G, since o(Hi − Xi) = |Xi|

for any barrier Xi in Hi. We show next that the excess c(G) is subadditive over the

chambers.

Lemma 9.18. If G is a spire generated by H0, . . . , Hk over Y0, . . . , Yk, with si = |Yi| and

ni = |V(Hi)|, then c(G) ≤ ∑k
i=0 c(Hi), with equality if and only if s0

n0
= · · · = sk−1

nk−1
= 1

2 .

144

Proof. Let mi = |E(Hi)|. Counting edges within chambers and from chambers to

barriers in earlier chambers, we have |E(G)| = ∑k
i=0 mi + ∑0≤i<j≤k sinj. Always

si ≤ 1
2 ni and mi = 1

4 n2
i + c(Hi). Thus

n2

4
+ c(H) ≤

k

∑
i=1

[
n2

i
4

+ c(Hi)

]
+ ∑

0≤i<j≤k

1
2

ninj =
1
4

[
k

∑
i=0

ni

]2

+
k

∑
i=0

ci.

Therefore, c(G) ≤ ∑k
i=0 c(Hi), with equality if and only if si

ni
= 1

2 for i < k.

9.4 Extremal Chambers

We now know how to combine chambers in the best way, so it remains to deter-

mine which chambers should be used. A chamber is a saturated elementary graph,

meaning that its extendable subgraph has just one component. We will bound the

size of a saturated elementary graph with n vertices by bounding separately the

extendable edges (those in perfect matchings) and the free edges (those in no perfect

matching).

When G is elementary, the maximal barriers partition V(G). Since each barrier

matches to vertices outside it in any perfect matching, all edges within barriers are

free. Also, adding such edges does not increase the number of perfect matchings.

Thus in a saturated graph, the barriers are cliques. To bound the number of free

edges, the crucial fact is that in a saturated elementary graph, the only free edges

are those within barriers (proved in Lemma 5.2.2.b of Lovász and Plummer [87]).

Lemma 9.19. If G is a saturated elementary n-vertex graph with ` maximal barriers, then

G has at most q(`−1
2) + (r+1

2) free edges, where q =
⌊

n−`
`−2

⌋
and r = n− `− q(`− 2).

Proof. Let x1, . . . , x` be the sizes of the barriers, so ∑`
i=1 xi = n. Since each barrier is

145

a clique, there are exactly ∑`
i=1
(xi

2

)
free edges. The sizes of the barriers are further

restricted because deleting a barrier of size xi must leave xi odd components. Since

the other barriers are cliques, deleting a barrier leaves at most `− 1 components.

Thus 1 ≤ xi ≤ `− 1 for all i.

If a ≤ b, then
(

a−1
2

)
+
(

b+1
2

)
>
(a

2

)
+
(

b
2

)
(shifting a vertex from an a-clique

to a b-clique increases the number of edges). Subject to the constraints we have

specified, the number of free edges is thus bounded by greedily choosing as many

of x1, . . . , x` to equal `− 1 as possible, given that at least one unit must remain for

each remaining variable. Let q be the number of values equal to `− 1. Among the

remaining values, whose total is less than `− 1, all values should be 1 except for

one. After allocating 1 to each of these `− q values, a total of r remains, where 0 ≤

r < `− 2. Thus n = q(`− 1) + (`− q) + r, which we write as n− ` = q(`− 2) + r.

The specified choice of q and r satisfies all the conditions, and the bound on the

number of free edges is then as claimed.

We show next that the bound in Lemma 9.19 is maximized when all barriers

except one are singletons, producing ` = 1 + n/2.

Corollary 9.20. A saturated elementary n-vertex graph has at most n2

8 −
n
4 free edges.

Proof. The proof of Lemma 9.19 describes how to maximize ∑`
i=1
(xi

2

)
subject to

1 ≤ xi ≤ `− 1. Since barriers in saturated graphs are cliques, the number of odd

components left by deleting a barrier is at most the number of other barriers, but it

must equal the size of the barrier deleted. Hence each barrier has size at most n/2,

which yields ` ≤ n/2 + 1.

Thus 2 ≤ ` ≤ n/2 + 1. Since 0 ≤ r < `− 2, we have
(

r+1
2

)
≤ r(`− 1)/2 (with

146

equality only when r = 0). Hence

q
(

`− 1
2

)
+
(

r + 1
2

)
≤ q(`− 1)(`− 2) + r(`− 1)

2
=

(`− 1)(n− `)
2

.

The upper bound is maximized at (` − 1) = (n − 1)/2, among integers when

` ∈ {n/2, n/2 + 1}. The value there is 1
2

(n
2 − 1

) (n
2

)
, which is the claimed bound.

Next consider the extendable edges. Deleting the edges within barriers yields

a graph in which every edge is extendable. Such graphs are called 1-extendable,

which motivates our name for extendable edges (the term matching-covered has

also been used for 1-extendable graphs). Since the extendable edges form a 1-

extendable graph, we seek a bound on the size of 1-extendable graphs with n ver-

tices. All such graphs are 2-connected, and 2-connected graphs are precisely those

constructed by ear decompositions. The 1-extendable graphs have special ear de-

compositions that yield a bound on the number of edges, described by the “Two

Ears Theorem” of Lovász.

Definition 9.21. Let G be a 1-extendable graph. A graded ear decomposition of G

is a list G0, . . . , Gk of 1-extendable graphs such that Gk = G, each G − V(Gi) is

matchable, and each Gi for i > 1 is obtained from Gi−1 by adding disjoint ears of

odd length. A graded ear decomposition of G is non-refinable if no other graded ear

decomposition of G contains it.

Theorem 9.22 (Two Ears Theorem; Lovász and Plummer [86]; see also Section 5.4

of [87]). Every 1-extendable graph has a non-refinable graded ear decomposition in which

each subgraph arises by adding at most two ears to the previous one (starting with any

single edge).

147

For example, such a decomposition of K4 starts with any edge, adds one ear to

complete a 4-cycle, and then adds both remaining edges as ears. Both ears must

be added in the last step, because adding just one of them does not produce a

1-extendable graph.

Lovász and Plummer [87, page 178] remark that long graded ear decomposi-

tions are desirable, because Φ(G) ≥ k + 1 when G has a graded ear decomposition

G0, . . . , Gk. We explain and use this fact in our next lemma.

Lemma 9.23. For p ≥ 2, a 1-extendable graph G with Φ(G) = p has at most 2p− 4 + n

edges.

Proof. Let G0, . . . , Gk be an ear decomposition as guaranteed by Theorem 9.22.

Since the decomposition is non-refinable, G1 is an even cycle, so Φ(G1) = 2.

Let m = |E(G)|. The number of edges added at each step after G1 is at most

two more than the number of vertices added. Hence m ≤ n + 2(k− 1). It suffices

to show that k− 1 ≤ p− 2. To do this, it suffices to prove that Φ(Gi) > Φ(Gi−1)

for i ≥ 2.

Every added ear in a graded ear decomposition has odd length and hence an

even number of internal vertices. These can be matched along the ear. Since Gi

arises from Gi−1 by adding one ear of odd length or two disjoint ears of odd length,

every perfect matching in Gi−1 extends to a perfect matching in Gi. In addition,

since Gi is also required to be 1-extendable, it has a perfect matching using an

initial edge of an added ear; such a matching is not counted by Φ(Gi−1).

Theorem 9.24. For p ≥ 2, an elementary graph with n vertices and exactly p perfect

matchings has at most n2

8 + 3n
4 + 2p− 4 edges.

Proof. Add the maximum number of extendable edges from Lemma 9.23 to the

maximum number of free edges from Corollary 9.20.

148

Since the coefficient on the quadratic term in this edge bound is 1
8 , while the

leading coefficient for p-extremal graphs will be 1
4 , large extremal graphs will not

be elementary. This enables us to limit the search for extremal elementary graphs.

Corollary 9.25. Fix p ≥ 2. If G is an elementary graph with n vertices, p perfect

matchings, and n2

4 + cp edges, then n2 − 6n − 16p + 8cp + 32 ≤ 0. Thus n ≤ 3 +√
16p− 8cp − 23.

Recall that np = min{n : f (n, p) = n2

4 + cp}. We can bound this threshold using

the fact that all the chambers in a spire are elementary graphs.

Corollary 9.26. For p ≥ 2, let Np be the largest even number bounded above by 3 +√
16p− 8cp − 23. Every elementary graph in Fp has at most Np vertices, and

np ≤ max

{
k

∑
i=0

Npi : ∏
i

pi = p

}
.

Proof. By Corollary 9.25, all elementary graphs with n vertices and n2

4 + cp edges

have at most 3 +
√

16p− 8cp − 23 vertices, and the number of vertices must be

even.

Let G ∈ Fp be a spire generated by H0, . . . , Hk. Set pi = Φ(Hi). We have

observed that p = ∏k
i=0 pi. Since each Hi is elementary, it has at most Np0 vertices,

so G has at most ∑k
i=1 Npi vertices. Taking the maximum over all factorizations

bounds np.

The lower bound cp ≥ −(p− 1)(p− 2) given by Dudek and Schmitt [38] im-

plies Np ∈ O(p). The construction in Theorem 9.7 shows that cp is nonnegative.

Together with Corollary 9.26, this yields Np ∈ O(√p). With Nq known for q < p,

this reduces the determination of the exact value of cp for a given p to a search over

a finite set of graphs.

149

We close this section by summarizing the results of this and the previous sec-

tion. The outcome is a systematic approach to classifying all graphs in Fp.

Theorem 9.27. For an n-vertex graph G in Fp,

1. G is a spire with chambers H0, . . . , Hk built over barriers Y0, . . . , Yk.

2. Each Yi is a barrier of maximum size in Hi.

3. If 0 ≤ i < j ≤ k, then |Yi|
|V(Hi)|

≤ |Yj|
|V(Hj)|

.

4. Letting pi = Φ(Hi), there are at most Npi vertices in Hi, and c(Hi) ≤ cpi .

5. Φ(G) = p = ∏k
i=0 pi and c(G) = cp ≤ ∑k

i=1 c(Hi).

6. If pi = 1, then Hi
∼= K2.

9.5 Graphs with an Odd Number of Vertices

Since graphs with an odd number of vertices do not have perfect matchings, we

generalize f (n, p) to odd n using near-perfect matchings. In this section, n is odd.

Definition 9.28. An near-perfect matching in a graph is a matching that covers all

but one vertex. Let Φ̃(G) denote the number of near-perfect matchings in G. Let

f̃ (n, p) denote the maximum number of edges in an n-vertex graph with p near-

perfect matchings.

The computation of f̃ (n, p) almost reduces to the computation of f (n, p).

Theorem 9.29. If n is odd and larger than np, then

f̃ (n, p) = f (n− 1, p) =
(n− 1)2

4
+ cp.

150

Proof. Since n > np, we may choose G ∈ Fp with n− 1 vertices. Adding an isolated

vertex to G produces a graph with p near-perfect matchings and f (n− 1, p) edges.

Thus f (n− 1, p) ≤ f̃ (n, p).

Let H be an n-vertex graph having f̃ (n, p) edges and p near-perfect matchings.

Adding a new vertex adjacent to every vertex in H produces a graph H′ having

p perfect matchings and f̃ (n, p) + n edges (there is a one-to-one correspondence

between near-perfect matchings in H and perfect matchings in H′).

Thus f̃ (n, p) = |E(H′)| − n ≤ f (n + 1, p)− n. By Theorem 9.2, n > np implies

f (n + 1, p) = f (n− 1, p) + n. We conclude that f̃ (n, p) ≤ f (n− 1, p), so equality

holds.

Not only is the numerical value of f̃ (n, p) determined by the even case, but

also the extremal graphs correspond to extremal graphs in the even case, using the

bijection in the proof of Theorem 9.29.

Definition 9.30. Let F̃p be the set of graphs G having (|V(G)|−1)2

4 + cp edges and

exactly p near-perfect matchings.

Corollary 9.31. For each graph H ∈ F̃p, there is a graph G ∈ Fp and a vertex u ∈ V(G)

such that u is adjacent to V(G)− {u} and H ∼= G− u.

Not every graph in Fp has a dominating vertex, so there are n-vertex graphs

in Fp that do not arise in this simple way from (n− 1)-vertex graphs in F̃p. The

graph 3K2 has eight perfect matchings (each of the 12 edges appears in two per-

fect matchings, and each perfect matching has three edges). With n = 6, we have

n2/4 + 3 edges. We will see that c8 = 3, so 3K2 ∈ Fp, but the graph has no dom-

inating vertex. On the other hand, when n > np, Hetyei-extension of an n-vertex

graph in Fp yields a graph in Fp with n + 2 vertices that does have a dominating

vertex.

151

9.6 Constructive Lower Bounds

In this section, we refine the binary expansion construction B(p) of Theorem 9.7

to give improved lower bounds for cp. Because the barrier is large in B(p), it can

be used to increase the excess while multiplying the number of perfect matchings.

Recall that w(m) is the number of 1s in the binary expansion of m.

Proposition 9.32. If p1 and p2 are integers with p1, p2 ≥ 2, then cp1 p2 ≥ cp1 + w(p2 −

1).

Proof. Let G be a n-vertex graph having n2

4 + cp1 edges and exactly p1 perfect

matchings. Let H = B(p2), in which the clique is a barrier containing exactly

half of the vertices. Let G′ be the saturated graph formed by making G a tower

above this barrier in H.

By Lemma 9.18, c(G′) = c(G) + c(H) = c1 + w(p− 1). By Lemma 9.9, G′ has

p1 · p2 distinct perfect matchings. Therefore, cp1 p2 ≥ cp1 + w(p2 − 1).

Corollary 9.33. If p properly divides p′, then cp′ > cp.

The binary expansion construction yields cp ≥ log2 p when p is a power of

2. However, when p − 1 is a power of 2, it yields only cp ≥ 1. To combat this

deficiency, we develop further lower bounds using graphs where |E(G)| and Φ(G)

are easy to compute. These constructions properly contain the Hetyei graphs, so

the excess is positive. Unfortunately, not every p can be realized as Φ(G) using

these constructions.

Definition 9.34. A Hetyei list is a nondecreasing list d1, . . . , dk of positive integers

such that di ≥ i for all i and dk = k. The nested-degree graph generated by a Hetyei

list (d1, . . . , dk), denoted Deg(d1, . . . , dk), is the supergraph of the Hetyei graph of

order 2k in which the edge `irj exists if and only if i ≤ dj.

152

Theorem 9.35. If G = Deg(d1, . . . , dk) for a Hetyei list d1, . . . , dk, then G has a barrier

of size k and Φ(G) = ∏k
i=1(di + 1− i),

Proof. Since {r1, . . . , rk} is an independent set, every perfect matching pairs its ver-

tices with {`1, . . . , `k}. Also, {`1, . . . , `k} is a barrier of size k in G.

To compute Φ(G), choose edges to cover vertices in the order r1, . . . , rk. When

covering ri, there are i− 1 previously matched vertices in {`1, . . . , `k}. Since

i−1⋃
j=1

N(ri) ⊆ N(ri),

there are di − i + 1 choices for the edge to cover ri. Since di ≥ i for all i, the process

completes a perfect matching in ∏k
i=1(di + 1− i) ways.

When a graph G has a barrier B with half its vertices, the edges in perfect match-

ings form a bipartite graph with partite sets B and V(G) − B, and G − B has no

edges. Ostrand [101] proved that if a bipartite graph G has a perfect matching, and

d1, . . . , dk is the nondecreasing list of degrees of the vertices in one partite set, then

Φ(G) ≥ ∏k
i=1 max{1, di − i + 1} (Hwang [66] gave a simple proof). When the list

d is a Hetyei list, the corresponding nested-degree graphs achieve equality in the

lower bound.

Example 9.36. If G = Deg(k, . . . , k), then Φ(G) = k! and c(G) = (k
2). By Stirling’s

approximation, cp ≥ Ω
((ln p

ln ln p
)2
)

when p = k!.

Definition 9.37. Let (d1, . . . , dk) be a Hetyei list and {e1, . . . , em} be a set of disjoint

pairs in {1, . . . , k}. The resulting generalized nested-degree graph, denoted

Gen (d1, . . . , dk; e1, . . . , em) ,

153

consists of the nested-degree graph Deg(d1, . . . , dk) plus each edge rirj such that

{i, j} = et for some t.

The double factorial of an integer n, denoted n!!, is the product of the integers in

{1, . . . , n} with the same parity as n. As an empty product, by convention (−1)!!

equals 1.

Theorem 9.38. For a set {e1, . . . , em} of disjoint pairs in {1, . . . , k}, let P denote the

family of all subsets of {rirj : {i, j} ∈ {e1, . . . , em}}. If G = Gen (d1, . . . , dk; e1, . . . , em),

then

Φ(G) = ∑
M∈P

(2|M| − 1)!! ∏
ri /∈V(M)

(di − |{j < i : rj /∈ V(M)}|).

Also, if m ≥ 1, then G has no barrier of size k.

Proof. Every perfect matching in G contains some subset M, where

M ⊆ {rirj : {i, j} ∈ {e1, . . . , em}}.

To complete a matching, cover the remaining vertices in {r1, . . . , rk} in increasing

order of subscripts by selecting neighbors in {`1, . . . , `k}. The number of ways to

do this is ∏ri /∈V(M)(di − |{rj /∈ V(M) : j < i}|), as in the proof of Theorem 9.35.

Finally, the 2|M| remaining unmatched vertices form a clique and can be matched

in (2|M| − 1)!! ways.

Theorem 9.35 is the special case of Theorem 9.38 for m = 0. When m is small,

there are not many subsets of {e1, . . . , em}, and computing Φ(G) is feasible.

Example 9.39. When m =
(

k
2

)
and di = k for all i, the generalized nested-degree

graph is K2k, with (2k− 1)!! perfect matchings. Thus c(2k−1)!! ≥ k2 − k. This yields

the lower bound cp ≥ Ω
((ln p

ln ln p
)2
)

when p = (2m− 1)!! for some m.

154

Examples 9.36 and 9.39 provide our best asymptotic lower bounds but apply

only for special values. The generalized nested-degree construction is our most

efficient method for finding lower bounds when k and m are small In Section 9.8,

we discuss the results of computer search over small cases of these constructions

to find explicit lower bounds on cp when p is small.

9.7 A Conjectured Upper Bound

Dudek and Schmitt conjectured that the complete graph K2t is p-extremal for p =

(2t − 1)!!, giving cp = t2 − t. We generalize this to conjecture an upper bound

for all p. First, a lemma provides motivation. In light of the proof, we call it the

“Star-Removal Lemma”.

Lemma 9.40. If p, k, t ∈N satisfy k ≤ 2t and p = k(2t− 1)!!, then cp ≥ t2− t + k− 1.

Proof. Let G be the graph obtained from K2t+2 by removing 2t + 1− k edges with

a common endpoint x. The vertex x has k neighbors; after choosing one, the rest

of the graph is isomorphic to K2t. Thus Φ(G) = k(2t− 1)!!. The number of edges

in G is (2t+2
2) − (2t + 1 − k), which equals (2t+2)2

4 + t2 − t + k − 1. Hence cp ≥

t2 − t + k− 1.

To reduce the number of perfect matchings from (2t + 1)!! to k(2t− 1)!!, only

2t− 1− k edges were removed; with each edge deleted, (2t− 1)!! perfect match-

ings were lost. This seems to be the most edge-efficient way to remove perfect

matchings, which suggests a conjecture.

Conjecture 9.41. For p ∈ N, if integers k and t are defined uniquely by k(2t− 1)!! ≤

p < (k + 1)(2t− 1)!! with k ≤ 2t, then cp ≤ Cp, where Cp = t2 − t + k− 1.

155

The conjecture matches the lower bound in Lemma 9.40 when p = k(2t− 1)!!.

It also matches the value of cp for p ≤ 6 as computed in [38]. In Section 9.8, we

verify that Cp also equals cp for 7 ≤ p ≤ 10, and we give empirical evidence that

the bound holds for all p.

9.8 Exact Values for Small p

To confirm the values of cp for p ≤ 6, we used McKay’s geng program [92, 93]

to generate all graphs on 10 vertices. We checked that none of these graphs have

exactly p perfect matchings while achieving larger excess. This yields a proof, since

Np ≤ 10 for p ≤ 6 and the smallest graph in Fp has at most Np vertices.

For p ≤ 10, we have Np ≤ 12. Generating all graphs on 12 vertices presently is

infeasible for us; instead, we use the following lemma.

Lemma 9.42 (Dudek–Schmitt [38, Lemma 2.4]). If p ≥ 2, then cp ≤ 1 + max
q<p

cq,

If we know all previous values of cp, and we construct an n-vertex graph G with

Φ(G) = p and |E(G)| = n2

4 + C, where C = max{cq : q < p}, then we only need

to check graphs with n2

4 + C + 1 edges to see whether one has exactly p perfect

matchings. Thus our proof of the next theorem is by computer search. It yields the

values in Table 9.1.

p 1 2 3 4 5 6 7 8 9 10
cp 0 1 2 2 2 3 3 3 4 4
np 2 4 4 6 6 6 6 6 6 6
Np 4 6 8 8 10 10 12 12 12

[38] Theorem 9.43

Table 9.1: Excess cp (at np), bound Np on extremal chambers.

Theorem 9.43. c7 = 3, c8 = 3, c9 = 4, and c10 = 4.

156

Proof. Explicit constructions in Fig. 9.5 give the lower bounds; we will subsequently

describe how these constructions arise.

For the first two upper bounds, Lemma 9.42 yields (a) c7 ≤ 4 and (b) if c7 = 3,

then c8 ≤ 4. Thus to show c7 = c8 = 3 it suffices to examine graphs with 12

vertices and 122

4 + 4 edges. Using geng, we generated these and found none with

exactly seven or eight perfect matchings, so c7 = c8 = 3.

By Lemma 9.42, c9 ≤ 4, and then similarly c10 ≤ 5. To test equality, it suffices

to study graphs with 12 vertices and 122

4 + 5 edges. Using geng, we enumerated

these and found no graph with exactly ten perfect matchings, so c10 ≤ 4.

For small p, the chambers in the p-extremal graphs are instances of the general

constructions we have provided in earlier sections. Below we characterize all p-

extremal graphs for p ≤ 10. Fig. 9.5 shows the smallest instances of the classes of

graphs in these characterizations. The edge-colorings indicate the decomposition

into chambers. Blue edges are extendable; when the subgraph of blue edges is

connected, the graph is elementary. Red edges indicate the maximal barriers in

chambers. Faint edges join these barriers to the spires over them when the graph

is not elementary, in which case the factorization of p should be apparent; recall

that Φ(G) is the product of Φ(Hi) when the chambers of G are H0, . . . , Hk.

Hetyei characterized the 1-extremal graphs. Dudek and Schmitt determined cp

for p ≤ 6 but provided proof only for p ≤ 4 and characterized the extremal graphs

only for p ≤ 3. We restate these characterizations in the language of the Cathedral

Theorem. The “top” of a spire is the chamber last in the list of chambers describing

the cathedral decomposition; it is at the other end from the foundation. When G is

edge-transitive, G− denotes the graph obtained by deleting one edge from G.

Theorem 9.44 (Hetyei). For even n with n ≥ 2, the unique 1-extremal graph has n2

4

157

p = 2 p = 3 p = 4 p = 4 p = 5 p = 5
cp = 1 cp = 2 cp = 2 cp = 2 cp = 2 cp = 2

p = 6 p = 6 p = 6 p = 7 p = 8 p = 8
cp = 3 cp = 3 cp = 3 cp = 3 cp = 3 cp = 3

p = 8 p = 8 p = 8 p = 9 p = 10
cp = 3 cp = 3 cp = 3 cp = 4 cp = 4

Figure 9.5: The smallest p-extremal configurations, for 2 ≤ p ≤ 10

edges and is a spire whose chambers all equal K2.

Theorem 9.45 ([38]). For even n with n ≥ 4, the 2-extremal graphs have n2

4 + 1 edges

and are spires whose chambers are (n − 4)/2 copies of K2 and one copy of K−4 , taken in

any order.

Theorem 9.46 ([38]). For even n with n ≥ 4, the unique 3-extremal graph has n2

4 + 2

edges and is a spire whose chambers are (n− 4)/2 copies of K2 and one copy of K4 at the

top.

Note that K2 and K−4 have a barrier containing half of the vertices, while K4

does not; hence the chambers for p = 2 appear in any order, while K4 is at the top

when p = 3.

158

The characterizations of the p-extremal graphs for 4 ≤ p ≤ 10 all use the same

method and involve the computer search used to prove Theorem 9.43. Instead of

repeating the observations for each proof, we outline them here and just state the

resulting characterizations.

Outline of Characterization Proofs. A p-extremal graph G is a spire of chambers

H0, . . . , Hk (Lemma 9.16), and c(G) ≤ ∑i c(Hi) (Lemma 9.18). The number of per-

fect matchings in G equals ∏i Φ(Hi) (Lemma 9.9). Hence to know the p-extremal

graphs it suffices to know the pj-extremal chambers for all pj that are factors of p

and compare the numbers of edges in the spires corresponding to factorizations of

p.

The chambers in spires are elementary graphs. Every p-extremal elementary

graph has at most Np vertices, where Np is the largest even number bounded

by 3 +
√

16p− 8cp − 23 (Corollary 9.26). A p-extremal elementary graph with

fewer than Np vertices extends to a p-extremal graph with Np vertices by Hetyei-

extension (repeatedly adding K2 as a chamber at the beginning of the spire), so the

p-extremal chambers are found within the graphs on Np vertices. The q-extremal

chambers for q < p are already known from previous searches.

When searching graphs with Np vertices for p-extremal chambers, we limit the

search to specific numbers of edges. A p-extremal graph with Np vertices has

1
4 N2

p + cp edges. By Lemma 9.42, cp ≤ C + 1, where C = maxq<p cq. Hence we

begin by searching graphs with Np vertices and excess C + 1, looking for those

having exactly p perfect matchings. The search moves to excess C if none are

found with excess C + 1. In the results for p ≤ 10, graphs with Np vertices and

p perfect matchings were always found having excess C or C + 1, so there was no

need to search further.

159

At this point the q-extremal chambers are known for all factors q of p, and hence

the complete description of p-extremal graphs can be given. The chambers in a p-

extremal spire are qi-extremal elementary graphs, where ∏ qi = p. However, a

spire with qi-extremal chambers may have too few edges to be ∏ qi-extremal (for

example, the spire with chambers K4 and K4 has nine perfect matchings but is not

9-extremal).

The order of chambers in a spire does not affect the number of perfect match-

ings, but it does affect the number of edges. To have the most edges, the chambers

must be listed in decreasing order of the fractions of their vertices occupied by their

largest barrier (Lemma 9.17). Spires for which these fractions are equal (such as K2

and K−4 having barriers with half their vertices) may be listed in any order.

See Fig. 9.5 for the smallest instances of the classes of graphs in these character-

izations.

Theorem 9.47. For even n with n ≥ 6, the 4-extremal graphs have n2

4 + 2 edges and are

spires whose chambers are

a) n−6
2 copies of K2 and one copy of B(4) in any order, or

b) n−8
2 copies of K2 and two copies of K−4 in any order.

Theorem 9.48. For even n with n ≥ 6, the 5-extremal graphs have n2

4 + 2 edges and

are spires whose chambers are n−6
2 copies of K2 plus one 6-vertex graph at the top that is

Gen (2, 2, 3; {1, 2}) or Gen (2, 3, 3; {2, 3}))− `2r2.

Theorem 9.49. For even n with n ≥ 6, the 6-extremal graphs have n2

4 + 3 edges and are

spires whose chambers are

a) n−6
2 copies of K2 and one copy of Gen (2, 3, 3; {2, 3}) at the top,

b) n−6
2 copies of K2 and one copy of Deg(3, 3, 3) in any order, or

c) n−8
2 copies of K2 and one copy of K−4 in any order, plus one copy of K4 at the top.

160

Theorem 9.50. For even n with n ≥ 6, the unique 7-extremal graph has n2

4 + 3 edges and

is a spire whose chambers are n−6
2 copies of K2 and one Gen (2, 2, 3; {1, 2}, {1, 3}) at the

top.

Theorem 9.51. For even n with n ≥ 6, the 8-extremal graphs have n2

4 + 3 edges and are

spires whose chambers are a) n−6
2 copies of K2, plus one copy of 3K2 at the top,

b) n−6
2 copies of K2, plus one copy of Gen (1, 3, 3; {1, 2}, {1, 3}, {2, 3}) at the top,

c) n−8
2 copies of K2 and one copy of B(8) in any order,

d) n−10
2 copies of K2, one copy of K−4 , and one copy of B(8) in any order, or

e) n−12
2 copies of K2 and three copies of K−4 in any order.

Theorem 9.52. For even n with n ≥ 6, the unique 9-extremal graph has n2

4 + 4 edges and

is a spire whose chambers are n−6
2 copies of K2 and one Gen (3, 3, 3; {2, 3}) at the top.

Theorem 9.53. For even n with n ≥ 6, the unique 10-extremal graph has n2

4 + 4 edges

and is a spire whose chambers are n−6
2 copies of K2 and one Gen (2, 3, 3; {1, 2}, {1, 3}) at

the top.

Moving beyond p = 11, note that N11 = 14. Unfortunately, the number of

graphs with 14 vertices and suitable number of edges is beyond the capacity of

our computer resources to determine c11 by this method.

In Figure 9.6, we present the lower bounds on cp found by searching all graphs

of order 10 to find chambers and forming spires from these chambers and cham-

bers arising from the generalized nested degree construction on 12, 14, and 16

vertices with k ∈ {5, 6, 7, 8} and m ∈ {4, 3, 2, 1}. The upper line is the conjectured

upper bound Cp from Conjecture 9.41, defined as t2 − t + k− 1, where t and k are

determined by k(2t− 1)!! ≤ p < (k + 1)(2t− 1)!! with k ≤ 2t. As the plot shows,

161

we have found no construction that violates the upper bound, and sometimes it

equals the excess of the best construction found so far.

Figure 9.6: Lower bounds on cp and conjectured upper bound Cp.

9.9 Connection with 2-Connected Graphs

Since it is intractable to check all graphs of order 14, simply using geng to check all

graphs will not exhaustively find all p-extremal chambers for p ≥ 11. In order to

find these graphs, we will exploit the structure of the edges in perfect matchings,

which form 2-connected graphs.

Proposition 9.54. If H is 1-extendable with Φ(H) ≥ 2, then H is 2-connected.

Proof. Since Φ(H) ≥ 2, there are at least four vertices in H. Suppose H was not

2-connected. Then, there exists a vertex x ∈ V(H) so that H − x has multiple

components. Since H has an even number of vertices, at least one component

of H − x must have an odd number of vertices. Since H has perfect matchings,

162

Tutte’s Theorem implies exactly one such component C has an odd number of

vertices. Moreover, in every perfect matching of H, x is matched to some vertex

in C. Hence, the edges from x to the other components never appear in perfect

matchings, contradicting that H was 1-extendable.

2-connected graphs are characterized by ear decompositions. An ear is a path

given by vertices x0, x1, . . . , xk so that x0 and xk have degree at least three and xi

has degree exactly two for all i ∈ {1, . . . , k− 1}. The vertices x0 and xk are branch

vertices while x1, . . . , xk−1 are internal vertices. In the case of a cycle, the entire graph

is considered to be an ear. For an ear ε, the length of ε is the number of edges

between the endpoints and its order is the number of internal vertices between the

endpoints. We will focus on the order of an ear. An ear of order 0 (length 1) is a

single edge, called a trivial ear.

An ear augmentation is the addition of a path between two vertices of the graph.

This process is invertible: an ear deletion takes an ear x0, x1, . . . , xk in a graph and

deletes all vertices x1, . . . , xk−1 (or the edge x0x1 if k = 1). For a graph H, an ear

augmentation is denoted H + ε while an ear deletion is denoted H − ε. Every 2-

connected graph H has a sequence of graphs H1 ⊂ · · · ⊂ H` = H so that H1 is a

cycle and for all i ∈ {1, . . . , `− 1}, H(i+1) = H(i) + εi for some ear εi [147].

Lovász’s Two Ear Theorem gives the structural decomposition of 1-extendable

graphs using a very restricted type of ear decomposition. A sequence H0 ⊂ H1 ⊂

H2 ⊂ · · · ⊂ Hk of ear augmentations is a graded ear decomposition if each H(i) is

1-extendable. The decomposition is non-refinable if for all i < k, there is no 1-

extendable graph H′ so that H(i) ⊂ H′ ⊂ H(i+1) is a graded ear decomposition.

Theorem 9.55 (Two Ear Theorem [85]; See also [87, 133]). If H is 1-extendable, then

there is a non-refinable graded ear decomposition H0 ⊂ H1 ⊂ · · · ⊂ Hk so that H0
∼= C2`

163

for some ` and each ear augmentation H(i) ⊂ H(i+1) uses one or two new ears, each with

an even number of internal vertices.

We will consider making single-ear augmentations to build 1-extendable graphs,

so we classify the graphs which appear after the first ear of a two-ear augmenta-

tion. A graph H is almost 1-extendable if the free edges of H appear in a single ear of

H. The following corollary is a restatement of the Two Ear Theorem using almost

1-extendable graphs.

Corollary 9.56. If H is 1-extendable, then there is an ear decomposition H0 ⊂ H1 ⊂

· · · ⊂ Hk so that H0
∼= C2` for some `, each ear augmentation H(i) ⊂ H(i+1) uses a

single ear of even order, each H(i) is either 1-extendable or almost 1-extendable, and if H(i)

is almost 1-extendable then Hi−1 and H(i+1) are 1-extendable.

An important property of graded ear decompositions is that Φ(H(i)) is strictly

smaller than Φ(H(i+1)), since the perfect matchings in H(i) extend to perfect match-

ings of H(i+1) using alternating paths within the augmented ear(s) and the other

edges must appear in a previously uncounted perfect matching.

We use this theorem to develop our search space for the canonical deletion

technique, forming the first stage of the search. The second stage adds free edges

to a 1-extendable graph with p perfect matchings. The structure of free edges is

even more restricted, as shown in the following proposition.

Proposition 9.57 (Theorems 5.2.2 & 5.3.4 [87]). Let G be an elementary graph. An edge

e is free if and only if the endpoints are in the same barrier. If adding any missing edge to

G increases the number of perfect matchings, then every barrier in G of size at least two is

a clique of free edges.

164

In Section 9.11, we describe a technique for adding free edges to a 1-extendable

graph. In order to better understand the first stage, we investigate what types of

ear augmentations are allowed in a non-refinable graded ear decomposition.

Lemma 9.58. Let H ⊂ H + ε be a one-ear augmentation between 1-extendable graphs H

and H + ε. The endpoints of ε are in disjoint maximal barriers.

Proof. If the endpoints of ε were not in disjoint maximal barriers, then they are con-

tained in the same maximal barrier. If an edge were added between these vertices,

Proposition 9.57 states that this edge would be free. Since ε is an even subdivision

of such an edge, the edges incident to the endpoints are not extendable, making

H + ε not 1-extendable.

Lemma 9.59. Let H ⊂ H + ε1 + ε2 be a non-refinable two ear augmentation between

1-extendable graphs.

1. The endpoints of ε1 are within a maximal barrier of H.

2. The endpoints of ε2 are within a different maximal barrier of H.

Proof. (1) If the endpoints a, b of ε1 span two different maximal barriers, adding the

edge ab would add an extendable edge by Proposition 9.57. The perfect matchings

of H + ab and H + ε1 would be in bijection depending on if ab was used: if a per-

fect matching M in H + ab does not contain ab, M extends to a perfect matching in

H + ε1 by taking alternating edges within ε1, with the edges incident to a and b not

used; if M used ab, the alternating edges along ε1 would use the edges incident to

a and b. Hence, H + ε1 is 1-extendable and this is a refinable graded ear decom-

position. This contradiction shows that ε1 spans vertices within a single maximal

barrier.

165

(2) The endpoints x, y of ε2 must be within a single maximal barrier by the same

proof as (2), since otherwise H + ε2 would be 1-extendable and the augmentation

is refinable. However, if both ε1 and ε2 span the same maximal barrier, H + ε1 + ε2

is not 1-extendable. By Proposition 9.57, edges within a barrier are free. Hence, the

perfect matchings of H + ε1 + ε2 do not use the internal edges of ε1 and ε2 which

are incident to their endpoints. This contradicts 1-extendability, so the endpoints

of ε2 are in a different maximal barrier than the endpoints of ε1.

9.10 Searching for p-extremal elementary graphs

Given p and c, we aim to generate all elementary graphs G with Φ(G) = p and

c(G) ≥ c. If c ≤ cp, Corollary 9.26 implies n(G) ≤ Np ≤ 3 +
√

16p− 8c− 23.

In order to discover these graphs, we use the isomorph-free generation algorithm

from Chapter 7 to generate 1-extendable graphs with up to p perfect matchings and

up to Np vertices. This algorithm is based on Brendan McKay’s canonical deletion

technique [92] and generates graphs using ear augmentations while visiting each

unlabeled graph only once. This technique will generate 1-extendable graphs and

almost 1-extendable graphs. Let Mp be the set of 2-connected graphs G with

Φ(G) ∈ {2, . . . , p} that are either 1-extendable or almost 1-extendable. Mp
Np

is the

set of graphs inMp with at most Np vertices.

The following lemma is immediate from Corollary 9.56.

Lemma 9.60. For each graph H ∈ Mp, either H is an even cycle or there exists an ear ε

so that H − ε is inMp.

With this property, all graphs inMp
Np

can be generated by a recursive process:

Begin at an even cycle H0 = C2`. For each H(i), try adding each all ears ε of order r

166

to all pairs of vertices in H(i) where 0 ≤ r ≤ Np−n(Hi) to form H(i+1) + ε. If H(i+1)

is 1-extendable or H(i) is 1-extendable and H(i+1) is almost 1-extendable, recurse

on H(i+1) until Φ(H(i+1)) > p. While this technique will generate all graphs in

Mp
Np

, it will generate each unlabeled graph several times. In fact, the number of

times an unlabeled H ∈ Mp
Np

appears is at least the number of ear decompositions

H0 ⊂ · · · ⊂ Hk ⊂ H which match the conditions of Corollary 9.56.

We will remove these redundancies in two ways. First, we will augment using

pair orbits of vertices in H(i). Second, we will reject some augmentations if they

do not correspond with a “canonical" ear decomposition of the larger graph. This

technique is described in detail in Chapter 7.

Let del(H) be a function which takes a graph H ∈ Mp and returns an ear ε

in H so that H − ε is inMp. This function del(H) is a canonical deletion if for any

two H1, H2 ∈ Mp so that H1
∼= H2, there exists an isomorphism σ : H1 → H2 that

maps del(H1) to del(H2).

Given a canonical deletion del(H), the canonical ear decomposition at H is given

by the following iterative construction: (i) Set H0 = H and i = 0. (ii) While H(i)

is not a cycle, define Hi−1 = H(i) − del(H(i)) and decrement i. When this process

terminates, what results is an ear decomposition H−k ⊂ H−(k−1) ⊂ · · · ⊂ H−1 ⊂

H0 where H−k is isomorphic to a cycle and H0 = H.

A simple consequence of this definition is that if H−1 = H − del(H), then the

canonical ear decomposition of H begins with the canonical ear decomposition of

H−1 then proceeds with the augmentation H−1 ⊂ H−1 + del(H) = H. Apply-

ing isomorph-free generation algorithm of Corollary 9.56 will generate all unla-

beled graphs inMp without duplication by generating ear decompositions using

all possible ear augmentations and rejecting any augmentations which are not iso-

morphic to the canonical deletion.

167

In order to guarantee the canonical deletion del(H) satisfies the isomorphism

requirement, the choice will depend on a canonical labeling. A function lab(H)

which takes a labeled graph H and outputs a bijection σH : V(H)→ {1, . . . , n(H)}

is a canonical labeling if for all H1
∼= H2 the map π : V(H1) → V(H2) defined as

π(x) = σ−1
H2

(σH1(x)) is an isomorphism. The canonical labeling σH = lab(H) on

the vertex set induces a label γH on the ears of H. Given an ear ε of order r between

endpoints x and y, let γH(ε) = (r, min{σH(x), σH(y)}, max{σH(x), σH(y)}). These

labels have a natural lexicographic ordering which minimizes the order of an ear

and then minimizes the pair of canonical labels of the endpoints. In this work, the

canonical labeling lab(H) is computed using McKay’s nauty library [93, 61]. We

now describe the canonical deletion del(H) which will generate a canonical ear

decomposition matching Corollary 9.56 whenever given a graph H ∈ Mp.

By the proof of Lemma 9.60, we need all almost 1-extendable graphs H to have

H− ε be 1-extendable, but 1-extendable graphs H may have H− ε be 1-extendable

or almost 1-extendable, depending on availability. Also, since we are only aug-

menting by ears of even order, we must select the deletion to have this parity.

The following sequence of choices describe the method for selecting a canonical

ear to delete from a graph H inMp
Np

:

1. If H is almost 1-extendable, select an ear ε so that H − ε is 1-extendable. By

the definition of almost 1-extendable graphs, there is a unique such choice.

2. If H is 1-extendable and there exists an ear ε so that H − ε is 1-extendable,

then select such an ear with minimum value γH(ε).

3. If H is 1-extendable and no single ear ε has the deletion H − ε 1-extendable,

then select an even-order ear ε so that there is a disjoint even-order ear ε′ so

168

that H− ε is almost 1-extendable and H− ε− ε′ is 1-extendable. Out of these

choices for ε, select ε with minimum value γH(ε).

See Chapter 7 for a more detailed description of the isomorph-free properties

of the canonical deletion strategy.

The full generation algorithm, including augmentations, checking canonical

deletions, as well as some optimizations and pruning techniques, is described in

Section 9.14. We now investigate how to find p-extremal elementary graphs us-

ing 1-extendable graphs in Mp. In the following section, we discuss how to fill

a 1-extendable graph H with free edges without increasing the number of perfect

matchings.

9.11 Structure of Free Subgraphs

By Proposition 9.57, the free edges within an elementary graph have endpoints

within a common barrier. This implies that the structure of the free edges is cou-

pled with the structure of barriers in G. In this section, we demonstrate that the

structure of the free subgraph of a p-extremal elementary graph depends entirely

on the structure of the barriers in the extendable subgraph. This leads to a method

to generate all maximal sets of free edges that can be added to a 1-extendable

graph. Section 9.12 describes a method for quickly computing the list of barriers

of a 1-extendable graph using an ear decomposition. In particular, this provides

an on-line algorithm which is implemented along with the generation of canonical

ear decompositions. Finally, Section 9.13 combines the results of these sections into

a very strict condition which is used to prune the search tree.

Let G be an elementary graph. The barrier set B(G) is the set of all barriers in

G. The barrier partition P(G) is the set of all maximal barriers in G. The following

169

lemmas give some properties of P(G) and B(G) when G is elementary.

Lemma 9.61 (Lemma 5.2.1 [87]). For an elementary graph G, the set P(G) of maximal

barriers in G is a partition of V(G).

Lemma 9.62 (Theorem 5.1.6 [87]). For an elementary graph G and B ∈ B(G), B 6= ∅,

all components of G− B have odd order.

Given an elementary graph H, let E(H) be the set of elementary supergraphs

with the same extendable subgraph:

E(H) = {G ⊇ H : V(G) = V(H), Φ(G) = Φ(H)} .

We will refer to maximal elements of E(H) using the subgraph relation ⊆, giving

a poset (E(H),⊆). Note that (E(H),⊆) has a unique minimal element, H.

Proposition 9.63. Let H be a 1-extendable graph. If G is a maximal element in E(H),

then every barrier in P(G) is a clique of free edges in G.

Proof. If some maximal barrier X in P(G) is not a clique, then there is a missing

edge e between vertices x, y of X. Since |X| = odd(G − X), all perfect matchings

of G + e must match at least one vertex of each odd component to some vertex in

X, saturating X. This means that e is not extendable in G + e, and G + e ∈ E(H).

This contradicts that G was maximal in E(H).

By Proposition 9.57, the edges within the barriers are free.

Lemma 9.64. Let H be a 1-extendable graph and G ∈ E(H) be an elementary supergraph

of H. Every barrier B of G is also a barrier of H.

Proof. Each odd component of G − B is a combination of components of H − B,

an odd number of which are odd components, giving odd(H − B) ≥ odd(G− B).

170

There are no new vertices in G, so the components of G− B partition V(H)− B so

that the partition of components of H − B is a refinement of G− B.

Since B is a barrier of G, odd(G − B) = |B|. Since H is matchable, Tutte’s

Theorem implies odd(H− B) ≤ |B|. Thus |B| = odd(G− B) ≤ odd(H− B) ≤ |B|

and equality holds, making B a barrier of H.

Given a 1-extendable graph H, barriers B1 and B2 conflict if (a) B1 ∩ B2 6= ∅, (b)

B1 spans multiple components of H − B2, or (c) B2 spans multiple components of

H − B1. A set I of barriers in B(H) is a cover set if each pair B1, B2 of barriers in I

are non-conflicting and I is a partition of V(H). Let C(H) be the family of cover

sets in B(H). If I1, I2 ∈ C(H) are cover sets, let the relation I1 � I2 hold if for

each set B1 ∈ I1 there exists a set B2 ∈ I2 so that B1 ⊆ B2. This defines a partial

order on C(H) and the poset (C(H),�) has a unique minimal element given by

the partition of V(H) into singletons.

Theorem 9.65. Let H be a 1-extendable graph. A graph G ∈ E(H) is maximal in

(E(H),⊆) if and only if each B ∈ P(G) is a clique, P(G) is a cover set, and P(G)

is maximal in (C(H),�).

Proof. We define a bijection between C(H) and a subset of elementary supergraphs

in E(H), as given in the following claim.

Claim 9.66. Cover sets I ∈ C(H) are in bijective correspondence with elementary graphs

G ∈ E(H) where the free subgraph of G is a disjoint union of cliques, each of which is a

(not necessarily maximal) barrier of G.

Let G be a graph in E(H) where the free subgraph of G is a disjoint union of

cliques X1, X2, . . . , Xk, where each Xi is a barrier of G. Then, let I = {X1, . . . , Xk}

be the set of barriers. Note that I is a partition of V(H), each part of which is a bar-

171

rier of G which is a barrier of H by Lemma 9.64. Consider two barriers B1, B2 ∈ I .

Since we selected I to be a partition, B1 ∩ B2 = ∅. If B2 spans multiple compo-

nents of H − B1, then the vertices from these components are a single component

in G− B1, where B2 is a clique of edges. However, Lemma 9.62 gives that all com-

ponents of H − B1 and G − B1 are odd, since B1 is a barrier. This implies that

|B1| = odd(H − B1) > odd(G − B1) = |B1|, a contradiction. Hence, B2 is con-

tained within a single component of H − B1, so B1 and B2 do not conflict in H.

This gives that I is a cover set in C(H).

This map from G ∈ E(H) to I ∈ C(H) is invertible by taking a cover set I ∈

C(H) and filling each barrier B ∈ I with edges, forming a graph HI . Since each

pair of barriers B1, B2 in I are non-conflicting, the components of H − B1 do not

change by adding edges between vertices in B2. Therefore, each set B ∈ I is also a

barrier in HI . By Proposition 9.57, the edges within each barrier of HI are free, so

all extendable edges of HI are exactly those in H. This gives that Φ(HI) = Φ(H)

and HI ∈ E(H). The map from I to HI is the inverse of the earlier map from

G ∈ E(H) with free edges forming disjoint cliques to I ∈ C(H). Hence, this is a

bijection, proving the claim.

An important point in the previous claim is that the free edges formed cliques

which are barriers, but those cliques were not necessarily maximal barriers. We

now show that the above bijection maps edge-maximal graphs in E(H) to maximal

cover sets in C(H).

Claim 9.67. Let I be a cover set in C(H). The following are equivalent:

(i) I is maximal in (C(H),�).

(ii) HI is maximal in (E(H),⊆).

(iii) P(HI) = I .

172

(ii)⇒ (iii) This is immediate from Proposition 9.63.

(iii)⇒ (ii) If P(HI), then any edge e /∈ E(HI) must span two maximal barriers.

By Proposition 9.57, e is allowable in HI + e, so HI is maximal in (E(H),⊆).

(i) ⇒ (ii) Let I be a maximal cover set of barriers in B(H) and HI the cor-

responding elementary supergraph in E(H). Suppose there exists a supergraph

H′ ⊃ HI in E(H). Then, there is an edge e in E(H′) \ E(HI) so that e is free in

HI + e. This implies that e spans vertices within the same barrier B of HI + e (by

Proposition 9.57), and B is also a barrier of HI . However, B is split into k barriers

B1, . . . , Bk in I , for some k ≥ 2. Therefore, the set I ′ = (I \ {B1, . . . , Bk}) ∪ {B} is

a refinement of I .

We now show that I ′ is a cover set in C(H). Note that any two barriers X1, X2 ∈

I ′ where neither is equal to B is still non-conflicting. For any barrier X 6= B in

I ′, notice that X does not span more than one component of H − B, since B is a

barrier in HI and HI ′ . Also, if B spanned multiple components of H − X, then

those components would be combined in HI ′ − X, but since X is a barrier, |X| =

odd(HI ′ − X) ≤ odd(H − X) = |X|. Therefore, B does not conflict with any other

barrier X in I ′ giving I ′ is a cover set and I � I ′. This contradicts maximality of

I , so HI is maximal.

(ii) ⇒ (i) By (iii), I = P(HI). Let I ′ be a cover set so that I � I ′. I ′ also

partitions V(H), so P(HI) is a refinement of I ′. Then, the graph HI ′ is a proper

supergraph of G. By the maximality of G, HI ′ must not be an elementary super-

graph in E(H). By the bijection of Claim 9.66, I ′ must not be a cover set of H.

Therefore, I is a maximal covering set in C(H).

This proves the claim and the theorem follows.

The previous theorem provides a method to search for the maximum elements

173

of E(H) by generating all cover sets {B1, . . . , Bk} in C(H) and maximizing the sum

∑k
i=1 (|Bi|

2).

The naïve independent set generation algorithm runs with an exponential blow-

up on the number of barriers. This can be remedied in two ways. First, we notice

empirically that the number of barriers frequently drops as more edges and ears

are added, especially for dense extendable graphs. Second, the number of barri-

ers is largest when the graph is bipartite, as there are exactly two maximal barriers

each containing half of the vertices, with many subsets which are possibly barriers.

We directly adress the case when H is bipartite as there are exactly two maximum

elements of E(H).

Lemma 9.68 (Corollary 5.2 [63]). The maximum number of free edges in an elementary

graph with n vertices is (n/2
2).

Not only is this a general bound, but it is attainable for bipartite graphs. In a

bipartite graph H, there are exactly two graphs in E(H) which attain this number

of free edges.

Lemma 9.69. If H is a bipartite 1-extendable graph, then there are exactly two maximal

barriers, X1 and X2. Also, there are exactly two maximum elements G1, G2 of E(H). Each

graph Gi is given by adding all possible edges within Xi.

Proof. Let X1 and X2 be the two sides of the bipartition of H. Since H is matchable,

|X1| = |X2| and V(H − X1) = X2 and V(H − X2) = X1. Thus X1 and X2 are

both barriers which partition V(H) and by Lemma 9.61 these must be the maximal

barriers of H.

The sets I1 = {X1} ∪ {{v} : v ∈ X2} and I2 = {X2} ∪ {{v} : v ∈ X1} are

maximal cover sets in C(H). Using the bijection of Theorem 9.65, I1 corresponds

174

with the maximal elementary graph G1 in E(H) where all possible edges are added

to X1. Similarly, I2 corresponds to adding all possible edges to X2, producing G2.

Each of these graphs has (n(H)/2
2) free edges, the maximum possible for graphs in

E(H) by Lemma 9.68.

We must show that any other graph G in E(H) has fewer free edges. We again

use the bijection of Theorem 9.65 in order to obtain a maximal cover set I in B(H)

which are filled with free edges in G. Then, the number of free edges in G is given

by s(I) = ∑B∈I (|B|2).

Without loss of generality, the barrier A of largest size within I is a subset of

X1. For convenience, we use m = n(H)/2 to be the size of each part X1, X2 and

k = |A|, with 1 ≤ k < m. Note that in HI , no free edges have endpoints in both

A and X1 \ A, leaving at least k(m− k) = mk − k2 fewer free edges within X1 in

G than in G1. If HI has (n(H)/2
2) edges, then the barriers in X2 add at least mk− k2

free edges.

The problem of maximizing s(I) over all maximal cover sets can be relaxed

to a linear program with quadratic optimization function as follows: First, fix the

barriers of I within X1, including the largest barrier, A. Then, fix the number of

barriers of I within X2 to be some integer `. Then, let {B1, . . . , B`} be the list of

barriers in X2. Now, create variables xi = |Bi| for all i ∈ {1, . . . , `}. The barriers in

X1 are fixed, so to maximize s(I), we must maximize ∑`
i=1 (xi

2).

We now set some constraints on the xi. Since the barriers Bi are not empty,

we require xi ≥ 1. Since Bi does not conflict with A, each Bi is within a single

component of H− A. Since there are |A| such components, there are at least |A| − 1

other vertices in X2 that are not in Bi, giving xi ≤ m− k + 1. Also, since A is the

largest barrier, xi ≤ k. Finally, the barriers Bi partition X2, giving ∑`
i=1 xi = m and

that there are is at least one barrier per component, giving ` ≥ k.

175

Since for x < y, (x−1
2) + (y+1

2) > (x
2) + (y

2), optimium solutions to this linear pro-

gram have maximum value when the maximum number of variables have maxi-

mum feasible value. Suppose 1 ≤ xi ≤ t are the tightest bounds on the variables

x1, . . . , x`. Then m−`
t−1 (t

2) is an upper bound on the value of the system.

Case 1: Suppose k ≥ m− k + 1. Now, the useful constraints are ∑`
i=1 xi = m, 1 ≤

xi ≤ m − k + 1 and we are trying to maximize ∑`
i=1 (xi

2). The optimum value

is bounded by m−`
m−k (

m−k+1
2). As a function of `, this bound is maximized by the

smallest feasible value of `, being ` = k. Hence, we have an optimum value at

most m−k
m−k

(m−k+1)(m−k)
2 = 1

2 m (m + 1)−
(

m + 1
2

)
k − 1

2 k2. Since k ≥ m− k + 1,

the inequality k ≥ 1
2(m + 1) holds, and the optimum value of this program is at

most

1
2

m
(

m +
1
2

)
−
(

m +
1
2

)
k− 1

2
k2 ≤ mk︸︷︷︸

k≥ 1
2 (m+1)

− k2︸︷︷︸
k≤m

−1
2

k2 < mk− k2.

Therefore, HI must not have (n(H)/2
2) free edges.

Case 2: Suppose k < m− k + 1. The constraints are now ∑`
i=1 xi = m, 1 ≤ xi ≤ k

while maximizing ∑`
i=1 (xi

2). This program has optimum value bounded above

by m−`
k−1 (k

2), which is maximized by the smallest feasible value of `. If m/k > k

and ` < m/k, the program is not even feasible, as a sum of ` integers at most k

could not sum to m. Hence, ` ≥ max{k, m/k}.

Case 2.i: Suppose k ≥ m/k. Setting ` = k gives a bound of m−k
k−1 (k

2) = 1
2(mk−

k2). This is clearly below mk− k2, so HI does not have (n(H)/2
2) free edges.

Case 2.ii: Suppose k < m/k. Setting ` = dm/ke gives a bound of m−dm/ke
k−1 (k

2) =

1
2(mk − m). Since k < m/k, k2 < m and 1

2(mk − m) ≤ mk − k2. Hence, HI

176

does not have (n(H)/2
2) free edges.

Experimentation over the graphs used during the generation algorithm for

p-extremal graphs shows that a naïve generation of cover sets in C(H) is suffi-

ciently fast to compute the maximum excess in E(H) when the list of barriers

B(H) is known. The following section describes a method for computing B(H)

very quickly using the canonical ear decomposition.

9.12 The Evolution of Barriers

In this section, we describe a method to efficiently compute the barrier list B(H)

of a 1-extendable graph H utilizing a graded ear decomposition. Consider a non-

refinable graded ear decomposition H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk = H of a 1-

extendable graph H starting at a cycle C2` = H0. Not only are the maximal barriers

of C2` easy to compute (the sets X, Y forming the bipartition) but also the barrier

list (every non-empty subset of X and Y is a barrier).

Lemma 9.70. Let H(i) ⊂ H(i+1) be a non-refinable ear decomposition of a 1-extendable

graph H(i+1) from a 1-extendable graph H(i) using one or two ears. If B′ is a barrier in

H(i+1), then B = B′ ∩V(H) is a barrier in H(i).

Proof. There are |B′| odd components in H(i+1) − B′. There are at most |B| odd

components in H(i) − B, which may combine when the ear(s) are added to make

H(i+1).

Let x1, x2, . . . , xr be the vertices in B′ \ B. Each xi is not in V(H(i)) so it is an

internal vertex of an augmented ear. Therefore, xi has degree two in H(i+1), so

removing xi from H(i+1) − (B ∪ {x1, . . . , xi−1}) increases the number of odd com-

ponents by at most one. Hence, the number of odd components of H(i+1) − B′ is

177

at most the number of odd components of H(i) − B plus the number of vertices in

B′ \ B. These combine to form the inequalities

|B′| = odd(H(i+1) − B′)

≤ odd(H(i+1) − B) + |B′ \ B|

≤ odd(H(i) − B) + |B′ \ B|

≤ |B|+ |B′ \ B| = |B′|.

Equality holds above, so B is a barrier in H(i).

As one-ear augmentations and two-ear augmentations are applied to each H(i),

we update the list B(H(i+1)) of barriers in H(i+1) using the list B(H(i)) of barriers

in H(i).

Lemma 9.71. Let B be a barrier of a 1-extendable graph H(i). Let H(i) ⊂ H(i+1) be a

1-extendable ear augmentation of H(i) using one (ε1) or two (ε1, ε2) ears.

1. If any augmenting ear connects vertices from different components of H(i)− B, then

B is not a barrier in H(i+1), and neither is any B′ ⊃ B where B = B′ ∩V(H(i)).

2. Otherwise, if B does not contain any endpoint of the augmented ear(s), then B is a

barrier of H(i+1), but B ∪ S for any non-empty subset S ⊆ V(H(i+1)) \V(H(i)) is

not a barrier of H(i+1).

3. If B contains both endpoints of some ear εi, then B is not a barrier in H(i+1) and

neither is any B′ ⊃ B.

4. If B contains exactly one endpoint (x) of one of the augmented ears (ε j), then

a) B is a barrier of H(i+1).

b) For S ⊆ V(H(i+1)) \ V(H(i)), B ∪ S is a barrier of H(i+1) if and only if S

contains only internal vertices of ε j of even distance from x along ε j.

178

5. If B = ∅, then for any subset S ⊆ V(H(i+1)) \V(H(i)) B∪ S is a barrier of H(i+1)

if and only if the vertices in S are on a single ear ε j and the pairwise distances along

ε j are even.

Proof. Let B′ be a barrier in H(i+1). Lemma 9.70 gives B = B′ ∩V(H(i)) is a barrier

of H(i), and H(i) − B has |B| odd connected components. Thus, the barriers of

H(i+1) are built from barriers B in H(i) and adding edges from the new ear(s).

Case 1: If an ear ε j spans two components of H(i) − B, then the number of com-

ponents in H(i+1) − B is at most |B| − 2. Any vertices from ε j added to B can

only increase the number of odd components by at most one at a time, but also

increases the size of B by one. Hence, vertices in V(H(i+1)) \ V(H(i)) can be

added to B to form a barrier in H(i+1).

Case 2: If each ear ε j spans points in the same components of H(i) − B, then the

number of odd connected components in H(i+1) − B is the same as in H(i) − B,

which is |B|. Hence, B is a barrier of H(i+1). However, adding a single vertex

from any ei does not separate any component of H(i+1) − B, but adds a count of

one to |B|. Adding any other vertices from ε j to B can only increase the number

of components by one but increases |B| by one. Hence, no non-empty set of

vertices from the augmented ears can be added to B to form a barrier of H(i+1).

Case 3: Suppose B contains both endpoints of an ear ε j. If ε j is a trivial ear, then it is

an extendable edge. If B′ ⊇ B is a barrier in H(i+1), this violates Proposition 9.57

which states edges within barriers are free edges. If ε j has internal vertices, they

form an even component in H(i+1) − B. By Lemma 9.62, this implies that B is

not a barrier. Any addition of internal vertices from ε j to form B′ ⊃ B will add

179

at most one odd component each, but leave an even component in H(i+1) − B′.

It follows that no such B′ is a barrier in H(i+1).

Case 4: Note that If an ear ε j has an endpoint within B, then in H(i+1) − B, the in-

ternal vertices of ε j are attached to the odd component of H(i+1) − B containing

the opposite endpoint. Since there are an even number of internal vertices on ε j,

then H(i+1)− B has the same number of odd connected components as H(i)− B,

which is |B|. Hence, B is a barrier in H(i+1).

Let the ear ε j be given as a path of vertices x0x1x2 . . . xk, where x0 = x and

xk is the other endpoint of ε j. Let S be a subset of {x1, . . . , xk−1}, the internal

vertices of ε j. The number of components given by removing S from the path

x1x2 · · · xk−1xk is equal to the number of gaps in S: the values a so that xa is in

S and xa+1 is not in S. These components are all odd if and only if for each xa

and xa′ in S, |a− a′| is even. Thus, B ∪ S is a barrier in H(i+1) if and only if S is

a subset of the internal vertices which are an even distance from x0.

Lemma 9.71 describes all the ways a barrier B ∈ B(H) can extend to a barrier

B′ ∈ B(H + ε1) or B′ ∈ B(H + ε1 + ε2). Note that the barriers B′ which use the

internal vertices of ε1 are independent of those which use the internal vertices of

ε2, unless one of the ears spans multiple components of H + ε1 + ε2 − B′. This

allows us to define a pseudo-barrier list B(H + ε) for almost 1-extendable graphs

H + ε, where H is 1-extendable. During the generation algorithm, we consider a

single-ear augmentation H(i) ⊂ H(i) + εi = H(i+1). Regardless of if H(i) or H(i+1)

is almost 1-extendable, we can update B(H(i+1)) by taking each B ∈ B(H(i)) and

adding each B ∪ S that satisfies Lemma 9.71 to B(H(i+1)). This process generates

all barriers B′ ∈ B(H(i+1)) so that B′ ∩ V(H(i)) = B, so each barrier is generated

exactly once.

180

In addition to updating the barrier list in an ear augmentation H(i) ⊂ H(i+1),

we determine the conflicts between these barriers.

Lemma 9.72. Let H(i) ⊂ H(i+1) be a 1-extendable ear augmentation using one (ε1) or

two (ε1, ε2) ears. Suppose B′1 and B′2 are barriers in H(i+1) with barriers B1 = V(H(i))∩

B′1 and B2 = V(H(i)) ∩ B′2 of H(i). The barriers B′1 and B′2 conflict in H(i+1) if and only

if one of the following holds: (1) B′1 ∩ B′2 6= ∅, (2) B1 and B2 conflict in H(i), or (3) B′1

and B′2 share vertices in some ear (ε j), with vertices x0x1x2 . . . xk, and there exist indices

0 ≤ a1 < a2 < a3 < a4 ≤ k so that xa1 , xa3 ∈ B′1 and xa2 , xa4 ∈ B′2.

Proof. Note that by definition, if B′1 ∩ B′2 6= ∅, then B′1 and B′2 conflict. We now

assume that B′1 ∩ B′2 = ∅.

If B1 or B2 conflict in H(i), then without loss of generality, B2 has vertices in

multiple components of H(i) − B1. Since B′1 is a barrier in H(i+1), Lemma 9.71

gives that no ear ε j spans multiple components of H(i)− B1, and the components of

H(i) − B1 correspond to components of H(i+1) − B1. Hence, B2 also spans multiple

components of H(i+1) − B1 and B′1 and B′2 conflict in H(i+1).

Now, consider the case that the disjoint barriers B1 and B2 did not conflict in

H(i). Since B1 and B2 are barriers of H(i), then the vertices in B′1 \ B1 are limited

to one ear ε j1 of the augmentation, and similarly the vertices of B′2 \ B2 are within

a single ear ε j2 . Since B1 and B2 do not conflict, all of the vertices within B2 lie in

a single component of H(i) − B1: the component containing the ear ε j1 . Similarly,

the vertices of B1 are contained in the component of H(i) − B2 that contains the

endpoints of ε j2 .

The components of H(i+1) − B1 are components in H(i+1) − B′1 except the com-

ponent containing the ear ε j1 is cut into smaller components for each vertex in ε j1

and B′1. In order to span these new components, B′2 must have a vertex within ε j1 .

181

Therefore, the ears ε j1 and ε j2 are the same ear, given by vertices x0, x1, . . . , xk.

Suppose there exist indices 0 ≤ a1 < a2 < a3 < a4 ≤ k so that xa1 and xa3

are in B′1 and xa2 and xa4 are in B′2. Then, the vertices xa1 and xa3 of B′1 are in

different components of H(i+1) − B′2, since every path from xa3 to xa1 in H(i+1)

passes through one of the vertices xa2 or xa4 . Hence, B′1 and B′2 conflict.

If B′1 and B′2 do not admit such indices a1, . . . , a4, then listing the vertices x0,

x1, x2, . . . , xk in order will visit those in B′1 and B′2 in two contiguous blocks. In

H(i+1) − B′1, the block containing the vertices in B′2 remain connected to the end-

point closest to the block, and hence B′2 will not span more than one component of

H(i+1) − B′1. Similarly, B′1 will not span more than one component of H(i+1) − B′2.

B′1 and B′2 do not conflict in this case.

The following corollary is crucial to the bound in Lemma 9.74.

Corollary 9.73. Let H(i) ⊂ H(i+1) be a 1-extendable ear augmentation using one (ε1) or

two (ε1, ε2) ears. Let I be a maximal cover set in C(H(i+1)) and S be the set of internal

vertices x of an ear ε j such that the barrier in I containing x has at least one vertex in

V(H(i)). Then, S contains at most half of the internal vertices of ε j.

Proof. Let A′ ⊂ I be the set of barriers containing a vertex x in ε j and a vertex y in

V(H(i)). For a barrier B to contain an internal vertex of ε j and a vertex in V(H(i)),

Lemma 9.71 states that B must contain at least one of the endpoints of the ear ε j.

Since each barrier in A′ contains and endpoint of ε j and non-conflicting barriers

are non-intersecting, there are at most two barriers in A′.

If there is exactly one barrier B in A′, by Lemma 9.71 it must contain vertices

an even distance away from the endpoint contained in B, and hence at most half

of the internal vertices of ε j are contained in B.

182

If there are two non-conflicting barriers B1 and B2 in A′, then by Lemma 9.72

the vertices of B1 and B2 within ε j come in two consecutive blocks along ε j. Since

each barrier includes only vertices of even distance apart, B1 contains at most half

of the vertices in one block and B2 contains at most half of the vertices in the other

block. Hence, there are at most half of the internal vertices of ε j in S.

9.13 Bounding the maximum reachable excess

In order to prune search nodes, we wish to detect when it is impossible to extend

the current 1-extendable graph H with q perfect matchings to a 1-extendable graph

H′ with p perfect matchings so that H′ has an elementary supergraph G′ ∈ E(H′)

with excess c(G′) ≥ c. The following lemma gives a method for bounding c(G′)

using the maximum excess c(G) over all elementary supergraphs G in E(H).

Lemma 9.74. Let H be a 1-extendable graph on n vertices with Φ(H) = q. Let H′ be a

1-extendable supergraph of H built from H by a graded ear decomposition. Let Φ(H′) =

p > q and N = n(H′). Choose G ∈ E(H) and G′ ∈ E(H′) with the maximum number

of edges in each set. Then,

c(G′) ≤ c(G) + 2(p− q)− 1
4
(N − n)(n− 2).

Proof. Let

H = H(0) ⊂ H(1) ⊂ · · · ⊂ H(k−1) ⊂ H(k) = H′

be a non-refinable graded ear decomposition as in Theorem 9.55. For each i ∈

{0, 1, . . . , k}, let G(i) ∈ E(H(i)) be of maximum size. Without loss of generality,

assume G(0) = G and G(k) = G′. The following claims bound the excess c(G(i)) in

terms of c(G(i−1)) using the ear augmentation H(i−1) ⊂ H(i).

183

Claim 9.75. If H(i−1) ⊂ H(i) is a single ear augmentation H(i) = H(i−1) + ε1 where ε1

has order `(i), then

c(G(i)) ≤ c(G(i−1)) + 1 +
3
4
`(i) − 1

8
(`(i))2 − 1

4
`(i)n(H(i−1)).

By Lemma 9.58, ε1 spans two maximal barriers X, Y ∈ P(H(i)). H(i) has `(i) + 1

more extendable edges than H(i−1).

We now bound the number of free edges G(i) has compared to the number of

free edges in G(i−1). The elementary supergraph G(i) has a clique partition of free

edges given by a maximal cover set I in C(H(i)). For each barrier B ∈ I , the set

B∩V(H(i−1)) is also a barrier of H(i−1), by Lemma 9.70. Through this transforma-

tion, the maximal cover set I admits an cover set I ′ = {B ∩ V(H(i−1)) : B ∈ I}

in C(H(i−1)). This cover set I ′ generates an elementary supergraph G(i−1)
∗ ∈

E(H(i−1)) through the bijection in Claim 9.66. The free edges in G(i) which span

endpoints within V(H(i−1)) are exactly the free edges of G(i−1)
∗ . By the selection of

G(i−1), e(G(i−1)
∗) ≤ e(G(i−1)).

When `(i) > 0, the `(i) internal vertices of ε1 may be incident to free edges

whose other endpoints lie in the barriers X and Y. By Corollary 9.73, at most half

of the vertices in ε1 have free edges to vertices in X and Y. Since the barriers X and

Y are in H(i−1), they have size at most n(H(i−1))
2 . So, there are at most `(i)

2
n(H(i−1))

2 free

edges between these internal vertices and the rest of the graph. Also, there are at

most (`(i)/2
2) = 1

8(`(i))2 − 1
4`(i) free edges between the internal vertices themselves.

184

Combining these edge counts leads to the following inequalities:

c(G(i)) = e(G(i))− (n(H(i−1)) + `(i))2

4

≤
[

e(G(i−1)
∗) +

(
1 + `(i)

)
+

n(H(i−1))`(i)

2
+

1
8
(`(i))2 − 1

4
`(i)

]

−
[

n(H(i−1))2

4
+

n(H(i−1))`(i)

2
+

(`(i))2

4

]

≤ e(G(i−1)) + 1 +
3
4
`(i) − n(H(i−1))2

4
− 1

8
(`(i))2

= c(G(i−1)) + 1 +
3
4
`(i) − 1

8
(`(i))2 − 1

4
`(i)ni−1.

This proves Claim 9.75. We now investigate a similar bound for two-ear autmen-

tations.

Claim 9.76. Let H(i−1) ⊂ H(i) be a two-ear augmentation H(i) = H(i−1) + ε1 + ε2 where

the ears ε1 and ε2 have `
(i)
1 and `

(i)
2 internal vertices, respectively. Set `(i) = `

(i)
1 + `

(i)
2 .

Then,

c(G(i)) ≤ c(G(i)) + 2 +
3
4
`(i) − 1

8
(`(i))2 − 1

4
`
(i)
1 `

(i)
2 −

1
4
`(i)n(H(i−1).

By Lemma 9.59, the first ear spans endpoints x1, x2 in a maximal barrier X ∈

P(H(i)) and the second ear spans endpoints y1, y2 in a different maximal barrier

Y ∈ P(H(i)). Note that after these augmentations, x1 and x2 are not in the same

barrier, and neither are y1 and y2, by Lemma 9.71.

The graph G(i) is an elementary supergraph of H(i) given by adding cliques

of free edges corresponding to a maximal cover set I in C(H(i)). By Lemma 9.70,

each barrier B ∈ I generates the barrier B ∩V(H(i−1)) in V(H(i−1)). This induces

a cover set I ′ = {B ∩ V(H(i−1)) : B ∈ I} in C(H(i−1)) which in turn defines an

185

elementary supergraph G(i−1)
∗ through the bijection in Claim 9.66. By the choice of

G(i−1), e(G(i−1)
∗) ≤ e(G(i−1)).

Consider the number of free edges in G(i) compared to the free edges in G(i−1)
∗ .

First, the number of edges between the `
(i)
1 + `

(i)
2 new vertices and the n(H(i−1))

original vertices is at most
(

`
(i)
1
2 + `

(i)
2
2

)
n(H(i−1))

2 , since the additions must occur

within barriers, at most half of the internal vertices of each ear can be used (by

Corollary 9.73), and barriers in H(i−1) have at most n(H(i−1))
2 vertices. Second, con-

sider the number of free edges within the `
(i)
1 + `

(i)
2 vertices. Note that no free edges

can be added between ε1 and ε2 since the internal vertices of ε1 and ε2 are in dif-

ferent maximal barriers of H(i). Thus, there are at most (`
(i)
1 /2

2) + (`
(i)
2 /2

2) free edges

between the internal vertices. Since (`
(i)
1 /2

2) + (`
(i)
2 /2

2) = 1
8(`(i)

1 + `
(i)
2)2 − 1

4(`(i)
1 +

`
(i)
2 + `

(i)
1 `

(i)
2), we have

c(G(i)) = e(G(i))−
(ni−1) + `

(i)
1 + `

(i)
2)2

4

≤ e(G(i−1)
∗) +

(
1 + `

(i)
1 + 1 + `

(i)
2

)
+

n(H(i−1))(`(i)
1 + `

(i)
2)

4

+
1
8

(
`
(i)
1 + `

(i)
2

)2
− 1

4

(
`
(i)
1 + `

(i)
2 + `

(i)
1 `

(i)
2

)
−
[

n(H(i−1))2

4
+

n(H(i−1))(`(i)
1 + `

(i)
2)

2
+

(`(i)
1 + `

(i)
2)2

4

]

≤ e(G(i−1))− n(H(i−1))2

4
+
(

2 + `
(i)
1 + `

(i)
2

)
− 1

4

(
`
(i)
1 + `

(i)
2

)
− 1

8

(
`
(i)
1 + `

(i)
2

)2
− 1

4
`
(i)
1 `

(i)
2 −

1
4

n(H(i−1))`(i)

= c(G(i−1)) + 2 +
3
4

(
`(i)
)
− (`(i))2

8
− 1

4
`
(i)
1 `

(i)
2 −

1
4

n(H(i−1))`(i).

We have now proven Claim 9.76. We now combine a sequence of these bounds to

show the global bound.

Since each ear augmentation forces Φ(H(i)) > Φ(H(i−1)), there are at most

186

p− q augmentations. Moreover, the increase in c(G(i)) at each step is bounded by

1 + 3
4`(i) − 1

8(`(i))2 − 1
4`(i)n(H(i−1)) in a single ear augmentation and 2 + 3

4`(i) −
1
8(`(i))2 − 1

4`
(i)
1 `

(i)
2 −

1
4`(i)n(H(i−1)) in a double ear augmentation. Independent of

the number of ears,

c(G(i))− c(G(i−1)) ≤ 2 + `(i) − 1
8
(`(i))2 − 1

4
`(i)n(H(i−1)).

Note also that if `(i) is positive, then it is at least two. Combining those inequalities

gives

c(G′) ≤ c(G) +
k

∑
i=1

(
2 +

3
4
`(i) − 1

8
(`(i))2 − 1

4
`(i)n(H(i−1))

)
≤ c(G) +

k

∑
i=1

2 +
3
4

k

∑
i=1

`(i) − 1
8

k

∑
i=1

(`(i))2 − 1
4

k

∑
i=1

`(i)n(H(i−1))

≤ c(G) + 2k +
3
4
(N − n)− 1

8

k

∑
i=1

2`(i) − 1
4

k

∑
i=1

`(i)n

≤ c(G) + 2(p− q)− 1
4
(N − n)(n− 2).

This proves the result.

Corollary 9.77. Let p, c ≥ 1 be integers. If H is a 1-extendable graph with q = Φ(H),

c′ is the maximum excess c(G) over all graphs G ∈ E(H), and c′ + 2(p− q) < c, then

there is no 1-extendable graph H ⊂ H′ reachable from H by a graded ear decomposition so

that Φ(H′) = p and there exits a graph G′ ∈ E(H′) with excess c(G′) ≥ c.

Corollary 9.77 gives the condition to test if we can prune the current node, since

there does not exist a sequence of ear augmentations that lead to a graph with

excess at least our known lower bound on cp. Moreover, Lemma 9.74 provides a

dynamic bound on the number N of vertices that can be added to the current graph

187

while maintaining the possibility of finding a graph with excess at least the known

lower bound on cp, by selecting N to be maximum so that c′ + 2(p − Φ(H)) −
1
4(N − n)(n− 2) ≥ c.

9.14 Results and Data

The full algorithm to search for p-extremal elementary graphs combines three

types of algorithms. First, the canonical deletion from Section 9.10 is used to

enumerate the search space with no duplication of isomorphism classes. Second,

the pruning procedure from Section 9.13 greatly reduces the number of generated

graphs by backtracking when no dense graphs are reachable. Third, Section 9.11

provided a method for adding free edges to a 1-extendable graph with p perfect

matchings to find maximal elementary supergraphs.

The recursive generation algorithm Search(H(i), N, p, c) is given in Algorithm

9.1. Given a previously computed lower bound c ≤ cp, the full search Generate(p, c)

(Algorithm 9.2) operates by running Search(C2k, Np, p, c) for each even cycle C2k

with 4 ≤ 2k ≤ Np. All elementary graphs G with Φ(G) = p and c(G) ≥ c are

generated by this process.

Theorem 9.78. Given p and c ≤ cp, Generate(p, c) (Algorithm 9.2) outputs all unlabeled

elementary graphs with p perfect matchings and excess at least c.

Proof. Given an unlabeled graph G with Φ(G) = p and c(G) ≥ c, note that Corol-

lary 9.26 implies n(G) ≤ 3 +
√

16p− 8c− 23. With respect to the canonical dele-

tion del(H), let H(0) ⊂ H(1) ⊂ · · · ⊂ H(k) be the canonical ear decomposition of

the extendable subgraph H in G. By the choice of canonical deletion, this decom-

position takes the form of Corollary 9.56. Moreover, H(0) is an even cycle C2r for

188

Algorithm 9.1 Search(H(i), N(i), p, c)
Check all pairs of vertices, up to symmetries
for all vertex-pair orbits O in H(i) do
{x, y} ← representative pair of O
Augment by ears of all even orders
for all orders r ∈ {0, 2, . . . , N(i) − n(H(i))} do

H(i+1) ← H(i) + Ear(x, y, r)
if H(i) is almost 1-extendable and H(i+1) is not 1-extendable then

Skip H(i+1) (decomposition is not graded).
else if Φ(H(i+1)) > p then

Skip H(i+1).
else

Check the canonical deletion
(x′, y′, r′)← del(H(i+1))
if r = r′ and {x′, y′} ∈ O then

This augmentation matches the canonical deletion
n(i+1) ← n(H(i+1)).
p(i+1) ← Φ(H(i+1)).
c(i+1) ← max{c

(
H(i+1)
I

)
: I ∈ C(H(i+1))}.

if p(i+1) = p and c(i+1) ≥ c then
There are solutions within E(H(i+1)).
for all cover sets I ∈ C(H(i+1)) do

if c
(

H(i+1)
I

)
≥ c then

Output HI .
end if

end for
else if q < p and c(i+1) + 2(p− p(i+1)) ≥ c then

Use Lemma 9.74 to bound the size of future augmentations.
N(i+1) = max{N′ : c(i+1) + 2(p− p(i+1))

−1
4(N′ − n(i+1))(n(i+1) − 2) ≥ c}.

Search(H(i+1), N(i+1), p, c).
end if

end if
end if

end for
end for
return

189

Algorithm 9.2 Generate(p, c)
N ← max{2r : 2r ≤ 3 +

√
16p− 8c− 23}.

for r ∈ {1, . . . , N/2} do
Search(C2r, N, p, c)

end for
return

some r. The Generate(p, c) method initializes Search(C2r, N, p, c).

By the definition of canonical ear decomposition, the canonical ear ε(i) of H(i)

is the ear used to augment from H(i−1) to H(i). Let x(i), y(i) be the endpoints of ε(i).

When Search(H(i), N(i), p, c) is called, the pair orbit O containing {x(i+1), y(i+1)}

is visited and an ear ε of the same order as ε(i+1) is augmented to H(i) to form

a graph H(i+1)
∗ . Note that H(i+1)

∗ ∼= H(i+1) with an isomorphism mapping ε to

ε(i+1). By the definition of the canonical deletion del(H), the algorithm accepts

this augmentation.

For each i, let G(i) be a maximum-size elementary supergraph in E(H(i)). By

Theorem 9.65, there exists a maximal cover set I ∈ C(H(i)) so that G(i) = H(i)
I .

Since c(G(k)) = c(G) ≥ c, Lemma 9.74 gives c(G) ≤ c(G(i+1)) + 2(p − p(i+1))−
1
4(n(G)− n(H(i+1)))(n(H(i+1))− 2), so the algorithm recurses with N(i+1) ≥ n(G).

When H(k) is reached, the algorithm notices that Φ(H(k)) = p and enumerates

all cover sets I ∈ C(H(k)) which generates the elementary supergraphs H(k)
I ∈

E(H(k)) with excess at least c. Since H(k) is the extendable subgraph of G and

c(G) ≥ c, this procedure will output G.

The framework for this search was implemented within the EarSearch library.

This software is detailed in Appendix E. This implementation was executed on the

Open Science Grid [107] using the University of Nebraska Campus Grid [143]. The

nodes available on the University of Nebraska Campus Grid consist of Xeon and

Opteron processors with a speed range of between 2.0 and 2.8 GHz.

190

p 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
np 8 6 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8
cp 3 5 3 4 6 4 4 5 4 5 5 5 5 6 5 5 6
Cp 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6

Table 9.2: New values of np and cp. Conjecture 9.41 states that cp ≤ Cp.

p Np cp CPU Time
5 8 2 0.02s
6 10 3 0.04s
7 10 3 0.18s
8 12 3 0.72s
9 12 4 1.46s

10 12 4 5.95s
11 14 3 43.29s
12 14 5 44.01s
13 14 3 6.66m
14 16 4 12.17m
15 16 6 12.71m

.

p Np cp CPU Time
16 16 4 2.02h
17 16 4 6.77h
18 18 5 11.75h
19 18 4 2.71d
20 18 5 4.21d
21 18 5 13.71d
22 20 5 42.84d
23 20 5 118.32d
24 20 6 209.42d
25 20 5 2.52y
26 20 5 7.21y
27 22 6 10.68y

Table 9.3: Time analysis of the search for varying p values.

Combining this algorithm with known lower bounds on cp for p ∈ {11, . . . , 27}

provided a full enumeration of p-extremal graphs for this range of p. The resulting

values of cp and np are given in Table 9.2. The computation time for these values

ranged from less than a minute to more than 10 years. Table 9.3 gives the full list of

computation times. The resulting p-extremal elementary graphs for 11 ≤ p ≤ 27

are given in Figure 9.7.

To describe the complete structural characterization of p-extremal graphs on n

vertices for all even n ≥ np, we apply Theorem 9.27. An important step in applying

Theorem 9.27 is to consider every factorization p = ∏ pi and to check which spires

are generated by the pi-extremal elementary graphs. We describe these structures

based on the types of constructions given by these factorizations. It is necessary to

consider the p-extremal elementary graphs for 1 ≤ p ≤ 10, in Figure 9.8.

191

p = 11 p = 11 p = 12 p = 13 p = 13 p = 13 p = 13 p = 13

p = 13 p = 14 p = 14 p = 15 p = 16 p = 16 p = 16 p = 16

p = 17 p = 17 p = 18 p = 18 p = 19 p = 19 p = 19 p = 19

p = 19 p = 19 p = 20 p = 21 p = 21 p = 21 p = 22 p = 23

p = 24 p = 24 p = 25 p = 25 p = 26 p = 26 p = 26 p = 27

Figure 9.7: The p-extremal elementary graphs where 1 ≤ p ≤ 27.

p = 1 p = 2 p = 3 p = 4 p = 5 p = 5 p = 6

p = 6 p = 7 p = 8 p = 8 p = 8 p = 9 p = 10

Figure 9.8: The p-extremal elementary graphs with 1 ≤ p ≤ 10 [38, 63].

For p ∈ {11, 13, 17, 19, 23}, p is prime, and there is no non-trivial factorization

of p. Hence, a p-extremal graph is a spire using exactly one p-extremal elementary

graph with all other vertices within chambers isomorphic to K2. In most cases,

the p-extremal elementary graph must appear at the top of the spire. Only when

p = 11 and the 11-extremal elementary graph chosen is the one with a barrier of

192

size 4 can this chamber be positioned anywhere in the spire.

For each p ∈ {15, 22, 25, 26}, p has at least one non-trivial factorization p =

∏ pi, but the sum of cpi over the factors is strictly below cp. Hence, no p-extremal

spire could contain more than one non-trivial chamber. Also, all p-extremal ele-

mentary graphs have a barrier with relative size strictly below 1
2 , so the non-trivial

chamber must appear at the top of the spire.

For each p ∈ {21, 27}, there exists at least one factorization p = ∏ pi, all with

∑ cpi ≤ cp, and at least one factorization which reaches cp with equality. For exam-

ple, 21 = 3 · 7, and c3 + c7 = 2 + 3 = 5 = c21. However, in these cases of equality,

pi-extremal elementary graphs with large barriers do not exist and it is impossible

to achieve an excess of cp over the entire spire using multiple non-trivial chambers.

Hence, the p-extremal graphs for these values of p have exactly one non-trivial

chamber with p perfect matchings and these chambers have small barriers, so they

must appear at the top of the spire.

For each p ∈ {14, 18, 20, 24}, there is at least one factorization p = ∏ pi so that

∑ cpi = cp and there are pi-extremal graphs with large enough barriers to admit a

spire with excess cp. These factorizations are 14 = 2 · 7, 18 = 3 · 6 = 2 · 9, 20 = 2 · 10,

and 24 = 2 · 12. There are also the p-extremal spires with exactly one non-trivial

chamber, most of which must appear at the top of the spire. For p ∈ {14, 24},

there exists one p-extremal elementary graph with a large barrier that can appear

anywhere in a p-extremal spire.

The case p = 16 is special: every factorization admits at least one configuration

for a 16-extremal spire. The q-extremal elementary graphs for q ∈ {1, 2, 4, 8} as

found by Hartke, Stolee, West, and Yancey [63] are given in Figure 9.8. Note that

for each such q, there exists at least one q-extremal graph with a barrier with rela-

tive size 1
2 . This allows any combination of values of q that have product 16 give

193

a spire with 16 perfect matchings and excess equal to the sum of the excesses of

the chambers, which always adds to c16 = 4. There are two 8-extremal elementary

graphs and three 16-extremal elementary graphs which have small barriers and

must appear at the top of a 16-extremal spire. All other chambers of a 16-extremal

spire can take any order.

9.15 Discussion

The O(√p) bound Np on the number of vertices in a p-extremal elementary graph

was sufficient for the computational technique described in this work to signifi-

cantly extend the known values of cp. However, all of the elementary graphs we

discovered to be p-extremal for p ≤ 27 have at most 10 vertices, which could be

generated using existing software, such as McKay’s geng program [93]. With a

smaller Np value, the distributed search can also be improved. Computation time

would still be exponential in p because the depth of the search is a function of p,

but the branching factor at each level would be reduced. This delays the expo-

nential behavior and potentially makes searches over larger values of p become

tractable. This motivates the following conjecture.

Conjecture 9.79. Every p-extremal elementary graph has at most 2 log2 p vertices.

This conjecture is tight for p = 2k, with k ∈ {1, 2, 3, 4} and holds for all p ≤ 27.

Note that n8 = 6, but there is an 8-extremal elementary graph with eight vertices.

Similarly, n16 = 8, but there is a 16-extremal elementary graph with ten vertices.

The structure theorem requires searching over all factorizations of p in order to

determine which factorizations yield a spire with the largest excess. However, all

known values of p admit p-extremal elementary graphs. Moreover, all composite

194

values p = p1p2 admit cp ≥ cp1 + cp2 . Does this always hold?

Conjecture 9.80. For all p ≥ 1, there exists a p-extremal elementary graph.

Conjecture 9.81. For all products p = ∏k
i=1 pi with p ≥ 1, cp ≥ ∑k

i=1 cpi .

The closest known bound to Conjecture 9.81 is cp ≥ cp1 + ∑k
i=2 w(pi), where

w(n) is the number of 1’s in the binary representation of n [63, Proposition 7.1].

The method we used to determine the graphs in Fp for p ≤ 10 is feasible only

for small p. Several natural questions arise from these computational results. The

data suggest that there is always at least one p-extremal graph whose subgraph of

extendable edges is connected. If this is true, then it could help to guide searches,

since when n ≥ np some p-extremal graph would have a chamber other than K2

only at the top (this must happen when p is prime).

Conjecture 9.82. For p ∈N, there exist a p-extremal graph that is an elementary graph.

For p-extremal spires that consist of copies of K2 and one p-extremal chamber,

the value of cp may be small. The examples we have of cp < cp−1 occur when p is

a power of a prime, at p ∈ {11, 13, 16, 19, 25}. With greater variety of factorizations

available, there are more ways to form spires with exactly p perfect matchings and

hence more ways for cp to be large. The data suggest the following.

Conjecture 9.83. For p ∈N, always cp ≥ max{∑ ci{pi} : ∏ pi = p}.

A different conjecture is suggested by consider the values of cq after cp. Let

mp = min{cq : q ≥ p}; how does this sequence behave? We know only that mp ≥

1, by Theorem 9.7. However, if there are finitely many Fermat primes (primes of

the form 2k + 1, see [57]), then mp ≥ 2 for sufficiently large p, by Corollary 9.33.

This is too difficult a task for such a small payoff, especially since a much stronger

statement seems likely.

195

Conjecture 9.84. lim
p→∞

mp = ∞.

Figure 9.6 provides strong support for this conjecture. If it holds, then what

is the asymptotic behavior of mp? Is it Ω
((

ln p
ln ln p

)2
)

, matching the conjectured

upper bound? Or, is it smaller, such as Ω(log2 p), the current lower bound when p

is a power of 2?

Finally, it would be interesting to characterize Fp or at least compute cp for

some infinite family of values of p.

Bibliographic Notes

The work in this chapter is joint work with Stephen G. Hartke, Douglas B. West,

and Matthew Yancey [63]. This project was initiated during the Combinatorics

Research Experience for Graduate Students (REGS) at the University of Illinois,

Summer 2010. We thank Garth Isaak for suggesting the extension to odd n.

196

Part III

Orbital Branching

197

Chapter 10

Orbital Branching

A property P on a combinatorial object can be expressed as a set {Ci} of constraints

on a set of 0/1-valued variables. For example, graphs can be stored as indicator

variables xu,v with value 1 if and only if uv is an edge. Then, a constraint Ci(x) can

be satisfied when the equality ∑n
j=1 xi,j = 4 holds. If all constraints {Ci}n

i=1, then

the graph corresponding to these variables is 4-regular. Thus, a property P can be

expressed as the conjunction of several constraints, where P holds if and only if all

constraints hold.

Orbital branching is a technique to solve symmetric constraint systems using

branch-and-bound techniques by selecting orbits of variables for the branch in-

stead of a single variable. Orstrowski, Linderoth, Rossi, and Smriglio [102] in-

troduced orbital branching and applied the technique to covering and packing

problems. The authors implemented the branching procedure into the optimiza-

tion framework MINTO [98]. This integration allowed interaction with existing

heuristics such as clique cuts [8] and the commercial optimization software IBM

ILOG CPLEX [35]. They also generalized the technique to include knowledge of

subproblems [103] within the context of Steiner systems [104].

198

There are three main components to orbital branching. First, a description of

the constraint system must be implemented. Tightly integrated subcomponents of

the system include the symmetry model of the constraints and the presolver. The

symmetry model consists of a graph G with vertices corresponding to the vari-

ables along with vertices encoding the structure of the system. The automorphism

group of G is computed using nauty [93, 61]. The presolver reduces the number

of variables and constraints by recognizing dependencies. Second, the constraint

propagation algorithm takes existing choices from the branch-and-bound and fixes

variables with forced values. Third, a branching rule decides which orbit of vari-

ables is selected for the branch.

10.1 Variable Assignments

We shall consider a constraint problem P where P : {0, 1}m → {0, 1} is a function

on m variables which take value in {0, 1}. A vector x = (x1, . . . , xm) ∈ {0, 1, ∗}m is

a variable assignment. If xi = ∗, we say that variable is unassigned. We can compare

two assignments x, y with x � y if and only if for all i ∈ {1, . . . , m} either xi = ∗ or

xi = yi.

Example. An (n, k, λ, µ) strongly regular graph is a k-regular graph on n vertices so

that if uv is an edge, then u and v have λ common neighbors and if uv is not an

edge, then u and v have µ common neighbors. Let x be a variable assignment on

m = (n
2) variables corresponding to xi = 1 if and only if the ith unordered pair of

vertices1 is an edge.

1We assume some order on pairs of elements is fixed. The co-lexicographic order is particularly
useful because it does not require knowledge of the number of elements in order to rank or unrank
a pair. That is, consider the vertex set {v0, v1, v2, . . . }. For vertices vi, vj with i < j, the rank of
the pair {vi, vj} can be given as (j−1

2) + i. Thus, all pairs from this infinite vertex set are mapped

199

Thus, a variable assignment x maps to a trigraph G which is given by a vertex

set and the pairs are partitioned into three sets: edges, nonedges, and unassigned

pairs (corresponding to xi = 1, xi = 0, and xi = ∗ for the ith pair). Two trigraphs

G and H can be compared as G � H if the corresponding variable assignments x

and y have x � y. Trigraphs and variable assignments are useful data structures

when searching for strongly regular graphs because nonedges are fundamental to

the structure of the graph.

Let SRG
λ,µ
n,k (x) be the boolean function that encodes whether or not the given

variable assignment corresponds to an (n, k, λ, µ) strongly regular graph. For later

examples, we shall consider n, k, λ, and µ to be fixed and define SRG(x) = SRG
λ,µ
n,k (x).

Our goal is to generate all possible vectors x so that P(x) = 1. We shall build

these vectors starting at the empty assignment x = (∗, ∗, . . . , ∗) and assign values

to the variables. A naïve approach would be to brute-force check every possible

assignment. Instead, we shall employ constraint detection and constraint propa-

gation techniques.

1. Let DetectP(x) be an algorithm that returns True only if for all y ∈ {0, 1}n

where x � y we have P(y) = 0.

2. Let PropagateP(x) be an algorithm that on input x ∈ {0, 1, ∗}n returns a vari-

able assignment y ∈ {0, 1, ∗}n so that for all z where x � z so that P(z) = 1,

then x � y � z.

The efficiency and strength of DetectP and PropagateP will depend on the prop-

erty P (and the user’s knowledge about the property P). At minimum, DetectP(x)

bijectively to natural numbers so that for a fixed n the pairs using vertices v0, . . . , vn−1 map to the
set {0, . . . , (n

2)− 1}. The unranking formula is efficient to compute.

200

could return True if and only if x has no unassigned variables and P(x) = 0. Fur-

ther, PropagateP(x) could simply return x. Using some structure of the function P

can allow more complicated (and helpful) functions.

Example. When searching for an (n, k, λ, µ) strongly regular graph, we can guar-

antee a few properties. Let x be a variable assignment and Gx be the associated

trigraph. Note that the maximum degree of a graph (∆(G)) and neighborhoods

(N(vi)) are monotone functions on the edge set of trigraphs with respect to �. The

following implications are then immediate:

1. If SRG(G) = 1, then ∆(G) = k. Therefore, if ∆(Gx) > k, then Gx cannot

extend to a strongly regular graph.

2. If SRG(G) = 1, then ∆(G) = n− k− 1. Therefore, if ∆(Gx) > n− k− 1, then

Gx cannot extend to a strongly regular graph.

3. If SRG(G) = 1, then every pair vivj ∈ E(G) has |N(vi) ∩ N(vj)| = λ. There-

fore, if vivj is an edge in Gx and |N(vi) ∩ N(vj)| > λ then Gx cannot extend

to a strongly regular graph.

4. If SRG(G) = 1, then every pair vivj ∈ E(G) has |N(vi) ∩ N(vj)| = µ. There-

fore, if vivj is a nonedge in Gx and |N(vi)∩N(vj)| > µ then Gx cannot extend

to a strongly regular graph.

Thus, a possible algorithm for DetectSRG(x) is to return 1 whenever ∆(Gx) > k,

∆(Gx) > n− k− 1, or |N(vi) ∩ N(vj)| > max{λ, µ} for some pair vi, vj ∈ V(Gx).

Further, a possible algorithm for PropagateSRG(x) is to place assignments on unas-

signed variables whenever these constraints are sharp:

1. If vi has degree k, then for any vertex vj where the pair vivj is unassigned,

make vivj be a nonedge.

201

2. If vi has non-degree2 n− k − 1, then for any vertex vj where the pair vivj is

unassigned, make vivj be an edge.

3. If vivj is an edge in Gx and |N(vi) ∩ N(vj)| = λ then whenever v` is a vertex

with viv` an edge and v`vj unassigned, make v`vj be a nonedge. Similarly, if

viv` is unassigned and v`vj is an edge, make viv` be a nonedge.

4. If vivj is a nonedge in Gx and |N(vi)∩N(vj)| = µ then whenever v` is a vertex

with viv` an edge and v`vj unassigned, make v`vj be a nonedge. Similarly, if

viv` is unassigned and v`vj is an edge, make viv` be a nonedge.

Given algorithms for DetectP(x) and PropagateP(x), we can build a full search

algorithm using branch-and-bound3. One missing ingredient is the UnassignedP(x)

function which selects an index i of an unassigned variable (xi = ∗). Such a se-

lection could be arbitrary, but it could also be carefully selected. This algorithm

allows for dynamic variable ordering, which changes which variable we shall assign

next in hopes that certain constraints will become sharp and the PropagateP(x)

algorithm can assign several new values in one step. The full branch-and-bound

algorithm is given as BranchAndBoundP(x) in Algorithm 10.1.

By initializing this recursive algorithm on the empty assignment x = (∗, . . . , ∗),

all possible feasible solutions x with P(x) = 1 will be written to output.

While branch-and-bound is a complete algorithm, it has no concern for the

symmetries of the objects represented by the variable assignments. That is, per-

haps the property P is invariant under a certain set of permutations and so we

should only generate variable assignments up to isomorphism. The next section

defines these symmetries.

2The non-degree of a vertex vi is the number of nonedge pairs containing vi.
3Also called backtrack search, we shall not use the optimization methods used in a typical branch-

and-bound algorithm. So, you could also call this method simply “branch."

202

Algorithm 10.1 BranchAndBoundP(x)
if DetectP(x) then

return
end if
y← PropagateP(x)
if y ∈ {0, 1}m then

if P(y) = 1 then
Output y

end if
return

end if
i← UnassignedP(x)
yi ← 0
call BranchAndBoundP(y)
yi ← 1
call BranchAndBoundP(y)
return

10.2 Constraint Symmetries

Let σ ∈ Sn be a permutation of order m. Given a vector x = (x1, . . . , xm), the vector

xσ has value xσ = (xσ(1), xσ(2), . . . , xσ(m)). That is, σ acts on the variables.

An automorphism of a constraint problem P is a permutation σ ∈ Sm so that for

every vector x ∈ {0, 1}m, P(x) = P(xσ). The set of automorphisms of P form a

group, denoted Aut(P).

Example. When the variable assignment x corresponds to a trigraph Gx (as in the

case of strongly regular graphs), we consider a permutation τ ∈ Sn to be a col-

ored isomorphism between two trigraphs G and H if for all pairs vivj, the color of

vτ(i)vτ(j) in H matches the color of vivj in G. A property P is invariant under col-

ored isomorphsims if P(G) = P(H) for any two isomorphic trigraphs. Therefore,

for a property P that is invariant under colored isomorphisms,

Aut(P) ⊇ {στ ∈ S(n
2)

: ∀τ ∈ Sn},

203

where στ maps a pair vivj to vτ(i),τ(j). That is, any permutation of the vertices

corresponds to a map of the pairs and P is invariant under these permutations.

Since we shall be making changes to the variable assignment x, we want to

track the symmetries of the system with respect to the current variable assignment.

Thus, let Autx(P) be the set of permutations of the variable set so that P is invariant

under all extensions of the given variable assignment, and a variable xi is mapped

to a variable with the same value:

Autx(P) = {σ ∈ Aut(P) : ∀i ∈ {1, . . . , m}, xi = xσ(i)}.

Example. For a trigraph G, all extensions of this trigraph will convert some unas-

signed pairs into edges and nondedge, but all current edges and nonedges will be

present in any trigraph H with G � H. Therefore, we shall restrict the symmetries

of the system to be colored automorphisms of G. Thus, the colored automorphism

group Autx(P) is

Autx(P) = {στ : τ ∈ Sn, τ is a colored automorphism of Gx}.

This automorphism group can be computed by defining a layered graph L(G) which

has vertex set V(L(G)) = V(G)× {0, 1} and edges given by

1. (u, 0)↔ (u, 1) for all u ∈ V(G),

2. (u, 0)↔ (v, 0) for all nonedges uv of G,

3. (u, 1)↔ (v, 1) for all edges uv of G.

By partitioning V(L(G)) by the second coordinate (one part is V(G)× {0} and the

other is V(G) × {1}) computing the automorphisms of L(G) that stabilize these

204

parts guarantees that for all u ∈ V(G) and automorphisms σ, σ((u, 0)) = (v, 0)

for some v ∈ V(G) and σ((u, 1)) = (v, 1). Therefore, the automorphisms of L(G)

(as permutations of V(G) × {0, 1}) collapse to colored automorphisms of G (as

permutations of V(G)). This is a standard method for computing colored auto-

morphisms, as described in the nauty user guide [93].

We shall focus on the action this group on the variables. The orbit of a variable

xi is the set Oi = {xj : ∃σ ∈ Autx(P), j = σ(i)}. Using these symmetries and con-

sidering orbits of unassigned variables instead of single variables, we can extend

branch-and-bound to be symmetry-aware and reduce the number of isomorphic

duplicates.

10.3 Orbital Branching

Given a partial variable assignment x, we compute the colored automorphism

group Autx(P) and use this action on the variables to compute orbits. Orbital

branching extends the standard branch-and-bound technique by selecting an orbit

of unassigned variables. From a selected orbit O, there are two branches:

1. Select a representative i1 ∈ O and assign the variable xi1 = 0.

2. For all representatives i ∈ O, assigne the variable xi = 1.

Notice that if there are non-trivial automorphisms, then there exists an orbit

of size at least two. This makes the second branch assign more than one variable

in a given time. The reason this process works is that assigning xi = 0 for any

representative i ∈ O leads to the same variable assignment up to isomorphism.

Since trying any one variable a zero is the same, we can just try one and in the

205

second branch we can set all of the variables to the other value. Figure 10.1 shows

the difference between branch-and-bound and orbital branching.

x is given
Variable xi,j is selected

xi
= 0

xi
= 1

(a) The branch-and-bound algorithm.

x is given
Orbit O is selected

in orbit

xi = 1
for all xi ∈ O

xi1
= 0

xi2
= 0

xi3
= 0

xik
= 0

(b) The orbital branching algorithm.

Figure 10.1: Comparing Branch-and-Bound with Orbital Branching.

Algorithm 10.2 gives a full description of the orbital branching method. The al-

gorithm follows a similar pattern to Algorithm 10.1 but uses a subroutine, denoted

UnassignedOrbitP(x), to select an orbit of unassigned variables instead of just a

single variable. The correctness of this algorithm is given by Theorem 10.1.

Algorithm 10.2 OrbitalBranchingP(x)
if DetectP(x) then

return
end if
y← PropagateP(x)
if y ∈ {0, 1}m then

if P(y) = 1 then
Output y

end if
return

end if
O ← UnassignedOrbitP(x)
i1 ← min{i ∈ O}
yi1 ← 0
call OrbitalBranchingP(y)
for all i ∈ O do

yi ← 1
end for
call OrbitalBranchingP(y)
return

206

Theorem 10.1 (Ostrowski, Linderoth, Rossi, Smriglio [102]). The orbital branching

algorithm outputs at least one solution x with P(x) = 1 from every orbit of vectors under

Aut(P).

Proof. We shall prove that a call to the recursive algorithm OrbitalBranchingP(x)

for a given variable assignment x shall output at least one vector from every orbit

of vectors z ∈ {0, 1}m (under the action of Aut(P)) so that x � z and P(z) = 1. We

proceed by induction on the number of unassigned variables on the vector y given

by PropagateP(x).

If y has no unassigned variables, then either P(y) = 1 and y is output, or

P(y) = 0 and y is not output. By the assumptions on PropagateP, y is the only

extension of x with P(y) = 1.

Suppose y has k unassigned variables and for any variable assignment z with

at most k− 1 unassigned variables, OrbitalBranchingP(z) outputs at least one vec-

tor from every orbit of solutions to P that extends z. Let O be the orbit from

UnassignedOrbitP(y) and i1 < i2 < · · · < i` be the indices in O.

For any integer j ∈ {1, . . . , m}, let z(j) have value z(j)
i =


0 i = j

yi otherwise
. By

induction, OrbitalBranchingP(z(i1)) outputs at least one vector from every orbit of

extensions of y where the i1th variable takes value 0.

Let z(O) have value z(O)
i =


1 i ∈ O

yi otherwise
. OrbitalBranchingP(z(O)) outputs

at least one vector from every orbit of extensions of y where the variables with

index in O take value 1.

Let w be an extension of y (y � w) so that P(w) = 1. If z(i1) � w or z(O) � w,

then some vector from the orbit of w is output by these calls to OrbitalBranchingP.

207

Otherwise, since z(O) 6� w, there is some variable ij ∈ O so that wij = 0. Since

z(i1) 6� w, j 6= 1. By definition of O, there must be a permutation σ ∈ Auty(P) so

that σ(ij) = i1. Therefore, wσ has the i1th variable with value 0 and z(i1) � wσ.

Hence, some vector in orbit with wσ is output by the first call to OrbitalBranchingP.

Since wσ is in orbit with w, the claim is satisfied.

Example. In the case of variable assignments corresponding to trigraphs, the first

branch in the orbital branching algorithm selects a pair from the orbit and assigns

that pair to be a nonedge. No matter which representative pair is selected from

the orbit, the resulting trigraph is isomorphic to any other choice of representative.

Therefore, an arbitrary representative suffices. Also, any assignment of edges and

nonedges to this trigraph so that one of the representatives becomes a nonedge

is isomorphic to some trigraph where our selected representative is a nonedge.

Therefore, after checking all extensions where this representative is a nonedge we

may assume that every pair from the orbit is an edge for other extensions.

10.4 Branching Rules

In the previous description of the orbital branching algorithm, we left the algo-

rithm for UnassignedOrbitP(x) to be an arbitrary algorithm. An instance of this

algorithm is called a branching rule, as it dictates which variables are assigned in

the current branch. In the original work by Ostrowski et al. [102], a lot of atten-

tion was given to these branching rules. One reason is that they were working

with combinatorial optimization problems where the “bounding" part of branch-

and-bound is particularly useful. Hence, several of the branching rules used a

continuous relaxation of the problem as advice to choosing an orbit.

Since this thesis considers exhaustively generating all feasible solutions to a

208

combinatorial problem where the constraints are rarely simple to describe in a con-

tinuous setting, we ignore the original branching rules. Instead, we focus on the

example of searching over trigraphs for our rules.

Example. Suppose we wish to select an orbit of unassigned pairs from a trigraph

G. Table 10.1 contains a few potential branching rules along with positive and

negative effects.

10.5 Orbital Branching and Canonical Deletion

From our example of searching for strongly regular graphs, we see that orbital

branching can be used to search for combinatorial objects. This brings the tech-

nique into the combinatorial realm, where it can compete with canonical deletion.

Orbital branching may seem weaker than canonical deletion, since we have no

guarantee that every object is visited at most once. Even worse, when using or-

bital branching and you generate an object with no automorphisms, the technique

becomes no better than brute-force search. However, there are situations when

orbital branching is significantly more efficient than canonical deletion.

One reason the orbital branching technique may work better than canonical

deletion is that the techniques have strengths in two opposite areas. Canonical

deletion focuses on removing all isomorphic duplicates, but there is no known

method to incorporate constraint propagation with canonical deletion. Orbital

branching is built to naturally allow constraint propagation, but it only reduces

the number of isomorphic duplicates.

Another reason is that the augmentation step for orbital branching involves

exactly one automorphism calculation, and two augmentations. In canonical dele-

tion, every possible augmentation must be attempted (up to isomorphism) and

209

checked to see if it is a canonical augmentation. Depending on the augmentation

step, this can be a very costly operation.

In Chapter 11, we extend the orbital branching technique with a customized

augmentation for a specific problem. This augmentation integrates well with or-

bital branching, but our attempt to integrate it with canonical deletion was less

efficient. Our implementation with orbital branching is a very efficient algorithm;

by executing the algorithm, we discovered several new graphs with the desired

properties.

210

Ta
bl

e
10

.1
:L

is
to

fe
xa

m
pl

e
br

an
ch

in
g

ru
le

s.

R
ul

e
H

ow
it

W
or

ks
Pr

os
C

on
s

L
A

R
G

E
ST

O
R

B
IT

Se
le

ct
an

or
bi

to
fh

ig
he

st
or

de
r.

M
ax

im
iz

es
am

ou
nt

of
ch

an
ge

in
se

co
nd

br
an

ch
.

D
oe

s
no

t
co

nc
er

n
co

ns
tr

ai
nt

s.
C

an
qu

ic
kl

y
re

m
ov

e
sy

m
m

et
ry

fr
om

th
e

gr
ap

h.
L

A
R

G
E

ST
C

O
N

N
O

R
B

IT
M

ai
nt

ai
n

a
se

t
S
⊆

V
(G

)
of

ve
r-

ti
ce

s
w

he
re

ev
er

y
ve

rt
ex

in
S

is
co

nt
ai

ne
d

in
at

le
as

t
on

e
as

si
gn

ed
pa

ir.
Se

le
ct

an
or

bi
tw

he
re

al
lp

ai
rs

ha
ve

bo
th

en
dp

oi
nt

s
in

S
(i

fp
os

si
-

bl
e)

or
at

le
as

t
on

e
en

dp
oi

nt
in

S
(o

th
er

w
is

e)
.F

ro
m

th
es

e
or

bi
ts

,s
e-

le
ct

th
e

on
e

of
la

rg
es

to
rd

er
.

Bu
ild

s
gr

ap
hs

by
fil

lin
g

in
al

lp
ai

rs
fr

om
a

gi
ve

n
se

t
fir

st
.

A
tt

em
pt

s
to

m
ax

im
iz

e
ch

an
ge

in
se

co
nd

br
an

ch
.

So
m

e
of

th
e

or
bi

ts
m

ay
be

sm
al

lw
he

n
S

is
ne

ar
ly

fu
ll,

re
su

lt
in

g
in

lo
w

sy
m

m
et

ry
fo

r
la

te
r

or
bi

tc
al

cu
la

ti
on

s.

M
A

X
D

E
G

R
E

E
SU

M
O

R
B

IT
Se

le
ct

an
or

bi
t

of
pa

ir
s

uv
w

he
re

th
e

de
gr

ee
an

d
no

n-
de

gr
ee

su
m

s
of

u
an

d
v

ar
e

m
ax

im
um

.
Br

ea
k

ti
es

by
or

bi
ts

iz
e.

A
tt

em
pt

s
to

m
ax

im
iz

e
ti

gh
tn

es
s

of
co

n-
st

ra
in

ts
by

fu
lly

sp
ec

if
yi

ng
th

e
ed

ge
s

an
d

no
ne

dg
es

at
ve

rt
ic

es
of

hi
gh

de
gr

ee
an

d
no

nd
eg

re
e.

Th
e

fir
st

br
an

ch
le

ad
s

to
a

si
ng

le
ve

rt
ex

w
it

h
hi

gh
no

nd
eg

re
e,

w
hi

ch
le

ad
s

to
th

e
or

bi
ts

iz
es

de
cr

ea
si

ng
ra

pi
dl

y.

211

Chapter 11

Uniquely Kr-Saturated Graphs

A graph G is uniquely H-saturated if there is no subgraph of G isomorphic to H,

and for all edges e in the complement of G there is a unique subgraph in G + e iso-

morphic to H4. Uniquely H-saturated graphs were introduced by Cooper, Lenz,

LeSaulnier, Wenger, and West [34] where they classified uniquely Ck-saturated

graphs for k ∈ {3, 4}; in each case there is a finite number of graphs. Wenger [144,

145] classified the uniquely C5-saturated graphs and proved that there do not exist

any uniquely Ck-saturated graphs for k ∈ {6, 7, 8}.

In this chapter, we focus on the case where H = Kr, the complete graph of order

r. Usually Kr is the first graph considered for extremal and saturation problems.

However, we find that classifying all uniquely Kr-saturated graphs is far from triv-

ial, even in the case that r = 4.

Previously, few examples of uniquely Kr-saturated graphs were known, and

little was known about their properties. We adapt the computational technique of

orbital branching into the graph theory setting to search for uniquely Kr-saturated

graphs. Orbital branching was originally introduced by Ostrowski, Linderoth,

4A technicality: for all t < n(H), the complete graph Kt is trivially uniquely H-saturated. We
adopt the convention that always n(G) ≥ n(H).

212

Rossi, and Smriglio [102] to solve symmetric integer programs. We further ex-

tend the technique to use augmentations which are customized to this problem.

By executing this search, we found several new uniquely Kr-saturated graphs for

r ∈ {4, 5, 6, 7} and we provide constructions of these graphs to understand their

structure. One of the graphs we discovered is a Cayley graph, which led us to

design a search for Cayley graphs which are uniquely Kr-saturated. Motivated

by these search results, we construct two new infinite families of uniquely Kr-

saturated Cayley graphs.

Erdős, Hajnal, and Moon [43] studied the minimum number of edges in a Kr-

saturated graph. They proved that the only extremal examples are the graphs

formed by adding r − 2 dominating vertices to an independent set; these graphs

are also uniquely Kr-saturated. However, if G is uniquely Kr-saturated and has a

dominating vertex, then deleting that vertex results in a uniquely Kr−1-saturated

graph. To avoid the issue of dominating vertices, we define a graph to be r-primitive

if it is uniquely Kr-saturated and has no dominating vertex. Understanding which

r-primitive graphs exist is fundamental to characterizing uniquely Kr-saturated

graphs.

Since K3
∼= C3, the uniquely K3-saturated graphs were proven by Cooper et

al. [34] to be stars and Moore graphs of diameter two. While stars are uniquely

K3-saturated, they are not 3-primitive. The Moore graphs of diameter two are ex-

actly the 3-primitive graphs; Hoffman and Singleton [64] proved there are a finite

number of these graphs.

David Collins and Bill Kay discovered the only previously known infinite fam-

ily of r-primitive graphs, that of complements of odd cycles: C2r−1 is r-primitive.

Collins and Cooper discovered two more 4-primitive graphs of orders 10 and

12 [31]. These two graphs are described in detail in Section 11.4.

213

One feature of all previously known r-primitive graphs is that they are all reg-

ular. Since proving regularity has been instrumental in previous characterization

proofs (such as [34, 64]), there was a hope that r-primitive graphs are regular. How-

ever, we present a counterexample: a 5-primitive graph on 16 vertices with mini-

mum degree 8 and maximum degree 9.

The major open question in this area concerns the number of r-primitive graphs

for a fixed r.

Conjecture 11.1 (Cooper [31]). For each r ≥ 3, there are a finite number of r-primitive

graphs.

This conjecture is true for r = 3 [64] and otherwise completely open. Before

this work, it was not even known if there was more than one r-primitive graph for

any r ≥ 5. After we discovered the graphs in this work (which lack any common

structure and sometimes appear very strange), we are unsure the conjecture holds

even for r = 4.

In Section 11.1, we briefly summarize our results, including our computational

method, the new sporadic r-primitive graphs, and our new algebraic construc-

tions.

11.1 Summary of results

Our results have three main components. First, we develop a computational method

for generating uniquely Kr-saturated graphs. Then, based on one of the generated

examples, we construct two new infinite families of uniquely Kr-saturated graphs.

Finally, we describe all known uniquely Kr-saturated graphs, including the nine

214

new sporadic1 graphs found using the computational method.

11.1.1 Computational method

In Section 11.2, we develop a new technique for exhaustively searching for uniquely

Kr-saturated graphs on n vertices. The search is based on the technique of or-

bital branching originally developed for use in symmetric integer programs by Os-

trowski, Linderoth, Rossi, and Smriglio [102, 103]. We focus on the case of con-

straint systems with variables taking value in {0, 1}. The orbital branching is

based on the standard branch-and-bound technique where an unassigned vari-

able is selected and the search branches into cases for each possible value for that

variable. In a symmetric constraint system, the automorphisms of the variables

which preserve the constraints and variable values generate orbits of variables.

Orbital branching selects an orbit of variables and branches in two cases. The first

branch selects an arbitrary representative variable is selected from the orbit and set

to zero. The second branch sets all variables in the orbit to one.

We extend this technique to be effective to search for uniquely Kr-saturated

graphs. We add an additional constraint to partial graphs: if a pair vi, vj is a non-

edge in G, then there is a unique set Si,j containing r − 2 vertices so that Si,j is a

clique and every edge between {vi, vj} and Si,j is included in G. This guarantees

that there is at least one copy of Kr in G + vivj for all assignments of edges and

non-edges to the remaining unassigned pairs. The orbital branching method is

customized to enforce this constraint, which leads to multiple edges being added

to the graph in every augmentation step. By executing this algorithm, we found

10 new r-primitive graphs.

1We call a graph sporadic if it has not yet been extended to an infinite family. Therefore, even
though our search found 10 new graphs, one extended to an infinite family and so is not sporadic.

215

11.1.2 New r-primitive graphs

For r ∈ {4, 5, 6, 7, 8}, we used this method to exhaustively search for uniquely

Kr-saturated graphs of order at most Nr, where N4 = 20, N5 = N6 = 16, and

N7 = N8 = 17. Table 11.1 lists the r-primitive graphs that were discovered in this

search. Most graphs do not fit a short description and are labeled G(i)
N , where N is

the number of vertices and i ∈ {A, B, C} distinguishes between graphs of the same

order.

n 13 15 16 16 17 18

r 4 6 5 6 7 4

Graphs G13, Paley(13) G(A)
15 , G(B)

15 G(A)
16 , G(B)

16 G(C)
16 C(Z17, {1, 4}) G(A)

18 , G(B)
18

Table 11.1: Newly discovered r-primitive graphs.

In all, ten new graphs were discovered to be uniquely Kr-saturated by this

search. Explicit constructions of these graphs are given in Section 11.4. Two graphs

found by computer search are vertex-transitive and have a prime number of ver-

tices. Recall by Proposition 2.11 that vertex-transitive graphs with a prime number

of vertices are Cayley graphs. One vertex-transitive 4-primitive graph is the Paley

graph of order 13 (see [105]). The other vertex-transitive graph is 7-primitive on

17 vertices and is 14 regular. However, it is easier to understand its complement,

which is the Cayley graph for Z17 generated by 1 and 4. This graph is listed as

C(Z17, {1, 4}) in Table 11.1 and is the first example of our new infinite families,

described below.

11.1.3 Algebraic Constructions

For a finite group Γ and a generating set S ⊆ Γ, let C(Γ, S) be the Cayley graph

for Γ generated by S: the vertex set is Γ and two elements x, y ∈ Γ are adjacent

216

if and only if there is a z ∈ S where x = yz or x = yz−1. When Γ ∼= Zn, the

resulting graph is also called a circulant graph. The cycle Cn can be described as the

Cayley graph of Zn generated by 1. Since C2r−1 is r-primitive and we discovered a

graph on 17 vertices whose complement is a Cayley graph with two generators, we

searched for r-primitive graphs when restricted to complements of Cayley graphs

with a small number of generators.

For a finite group Γ and a set S ⊆ Γ, the Cayley complement C(Γ, S) is the com-

plement of the Cayley graph C(Γ, S). We restrict to the case when Γ = Zn for some

n, and the use of the complement allows us to use a small number of generators

while generating dense graphs.

We search for r-primitive Cayley complements by enumerating all small gen-

erator sets S, then iterate over n where n ≥ 2 max S + 1 and build C(Zn, S). If

C(Zn, S) is r-primitive for any r, it must be for r = ω(C(Zn, S)) + 1, so we com-

pute this r using Niskanen and Östergård’s cliquer library [100]. Also using cliquer,

we count the number of r-cliques in C(Zn, S) + {0, i} for all i ∈ S. Since C(Zn, S)

is vertex-transitive, this provides sufficient information to determine if C(Zn, S) is

r-primitive. The successful parameters for r-primitive Cayley complements with g

generators are given in Tables 11.1(a) (g = 2), 11.1(b) (g = 3), and 11.1(c) (g ≥ 4).

For two and three generators, a pattern emerged in the generating sets and

interpolating the values of n and r resulted in two infinite families of r-primitive

graphs:

Theorem 11.2. Let t ≥ 2 and set n = 4t2 + 1, r = 2t2 − t + 1. Then, C(Zn, {1, 2t}) is

r-primitive.

Theorem 11.3. Let t ≥ 2 and set n = 9t2− 3t + 1, r = 3t2− 2t + 1. Then, C(Zn, {1, 3t−

1, 3t}) is r-primitive.

217

(a) Two Generators

t S r n
2 {1, 4} 7 17
3 {1, 6} 16 37
4 {1, 8} 29 65
5 {1, 10} 46 101
6 {1, 12} 67 145

(b) Three Generators

t S r n
2 {1, 5, 6} 9 31
3 {1, 8, 9} 22 73
4 {1, 11, 12} 41 133
5 {1, 14, 15} 66 211
6 {1, 17, 18} 97 307

(c) Sporadic Cayley Complements

g S r n
3 {1, 3, 4} 4 13

4 {1, 5, 8, 34} 28 89{1, 11, 18, 34}
5 {1, 5, 14, 17, 25} 19 71
5 {1, 6, 14, 17, 36} 27 101
6 {1, 6, 16, 22, 35, 36} 21 97
6 {1, 8, 23, 26, 43, 64} 54 185
7 {1, 20, 23, 26, 30, 32, 34} 15 71
8 {1, 8, 12, 18, 22, 27, 33, 47} 20 97
9 {1, 4, 10, 16, 25, 27, 33, 40, 64} 28 133

Table 11.2: Cayley complement parameters for r-primitive graphs over Zn.

An important step to proving these Cayley complements are r-primitive is to

compute the clique number. Computing the clique number or independence num-

ber of a Cayley graph is very difficult, as many papers study this question [52,

74], including in the special cases of circulant graphs [13, 23, 65, 148] and Paley

graphs [11, 15, 22, 30]. Our enumerative approach to Theorem 11.2 and discharging

approach to Theorem 11.3 provide a new perspective on computing these values.

It remains an open question if an infinite family of Cayley complements C(Zn, S)

exist for a fixed number of generators g = |S| where g ≥ 4. For all known con-

structions with g 6= 4, observe that the generators are roots of unity in Zn with

x2g ≡ 1 (mod n) for each generator x. Being roots of unity is not a sufficient con-

dition for the Cayley complement to be r-primitive, but this observation may lead

218

to algebraic techniques to build more infinite families of Cayley complements.

Determining the maximum density of a clique and independent set for infi-

nite Cayley graphs (i.e., C(Z, S), where S is finite) would be useful for providing

bounds on the finite graphs. Further, such bounds could be used by algorithms to

find and count large cliques and independent sets in finite Cayley graphs.

11.2 Orbital branching using custom augmentations

In this section, we describe a computational method to search for uniquely Kr-

saturated graphs. We shall build graphs piece-by-piece by selecting pairs of ver-

tices to be edges or non-edges.

To store partial graphs, we use the notion of a trigraph, defined by Chudnovsky

[29] and used by Martin and Smith [90]. A trigraph T is a set of n vertices v1, . . . , vn

where every pair vivj is colored black, white, or gray. The black pairs represent

edges, the white edges represent non-edges, and the gray edges are unassigned

pairs. A graph G is a realization of a trigraph T if all black pairs of T are edges of

G and all white pairs of T are non-edges of G. Essentially, a realization is formed

by assigning the gray pairs to be edges or non-edges. In this way, we consider a

graph to be a trigraph with no gray pairs.

Non-edges play a crucial role in the structure of uniquely Kr-saturated graphs.

Given a trigraph T and a pair vivj, a set S of r− 2 vertices is a Kr-completion for vivj

if every pair in S ∪ {vi, vj} is a black edge, except for possibly vivj. Observe that a

Kr-free graph is uniquely Kr-saturated if and only if every non-edge has a unique

Kr-completion.

We begin with a completely gray trigraph and build uniquely Kr-saturated

graphs by adding black and white pairs. If we can detect that no realization of

219

the current trigraph can be uniquely Kr-saturated, then we backtrack and attempt

a different augmentation. The first two constraints we place on a trigraph T are:

(C1) There is no black r-clique in T.

(C2) Every vertex pair has at most one black Kr-completion.

It is clear that a trigraph failing either of these conditions will fail to have a

uniquely Kr-saturated realization.

We use the symmetry of trigraphs to reduce the number of isomorphic dupli-

cates. The automorphism group of a trigraph T is the set of permutations of the

vertices that preserve the colors of the pairs. These automorphisms are computed

with McKay’s nauty library [61, 93] through the standard method of using a lay-

ered graph.

11.2.1 Orbital Branching

Ostrowski, Linderoth, Rossi, and Smriglio introduced the technique of orbital branch-

ing for symmetric integer programs with 0-1 variables [102] and for symmetric con-

straint systems [103]. Orbital branching extends the standard branch-and-bound

strategy of combinatorial optimization by exploiting symmetry to reduce the search

space. We adapt this technique to search for graphs by using trigraphs in place of

variable assignments.

Given a trigraph T, compute the automorphism group and select an orbit O

of gray pairs. Since every representative pair in O is identical in the current tri-

graph, assigning any representative to be a white pair leads to isomorphic tri-

graphs. Hence, we need only attempt assigning a single pair in O to be white.

The natural complement of this operation is to assign all pairs in O to be black.

Therefore, we branch on the following two options:

220

- Branch 1: Select any pair in O and assign it the color white.

- Branch 2: Assign all pairs in O the color black.

A visual representation of this branching process is presented in Figure 11.1(a).

An important part of this strategy is to select an appropriate orbit. The selection

should attempt to maximize the size of the orbit (in order to exploit the number

of pairs assigned in the second branch) while preserving as much symmetry as

possible (in order to maintain large orbits in deeper stages of the search). It is

difficult to determine the appropriate branching rule a priori, so it is beneficial to

implement and compare the performance of several branching rules.

This use of orbital branching suffices to create a complete search of all uniquely

Kr-saturated graphs, but is not very efficient. One significant drawback to this

technique is the fact that the constraints (C1) and (C2) rely on black pairs forming

cliques. In the next section, we create a custom augmentation step that is aimed at

making these constraints trigger more frequently and thereby reducing the num-

ber of generated trigraphs.

11.2.2 Custom augmentations

We search for uniquely Kr-saturated graphs by enforcing at each step that every

white pair has a unique Kr-completion. We place the following constraints on a

trigraph:

(C3) If vivj is a white edge, then there exists a unique Kr-completion S ⊆ {v1, . . . , vn}

for vivj.

To enforce the constraint (C3), whenever we assign a white pair we shall also

select a set of r − 2 vertices to be the Kr-completion and assign the appropriate

221

pairs to be black. The orbital branching procedure was built to assign only one

white pair in a given step, so we can attempt all possible Kr-completions for that

pair. However, if we perform an automorphism calculation and only augment for

one representative set from every orbit of these sets, we can reduce the number of

isomorphic duplicates.

We follow a two-stage orbital branching procedure. In the first stage, we select

an orbit O of gray pairs. Either we select a representative pair vi′vj′ ∈ O to set to

white or assign vivj to be black for all pairs vivj ∈ O. In order to guarantee con-

straint (C3), the white pair must have a Kr-completion. We perform a second au-

tomorphism computation to find Stab{vi′ ,vj′}(T), the set of automorphisms which

set-wise stabilize the pair vi′vj′ . Then, we compute all orbits of (r− 2)-subsets S in

{v1, . . . , vn} \ {vi, vj} under the action of Stab{vi′ ,vj′}(T). The second stage branches

on each set-orbit A, selects a single representative S′ ∈ A and adds all necessary

black pairs to make S′ be a Kr-completion for vi′vj′ . If at any point we attempt to

assign a white pair to be black, that branch fails and we continue with the next

set-orbit.

This branching process on a trigraph T is:

- Branch 1: Select any pair vi1vj1 ∈ O to be white.

- Sub-Branch: For every orbitA of (r− 2)-subsets of V(T) \ {vi1 , vi2} under

the action of Stab{vi1
,vj1
}(T), select any set S ∈ A, assign vi1va, vj1va, and

vavb to be black for all va, vb ∈ S.

- Branch 2: Set vivj to be black for all pairs vivj ∈ O.

The full algorithm to output all uniquely Kr-saturated graphs on n vertices is

given as the recursive method SaturatedSearch(n, r, T) in Algorithm 11.1, while

222

Algorithm 11.1 SaturatedSearch(n, r, T)
if T contains a black r-clique then

Constraint (C1) fails.
return

else if there exists a pair vivj with two Kr-completions in T then
Constraint (C2) fails.
return

else if there are no gray pairs then
The trigraph T is uniquely Kr-saturated.
Output T.
return

end if
Propagate under constraint (C1).
for all gray pairs vivj do

if vivj has a Kr-completion in T then
Assign vivj to be white.

end if
end for
Compute pair orbits O1,O2, . . . , of gray pairs {i, j}.
Select an orbit Ok using the branching rule.
Branch 1.
Let vi′vj′ be a representative of Ok.
Compute orbits A1,A2, . . . ,A` of (r− 2)-vertex sets in {v1, . . . , vn} \ {vi′ , vj′}.
for t ∈ {1, . . . , `} do

Let S be a representative of At.
if vi′va, vj′va, vavb not white for all a, b ∈ S then

Sub-Branch: Create T′ from T by assigning vi′va, vj′va, vavb to be black for all
a, b ∈ S.
call SaturatedSearch(n, r, T′)

end if
end for
Branch 2: Create T′′ from T by assigning vivj to be black for all vivj ∈ Ok.
call SaturatedSearch(n, r, T′′)
return

223

T is given
Orbit O is selected

in orbit

vivj black
for all vivj ∈ O

vi1 vj1
white

vi2 vj2
white

vi3 vj3
white

vik vjk
white

(a) Standard orbital branching.

T is given
Orbit O is selected

in orbit

vivj black
for all vivj ∈ O

vi1 vj1
white

vi2 vj2
white

vi3 vj3
white

vik vjk
white

vi1 va
vj1 va
vavb
black
va, vb in

S1

vi1 va
vj1 va
vavb
black
va, vb in

S2

vi1 va
vj1 va
vavb
black
va, vb in

S3

vi1 va
vj1 va
vavb
black
va, vb in

S4

vi1 va
vj1 va
vavb
black
va, vb in

S5

vi1 va
vj1 va
vavb
black
va, vb in

St

(b) Custom augmentations.

Figure 11.1: Visual description of the branching process.

the branching procedure is represented in Figure 11.1(b). The algorithm is initial-

ized using the trigraph corresponding to a single white pair with a Kr-completion.

The first step of every recursive call to SaturatedSearch(n, r, T) is to verify the con-

straints (C1) and (C2). If either constraint fails, no realization of the current tri-

graph can be uniquely Kr-saturated, so we return. After verifying the constraints,

we perform a simple propagation step: If a gray pair {i, j} has a Kr-completion we

assign that pair to be white. We can assume that this pair is a white edge in order

to avoid violation of (C1), and this assignment satisfies (C3).

The missing component of this algorithm is the branching rule: the algorithm

that selects the orbit of unassigned pairs to use in the first stage of the branch.

Based on experimentation, the most efficient branching rule we implemented only

considers pairs where both vertices are contained in assigned pairs (if they exist)

or pairs where one vertex is contained in an assigned pair (which must exist, oth-

erwise), and selects from these pairs the orbit of largest size. This choice would

guarantee the branching orbit has maximum interaction with currently assigned

edges while maximizing the effect of assigning all representatives to be edges in

the second branch.

224

n r = 4 r = 5 r = 6 r = 7 r = 8
10 0.10 s 0.37 s 0.13 s 0.01 s 0.01 s
11 0.68 s 5.25 s 1.91 s 0.28 s 0.09 s
12 4.58 s 1.60 m 25.39 s 1.97 s 1.12 s
13 34.66 s 34.54 m 6.53 m 59.94 s 20.03 s
14 4.93 m 10.39 h 5.13 h 20.66 m 2.71 m
15 40.59 m 23.49 d 10.08 d 12.28 h 1.22 h
16 6.34 h 1.58 y 1.74 y 34.53 d 1.88 d
17 3.44 d 8.76 y 115.69 d
18 53.01 d
19 2.01 y
20 45.11 y

Table 11.3: CPU times to search for uniquely Kr-saturated graphs of order n. Ex-
ecution times from the Open Science Grid [107] using the University of Nebraska
Campus Grid [143]. The nodes available on the University of Nebraska Campus
Grid consist of Xeon and Opteron processors with a range of speed between 2.0
and 2.8 GHz.

11.2.3 Implementation, Timing, and Results

The full implementation is available as the Saturation project in the SearchLib soft-

ware library2. More information for the implementation is given in the Saturation

User Guide, available with the software. In particular, the user guide details the

methods for verifying the constraints (C1), (C2), and (C3). When r ∈ {4, 5}, we

monitored clique growth using a custom data structure, but when r ≥ 6 an imple-

mentation using Niskanen and Östergård’s cliquer library [100] was more efficient.

Our computational method is implemented using the TreeSearch library [122],

which abstracts the search structure to allow for parallelization to a cluster or grid.

Table 11.3 lists the CPU time taken by the search for each r ∈ {4, 5, 6, 7, 8} and

10 ≤ n ≤ Nr (where N4 = 20, N5 = N6 = 16, and N7 = N8 = 17) until the search

became intractable for n = Nr + 1. Table 11.1 lists the r-primitive graphs of these

2SearchLib is available online at http://www.math.unl.edu/~s-dstolee1/SearchLib/

225

sizes. Constructions for the graphs are given in Section 11.4.

11.3 Infinite families of r-primitive graphs using

Cayley graphs

In this section, we prove Theorems 11.2 and 11.3, which provide our two new

infinite families of r-primitive graphs. We begin with some definitions that are

common to both proofs.

Fix an integer n, a generator set S ⊆ Zn, and a Cayley complement G =

C(Zn, S). For a set X ⊆ Zn with r = |X|, list the elements of X as 0 ≤ x0 ≤

x1 ≤ · · · ≤ xr−1 < n. We shall assume that X is a clique in G (or in G + e for some

non-edge e ∈ E(G)).

Considering X as a subset of Zn, we let the kth block Bk be the elements of Zn

increasing from xk (inclusive) to xk+1 (exclusive): Bk = {xk, xk + 1, . . . , xk+1 − 1}.

Note that |Bk| = xk+1 − xk; we call a block of size s an s-block. For an integer t ≥ 1

and j ∈ {0, . . . , r − 1}, the jth frame Fj is the collection of t consecutive blocks in

increasing order starting from Bj: Fj = {Bj, Bj+1, . . . , Bj+`−1}. A frame family is a

collection F of frames.

If F is a frame (or any set of blocks), define σ(F) = ∑Bj∈F |Bj|, the number of

elements covered by the blocks in F.

Observation 11.4. If X is a clique in C(Zn, S) and F is a set of consecutive blocks

in X, then σ(F) /∈ S.

226

11.3.1 Two Generators

Theorem 11.2. Let t ≥ 1, and set n = 4t2 + 1, r = 2t2 − t + 1. Then, C(Zn, {1, 2t}) is

r-primitive.

Proof. Let G = C(Zn, {1, 2t}). Note that G is regular of degree n − 5. If t = 1,

then n = 5, G is an empty graph, and r = 2, and empty graphs are 2-primitive.

Therefore, we consider t ≥ 2.

Claim 11.5. For a clique X, every frame Fj has at least one block of size at least three, and

σ(Fj) ≥ 2t + 1.

All blocks Bj have at least two elements, since no pair of elements in X may be

consecutive in Zn, so σ(Fj) ≥ 2t. If for all Bk ∈ Fj the block length |Bk| is exactly

two, then σ(Fj) = 2t ∈ S. Hence, there is some Bk ∈ Fj so that |Bk| ≥ 3 and

σ(Fj) ≥ 2t + 1.

We now prove there is no r-clique in G.

Claim 11.6. ω(G) < r.

Suppose X ⊆ Zn is a clique of order r in G. Let F be the frame family of all

frames (F = {Fj : j ∈ {0, . . . , r− 1}}) and consider the sum ∑r−1
j=0 σ(Fj). Using the

bound σ(Fj) ≥ 2t + 1, we have this sum is at least (2t + 1)r. Each block length

|Bk| is counted in t evaluations of σ(Fj) (for j ∈ {k− t + 1, k− t + 2, . . . , k}). This

sum counts each element of Zn exactly t times, giving value tn. This gives tn =

∑r−1
j=0 σ(Fj) ≥ (2t + 1)r, but tn = 4t3 + t < 4t3 + t + 1 = (2t + 1)r, a contradiction.

Hence, X does not exist, proving the claim.

To prove unique saturation, we consider only the non-edge {0, 1} since G is

vertex-transitive and the map x 7→ −2tx is an automorphism of G mapping the

edge {0, 2t} to {0,−4t2} ≡ {0, 1} (mod n).

227

Claim 11.7. There is a unique r-clique in G + {0, 1}.

We may assume X = {0, 1, x2, . . . , xr−1} is an r-clique in G + {0, 1}. We use the

frame family F defined as

F =
{

Fjt+1 : j ∈ {0, . . . , 2t− 2}
}

.

Note that F contains 2t− 1 disjoint frames containing disjoint blocks, and the

block B0 = {x0} is not contained in any frame withinF . Hence, n− 1 = ∑F∈F σ(F).

By Claim 11.5, we know that every frame F ∈ F has σ(F) ≥ 2t + 1. This lower

bound gives ∑F∈F σ(F) ≥ (2t + 1)(2t − 1) = n − 2. Thus, considering σ(F) as

an integer variable for each F ∈ F , all solutions to the integer program with con-

straints σ(F) ≥ 2t + 1 and ∑F∈F σ(F) = n− 1 have σ(F) = 2t + 1 for all F ∈ F

except a unique F′ ∈ F with σ(F′) = 2t + 2.

The frame F′ has two possible ways to attain σ(F′) = 2t + 2: (a) have two blocks

of size three, or (b) have one block of size four. However, if F′ has a block of size

four, then there is a 2-block Bj ∈ F′ on one end of F′ where σ(F′ \ {Bj}) = 2t ∈ S,

a contradiction. Thus, F′ has two blocks of size three. In addition, if F′ has fewer

than t− 2 blocks of size two between the two blocks of size three, then there is a

pair x, y ∈ X with y = x + 2t. Therefore, F′ has two blocks of size three and they

are the first and last blocks of F′.

This frame family demonstrates the following properties of X. First, there are

exactly 2t blocks of size three (2t − 2 frames have exactly one and F′ has exactly

two). Second, there is no set of t consecutive blocks of size two. Finally, no two

blocks of size three have fewer than t− 2 blocks of size two between them.

Consider the position of a 3-block in the first frame, F1. If there are two 3-blocks

in F1, they appear as the first and last blocks in F1, but then the distance from x0

228

to xt−1 is 2t, a contradiction. Since there is exactly one 3-block, Bk, in F1, suppose

k < t. Then the distance from x0 to xt−1 is 2t. Hence, Bt is the 3-block in F1. By

symmetry, there must be t− 1 2-blocks between the 3-block in F(2t−2)t+1 and x0.

Let Bk1 , Bk2 , . . . , Bk2t be the 3-blocks in X with k1 < k2 < · · · < k2t. By the

position of the 3-block in F1, we have k1 = t. By the position of the 3-block in

F(2t−2)t+1, we have k2t = (2t− 2)t + 1. Since 3-blocks must be separated by at least

t− 1 2-blocks, k j+1 − k j ≥ t− 1 but since k2t = (2t− 1)(t− 1) + k1 we must have

equality: k j+1 − k j = t − 1. Assuming X is an r-clique, it is uniquely defined by

these properties. Indeed all vertices of this set are adjacent.

11.3.2 Three Generators

Theorem 11.3. Let t ≥ 1 and set n = 9t2 − 3t + 1, r = 3t2 − 2t + 1. Then,

C(Zn, {1, 3t− 1, 3t}) is r-primitive.

Proof. Let G = C(Zn, {1, 3t− 1, 3t}). Observe that G is vertex-transitive and there

are automorphisms mapping {0, 3t− 1} to {0, 1} or {0, 3t} to {0, 1}. Thus, we only

need to verify that G has no r-clique and G + {0, 1} has a unique r-clique.

We prove that G is r-primitive in three steps. First, we show that there is no

r-clique in G in Claim 11.11 using discharging. Second, assuming there are no 2-

blocks in an r-clique of G + {0, 1}, we prove in Claim 11.12 that there is a unique

such clique. This proof uses a counting method similar to the proof of Claim 11.7.

Finally, we show that any r-clique in G + {0, 1} cannot contain any 2-blocks. This

step is broken into Claims 11.13 and 11.14, both of which slightly modify the dis-

charging method from Claim 11.11 to handle the 1-block. Claim 11.14 requires a

detailed case analysis.

229

We use several figures to aid the proof. Figure 11.2 shows examples of common

features from these figures.

Frame Element Block Possible Element Forbidden Element

Zn
IncreasingDecreasing

{3t− 1, 3t}

Figure 11.2: Key to later figures

We begin by showing some basic observations which are used frequently in

the rest of the proof. These observations focus on interactions among blocks that

are forced by the generators 3t − 1 and 3t. In the observations below, we define

functions ϕs and ψs which map s-blocks of X to other blocks of X. Always, ϕs maps

blocks forward (ϕs(Bk) has higher index than Bk) while ψs maps blocks backward

(ψs(Bk) has lower index than Bk).

It is intuitive that a maximum size clique uses as many small blocks as possible,

to increase the density of the clique within G. However, Observation 11.8 shows

that every 2-block induces a block of size at least five in both directions.

ϕ2ψ2

xj xj+1

Bjψ2(Bj) ϕ2(Bj)

Figure 11.3: Observation 11.8 and a 2-block Bj.

Observation 11.8 (2-blocks). Let Bj be a 2-block, so xj+1 = xj + 2. The elements

xj and xj+1 along with generators 3t− 1 and 3t guarantee that the sets {xj + 3t−

1, xj + 3t, xj + 3t + 1, xj + 3t + 2} and {xj− 3t, xj− 3t + 1, xj− 3t + 2, xj− 3t + 3} do

not intersect X. Since these sets contain consecutive elements, each set is contained

within a single block of X. We will use ϕ2(Bj) to denote the block containing xj + 3t

230

and ψ2(Bj) to denote the block containing xj− 3t. Both ϕ2(Bj) and ψ2(Bj) have size

at least five.

If in fact multiple 2-blocks induce the same big block, Observation 11.9 implies

the big block has even larger size.

ψ2ϕ2

xk Bk

ϕ−1
2 (Bk)

ψ−1
2 (Bk)

≤ 3t− 2(|ϕ−1
2 (Bk)|+ 1)

elements
≤ 3t− 2(|ψ−1

2 (Bk)|+ 1)
elements

Figure 11.4: Observation 11.9 and a block Bk.

Observation 11.9 (Big blocks). Let Bk be a block of size at least five. The set ϕ−1
2 (Bk)

is the set of 2-blocks Bj so that ϕ2(Bj) = Bk. Similarly, ψ−1
2 (Bk) is the set of 2-

blocks Bj so that ψ2(Bj) = Bk. Note that when s = |ϕ−1
2 (Bk)|, there are at least

s + 1 elements of X (s from the 2-blocks in ϕ−1
2 (Bk) and one following the last 2-

block in ϕ−1
2 (Bk)) which block 2(s + 1) elements from containment in X using the

generators 3t− 1 and 3t. Therefore,

|Bk| ≥ 2|ϕ−1
2 (Bk)|+ 3, and |Bk| ≥ 2|ψ−1

2 (Bk)|+ 3.

Further, there are at most 3t− 2(|ϕ−1
2 (Bk)|+ 1) elements between Bk and the last

block of ϕ−1
2 (Bk). Similarly, there are at most 3t − 2(|ψ−1

2 (Bk)| + 1) elements be-

tween Bk and the first block of ψ−1
2 (Bk).

Observation 11.10 (4-blocks). Let Bj be a 4-block, so xj+1 = xj + 4. The elements

{xj + 3t− 1, xj + 3t, xj + 3t + 3, xj + 3t + 4} are not contained in X, so X ∩ {xj +

3t − 1, . . . , xj + 3t + 4} ⊆ {xj + 3t + 1, xj + 3t + 2}. In G, no two elements of X

are consecutive elements of Zn, so there is at most one element in this range. If

231

ϕ4ψ4
oror

xj xj+1

Bj

xj − 3t + 2
xj − 3t + 3

xj + 3t + 1
xj + 3t + 2

Figure 11.5: Observation 11.10 and a 4-block Bj.

there is no element of X in {xj + 3t + 1, xj + 3t + 2}, then there is a block of size

at least seven that contains xj + 3t + 1. Otherwise, there is a single element in

X ∩ {xj + 3t + 1, xj + 3t + 2} and one of the adjacent blocks has size at least four.

We use ϕ4(Bj) to denote one of these blocks of size at least four. By symmetry,

we use ψ4(Bj) to denote a block of size at least four that contains or is adjacent

to the block containing xj − 3t + 2. In G + {0, 1}, the only elements of X that can

be consecutive are 0 and 1, let B0 = {0} denote the first block of X. Thus, let

ϕ4(Bj) = B0 if xj + 3t + 1 = 0 and ψ4(Bj) = B0 if xj − 3t + 2 = 0.

We now use a two-stage discharging method to prove that there is no r-clique

X in G. In Stage 1, we assign charge to the blocks of X and discharge so that all

blocks have non-negative charge. In Stage 2, we assign charge to the frames of X

using the new charges on the blocks and then discharge among the frames.

Stage 1: Blocks µ(Bj)
discharge

// µ∗(Bj)

defines
��

Stage 2: Frames ν∗(Fj)
discharge

// ν′(Fj)

Figure 11.6: The two-stage discharging method.

We will use this framework three times, in Claims 11.11, 11.13, and 11.14, but

we use a different set of rules for Stage 1 each time. Stage 2 will always use the

same discharging rule.

232

Claim 11.11. ω(G) < r.

Proof of Claim 11.11. Suppose X is an r-clique in G.

Let µ be a charge function on the blocks of X defined by µ(Bj) = |Bj| − 3. All

2-blocks have charge−1, 3-blocks have charge 0, and all other blocks have positive

charge. Moreover, the total charge on all blocks is

r−1

∑
j=0

µ(Bj) = n− 3r = 3t− 2.

We shall discharge among the blocks to form a new charge function µ∗.

Stage 1α: Discharge by shifting one charge from ϕ2(Bj) to Bj for every 2-block Bj.

After Stage 1α, µ∗(Bj) = 0 when |Bj| ∈ {2, 3}, µ∗(Bj) = 1 when |Bj| = 4, and

µ∗(Bj) = |Bj| − 3− |ϕ−1
2 (Bj)| ≥ |ϕ−1

2 (Bj)|

when |Bj| ≥ 5. Note that if |ϕ−1
2 (Bj)| = 0 for a block Bj of size at least five, then

µ∗(Bj) ≥ 2.

Now, µ∗ is a non-negative function and ∑r−1
j=0 µ∗(Bj) = 3t− 2.

For every frame Fj, define ν∗(Fj) as ν∗(Fj) = ∑Bj+i∈Fj
µ∗(Bj+i). Since every block

is contained in exactly t frames, the total charge on all frames is

r−1

∑
j=0

ν∗(Fj) = t
r−1

∑
j=0

µ∗(Bj) = t(3t− 2) = r− 1.

There must exist a frame with ν∗(Fj) = 0, and hence contains only 2- and 3-

blocks. If this frame contained only blocks of length three and at most one block

of length two, then σ(Fj) ∈ {3t− 1, 3t}, contradicting that X is a clique. Thus, any

frame with ν∗(Fj) = 0 must contain at least two 2-blocks where all blocks between

233

are 3-blocks.

For each pair Bk, Bk′ of 2-blocks that are separated only by 3-blocks, define Lk,k′

to be the set of frames containing both Bk and Bk′ , and Rk,k′ to be the set of frames

containing both ϕ2(Bk) and ϕ2(Bk′). If ϕ2(Bk) = ϕ2(Bk′), then |Rk,k′ | = t ≥ |Lk,k′ |.

Otherwise, there are fewer elements between ϕ2(Bk) and ϕ2(Bk′) than between Bk

and Bk′ , and every block between ϕ2(Bk) and ϕ2(Bk′) has size at least three (a 2-

block Bj between ϕ2(Bk) and ϕ2(Bk′) would induce a large block ψ2(Bj) between

Bk and B′k). Hence, there are at least as many blocks between Bk and B′k as there are

between ϕ2(Bk) and ϕ2(Bk′) and so |Lk,k′ | ≤ |Rk,k′ |. Let fk,k′ : Lk,k′ → Rk,k′ be any

injection where fk,k′(Fj) = Fj for all Fj ∈ Lk,k′ ∩ Rk,k′ .

Using these injections, we discharge among the frames to form a new charge

function ν′.

Stage 2: For every frame Fj and every pair Bk, Bk′ of 2-blocks in Fj separated by

only 3-blocks, Fj pulls one charge from fk,k′(Fj).

Since every frame Fj with ν∗(Fj) = 0 has at least one such pair Bk, Bk′ and does

not contain ϕ2(Bi) for any 2-block Bi, Fj pulls at least one charge but does not have

any charge removed. Thus, ν′(Fj) ≥ 1.

We will show that frames Fj with ν∗(Fj) ≥ 1 have strictly less than ν∗(Fj) charge

pulled during the second stage. Let {(Bki , Bk′i
; Fji) : i ∈ {1, . . . , `}} be the set of

pairs Bki , Bk′i
of 2-blocks and a common frame Fji where fki,k′i

(Fji) = Fj. Since each

map fki,k′i
is an injection, the blocks Bki are distinct for all i ∈ {1, . . . , `}, and ex-

actly ` charge was pulled from Fj. While Bk′i
and Bki+1

may be the same block,

Bk1 , . . . , Bk`
, Bk′`

are ` + 1 distinct 2-blocks. Every block Bki has ϕ2(Bki) ∈ Fj and

ϕ2(Bk′`
) ∈ Fj. Thus, ν∗(Fj) ≥ ∑Bi∈Fj

|ϕ−1
2 (Bi)| ≥ ` + 1 which implies ν′(Fj) ≥ 1.

Therefore, ν′(Fj) ≥ 1 for all frames Fj, and r− 1 = ∑r−1
j=0 ν′(Fj) ≥ r, a contradic-

234

tion. Hence, there is no clique of size r in G, proving Claim 11.11.

For the remaining claims, we assume X is an r-clique in G + {0, 1} where X

contains both 0 and 1. Then, B0 is the block containing exactly {0}, and all other

blocks from X have size at least two. Since 0 and 1 are in X, the sets {3t− 1, 3t, 3t +

1} and {−3t− 1,−3t,−3t + 1} of consecutive elements do not intersect X. Thus,

there are two blocks Bk1 and Bk2 so that {3t − 1, 3t, 3t + 1} ⊂ Bk1 and {−3t −

1,−3t,−3t + 1} ⊂ Bk2 . When Bk1 and Bk2 are 4-blocks, then B0 = ψ4(Bk1) =

ϕ4(Bk2) as in Observation 11.10.

With the assumption that there are no 2-blocks in X, uniqueness follows through

an enumerative proof similar to Claim 11.7, given as Claim 11.12. After this claim,

Claims 11.13 and 11.14 show that X has no 2-blocks, completing the proof.

Claim 11.12. There is a unique r-clique in G + {0, 1} with no 2-blocks.

Proof of Claim 11.12. Consider the frame family F = {Fjt+1 : j ∈ {0, . . . , 3t− 2}}

of 3t − 1 disjoint frames. Note that the block B0 is not contained in any of these

frames. Since there are no 2-blocks, σ(Fjt+1) ≥ 3t, but σ(Fjt+1) 6= 3t so σ(Fjt+1) ≥

3t + 1. Thus,

n− 1 = ∑
Fjt+1∈F

σ(Fjt+1) ≥ (3t− 1)(3t + 1) = n− 3.

From this inequality we have σ(Fjt+1) = 3t + 1 for all frames except either one

frame Fk with σ(Fk) = 3t + 3 or two frames Fk, Fk′ with σ(Fk) = σ(Fk′) = 3t + 2.

Suppose there is a frame Fk with σ(Fk) = 3t + 3. Since xk+t = xk + 3t + 3, the

elements

xk+t − 3t = xk + 3, xk+t − (3t− 1) = xk + 4,

xk + 3t− 1 = xk+t − 4, and xk + 3t = xk+t − 3,

235

Fk

xk xk+t

≤ 3t− 7 elements

Figure 11.7: Claim 11.12, σ(Fk) = 3t + 3.

are not contained in X. Since we have no 2-blocks, the elements xk + 2 and xk+t− 2

are not in X. Thus, there are two blocks of size at least five in Fk. This means there

are t− 2 blocks for the remaining 3t− 7 elements, but t− 2 blocks of size at least

three cover at least 3t− 6 elements. Hence, no frame has σ(Fk) = 3t + 3.

Suppose we have exactly two frames Fk, Fk′ ∈ F with σ(Fk) = σ(Fk′) = 3t + 2.

If a frame Fj contains a block of size at least six, then σ(Fj) ≥ 3t + 3, so Fk and

Fk′ each contain either one 5-block or two 4-blocks. However, if the first or last

block (denoted by Bj) of Fk (or Fk′) has size three, then σ(Fk \ {Bj}) = 3t − 1, a

contradiction. Thus, the first and last blocks of Fk and Fk′ are not 3-blocks and

hence are both 4-blocks. Therefore, there are exactly two frames in F containing

exactly two 4-blocks and the rest contain exactly one 4-block, for a total of 3t 4-

blocks in X.

Let `1, `2, . . . , `3t be the indices of the 4-blocks. Since each frame Fi has at least

one 4-block, `j ≤ `j−1 + t. Also, if a frame Fi has exactly two 4-blocks, then the

blocks appear as the first and last blocks in Fj, giving `j ≥ `j−1 + t− 1.

Consider the position of B`1 . If B`1 is strictly between B0 and Bk1 , then the

frame F1 contains two 4-blocks B`1 and Bk1 , and so B`1 = B1 and Bk1 = Bt. But,

there are 3t− 3 elements between B0 and Bk1 , but at least 3t− 2 elements between

B0 and Bt. Therefore, B`1 = Bk1 and there are t− 1 3-blocks between B0 and B`1 , so

`1 = t− 1. Similarly, B`3t = Bk2 and there are t− 1 3-blocks between B`3t and B0,

so `3t = (r− 1)− (t− 1) = 3t2 − 3t + 1.

236

There is exactly one solution to the constraints `j ∈ {`j−1 + t− 1, `j−1 + t} and

`3t − `1 = 3t2 − 2t + 1 = (3t− 1)(t− 1) given by `j = `j−1 + t− 1. This uniquely

describes X as a clique in G + {0, 1}.

We now aim to show that there are no 2-blocks in an r-clique X of G. This

property can be quickly checked computationally for t ≤ 4, so we now assume

that t ≥ 5.

The problem with applying the discharging method from Claim 11.11 is that B0

starts with charge µ(B0) = −2 and there is no clear place from which to pull charge

to make µ∗(B0) positive. We define three values, a, b, and c, which quantify the

excess charge from Stage 1α which can be redirected to B0 while still guaranteeing

that all frames end with positive charge. In Claim 11.13, we assume a + b + c ≥ 3

and place all of this excess charge on B0 in Stage 1β, giving µ∗(B0) ≥ 1; an identical

Stage 2 discharging leads to positive charge on all frames. In Claim 11.14, Stage 1γ

pulls charge from Bk1 and Bk2 to result in µ∗(B0) = 0 and possibly µ∗(Bk1) = 0 or

µ∗(Bk2) = 0. After Stage 1γ and Stage 2, there may be some frames with ν′-charge

zero, but they must contain B0, Bk1 , or Bk2 . By carefully analyzing this situation,

we find a contradiction in that either X is not a clique or a + b + c ≥ 3.

We now define the quantities a, b, and c.

If a block Bj has size at least five and ϕ−1
2 (Bj) is empty, then no charge is re-

moved from Bj in Stage 1α. If charge is pulled from frames containing Bj in Stage

2, there are other blocks that supply the charge required to stay positive. Therefore,

we define a to be the excess µ-charge that can be removed and maintain positive

µ∗-charge:

a = ∑
Bj∈A

[
|Bj| − 4

]
, where A is the set of blocks Bj with |Bj| ≥ 5 and ϕ−1

2 (Bj) = ∅.

237

If a block Bj has size at least five and ϕ−1
2 (Bj) is not empty, charge is pulled from Bj

in Stage 1α. However, if |Bj| > 2|ϕ−1
2 (Bj)|+ 3, there is more charge left after Stage

1α than is required in Stage 2 to maintain a positive charge on frames containing

Bj. We define b to be the excess charge left in this situation:

b = ∑
Bj∈B

[
|Bj| − (2|ϕ−1

2 (Bj)|+ 3)
]

,

where B is the set of blocks Bj with |Bj| ≥ 5 and ϕ−1
2 (Bj) 6= ∅.

If there is a frame Fj with three blocks B`0 , B`1 , B`2 where |B`i | ≥ 4 for all

i ∈ {0, 1, 2} and ϕ−1
2 (B`1) = ∅, then let c = 1; otherwise c = 0. Since every

frame containing B`1 also contains B`0 or B`2 , these frames are guaranteed a posi-

tive ν′-charge from B`0 or B`2 , so the single charge on B`1 that was not pulled from

previous rules is free to pass to B0.

Claim 11.13. Suppose X is a set in G + {0, 1} with |X| = r. If a + b + c ≥ 3, then X is

not a clique.

Proof of Claim 11.13. We proceed by contradiction, assuming that a + b + c ≥ 3 and

X is an r-clique. We shall modify the two-stage discharging from Claim 11.11 with

a more complicated discharging rule to handle B0 so that the result is the same

contradiction: that all r frames have positive charge, but the amount of charge

over all the frames is r− 1.

Let µ be the charge function on the blocks of X defined by µ(Bj) = |Bj| − 3. We

discharge using Stage 1β to form the charge function µ∗.

Stage 1β: There are four discharging rules:

1. If |Bk| = 2, Bk pulls one charge from ϕ2(Bk).

238

2. B0 pulls |Bk| − 4 charge from every block Bk with |Bk| ≥ 5 and ϕ−1
2 (Bk) = ∅.

(The total charge pulled by B0 in this rule is a.)

3. B0 pulls |Bk| − (2|ϕ−1
2 (Bk)|+ 3) charge from every block Bk with |Bk| ≥ 5 and

ϕ−1
2 (Bk) 6= ∅. (The total charge pulled by B0 in this rule is b.)

4. If there is a frame Fj with three blocks B`0 , B`1 , B`2 where |B`i | ≥ 4 for all

i ∈ {0, 1, 2} and ϕ−1
2 (B`1) = ∅, then B0 pulls one charge from B`1 . (The

amount of charge pulled by B0 in this rule is c.)

Since a + b + c ≥ 3, B0 pulls at least 3 charge, so µ∗(B0) ≥ 1. Blocks of size

two and three have µ∗-charge zero. If a block Bk has size four or has size at least

five and ϕ−1
2 (Bk) = ∅, then µ∗(Bk) = 1 except B`1 where µ∗(B`1) = 0. Similarly, a

block Bk of size at least five with ϕ−1
2 (Bk) 6= ∅ has charge µ∗(Bk) = |ϕ−1

2 (Bk)|.

For every frame Fj, define ν∗(Fj) = ∑Bj+i∈Fj
µ∗(Bj+i). Note that if the charge

ν∗(Fj) is zero, every block in Fj has zero charge since µ∗(Bk) ≥ 0 for all blocks.

Stage 2: For every frame Fj and every pair Bk, Bk′ of 2-blocks in Fj separated by

only 3-blocks, Fj pulls one charge from fk,k′(Fj).

If ν∗(Fj) = 0, then Fj contains only blocks Bk with µ∗(Bk) = 0. These blocks are

2-blocks, 3-blocks, and B`1 . However, any frame which contains B`1 also contains

B`0 or B`2 which have positive charge. Thus, frames Fj with ν∗(Fj) = 0 contain only

2- and 3-blocks. Since σ(Fj) /∈ {3t, 3t − 1}, Fj must contain at least two 2-blocks

Bk, Bk′ , so Fj pulls at least one charge in the second stage and loses no charge, so

ν′(Fj) ≥ 1.

If ν∗(Fj) ≥ 1, the amount of charge pulled from Fj in Stage 2 is the number of

2-block pairs Bk, Bk′ separated by 3-blocks so that ϕ2(Bk), ϕ2(Bk′) ∈ Fj. Observe

µ∗(Bi) = |ϕ−1
2 (Bi)| for all blocks Bi with ϕ−1

2 (Bi) 6= ∅, so ν∗(Fj) = ∑Bi∈Fj
µ∗(Bi) ≥

∑Bi∈Fj
|ϕ−1

2 (Bi)|. If there are ` pairs Bk, Bk′ that pull one charge from Fj in Stage 2,

239

then there are at least ` + 1 2-blocks in ∪Bi∈Fj ϕ
−1
2 (Bi), and ν∗(Fj) ≥ ` + 1.

Therefore, ν′(Fj) ≥ 1 for all j ∈ {0, . . . , r− 1}, but since

r ≤
r−1

∑
j=0

ν′(Fj) =
r−1

∑
j=0

ν∗(Fj) = t
r−1

∑
j=0

µ∗(Bj) = t
r−1

∑
j=0

µ(Bj) = t(n− 3r) = r− 1,

we have a contradiction, and so X is not a clique.

Claim 11.14. If X is an r-clique in G + {0, 1} that contains a 2-block, then a + b + c ≥ 3.

Proof of Claim 11.14. We shall repeat the two-stage discharging from Claim 11.11

with a simpler rule for discharging to B0 than in Claim 11.13. After this discharging

is complete, we will investigate the configuration of blocks surrounding one of the

2-blocks and show that the sum a + b + c has value at least three.

Let µ be the charge function on the blocks of X defined by µ(Bj) = |Bj| − 3. We

use Stage 1γ to discharge among the blocks and form a charge function µ∗.

Stage 1γ: We have two discharging rules:

1. If |Bj| = 2, Bj pulls one charge from ϕ2(Bj).

2. B0 pulls one charge from Bk1 and one charge from Bk2 .

After the first rule within Stage 1γ there is at least one charge on all blocks of

size at least four. Thus, removing one more charge from each of Bk1 and Bk2 in

the second rule of Stage 1γ maintains that µ∗(Bk1) and µ∗(Bk2) are non-negative.

Since B0 receives two charge and every 2-block receives one charge, µ∗(Bj) is non-

negative after Stage 1γ for all blocks Bj.

Define the charge function ν∗(Fj) = ∑Bi∈Fj
µ∗(Bi).

Stage 2: For every frame Fj and every pair Bk, Bk′ of 2-blocks in Fj separated by

only 3-blocks, Fj pulls one charge from fk,k′(Fj).

240

Again, ∑r−1
j=0 ν′(Fj) = r − 1. Also, ν′(Fj) > 0 whenever Fj contains a block

of order at least four that is not Bk1 or Bk2 , or Fj contains two 2-blocks separated

only by 3-blocks. Since one charge was removed from Bk1 and Bk2 in Stage 1γ, the

frames containing Bk1 or Bk2 are no longer guaranteed to have positive charge, but

still have non-negative charge. In order to complete the proof of Claim 11.14, we

must more closely analyze the charge function ν′.

Definition 11.15 (Pull sets). A pull set is a set of blocks, P = {Bi1 , . . . , Bip}, where

|Bij | ≥ 5 for all j ∈ {1, . . . , p} and all blocks between Bij and Bij+1 are 3-blocks.

Let ϕ−1
2 (P) = ∪Bi∈P ϕ−1

2 (Bi). A pull set P is perfect if all blocks Bi ∈ P have

|Bi| = 2|ϕ−1
2 (Bi)|+ 3. Otherwise, a pull set P contains a block Bi ∈ P with |Bi| ≥

2|ϕ−1
2 (Bi)| + 4 and P is imperfect. Given a pull set P , the defect of P is δ(P) =

∑Bi∈P

[
µ∗(Bi)− |ϕ−1

2 (Bi)|
]
− 1.

The defect δ(P) measures the amount of excess charge (more than one charge)

the pull set P contributes to the ν′-charge of any frame containing P . Note that

pull sets P with Bk1 , Bk2 /∈ P have defect δ(P) ≥ 0, with equality if and only if P

is perfect. Perfect pull sets P containing Bk1 or Bk2 have defect δ(P) = −1. For a

block Bi ∈ P , if d ≤ µ∗(Bi)− |ϕ−1
2 (Bi)| then we say Bi contributes d to the defect of

P .

Consider a pull set P = {Bi1 , . . . , Bip}. Since there are at most 3t− 4 elements

between ϕ−1
2 (Bip) and Bip and all blocks from Bi1 to Bip have order at least three,

there exists a frame that contains all blocks of P . Therefore, every pull set is con-

tained within some frame.

If Bi is a block with |Bi| ≥ 5, then P = {Bi} is a (not necessarily maximal) pull

set, and {Bi} is a subset of each frame containing Bi. For every frame Fj and block

Bi ∈ Fj with |Bi| ≥ 5 there is a unique maximal pull set P ⊆ Fj containing Bi. Thus,

241

if there are multiple maximal pull sets within a frame Fj, then they are disjoint.

Observation 11.16. Let X be an r-clique and ν′ be the charge function on frames of

X after Stage 1γ and Stage 2. Then, for a frame Fj, ν′(Fj) is at least the sum of

1. the number of distinct pairs Bk, Bk′ of 2-blocks in Fj separated only by 3-

blocks,

2. the number of 4-blocks in Fj not equal to Bk1 , Bk2 ,

3. 1 + δ(P) for every maximal pull set P ⊆ Fj.

In Claim 11.14.4, we prove there exists a special block B∗ in a frame Fz with

ν′(Fz) = 0. The proof of Claim 11.14.4 reduces to three special cases which are

handled in Claims 11.14.1-11.14.3.

Recall ∑r−1
j=0 ν′(Fj) = r − 1. Let Z be the number of frames F with ν′(F) = 0.

Then,

∑
j:ν′(Fj)>0

[
ν′(Fj)− 1

]
=

r−1

∑
j=0

[
ν′(Fj)− 1

]
+ Z = (r− 1)− r + Z = Z− 1.

Therefore, if there are at most t + 1 frames with ν′-charge zero (ν′(Fj) = 0), then

the sum ∑j:ν′(Fj)>0[ν′(Fj)− 1] is bounded above by t. The proof of Claim 11.14.4 fre-

quently reduces to a contradiction with this bound. Claims 11.14.1-11.14.3 provide

some situations which guarantee this sum has value at least t + 1.

Claim 11.14.1. LetP be a pull set containing a block Bj. If |ϕ−1
2 (P)| ≥ 2 and xk1 + 6t2 ≤

xj ≤ xk2 , then there is a setH of frames with ∑Fj∈H(ν′(Fj)− 1) ≥ t + 1.

Proof of Claim 11.14.1. Starting with P (0) = P , we construct a sequence P (0), P (1),

. . . , P (`) of pull sets with ` ≤ d t+1
2 e+ 1. We build P (k) by following the map ψ2

from ϕ−1
2 (P (k−1)). This process will continue until one of the sets is not a pull set,

242

one of the sets is an imperfect pull set, or we reach d t+1
2 e pull sets. In either case,

we find a setH of frames that satisfies the claim.

We initialize P (0) to be P , which contains Bj. Note that it is possible that Bj =

Bk2 , but otherwise Bj precedes Bk2 . There will be at most 6t elements covered by the

blocks starting at P (k) to the blocks preceding P (k−1). Note that since xj − xk1 ≥

6t2, P (k) will not contain Bk1 or Bk2 for any k ∈ {1, . . . , d t+2
2 e}.

Let k ≥ 1 be so that P (k−1) is a perfect pull set with |ϕ−1
2 (P (k−1))| ≥ 2. For

every block Bi ∈ P (k−1), let B` be a 2-block in ϕ−1
2 (Bi) and place ψ2(B`) in P (k).

Then, place any block of size at least five that is positioned between to blocks of

P (k) into P (k).

If P (k) is always perfect for all k ≤ d t+1
2 e, then we have pull sets P (0), . . . , P (k)

and frames Fj0 , Fj′0
, . . . , Fjk−1 , Fj′k−1

, where k = d t+1
2 e. Thus, let H = {Fj` , Fj′`

: ` ∈

{1, . . . , k}} and ∑F∈H[ν′(F) − 1] ≥ t + 1, proving the claim. It remains to show

that such a setH exists if some P (k) is imperfect.

If P (k) is a perfect pull set with |ϕ−1
2 (P (k))| ≥ 2, then let Fjk be the frame that

starts at the last block of P (k) and Fj′k
be the frame that ends at the first block of

P (k). We claim that Fjk and Fj′k
have ν′-charge at least two. There are at most 3t− 4

elements between the last block in P (k) and the last 2-block in ψ−1
2 (P (k)). If there is

at most one 2-block in Fjk , then σ(Fjk) ≥ 2 + 3(t− 2) + 5 = 3t + 3 and Fjk contains

all 2-blocks in ψ−1
2 (P (k)), a contradiction. Therefore, the frame Fjk contains at least

two 2-blocks. If those 2-blocks are separated by three blocks, they pull at least one

charge in Stage 2. If those 2-blocks are not separated by three blocks, then either

they are separated by a 4-block (which contributes at least one charge) or a second

maximal pull set (which contributes at least one charge). Thus, ν′(Fjk) ≥ 2. By a

symmetric argument, Fj′k
contains two 2-blocks and has ν′(Fj′k

) ≥ 2. Figure 11.9

shows how the frames Fjk and Fj′k
are placed among the pull sets P (k−1) and P (k).

243

ϕ−1
2 (P (k)) P (k) ϕ−1

2 (P (k−1)) P (k−1)

Fjk+1
Fj′k

Fjk Fj′k−1

ψ2 ϕ2 ψ2 ϕ2

Figure 11.8: Claim 11.14.1, building P (k) and frames Fjk , Fj′k
.

If P (k) is not a perfect pull set or |ϕ−1
2 (P (k))| < 2, either P (k) is not a pull set or

P (k) is an imperfect pull set.

Case 1: P (k) is not a pull set. In this case, there is a non-3-block Bj not in P (k) that is

between two blocks B`1 , B`2 of P (k). If |Bj| ≥ 5, then Bj would be added to P (k).

Therefore, |Bj| ∈ {2, 4}.

Case 1.i: |Bj| = 4. Every frame containing Bj also contains either B`1 or B`2 .

Therefore, these t frames contain a 4-block and at least one pull set with non-

negative defect so they have ν′-charge at least two. The frame starting at B`1

also contains Bj and B`2 , so this frame has two disjoint maximal pull sets and

a 4-block and has ν′-charge at least three. Therefore, if H is the family of

frames containing Bj, ∑F∈H[ν′(F)− 1] ≥ t + 1.

ψ2 ϕ2

Bj B`1 B`2 Bg1 Bg2

ϕ2(Bj) 3-blocks

Figure 11.9: Claim 11.14.1, Case 1.ii.

Case 1.ii: |Bj| = 2. Let B`1 be the last 2-block preceding ϕ2(Bj) and B`2 be the

first 2-block following ϕ2(Bj). Note that Bj is between ψ2(B`1) and ψ2(B`2),

which must be in P (k).

(a) Suppose {ϕ2(Bj)} is an imperfect pull set. Then ϕ2(Bj) contributes one to the

244

defect of any pull set containing ϕ2(Bj). Place all frames containing ϕ2(Bj)

into H, as they have ν′-charge at least two. Also place the frame F starting

at ψ2(B`1) intoH. If F also contains ψ2(B`2), it contains two disjoint maximal

pull sets and thus has ν′-charge at least two. Otherwise, F must contain at

least two 2-blocks which either pull a charge in Stage 2 or are separated by

a block of size at least four and ν′(F) ≥ 2 in any case. This frame family H

satisfies the claim.

(b) Suppose {ϕ2(Bj)} is a perfect pull set. Therefore, |ϕ2(Bj)| = 3 + 2h for some

integer h ≥ 1 and hence is odd. Let Bg1 = ϕ2(B`1) and Bg2 = ϕ2(B`2).

Since Bg1 and Bg2 are in P (k−1) and P (k−1) is a pull set, there are only 3-

blocks between Bg1 and Bg2 . Therefore, the elements xg1+1, xg1+2, . . . , xg2 have

xg1+i+1 = xg1+i + 3 for all i ∈ {1, . . . , g2 − g1 − 1}. The generators 3t − 1

and 3t guarantee that the elements of X strictly between x`1 and x`2 are a

subset of {x`1 + 2 + 3i : i ∈ {0, 1, . . . , g2 − g1}}. Therefore, all blocks be-

tween B`1 and B`2 (including ϕ2(Bj)) have size divisible by three. So, |ϕ2(Bj)|

is an odd multiple of three, but strictly larger than three; |ϕ2(Bj)| ≥ 9 and

|ϕ−1
2 (ϕ2(Bj))| ≥ 3.

There are t − 2 frames containing the first three 2-blocks in ϕ−1
2 (ϕ2(Bj)).

Since these 2-blocks are consecutive, each frame pulls two charge in Stage

2. Also, let F′ be the frame whose last two blocks are the first two 2-blocks

in ϕ−1
2 (ϕ2(Bj)) and let F′′ be the frame whose first two blocks are the last

two 2-blocks in ϕ−1
2 (ϕ2(Bj)). Either F′ contains ψ2(B`1) or contains another

2-block preceding ϕ−1
2 (ϕ2(Bj)) and thus ν′(F′) ≥ 2; by symmetric argument,

ν′(F′′) ≥ 2. Let H contain these frames and note that ∑F∈H[ν′(F)− 1] ≥ t.

Also, add the frame Fi whose last block is ϕ2(Bj) toH. If this frame is already

included in H, then the charge contributed by ϕ2(Bj) was not counted in the

245

previous bound and ∑F∈H[ν′(F)− 1] ≥ t + 1. Otherwise, Fi does not contain

two 2-blocks from ϕ−1
2 (ϕ2(Bj)) and so Fi spans fewer than 3t − 8 elements

preceding ϕ2(Bj). Thus, Fi contains at least two 2-blocks which are separated

either by only 3-blocks (where Fi pulls a charge in Stage 2) or by a block of

size at least four (which contributes at least an additional charge to Fi) and so

ν′(Fi) ≥ 2 and ∑F∈H[ν′(F)− 1] ≥ t + 1.

Case 2: P (k) is an imperfect pull set. There is a block B` ∈ P (k) so that |B`| ≥

2|ϕ−1
2 (B`)|+ 4. Since B` contributes at least one to the defect of every pull set

that contains B`, every frame containing B` has ν′-charge at least two. Let Fjk be

the frame that starts at the last block of P (k) and note that Fjk contains at least

two 2-blocks. Therefore, Fjk either contains a pull set and two 2-blocks separated

by only 3-blocks, two disjoint maximal pull sets, or a pull set and a 4-block and

in any case has ν′-charge at least two. If Fjk contains B`, then one of the pull sets

in Fjk is imperfect and ν′(Fjk) ≥ 3. Therefore, let H contain Fjk and the frames

containing B`, andH satisfies the claim.

Claim 11.14.2. Let Bi be a 5-block with xk2 − 9t ≤ xi ≤ xk2 . If every pull set P

containing Bi has |ϕ−1
2 (P)| = |ϕ−1

2 (Bi)| = 1, then there is a set H of frames with

∑Fj∈H(ν′(Fj)− 1) ≥ t + 1.

Proof of Claim 11.14.2. Let Bj = ψ2(ϕ−1
2 (Bi)). If there is a pull set P containing Bj

where |ϕ−1
2 (P)| ≥ 2, then Claim 11.14.1 applies to P and we can set H to be the

t + 1 frames with ν′-charge at least two. Therefore, we assume no such pull set

exists. This implies |ϕ−1
2 (Bj)| ∈ {0, 1}.

246

We shall construct two disjoint sets H1 and H2 so that ∑F∈H1
[ν′(Fj) − 1] ≥ t

and ∑F∈H2
[ν′(F) − 1] ≥ 1 so H = H1 ∪ H2 satisfies ∑Fj∈H(ν′(Fj) − 1) ≥ t + 1.

To guarantee disjointness, there are blocks that must be contained in frames of H2

that cannot be contained in frames ofH1. For instance, a frame inH2 may contain

Bj, but no frames inH1 may contain Bj.

If ϕ−1
2 (Bj) = ∅ or if |Bj| ≥ 6, then Bj contributes one to the defect of every

pull set containing Bj and hence every frame containing Bj has charge at least two.

Place all of these frames inH2 and ∑F∈H2
[ν′(F)− 1] ≥ t.

Therefore, we may assume that |ϕ−1
2 (Bj)| = 1 and |Bj| = 5. Hence, there are

exactly 3t− 4 elements between ϕ−1
2 (Bj) and Bj. Similarly, there are exactly 3t− 4

elements between Bj and ψ−1
2 (Bj). In either of these regions, not all blocks may be

3-blocks. Let Bg1 be the last non-3-block preceding Bj and Bg2 be the first non-3-

block following Bj. We shall guarantee that all frames inH2 contain at least one of

Bj, Bg1 , or Bg2 .

There are exactly 3t − 4 elements between ϕ−1
2 (Bi) and Bi. Since 3t − 4 ≡ 2

(mod 3), this range contains at least one 2-block, two 4-blocks, or one block of

order at least five. Let B`1 be the first non-3-block following ϕ−1
2 (Bi) and B`2 be the

first non-3-block preceding Bi.

Figure 11.10 demonstrates the arrangement of the blocks Bi, Bj, Bg1 , Bg2 , B`1 , and

B`2 , as well as two blocks Bh1 and Bh2 which will be selected later in a certain case

based on the sizes of Bg1 and Bg2 .

BiBj B`1 B`2Bg1 Bg2Bh1 Bh2

ϕ−1
2 (Bi)ϕ−1

2 (Bj)

Figure 11.10: The blocks involved in the proof of Claim 11.14.2.

247

We consider cases depending on |B`1 | and |B`2 | and either find a contradiction

or find at least one frame F to place in H1 so that F does not contain Bj or Bg2 and

[ν′(F)− 1] ≥ 1.

Case 1: |B`1 | = 2. The block ϕ2(B`1) follows Bi. If all blocks between Bi and

ϕ2(B`1) are 3-blocks, then Bi and ϕ2(B`1) are contained in a common pull set

P with |ϕ−1
2 (P)| ≥ 2, which we assumed does not happen. Therefore, there is

a block Bk between Bi and ϕ2(B`1) that is not a 3-block. If Bk is a 2-block, then

ψ2(Bk) would be a large block between ϕ−1
2 (Bi) and B`1), a contradiction. If Bk is

a 4-block, then ψ4(Bk) would be a large block between ϕ−1
2 (Bi) and B`1), another

contradiction. Therefore, |Bk| ≥ 5, but ϕ−1
2 (Bk) = ∅, since otherwise a 2-block

from ϕ−1
2 (Bk) would be strictly between ϕ−1

2 (Bi) and B`1 . Then, every frame

containing Bk has ν′-charge at least two. The frame Fk does not contain Bj, Bg1 ,

or Bg2 , so place Fk inH1.

Case 2: |B`2 | ≥ 5. If ϕ−1
2 (B`2) 6= ∅, B`2 and Bi are in a common pull set P with

|ϕ−1
2 (P)| ≥ 2, but we assumed this did not happen. Therefore, ϕ−1

2 (B`2) = ∅

and every frame containing B`2 has ν′-charge at least two. The frame F`2 does

not contain Bj, Bg1 , or Bg2 , so place F`2 inH1.

Case 3: |B`1 | ≥ 5. Since B`1 and Bi cannot be in a pull set, there is a non-3-block

between B`1 and Bi, so B`1 6= B`2 .

Case 3.i: |B`2 | = 2. The frame F starting at ψ2(B`2) also contains B`1 but does

not contain Bj or Bg2 . Since ϕ−1
2 (Bi) is between ψ2(B`2) and B`1 , these blocks

are in different pull sets and so ν′(F) ≥ 2. Place F inH1.

Case 3.ii: |B`2 | = 4. The frame F starting at B`1 also contains B`2 but not Bj or

Bg2 . Since F contains two 4-blocks, ν′(F) ≥ 2. Place F inH1.

248

Case 4: |B`1 | = 4. Since 3t− 4 6≡ 4 (mod 3), B`1 cannot be the only non-3-block

between ϕ−1
2 (Bi) and Bi, so B`1 6= B`2 . Consider F`1 , the frame starting at B`1 .

If F`1 does not contain two 2-blocks, σ(F`1) ≥ 3t − 4 and F`1 contains Bi (and

B`2). If |B`2 | = 2, then since 4 + 2 6≡ 3t− 4 (mod 3) there is another block Bk

between B`1 and Bi that is not a 3-block. Since F`1 does not contain two 2-blocks,

|Bk| ≥ 4 and therefore ν′(F`1) ≥ 2. Place F`1 in H1 and note that F`1 does not

contain Bj, Bg1 , or Bg2 .

If F`1 does contain two 2-blocks, then either those two 2-blocks pull an extra

charge in Stage 2, or they are separated by a block of size at least four. In either

case, ν′(F`1) ≥ 2 so place F`1 inH1.

We now turn our attention to placing frames in H2 based on the sizes of Bg1

and Bg2 . Note that ϕ−1
2 (Bg1) = ϕ−1

2 (Bg2) = ∅, or else Claim 11.14.1 applies. If

|Bg1 | ≥ 5, then every frame containing Bg1 has ν′-charge at least two, so add these t

frames toH2 to result in ∑F∈H[ν′(F)− 1] ≥ t + 1. Similarly, if |Bg2 | ≥ 5, then every

frame containing Bg2 has ν′-charge at least two, add these frames toH2. Therefore,

we may assume that |Bg1 |, |Bg2 | ∈ {2, 4} which provides four cases.

Case 1: |Bg1 | = |Bg2 | = 2. There are at most 3t − 4 elements between Bg1 and

ϕ2(Bg1) or between ψ2(Bg2) and Bg2 . Let Bh1 be the last non-3-block preceding

Bg1 and Bh2 be the first non-3-block following Bg2 . If Bh1 is a 2-block, let P1 =

{ϕ2(Bh1), ϕ2(Bg1)}. There cannot be a 4-block Bk or 2-block Bk′ between ϕ2(Bh1)

and ϕ2(Bg1) or else ψ4(Bk) or ψ2(Bk′ would be between Bh1 and Bg1 . Therefore,

adding any non-3-block between ϕ2(Bh1) and ϕ2(Bg1) to P1 makes P1 be a pull

set where |ϕ−1
2 (P1)| ≥ 2 and by Claim 11.14.1 we are done. Similarly if B`2 , the

first non-3-block following Bg2 , is a 2-block, then let P2 = {ϕ2(B`2), ϕ2(Bg2)}

249

and we can expand P2 to a pull set where |ϕ−1
2 (P2)| ≥ 2 and by Claim 11.14.1

we are done. Since we assumed this is not the case, Bh1 and Bh2 have size at least

four. Either ψ2(Bg2) = Bh1 or Bh1 follows ψ2(Bg2). Either ϕ2(Bg1) = Bh2 or Bh2

precedes ψ2(Bg2). Thus, every frame containing Bj also contains Bh1 or Bh2 and

thus contains at least a pull set and a 4-block or two maximal pull sets which

implies the frame has ν′-charge at least two. Place these frames inH2.

Case 2: |Bg1 | = |Bg2 | = 4. There are at most 3t − 3 elements between Bg1 and

ϕ4(Bg1) or between ψ4(Bg2) and Bg2 . Since Bg1 is the last non-3-block preceding

Bj, either ψ4(Bg2) = Bg1 or ψ4(Bg2) precedes Bg1 . Similarly, either ϕ4(Bg1) = Bg2

or ϕ4(Bg1) follows Bg1 . Therefore, every frame containing Bj also contains Bg1

or Bg2 and thus contains a pull set and a 4-block which implies the frame has

ν′-charge at least two. Place these frames inH2.

Case 3: |Bg1 | = 2 and |Bg2 | = 4. There are at most 3t − 4 elements between Bg1

and ϕ2(Bg1) and at most 3t − 3 elements between ψ4(Bg2) and Bg2 . Let Bh1 be

the last non-3-block preceding Bg1 . If Bh1 a 2-block, then there is a pull set P1 =

{ϕ2(Bh1), ϕ2(Bg1)} where |ϕ−1
2 (P1)| ≥ 2. We assumed this is not the case, so

|Bh1 | ≥ 4. Either Bh1 = ψ4(Bg2) or Bh1 follows ψ4(Bg2). Therefore, every frame

containing Bj also contains Bh1 or Bg2 and thus contains a pull set and a 4-block

or two maximal pull sets which implies the frame has ν′-charge at least two.

Place these frames inH2.

Case 4: |Bg1 | = 4 and |Bg2 | = 2. This case is symmetric to Case 3.

Thus, H = H1 ∪ H2 has been selected from H1 and H2 so that ∑F∈H[ν′(F)−

1] ≥ t + 1.

250

Claim 11.14.3. If there is a block B` with |B`| = 4, xk2 − 12t ≤ x` ≤ xk2 , and there is

a block Bi between ψ4(B`) and B` with |Bi| 6= 3, then there is a set H of frames so that

∑
F∈H

[
ν′(F)− 1

]
≥ t + 1.

Proof of Claim 11.14.3. Note that it may be the case that B` = Bk2 . For the remainder

of the proof, B` will not be used to bound the ν′-charge of frames inH and all other

blocks will contain elements between x` − 12t and x`, so these blocks will not be

one of B0, Bk1 , or Bk2 .

Let ψ
(d)
4 denote the dth composition of the map ψ4. Let D ≥ 1 be the first integer

so that |ψ(D)
4 (B`)| 6= 4, if it exists. We will select blocks B`1 , B`2 , B`3 , and B`4 based

on the value of D. For all d ≤ D, let B`d
= ψ

(d)
4 (B`).

If D < 4, then we must use different methods to find the remaining blocks B`d
.

Note that |B`D | ≥ 5. If |ϕ−1
2 (B`D)| ≥ 2, then by Claim 11.14.1 we are done. If

|ϕ−1
2 (B`D)| = 1 and |B`D | = 5, then either there is a pull set P containing B`D with

|ϕ−1
2 (P)| ≥ 2 and by Claim 11.14.1 we are done or every pull set P containing

B`D has |ϕ−1
2 (P)| = 1 and by Claim 11.14.2 we are done. Therefore, there are

two remaining cases for B`D : either (a) ϕ−1
2 (B`D) = ∅, or (b) |ϕ−1

2 (B`D)| = 1 and

|B`D | ≥ 6.

We consider cases based on |Bi|.

B`B`1 BiBi1

ψ2

ψ4

Figure 11.11: Claim 11.14.3, Case 1: |B`| = 4 and |Bi| = 2, shown with D ≥ 4.

Case 1: |Bi| = 2. Let Bi1 = ψ2(Bi). Bi1 is a block of size at least five preceding B`1 .

If there exists a pull set P containing Bi1 so that |ϕ−1
2 (P)| ≥ 2, then by Claim

251

11.14.1 we are done. Therefore, |ϕ−1
2 (Bi1)| ∈ {0, 1}.

Case 1.i: Suppose |ϕ−1
2 (Bi1)| = 1. If |Bi1 | = 5, then by Claim 11.14.2 we are done.

Therefore, |Bi1 | ≥ 6 and Bi1 contributes at least one to the defect of every pull

set containing Bi1 , so every frame containing Bi1 has ν′-charge at least two.

Place these frames inH.

There are at most 3t− 4 elements between Bi1 and Bi, so if does not contain

B`1 , then Fi1 contains at least two 2-blocks. If these 2-blocks are separated only

by 3-blocks, then ν′(Fi1) ≥ 3 because the imperfect pull set containing Bi1 con-

tributes two charge and these 2-blocks pull one charge in Stage 2. Otherwise,

these 2-blocks are separated by some block of order at least four. Therefore,

ν′(Fi1) ≥ 3 since the imperfect pull set containing Bi1 contributes two charge

and either the 4-blocks between the 2-blocks contributes one charge or the

block of size at least five between the 2-blocks is contained in a pull set that

contributes at least one charge. Thus, if Fi1 does not contain B`1 , we are done.

We now assume that B`1 ∈ Fi1 .

If D ≥ 2, then |B`1 | = 4. Then ν′(Fi1) ≥ 3 because the imperfect pull set

containing Bi1 contributes two charge and B`1 contributes one charge.

If D = 1, then |B`1 | ≥ 5. If ϕ−1
2 (B`1) = ∅, then B`1 contributes two charge to

Fi1 and ν′(Fi1) ≥ 4. Otherwise |ϕ−1
2 (B`1)| = 1 and |B`1 | ≥ 6, so B`1 contributes

at least one to the defect of any pull set containing B`1 and thus ν′(Fi1) ≥ 3.

SinceH contains t frames of ν′-charge at least two and at least one frame (Fi1)

with ν′-charge at least three, ∑
F∈H

[
ν′(F)− 1

]
≥ t + 1.

Case 1.ii: Suppose |ϕ−1
2 (Bi1)| = 0. Bi1 contributes at least two to the ν′-charge

for every frame containing Bi1 . Place these t frames in H. As in Case 1.i, the

252

frame Fi1 must have charge ν′(Fi1) ≥ 3 and ∑
F∈H

[
ν′(F)− 1

]
≥ t + 1.

B`B`1 Bi

ψ4

Figure 11.12: Claim 11.14.3, Case 2: |B`| = 4 and |Bi| = 2, shown with D ≥ 4.

Case 2: |Bi| ≥ 5. Let H be the frames containing Bi. If there exists a pull set

P containing Bi with |ϕ−1
2 (P)| ≥ 2, then by Claim 11.14.1, we are done. If

|Bi| = 5 and |ϕ−1
2 (Bi)| = 1, then by Claim 11.14.2, we are done. Therefore,

either ϕ−1
2 (Bi) = ∅ and |Bi| ≥ 5, or |ϕ−1

2 (Bi)| = 1 and |Bi| ≥ 6. In either case,

Bi contributes at least two charge to every frame inH.

Consider the frame Fi−t+1 ∈ H where Bi is the last block of Fi−t+1.

If Fi−t+1 has fewer than two 2-blocks, then σ(Fi−t+1) ≥ 2 + 3(t− 2) + |Bi| ≥ 3t +

1. Since there are at most 3t− 3 elements between B`1 and B`, then B`1 ∈ Fi−t+1

when Fi−t+1 has fewer than two 2-blocks. If |B`1 | = 4, then B`1 contributes

another charge to Fi−t+1 and ν′(Fi−t+1) ≥ 3. If |B`1 | ≥ 5 and ϕ−1
2 (B`1) = ∅

and B`1 contributes at least two charge to Fi−t+1 and ν′(Fi−t+1) ≥ 4. Otherwise,

|B`1 | ≥ 5 and ϕ−1
2 (B`1) 6= ∅. Since Bi is not contained within any pull set P

with |ϕ−1
2 (P)| ≥ 2, then either ϕ−1

2 (Bi) = ∅ or Bi and B`1 are not contained in

a common pull set. In either case, B`1 contributes at least one more charge to

Fi−t+1 and ν′(Fi−t+1) ≥ 3.

If Fi−t+1 has two or more 2-blocks, then either two 2-blocks are separated only

by 3-blocks and contribute an extra charge to Fi−t+1 or they are separated by a

block of size at least four which is not in a pull set with Bi and contributes an

extra charge to Fi−t+1.

253

Therefore, ν′(Fi−t+1) ≥ 3 and ∑F∈H [ν′(F)− 1] ≥ t + 1.

B`B`1B`2B`3 Bi1Bi2Bi3B`4 Bi

ψ4 ψ4 ψ4

ψ4ψ4ψ4ψ4

Figure 11.13: Claim 11.14.3, Case 3: |B`| = 4 and |Bi| = 4, shown with D ≥ 4, D′ ≥
3.

Case 3: |Bi| = 4. Let D′ ≥ 1 be the first integer so that |ψ(D′)
4 (Bi)| 6= 4. For

d ∈ {1, . . . , D′}, define Bid = ψ
(d)
4 (Bi).

Case 3.i: D ≥ 4 and D′ ≥ 3. Note that for j ∈ {1, 2, 3}, Bij is between B`j+1

and B`j . There are at most 3t − 3 elements between B`j+1
and B`j , so every

frame F containing Bij either contains one of B`j+1
or B`j or has σ(F) ≤ 3t−

4. If F contains Bij and one of B`j+1
or B`j , then either ν′(F) ≥ 2 or Bij is

contained in a perfect pull set P with the other block and |ϕ−1
2 (P)| ≥ 2 so

by Claim 11.14.1 we are done. If σ(F) ≤ 3t− 3, then there are at least three

2-blocks in F. At least two of these 2-blocks are on a common side of Bij , and

either they are separated only by 3-blocks (and pull an extra charge to F) or

they are separated by a block of size at least four (which contributes an extra

charge to F). Therefore, every frame containing Bij has ν′-charge at least two.

Build H from the frames containing Bi1 and the frames containing Bi3 . Then

∑F∈H [ν′(F)− 1] ≥ 2t.

Case 3.ii: D′ < D < 4. By definition, |BiD′
| ≥ 5. Let H be the set of frames

containing BiD′
.

If there exists a pull set P containing BiD′
so that |ϕ−1

2 (P)| ≥ 2 then by Claim

11.14.1 we are done. If |ϕ−1
2 (BiD′

)| = 1 and |BiD′
| = 5, then by Claim 11.14.2

254

we are done. Therefore, BiD′
contributes at least one to the defect of every

pull set containing BiD′
and hence every frame containing BiD′

has ν′-charge

at least two.

The block BiD′
is between B`D′+1

and B`D′
and there are at most 3t− 3 elements

between B`D′+1
and B`D′

. Consider the frame FiD′
, which has BiD′

as the first

block. If FiD′
contains B`D′

, then ν′(FiD′
) ≥ 3 since B`D′

is a 4-block and BiD′

contributed two charge to FiD′
. Otherwise, σ(FiD′

) ≤ 3t− 3 and FiD′
contains

at least two 2-blocks. Either these 2-blocks are separated by 3-blocks and pull

a charge in Stage 2, or there is a block of size at least four between these blocks

and contributes at least one more charge to FiD′
. Therefore, ν′(FiD′

) ≥ 3 and

∑F∈H [ν′(F)− 1] ≥ t + 1.

Case 3.iii: D ≤ D′ < 4. By definition, |B`D | ≥ 5. Let H be the set of frames

containing B`D .

If there exists a pull set P containing B`D so that |ϕ−1
2 (P)| ≥ 2 then by Claim

11.14.1 we are done. If |ϕ−1
2 (B`D)| = 1 and |B`D | = 5, then by Claim 11.14.2

we are done. Therefore, B`D contributes at least one to the defect of every

pull set containing B`D and hence every frame containing B`D has ν′-charge

at least two.

The block B`D is between BiD and BiD−1 and there are at most 3t− 3 elements

between BiD and BiD−1 . Consider the frame F`D , which has B`D as the first

block. If F`D contains BiD−1 , then ν′(F`D) ≥ 3 since BiD−1 is a 4-block and

B`D contributed two charge. Otherwise, σ(F`D) ≤ 3t− 3 and F`D contains at

least two 2-blocks. Either these 2-blocks are separated by 3-blocks and pull a

charge in Stage 2, or there is a block of size at least four between these blocks

and contributes at least one more charge to F`D . Therefore, ν′(F`D) ≥ 3 and

255

∑F∈H [ν′(F)− 1] ≥ t + 1.

Since ∑r
j=1 ν′(Fj) = r− 1, there is some frame Fz with ν′(Fz) = 0. Also, the only

frames where ν′(Fj) may be zero are those containing B0, Bk1 , or Bk2 .

Claim 11.14.4. There exists a block B∗ and a frame Fz so that B∗ ∈ Fz, ν′(Fz) = 0, and

for all 2-blocks Bj, B∗ does not appear between ψ2(Bj) and ϕ2(Bj), inclusive.

Proof of Claim 11.14.4. Using any frame Fz with ν′(Fz) = 0, we will show that there

is a block B∗ ∈ {B0, Bk1 , Bk2} ∩ Fz so that for all 2-blocks Bj, B∗ does not appear

between ψ2(Bj) and ϕ2(Bj).

Consider five cases based on which blocks (B0, Bk1 , or Bk2) are within Fz and if

there are other frames with zero charge.

Case 1: For some i ∈ {1, 2}, Bki ∈ Fz and |Bki | = 4. Since ν′(Fz) = 0, we must have

that either ν∗(Fz) = 0 or ν∗(Fz) > 0 and charge was pulled from Fz in Stage 2.

If ν∗(Fz) = 0, then Fz contains no block of size at least four other than Bki . If there

are no 2-blocks, then every block of Fz \ {Bki} is a 3-block and σ(Fz) = 3t + 1.

All 2-blocks Bj have at most 3t− 4 elements between Bj and ϕ2(Bj) or between

ψ2(Bj) and Bj, so there are not enough elements to fit Fz in these ranges and

hence B∗ = Bki suffices.

If there is exactly one 2-block in Fz, then σ(Fz) = 3t, a contradiction. Similarly, if

there are exactly two 2-blocks in Fz, then σ(Fz) = 3t− 1, a contradiction. Hence,

there are at least three 2-blocks in Fz and some pair of 2-blocks is separated by

only 3-blocks, so Stage 2 pulled at least one charge from another frame, contra-

dicting ν′(Fz) = 0.

If ν∗(Fz) > 0, then there must be at least one block of order four or more other

than Bki . If any of these blocks are 4-blocks, then the positive charge contributed

256

cannot be removed by Stage 2. If any of these blocks have size at least five, the

associated maximal pull set in Fz does not contain Bk1 or Bk2 so the defect is

non-negative and Stage 2 leaves at least one charge, so ν′(Fz) > 0.

Case 2: Bk1 ∈ Fz and |Bk1 | ≥ 5. Since x0 + 3t ∈ Bk1 and B0 is not included in

ϕ−1
2 (Bk1), we have |Bk1 | ≥ 2|ϕ−1

2 (Bk1)| + 4. Thus the maximal pull set in Fz

containing Bk1 is imperfect and ν′(Fz) > 0, a contradiction.

Case 3: B0 ∈ Fz, there are no 2-blocks in Fz, and Fz does not contain Bk1 or Bk2 . Since

ν′(Fz) = 0, there is no block in Fz with size at least four, hence Fz contains

t − 1 3-blocks and B0, so σ(Fz) = 3t − 2. For a 2-block Bj, there are at most

3t − 4 elements contained in the blocks strictly between Bj and ϕ2(Bj) or the

blocks strictly between Bj and ψ2(Bj). Then, if B0 appears between ψ2(Bj) and

ϕ2(Bj), then one of ψ2(Bj), Bj, or ϕ2(Bj) must be within Fz, a contradiction. Thus,

B∗ = Bj suffices.

Case 4: B0 ∈ Fz, Fz contains at least one 2-block, Fz does not contain Bk1 or Bk2 . Since Fz

does not contain Bk1 or Bk2 , any block of size at least four implies ν′(Fz) ≥ 1, a

contradiction. Further, if there are at least three 2-blocks in Fz, then two 2-blocks

are separated by only 3-blocks and Fz pulls a charge in Stage 2, a contradiction.

Therefore, Fz contains either one or two 2-blocks. If there are two 2-blocks, there

must be one 2-block (call it Bi1) preceding B0 and another (call it Bi2) following

B0. In either case, σ(Fz) ∈ {3t− 4, 3t− 3}.

Let B`1 be the block immediately following Fz and B`2 be the block immediately

preceding Fz. If σ(Fz) = 3t− 3 and B`j has size two or three (for some j ∈ {1, 2}),

then σ(Fz ∪ {B`j}) ∈ {3t− 1, 3t}, a contradiction. If σ(Fz) = 3t− 4 and |B`j | ∈

{3, 4} (for some j ∈ {1, 2}), then σ(Fz ∪ {B`i}) ∈ {3t − 1, 3t}, a contradiction.

257

Hence, |B`1 |, |B`2 | ≥ 4 when exactly one 2-block exists, or |B`j | = 2 and the

2-block Bij is between B0 and B`j (and every frame containing both Bij and B`j

pulls a charge in Stage 2). Since all other frames containing B0 contain either

B`1 or B`2 , they have positive ν′-charge. Therefore, Fz is the only frame with

zero charge and ∑
j:ν′(Fj)>0

[ν′(Fj)− 1] = 0. Hence, if there exists any frame with

ν′-charge at least two, we have a contradiction.

We consider if Bi1 and Bi2 both exist and whether or not ψ2(Bij) is equal to Bk2

for some j.

Case 4.i: ψ2(Bij) = Bk2 for some j ∈ {1, 2}. Since |Bk2 | ≥ 2|ψ−1
2 (Bk2)| + 4,

|Bk2 | ≥ 6. If ϕ−1
2 (Bk2) = ∅, then µ∗(Bk2) ≥ 2 and every frame containing Bk2

has ν′-charge at least two, a contradiction. If |ϕ−1
2 (Bk2)| ≥ 2, Claim 11.14.1

implies ∑
j:ν′(Fj)>0

[ν′(Fj)− 1] ≥ t + 1, a contradiction. Thus, |ϕ−1
2 (Bk2)| = 1. Let

Bg be the unique 2-block in ϕ−1
2 (Bk2). Note that |ψ2(Bg)| ≥ 5. If |ψ2(Bg)| ≥

2|ϕ−1
2 (ψ2(Bg))|+ 4, then ψ2(Bg) contributes one to the defect of every pull set

containing ψ2(Bg) and every frame containing ψ2(Bg) has ν′-charge at least

two, a contradiction. Thus, |ψ2(Bg)| = 2|ϕ−1
2 (ψ2(Bg))| + 3 ≥ 5 and every

pull set P which contains ψ2(Bg) has |ϕ−1
2 (P)| ≥ 1. If any such pull set

has |ϕ−1
2 (P)| ≥ 2, then Claim 11.14.1 implies ∑j:ν′(Fj)>0[ν′(Fj)− 1] ≥ t + 1.

Otherwise, every pull set containing ψ2(Bg) has |ϕ−1
2 (P)| = 1 and Claim

11.14.2 implies ∑j:ν′(Fj)>0[ν′(Fj)− 1] ≥ t + 1.

Case 4.ii: ψ2(Bij) 6= Bk2 for both j ∈ {1, 2}. Consider some j ∈ {1, 2} so that

Bij exists. If |ϕ−1
2 (ψ2(Bij))| ≥ 2, then Claim 11.14.1 provides a contradiction.

If |ψ2(Bij)| ≥ 2|ϕ−1
2 (ψ2(Bij))|+ 4, then ψ2(Bij) contributes at least one to the

defect of any pull set containing ψ2(Bij), and every frame containing ψ2(Bij)

258

has ν′-charge at least two, a contradiction. Therefore, the size of ϕ−1
2 (ψ2(Bij))

is 1 and |ψ2(Bij)| = 5.

Every pull set P which contains ψ2(Bij) has |ϕ−1
2 (P)| ≥ 1. If any such pull

set has |ϕ−1
2 (P)| ≥ 2, then Claim 11.14.1 provides a contradiction. Other-

wise, every pull set containing ψ2(Bij) has |ϕ−1
2 (P)| = 1 and Claim 11.14.2

provides a contradiction.

Case 5: Bk2 ∈ Fz and |Bk2 | ≥ 5. If |Bk2 | ≥ 2|ϕ−1
2 (Bk2)| + 4, then every pull set

containing Bk2 is imperfect and contributes at least one charge to every frame

containing Bk2 , including Fz, a contradiction. Hence, |Bk2 | = 2|ϕ−1
2 (Bk2)| + 3.

Since we are not in Case 1 or Case 2, every frame with ν′-charge zero must

contain Bk2 or B0.

Suppose there is a frame Fz′ containing B0 and not containing Bk2 with ν′(Fz′) =

0. Since we are not in Case 3, Fz′ contains at least one 2-block and the proof of

Case 4 shows that Fz′ is the only frame with ν′-charge zero containing B0 and not

containing Bk2 .

Therefore, there are at most t + 1 frames with ν′-charge zero, whether or not

there is a frame Fz′ with ν′(Fz′) = 0 containing B0 and not Bk2 and hence we

have the inequality ∑j:ν′(Fj)>0[ν′(Fj)− 1] ≤ t.

If |ϕ−1
2 (Bk2)| ≥ 2, then Claim 11.14.1 implies ∑j:ν′(Fj)>0[ν′(Fj) − 1] ≥ t + 1. If

|ϕ−1
2 (Bk2)| = 1, then Claim 11.14.2 implies ∑j:ν′(Fj)>0[ν′(Fj) − 1] ≥ t + 1. In

either case we have a contradiction.

This completes the proof of Claim 11.14.4

Thus, we have a block B∗ and a frame Fz so that B∗ ∈ Fz, ν′(Fz) = 0, and every

2-block Bj has B∗, ψ2(Bj), Bj, and ϕ2(Bj) appearing in the cyclic order of blocks of

259

X. Fix Bj to be the first 2-block that appears after B∗ in the cyclic order. We will

now prove that a + b + c ≥ 3.

Consider ψ2(Bj). Observe that ϕ−1
2 (ψ2(Bj)) = ∅, by the choice of B∗ and Bj.

Hence, a ≥ |ψ2(Bj)| − 4. If |ψ2(Bj)| ≥ 7, then a ≥ 3. Thus, |ψ2(Bj)| ∈ {5, 6} and

ψ−1
2 (ψ2(Bj)) = {Bj}.

Consider the frame Fj−t+1, whose last block is Bj. By the choice of Bj, all blocks

in Fj−t+1 \ {Bj} have size at least three, so σ(Fj−t+1) ≥ 3t− 1. This implies ψ2(Bj) ∈

Fj−t+1. Since ψ2(Bj) 3 xj − 3t and |ψ2(Bj)| ≤ 6, there are at least 3t− 4 elements

strictly between ψ2(Bj) and Bj which must be covered by at most t − 2 blocks.

Therefore, there exists some block Bk strictly between ψ2(Bj) and Bj with |Bk| ≥ 4.

Select Bk to be the first such block appearing after ψ2(Bj).

Case 1: |ψ2(Bj)| = 6. This implies a ≥ 2. If |Bk| ≥ 5, by choice of Bj we have

ϕ−1
2 (Bk) = ∅ and a ≥ 3. Therefore, |Bk| = 4 and ψ4(Bk) is a block of order

at least four. If |ψ4(Bk)| ≥ 5, then ϕ−1
2 (ψ4(Bk)) = ∅ and a ≥ 3. Otherwise,

|ψ4(Bk)| = 4, and the frame Fi starting at Bi = ψ4(Bk) also contains ψ2(Bj) and

Bk. Thus, c = 1 and a + c ≥ 3.

Case 2: |ψ2(Bj)| = 5 and |Bk| ≥ 5. Note that ϕ−1
2 (Bk) = ∅ by choice of Bj, which

implies that a ≥ 2. If |Bk| ≥ 6, then a ≥ 3; hence |Bk| = 5. Let Bi = ψ2(Bj) and

consider the set Nk = {xk− 3t, xk− 3t + 1, xk− 3t + 5, xk− 3t + 6}. The elements

in Nk are non-neighbors with xk or xk+1. Since X is a clique, X is disjoint from Nk.

We must consider which elements in Ak = {xk − 3t + 2, xk − 3t + 3, xk − 3t + 4}

are contained in X. If B∗ appears before Ak, then since Bj is the first 2-block

after B∗, there is at most one element of X in Ak. If B∗ appears after Ak and

two elements of Ak are in X, then they form a 2-block Bj′ with ϕ2(Bj′) = Bk,

contradicting the choice of B∗. Hence, |X ∩ Ak| ≤ 1 and the elements from X in

260

Ak form either blocks of size at least five or two consecutive blocks of order at

least four.

Ak Bi = ψ2(Bj) Bk Bj

Figure 11.14: Claim 11.14, Case 2.

Case 2.i: Ak ∩ X = ∅. Let B` be the block containing xk − 3t. Note that |B`| ≥ 8.

If ϕ−1
2 (B`) = ∅, then a ≥ 4. Otherwise ϕ−1

2 (B`) 6= ∅, and B∗ appears between

B` and Bi. Then, there are at most 3t− 7 elements between B` and Bk. Since

|B∗| ≥ 1, |Bi| ≥ 5, and all other blocks have size at least three, the t − 2

blocks after B` cover at least 3t− 6 elements. Thus, every frame containing

B∗ (including Fz) must also contain B` or Bk. This implies that ν′(Fz) 6= 0, a

contradiction.

B`1

F`1

B`2
Bi = ψ2(Bj) Bk Bj

Figure 11.15: Claim 11.14, Case 2.ii.

Case 2.ii: Ak ∩ X = {xk − 3t + 3}. Then, the block starting at xk − 3t + 3 and the

block preceding it have size at least four. These two blocks (call them B`1 and

B`2) and ψ2(Bj) are contained in a single frame, F`1 , so c = 1 and a + c ≥ 3.

Case 2.iii: Ak ∩ X 6= {xk − 3t + 3} and B∗ appears before Ak. Thus, the element in

Ak ∩ X is either the first element in a block of size at least five or is the first

261

element following a block of size at least five. In either case, this block, B`,

has ϕ−1
2 (B`) = ∅, by the choice of B∗ and Bj. This implies a ≥ 3.

Case 2.iv: Ak ∩ X 6= {xk − 3t + 3} and B∗ appears between Ak and Bi. Let B` be the

block of size at least five that is guaranteed by the element in Ak ∩ X. There

are at most 3t− 3 elements between B` and Bk. Since |B∗| ≥ 1, |Bi| = 5, and

all other blocks between B` and Bk have size at least three, the t − 1 blocks

following B` cover at least 3t − 3 elements. Thus, any frame containing B∗

also contains either B` or Bk, and thus has positive charge. This includes Fz,

but ν′(Fz) = 0, a contradiction.

Case 3: |ψ2(Bj)| = 5 and all blocks between ψ2(Bj) and Bj have size at most four. Since

there are 3t− 4 elements strictly between ψ2(Bj) and Bj that must be covered by

at most t− 2 blocks of size at least three, there are at least two 4-blocks Bk, Bk′

between ψ2(Bj) and Bj. Thus, the blocks B`0 = ψ2(Bj), B`1 = Bk, and B`2 = Bk′

are contained in a single frame and c = 1 giving a + c ≥ 3.

This completes the proof of Claim 11.14.

Claims 11.13 and 11.14 imply that an r-clique X in G + {0, 1} has no 2-blocks.

By Claim 11.12, G + {0, 1} has a unique r-clique and hence G is r-primitive.

11.4 Sporadic Constructions

In this section, we give explicit constructions for all known r-primitive graphs,

including those found in previous work. It is a simple computation to verify that

262

every graph presented is uniquely Kr-saturated, so proofs are omitted. In addition

to the descriptions given here, all graphs are available online3.

11.4.1 Uniquely K4-Saturated Graphs

Construction 11.17 (Cooper [31], Figure 11.16(a)). G10 is the graph built from two

5-cycles a0, a1, a2, a3, a4 and b0, b1, b2, b3, b4 where ai is adjacent to b2i−1, b2i, and

b2i+1.

Construction 11.18 (Collins [31], Figure 11.16(b)). The graph G12 is the vertex

graph of the icosahedron with a perfect matching added between antipodal ver-

tices. Another description takes vertices v0, v1 and two 5-cycles uj,0, . . . , uj,4 (j ∈

{0, 1}) with vj adjacent to vj+1 and uj,i for all i ∈ [5] and u0,i adjacent to u1,i, u1,i+1,

and u1,i+3 for all i ∈ Z5.

Construction 11.19 (Figure 11.16(c)). G13 is given by vertices x, y1, . . . , y6, z1, . . . , z6,

where x is adjacent to every yi, yi and yi+1 are adjacent for all i ∈ {1, . . . , 6}, and

zi and zi+1 are adjacent for all i ∈ {1, . . . , 6}. Further, zi is adjacent to zi+3, yi, yi−1,

and yi+2.

Construction 11.20 (Figure 11.16(d)). The Paley graph [105] of order 13, Paley(13),

is isomorphic to the Cayley complement C(Z13, {1, 3, 4}).

Construction 11.21 (Figure 11.17). Let H be the graph on vertices x, v1, . . . , v5 with

x adjacent to every vi and the vertices v1, . . . , v5 form a 5-cycle. Note that H is

uniquely K4-saturated, as v1, . . . , v5 induce C5, which is 3-primitive. G(A)
18 has ver-

tex set V = {1, 2, 3} × {x, v1, v2, v3, v4, v5}. A vertex (a, x) or (a, vi) in V consid-

ers the number a modulo three and i modulo 5. The vertices (a, x) with a ∈
3Graphs available in graph6 format or as adjacency matrices at

http://www.math.unl.edu/~shartke2/math/data/data.php.

263

a0 a1 a2

a3 a4

b0

b1

b2

b3

b4

(a) Construction 11.17, G10. (b) Construction 11.18,
G12.

(c) Construction 11.19,
G13.

(d) Construction 11.20, Paley(13).

Figure 11.16: Uniquely K4-saturated graphs on 10–13 vertices.

{1, 2, 3} form a triangle. For each a, (a, x) is adjacent to (a, vi) for each i but

is not adjacent to (a + 1, vi) or (a + 2, vi) for any i. For each a and i, the ver-

tex (a, vi) is adjacent to (a, vi−1) and (a, vi+1) (within the copy of H) and also

(a + 1, vi+2), (a + 1, vi−2), (a− 1, vi+2), (a− 1, vi−2) (outside the copy of H).

Construction 11.22 (Figure 11.18). Let G(B)
18 have vertex set Z2 ×Z9 where each

coordinate is taken modulo two and nine, respectively. For fixed a, the vertices

(a, i) and (a, j) are adjacent if and only if |i− j| ≤ 2. For fixed i, the vertex (0, i) is

adjacent to (1, 2i), (1, 2i + 4) and (1, 2i + 5). Conversely, for fixed j the vertex (1, j)

is adjacent to (0, 5j), (0, 5j + 7) and (0, 5j + 2).

264

11.4.2 Uniquely K5-Saturated Graphs

Construction 11.23 (Figure 11.19). Let G(A)
16 have vertex set {v1, v2}

⋃
({1, 2} ×Z7).

The vertices v1 and v2 are adjacent. For each j ∈ {1, 2} and i ∈ Z7, vj is adjacent

to (j, i) and (j, i) is adjacent to (j, i + 1), (j, i + 2), (j, i − 1) and (j, i − 2). (Hence,

the subgraph induced by (j, i) for fixed j and i ∈ Z7 is isomorphic to C2
7 .) For

i ∈ Z7, the vertex (1, i) is adjacent to (2, 2i), (2, 2i + 1), (2, 2i − 1), and (2, 2i − 3).

Conversely, for i ∈ Z7, the vertex (2, i) is adjacent to (1, 4i), (1, 4i− 2), (1, 4i + 3),

and (1, 4i− 3).

An interesting feature of G(A)
16 is that it is not regular: v1, and v2 have degree

8 while the other vertices have degree 9. This is a counterexample to previous

thoughts that all uniquely Kr-saturated graphs with no dominating vertex were

regular.

Construction 11.24 (Figure 11.20). The graph G(B)
16 has vertex set {x} ∪ {ui : i ∈

Z3} ∪ {vj : j ∈ Z6} ∪ {zk,i : k ∈ {0, 1}, i ∈ Z3}. The vertex x is adjacent to ui for

all i ∈ Z3 and vj for all j ∈ Z6. There are no edges among the vertices ui. The

vertices vj form a cycle, with an edge vjvj+1 for all j ∈ Z6. The vertices zk,i form a

complete bipartite graph, with an edge z0,iz1,j for all i, j ∈ Z3. For i ∈ {0, 1, 2}, the

vertex ui is adjacent to v2i−1, v2i, v2i+1, and v2i+2, and adjacent to zk,i+1 and zk,i−1

for k ∈ {0, 1}. For i ∈ {0, 1, 2}, the vertex z0,j is adjacent to v2i, v2i+1, v2i+2, and

v2i+4, while the vertex z1,i is adjacent to v2i−1, v2i, v2i+1, and v2i+3.

11.4.3 Uniquely K6-Saturated Graphs

Construction 11.25 (Figure 11.21). The graph G(A)
15 has vertices x, v0, v1, u1, . . . , u4,

c1, . . . , c4, q1, . . . , q4. The vertex x dominates all but the qi’s. The vertices v0, v1

265

(1, x)

(2, x)

(3, x)

(1, v1) (2, v1) (3, v1)(1, v5) (2, v5) (3, v5)

(1, v4) (2, v4) (3, v4)(1, v3) (2, v3) (3, v3)

(1, v2) (2, v2) (3, v2)

— {(2, v1)} ∪ (N((2, v1)) ∩ {(j, vi) : j ∈ {1, 3}, i ∈ {1, . . . , 5}}).

Figure 11.17: Construction 11.21, G(A)
18 , is 4-primitive, 7-regular, on 18 vertices.

(0, 6)

(0, 7)

(0, 8)

(0, 5) (0, 4)

(0, 3)

(0, 2)

(0, 1)
(0, 0)

(1, 6)

(1, 7)

(1, 8)

(1, 5) (1, 4)

(1, 3)

(1, 2)

(1, 1)
(1, 0)

— {(0, 1)} ∪ (N((0, 1)) ∩ {(1, i) : i ∈ Z9}).
— {(1, 0)} ∪ (N((1, 0)) ∩ {(0, i) : i ∈ Z9}).

Figure 11.18: Construction 11.22, G(B)
18 , is 4-primitive, 7-regular, on 18 vertices.

(1, 6)

(1, 5)

(1, 4) (1, 3)

(1, 2)

(1, 1)

(1, 0)

v1

(2, 6)

(2, 5)

(2, 4) (2, 3)

(2, 2)

(2, 1)

(2, 0)

v2

— {(1, 1)} ∪ (N((1, 1)) ∩ {(2, i) : i ∈ {0, 1, . . . , 6}}).
— {(2, 0)} ∪ (N((2, 0)) ∩ {(1, i) : i ∈ {0, 1, . . . , 6}}).

Figure 11.19: Construction 11.23, G(A)
16 , is 5-primitive and irregular, on 16 vertices.

266

are adjacent and dominate the ui’s. Also, vi dominates c2i, c2i+1, q2i, q2i+1 for each

i ∈ Z2. The vertices u0 and u2 are adjacent as well as u1 and u3. The vertices ui

dominate the vertices cj. Also, the vertex ui is adjacent to qj if and only if i 6= j.

The vertices c1, . . . , c4 form a cycle with edges cici+1. The vertices q1, . . . , q4 form a

clique. The vertices ci and qj are adjacent if and only if i 6= j.

Construction 11.26 (Figure 11.22). The graph G(B)
15 has vertices qi, c1,i, and c2,i for

each i ∈ Z5. The subgraph induced by vertices qi is a 5-clique. For each j ∈ {1, 2},

the subgraph induced by vertices cj,i for i ∈ Z5 is isomorphic to C5 with edges

cj,icj,i+1 between consecutive elements. For each i, i′ ∈ Z5, there is an edge between

c1,i and c2,i′ . For each i ∈ Z5, the vertex qi is adjacent to c1,i, c1,i−1, and c1,i+1 as well

as c2,2i, c2,2i−1, and c2,2i+2.

Construction 11.27 (Figure 11.23). The graph G(C)
16 is composed of three disjoint

induced subgraphs isomorphic to K4, K4, and C8. Let the vertices q0,0, . . . , q0,3, and

q1,0, . . . , q1,3 be the two copies of K4 and vertices c0, . . . , c7 be the C8, where the

non-edges are for consecutive elements (0, i) and (0, i + 1). For i ∈ {0, 1, 2, 3}, the

vertex q1,i is adjacent to c2i+d for all d ∈ {0, 1, 2, 3, 4, 5}. For i ∈ {0, 1, 2, 3}, the

vertex q2,i is adjacent to c2i+d for all d ∈ {0, 1, 3, 4, 5, 6}. For i ∈ Z4, the vertex q1,i is

adjacent to q2,i+1 and q2,i−1.

Acknowledgements

We thank David Collins, Joshua Cooper, Bill Kay, and Paul Wenger for sharing

their early observations on this problem. We also thank Jamie Radcliffe for con-

tributing to the averaging argument found in Claim 11.6.

267

x

u0

u1u2

v0

v1

v2v3

v4

v5

z0,0

z0,1

z0,2

z1,0

z1,1

z1,2

— {u0} ∪
(

N(u0) ∩ {zj,i : j ∈ {0, 1}, i ∈ Z3}
)
.

— {z0,0} ∪ (N(z0,0) ∩ {vi : i ∈ Z6}).
— {z1,0} ∪ (N(z1,0) ∩ {vi : i ∈ Z6}).

Figure 11.20: Construction 11.24, G(B)
16 , is 5-primitive, 9 regular, on 16 vertices.

x

v1

v0

u0

u1

u2

u3

c0 c1

c2c3

q0

q3 q2

q1

— {u3} ∪ (N(u3) ∩ {qi : i ∈ [4]}).
— {c1} ∪ (N(c1) ∩ {qi : i ∈ [4]}).

— {v1} ∪ (N(v1) ∩ {ci, qi : i ∈ [4]}).

Figure 11.21: Construction 11.25, G(A)
15 , is 6-primitive, 10 regular, on 15 vertices.

268

q0

q1

q2q3

q4

c1,0

c1,1

c1,2c1,3

c1,4

c2,0

c2,1

c2,2c2,3

c2,4

— {q0} ∪
(

N(q0) ∩ {cj,i : j ∈ {1, 2}, i ∈ Z5}
)
.

Figure 11.22: Construction 11.26, G(B)
15 , is 6-primitive, 10 regular, on 15 vertices.

c0

c1

c2

c3

c4

c5

c6

c7

q1,0 q1,1

q1,2q1,3

q2,0 q2,1

q2,2q2,3

— {q1,0} ∪ (N(q1,0) ∩ {ci : i ∈ Z8}).
— {q1,1} ∪ (N(q1,1) ∩ {q2,i : i ∈ Z4}).
— {q2,1} ∪ (N(q2,1) ∩ {ci : i ∈ Z8}).

Figure 11.23: Construction 11.27, G(C)
16 , is 6-primitive, 10 regular, on 16 vertices.

269

Part IV

Reachability Problems in

Space-Bounded Complexity

270

Chapter 12

Space-Bounded Computational

Complexity

This chapter will define some basics of complexity theory with a focus on space-

bounded computation. For a more detailed description, see [7, Chapters 1, 2, and

4]

We shall always consider decision problems, where we attempt to decide if a

word x ∈ {0, 1}∗ is contained in a specified language L ⊆ {0, 1}∗.

12.1 Turing Machines

The fundamental object of complexity theory is the Turing machine. These ma-

chines specify how computation works at a very low level, using a simple model.

A machine has a finite list of instructions (given as a set of states and a transition

function) and has access to three infinite tapes (containing cells to store bits) for

input, work, and output. The machine has three tape heads which allow it to view

exactly one cell of each tape, so it can read or write exactly one cell per step of

271

computation. In space-bounded complexity, we measure the efficiency of such a

machine by the number of cells that are used on the work tape; we do not count

the input cells or output cells against the machine. To avoid exploitation of this

fact, we specify the input as read-only (no cells can be written) and the output

as write-once-only (every cell can be written exactly once and then never visited

again). Further, the tape head(s) can only move locally: at every step the head can

move left, right, or stay in place.

The formal definition follows.

Definition 12.1. A Turing machine is a tuple M = (Γ, Q, δ) where

1. The tape alphabet Γ is a finite alphabet of characters that can be stored on a

tape.

2. The state set Q is a finite set of states. Four special states qstart, qaccept, qreject,

and qhalt have particular significance.

3. The transition function δ is a function

δ : Q× Γ2 → Q× Γ2 × {Left, Right, Stay}2

which defines the action of the machine at a given step.

Given an input x ∈ {0, 1}∗, the bits of x are placed on the input tape and all

other cells are blank. The current state is set to qstart.

At every step of computation, the current state q ∈ Q, current input cell xi ∈

{0, 1,t} at the input tape head, and current work cell wj ∈ {0, 1,t} at the work

tape head are given as input to the transition function δ. The transition functions

272

outputs a new state q′ ∈ Q, a value w′j ∈ {0, 1} to write to the work tape, a value

yk ∈ {0, 1,t} to write to the output tape, and two directions in {Left, Right, Stay}.

In this time step:

1. The state is set to q′.

2. The input tape head moves according to the first direction.

3. The value w′j is written to the current work cell and the work tape head moves

based on the second direction.

4. If yk 6= t, then yj is written to the output tape and the tape head is advanced

one position.

If the state q ever becomes qaccept, qreject, or qhalt, then the machine stops. These

states are called halting states. If the state is qaccept, then M accepts the input; if it is

qreject, then M rejects the input. The state qhalt can be interpreted as “I don’t know."

A Turing machine M decides a language L ⊆ {0, 1}∗ if M halts on every input

and M accepts x if and only if x ∈ L. Conversely, for a machine M which halts on

every input, the language LM consists exactly of the words x where M(x) = 1.

A nondeterministic Turing machine also has access to a fourth tape which is filled

with a certificate u ∈ {0, 1}∗. This certificate tape is read-only and can only advance

in the right direction. However, the certificate can be arbitrarily long and the bits

of u can be used in the transition function to define the behavior of the machine.

Typically, a nondeterministic machine will accept an input x if there exists at least

one assignment of bits to the certificate so that the machine halts at the qaccept state.

A Turing machine halts on an input if it reaches a halting state in a finite number

of steps.

273

12.2 Complexity Classes

The main thrust of computational complexity theory is to determine exactly how

difficult it is to compute the answers to given problems. While Turing machines

answered the answer to what computation is, we currently lack any strong capabil-

ity to prove lower bounds on some of our most important problems. However, this

did not stop the community from defining classes of problems which share similar

measures of efficiency.

A complexity class is a family of languages (or functions) defined in terms of the

efficiency of Turing machines that decide (or compute) them. In this sense, the

complexity classes are well-defined, but it is sometimes difficult to determine rela-

tions between complexity classes, especially when different types of computation

(such as deterministic, nondeterministic, or randomized) are used to define the

classes.

12.2.1 Time-Bounded Complexity Classes

An important resource is time. Some naïve algorithms take exponential time and

even on relatively small instances would take longer than the history of the uni-

verse to finish.

In order to avoid some complications, we will restrict our time bounds to a

special class of growth functions.

Definition 12.2. A function T : N → N is time-computable if T(n) ≥ n always

and there is a Turing machine M so that on an input x, M(x) computes T(|x|) in

O(T(|x|)) steps.

Time-computable functions include n, n log n, nc, and 2n. Non-time-computable

274

functions include log n and
√

n, for trivial reasons: there is not enough time to read

the entire input. The busy beaver function BB(n) is the largest number output by a

Turing machine that can be described in n bits. This function is not computable, so

it is not time-computable.

Definition 12.3 (Deterministic Time). For a time-computable function T(n), the

class DTIME[T(n)] consists of languages which are decidable by a deterministic

Turing machine M where M(x) terminates within c · T(|x|) steps for some constant

c > 0.

Definition 12.4 (Nondeterministic Time). For a time-computable function T(n),

the class NTIME[T(n)] consists of languages which are decidable by non-deterministic

Turing machines M where M(x) terminates within cT(|x|) steps for some constant

c > 0.

Definition 12.5. The following classes are some important classes for time-bounded

complexity:

Polynomial Time : P = ∪p≥1DTIME[np].

Non-deterministic Polynomial Time : NP = ∪p≥1NTIME[np].

Exponential Time : EXP = ∪p≥1DTIME[2np
].

Non-deterministic Exponential Time : NEXP = ∪p≥1NTIME[2np
].

12.2.2 Space-Bounded Complexity Classes

For space-bounded complexity, we focus on the work tape as an analogue of com-

puter memory. In order to deal with sub-linear space bounds, we adjust the defi-

nition of a Turing machine to include three tapes:

1. The input tape is read-only (the machine cannot write to these cells).

275

2. The work tape is read/write (the machine can read and write to these cells).

3. The output tape is write-only-once (the machine writes to each cell exactly one,

in order, and cannot read from these cells).

This allows the number of cells used in the work tape to be measured as a

resource.

Definition 12.6. A function s : N → N is space-computable if there is a Turing

machine M so that on an input x, M(x) computes s(|x|) using at most O(s(|x|))

cells on the work tape.

The smallest space-computable function is log n, since at least Ω(log n) bits (of

any finite alphabet) are required to store a representation of n = |x|.

Definition 12.7 (Deterministic Space). For a space-computable function s(n), the

class SPACE[s(n)] consists of languages which are decidable by a deterministic Tur-

ing machine M where M(x) uses at most c · s(|x|) positions in the work tape, for

some constant c > 0.

Definition 12.8 (Nondeterministic Space). For a space-computable function s(n),

the class NSPACE[s(n)] consists of languages which are decidable by a non-deterministic

Turing machine M where M(x) uses at most c · s(|x|) positions in the work tape,

for some constant c > 0.

Definition 12.9. The following classes are important for space-bounded complex-

ity:

Log-space : L = SPACE[log n].

Non-deterministic Log-space : NL = NSPACE[log n].

Polynomial Space : PSPACE = ∪p≥1SPACE[np].

276

12.2.3 Space-bounded Reductions

An important tool in complexity theory is the reduction. A reduction maps in-

stances of one problem into instances of another.

Definition 12.10 (Space-bounded Reduction). Let s(n) be a space-computable func-

tion. A language L1 is s(n)-space reducible to a language L2 if there exists a deter-

ministic s(n)-space machine M so that for all inputs x, x is in L1 if and only if M(x)

is in L2.

Reductions play an important role in classifying the difficulty of solving a prob-

lem. Since we lack strong lower bounds on the efficiency of Turing machines, the

best we can do right now is compare the difficulty (or efficiency) of problems using

reductions.

Proposition 12.11. Let s(n) and r(n) be space-computable functions. If a language L1

is s(n)-space reducible to a language L2, and L2 is solvable by an r(n)-space determin-

istic (nondeterministic) Turing machine, then L1 can be decided by an r(2O(s(n)))-space

deterministic (nondeterministic) Turing machine.

Sketch. Let M be an s(n)-space deterministic Turing machine so that x ∈ L1 if and

only if M(x) ∈ L2. Let N be an r(n)-space deterministic (nondeterministic, ran-

dom) Turing machine that decides L2. There exists a deterministic (nondetermin-

istic, random) Turing machine P which decides L1 by simulating N(M(x)). This

simulation uses the operation of N without storing M(x) by querying the ith bit

of M(x) whenever the input tape is read at the ith position. (Since r(n) ≥ log(n),

the index i can be stored.) Segment s(n) space for the queries to M(x), noting

that M(x) can output at most 2O(s(n)) bits, and segment r(2O(s(n))) space for the

simulation of N on M(x).

277

Corollary 12.12. Let s(n) be a space-computable function. If L1 is log-space reducible to

L2 and L2 is decidable in deterministic (nondeterministic, random) s(n)-space, then L1 is

decidable in deterministic (nondeterministic, random) s(poly(n))-space.

12.2.4 Configurations

An important tool that is used frequently in space-bounded complexity is the con-

figuration graph.

Definition 12.13 (Configurations). For a Turing machine M = (Γ, Q, δ) which re-

quires at most s(n) work cells, a configuration is a tuple (q, ki, kw, ko, D) where:

1. q ∈ Q is a state of the machine,

2. ki, kw, and ko (all in N) are the positions of the tape heads for the input, work,

and output tapes, respectively.

3. D ∈ Γ∗ is the word describing the work cells which are in use.

Note that |D| ≤ s(n) and so a configuration can be encoded in O(s(n)) bits.

These configurations represent the full state of the machine at a given time step.

From this information, we can completely reconstruct the rest of the execution of

the machine. In fact, we can create a graph from all of the configurations by placing

an edge between configurations that appear in consecutive time steps.

Definition 12.14 (Configuration Graph). Let M = (Γ, Q, δ) be a Turing machine

which requires at most s(n) work cells and let x ∈ {0, 1}∗ be an input. The configu-

ration graph of M on x is the directed graph GM,x where the vertices are all config-

urations (q, ki, kw, ko, D) where ki, kw, ko, |D| ≤ s(|x|) and the transition function δ

278

defines the edges: if the transition function allows a modification of one configu-

ration to another, place an edge in that direction.

A deterministic machine results in a graph where every non-halting configura-

tion has out-degree one. Note that in a nondeterministic machine, there may exist

vertices with large out-degree. Any nondeterministic machine can be modified

to track the current time step (in binary) which makes the configuration graph be

acyclic. Thus, every configuration graph is a directed acyclic graph (DAG).

Also, there are at most 2O(s(n)) vertices in a configuration graph for a machine

using O(s(n)) space for an input of size n.

Finally, it is not difficult (but tedious) to show that for any machine M that

requires O(s(n)) space, there is a deterministic machine M̂ that on input x outputs

the configuration graph for M on x using at most O(s(n)) space. This is a crucial

fact that leads to many natural complete problems.

Proposition 12.15. Directed reachability is NL-complete.

This proposition can be derived from the following facts:

1. A nondeterministic machine using O(log n) space has a configuration graph

of order polynomial in n.

2. The machine accepts a given input if and only if there is a directed path from

the initial configuration to an accepting configuration.

3. For any nondeterministic log-space machine M, there is a deterministic log-

space machine that outputs the configuration graph for M on the input x.

This provides a log-space reduction from any language decided by an NL-

machine to directed reachability (note that the graph has order nc for some con-

stant c depending on the language).

279

Also, by nondeterministically selecting the next vertex in a u→ v path, directed

reachability is in NL.

Thus, L = NL if and only if there exists a log-space machine to solve directed

reachability.

12.3 Relations

The following relations are not difficult to prove:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP

1. L ⊆ NL : L = SPACE[log n] ⊆ NSPACE[log n] = NL.

2. NL ⊆ P : Directed reachability can be solved in DTIME[n] using breadth-first

search.

3. P ⊆ NP : For all c ≥ 1, DTIME[nc] ⊆ NTIME[nc].

4. NP ⊆ PSPACE : Every certificate of nondeterministic bits contains a polyno-

mial number of bits. These certificates can be checked in order using polyno-

mial space.

5. PSPACE ⊆ EXP : For any c ≥ 1, the configuration graph for an nc-space ma-

chine has 2O(nc) vertices and reachability can be determined in DTIME[2O(nc)].

12.4 The Big Results

Below are three of the most important results in the realm of space-bounded com-

plexity.

Savitch’s Theorem relates nondeterministic space with deterministic space.

280

Theorem 12.16 (Savitch’s Theorem [117]). For all space-computable functions s(n),

NSPACE[s(n)] ⊆ SPACE[(s(n))2].

Corollary 12.17. PSPACE = NPSPACE.

The Immerman-Szelepscényi Theorem shows that nondeterministic space is

closed under complement. That is, if L can be computed in NSPACE[s(n)], then

L also can. Such a collapse is not known to exist for time complexity (nor is such a

collapse expected).

Theorem 12.18 (Immerman-Szelepcsényi Theorem [67, 129]). For all space-computable

functions s(n), NSPACE[s(n)] = coNSPACE[s(n)].

Finally, a more recent result shows that undirected reachability can be com-

puted in log-space. This collapses two complexity classes, L and SL, where SL is

the set of languages decidable by a nondeterministic log-space machine where two

configurations C1, C2 can transition C1 → C2 if and only if the reverse transition

C2 → C1 is also allowed.

Theorem 12.19 (Reingold’s Theorem [109]). Undirected reachability can be decided in

log-space: L = SL.

Reingold’s Theorem has opened a new line of research into finding which classes

of directed reachability can be computed in deterministic log-space, now that undi-

rected reachability can be used as a subroutine. This is particularly useful when

determining the components of subgraphs defined by certain properties on the

edges.

281

Chapter 13

ReachUL = ReachFewL

A nondeterministic machine is unambiguous if for every input there is at most one

computation path leading to an accepting configuration. UL is the class of prob-

lems that are decided by unambiguous log-space nondeterministic machines. Re-

cent progress indicates that this unambiguous version of nondeterminism is pow-

erful enough to capture general nondeterminism in the log-space setting [4, 111,

20, 135].

This chapter considers a more restricted version of log-space unambiguity. A

nondeterministic machine is reach-unambiguous if for any input and for any config-

uration C, there is at most one path from the start configuration to C. (The prefix

‘reach’ in the term indicates that the property should hold for all configurations

reachable from the start configuration). ReachUL is the class of languages that are

decided by log-space bounded, reach-unambiguous machines.

ReachUL is a natural and interesting class. Even though the definition of ReachUL

is a “syntactic” one, unlike most of the syntactic classes ReachUL has a complete

problem and is closed under complement [80]. In addition, ReachUL is charac-

terized by a directed reachability problem that has a deterministic algorithm that

282

beats Savitch’s log2 n space bound [3].

It is natural to consider a relaxation of unambiguity where we allow a lim-

ited number of accepting computations as opposed to a unique one. FewL is the

class of problems decided by nondeterministic machines with the condition that

on any input there are at most a polynomial number of accepting computations.

Thus FewL generalizes the class UL in a natural way. The natural extension of the

the ReachUL is the class ReachFewL – the class of problems decided by nondeter-

ministic machines that has at most a polynomial number of paths from the start

configurations to any configuration. Various notions of unambiguity and fewness

continue to be of interest to researchers [27, 25, 6, 26, 1, 106].

In this chapter we show that ReachFewL is same as ReachUL. That is, fewness

does not add power to reach-unambiguity.

Theorem 13.1 (Main Theorem). ReachFewL = ReachUL

This theorem improves a recent upper bound that ReachFewL ⊆ UL shown in

[106].

We combine several existing techniques to prove our results. Section 13.1 de-

scribes a multi-stage graph transformation which is used in Section 13.2 to prove

the collapse.

13.1 Necessary Lemmas

We begin by defining graph properties which characterize the configuration graphs

of these unambiguous computations.

Definition 13.2. Let G be a graph and s, t be vertices of G. The graph G is path-

unique with respect to s and t if there is at most one path from s to t in G. G is

283

reach-unique with respect to s if for all vertices x ∈ V(G), there is at most one path

from u to x.

These graphical definitions correspond to the necessary properties of the con-

figuration graphs for UL and ReachUL machines, respectively.

13.1.1 Oracle Machines

We begin by showing that it suffices to give a log-space algorithm with ReachUL

queries in order to give containment in ReachUL.

Lemma 13.3. LReachUL = ReachUL

Proof. The containment ReachUL ⊆ LReachUL is immediate. We proceed by describ-

ing a log-space reduction from any language in LReachUL to a reachability problem

on a reach-unique graph, by expanding the configuration graphs of the log-space

machine and the oracle queries into a single configuration graph.

Let M be a log-space Turing machine with access to a ReachUL oracle O. Since

ReachUL is closed under complement, we can assume that the oracle O has three

types of terminating configurations: accept, reject, and halt, where there are unique

accept and reject configurations. Moreover, the configuration graph for O on input

y is reach-unique with respect to the initial configuration.

Let Cx be the set of configurations for the machine M on input x. Each con-

figuration C ∈ Cx requires O(log |x|) bits to describe. If this configuration makes

a query to the oracle O, then there is an implicit input y which is log-space com-

putable given C. This gives a set Dy of configurations of the oracle O on input

y.

Let GM,O,x be the expanded configuration graph on vertices of two types. The

first type of vertex is a configuration C in Cx. The second type of vertex is a config-

284

uration pair (C, D), where C is a query-type configuration of M in Cx with implicit

input y and D is a configuration of O in Dy. This set of vertices is log-space enu-

merable.

Edges correspond to the four types of transitions.

The first type transitions between configurations C1, C2 in Cx during the execu-

tion of the machine M without querying O. Since this computation is deterministic,

there is a unique outgoing edge at C1.

The second type transitions from a configuration C ∈ Cx of the machine M

which queries O to the initial configuration D0 ∈ Dy of O on the implicit input y.

This gives a single edge leaving C, given by C → (C, D0).

The third type is given by a query configuration C ∈ Cx and a transition be-

tween configurations D1, D2 ∈ Dy of the machine O within a query from M at the

configuration C. This transition is represented by an edge from (C, D1) to (C, D2).

Since O is a non-deterministic machine, there could be several edges from (C, D1)

to other configurations (C, D′) for D′ ∈ Dy.

The fourth type is given by a query configuration C ∈ Cx of M and an accepting

or rejecting configuration D ∈ Dy of O. Depending on the accepting or rejecting

status of D, the machine M responds to the query by transitioning to a configura-

tion C′ ∈ Cx. This is represented by an edge (C, D) to C′.

Claim 13.4. This configuration graph is reach-unique with respect to the initial configu-

ration C0 ∈ Cx.

Since O is a ReachUL oracle, for each query-type configuration C ∈ Cx, the

subgraph GO
C induced by the nodes (C, D) for all D ∈ Dy is reach-unique with

respect to (C, D0) where D0 is the initial configuration of O on y. If D1 is the

accepting configuration and D2 is the rejecting configuration, there is exactly one

285

path from (C, D0) to either (C, D1) or (C, D2) but not both.

Suppose there is a vertex v in GM,O,x with two paths from the initial configura-

tion C0 to v. These paths must enter at least one oracle query, since the machine M

is otherwise deterministic and would only give one path. Also, these paths must

leave at least one oracle query, since a single query cannot give multiple paths

due to the reach-uniqueness of the graphs GO
C . However, only one of the accept-

ing/rejecting configurations of GO
C is reachable from the initial configuration of

GO
C . Hence, each path from C0 to v must use the same sub-paths within every GO

C

visited. This implies that these two paths are the same. Therefore, the full config-

uration graph is guaranteed to be reach-unique.

Reachability in this graph can be solved in ReachUL, showing LReachUL ⊆ ReachUL.

13.1.2 Converting from Few Graphs to Distance Isolated Graphs

A crucial lemma allows a conversion from a graph with polynomially-bounded

paths to a distance isolated graph.

Definition 13.5. G is distance isolated with respect to a vertex u if for every vertex

v ∈ V(G) and number d ∈ {1, . . . , n} there is at most one path of length d from u

to v.

We use a hashing result (Theorem 13.6) due to Fredman, Komlós and Szemerédi

to make the given graph distance isolated.

Theorem 13.6 (Fredman, Komlós and Szemerédi [45]). Let c be a constant and S be a

set of n-bit integers with |S| ≤ nc. Then there is a c′ and a c′ log n-bit prime number p so

that for any x 6= y ∈ S x 6≡ y (mod p).

286

The next lemma follows easily from Theorem 13.6.

Lemma 13.7. Let G be a graph with edges E(G) = {e1, e2, . . . , e`}. If G has at most nk

paths from u to any vertex v ∈ V(G), then there is a prime p ≤ nk′ , for some constant k′,

such that the weight function wp : E(G) → {1, . . . , p} given by wp(ei) = 2i (mod p)

defines a weighted graph Gwp which is distance isolated with respect to u.

The graph Gwp in Lemma 13.7 can be converted to an unweighted, distance

isolated graph by replacing an edge having weight ` by a path of length `.

13.1.3 Converting Distance Isolated Graphs to Unique Graphs

Given a distance isolated graph, we can form a reach-unique graph by applying a

layering transformation.

Definition 13.8. Let G be a directed graph on n vertices. The layered graph L(G)

induced by G is the graph on vertices V(G)× {0, 1, . . . , n} and for all edges xy G

and i ∈ {0, 1, . . . , n− 1}, the edge (x, i)→ (y, i + 1) is in L(G).

Lemma 13.9. If G is acyclic and distance isolated with respect to a vertex u, then L(G) is

reach-unique with respect to (u, 0), and there is a path of length d from u to v in G if and

only if there is a path from (u, 0) to (v, d) in L(G).

Proof. Since all edges in L(G) pass between consecutive layers, paths of length d

from u to v in G are in bijective correspondence with paths from (u, 0) to (v, d) in

L(G). Since there exists at most one path of each length from u to any vertex v in

G, there exists at most one path from (u, 0) to any other vertex (v, d) in L(G).

287

13.2 ReachFewL = ReachUL

We have sufficient tools to prove our main theorem.

Theorem 13.10. ReachFewL ⊆ ReachUL.

Proof. Let L be a language in ReachFewL. There is a non-deterministic log-space

machine M that decides L and a constant k so that the configuration graph G of

M on an input x has at most nk paths from the initial configuration u to any other

configuration. We will produce a ReachUL algorithm for solving the corresponding

reachability problem on this graph from the initial configuration u to the accepting

configuration v.

The algorithm ReachFewSearch(G, u, v) given in Algorithm 13.1 is a log-space

algorithm with queries to two ReachUL-algorithms: the algorithm IsReachUnique(H)

decides if H is a reach-unique graph, and the algorithm ReachUnique(H, s, t) de-

cides if there is a path from s to t in a reach-unique graph H.

Algorithm 13.1 ReachFewSearch(G, u, v)
Input: G has at most nk paths between any pair of vertices.
Output: Accepts if and only if there is a path from u to v in G.

for all primes p ∈ {1, . . . , nk′} do
Define wp(ei) = 2i (mod p).
Construct Gwp .
Construct L(Gwp).
if IsReachUnique(L(Gwp)) then

for each d ∈ {1, . . . , n(Gwp)} do
if ReachUnique(L(Gwp), (u, 0), (v, d)) then

return True
end if

end for
return False

end if
end for
return False

288

By Lemma 13.7, there exists a prime p ∈ {1, . . . , nk′} so that Gwp is distance

isolated. If Gwp is distance isolated, then L(Gwp) is reach-unique by Lemma 13.9.

The ReachUL-algorithm IsReachUnique can detect if L(Gwp) is in fact reach-unique.

Once it is determined that L(Gwp) is reach-unique, the ReachUL-algorithm ReachU-

nique can determine if there is a path from (u, 0) to (v, d) for each length d. If there

is a path from u to v in G, there exists some distance d ∈ {1, . . . , n(Gwp)} so that

there is a path from (u, 0) to (v, d) in L(Gwp)

This algorithm is a log-space algorithm with ReachUL queries, giving the inclu-

sion ReachFewL ⊆ LReachUL, which equals ReachUL by Lemma 13.3.

The complexity class ReachLFew defined by log-space machines with access to a

ReachFewL oracle has been investigated before [106]. This class also collapses into

ReachUL, since the ReachFewL oracle can be replaced by an ReachUL oracle, and

LReachUL = ReachUL.

Corollary 13.11. ReachLFew = ReachUL.

13.3 Discussion

A natural extension of our results would be to show that FewL = UL. Previous

work of Reinhardt and Allender [111] provides a UL algorithm for graphs where

there is a unique path of minimum length from the source to any other vertex. Given

the configuration graph G of a FewL computation, there exists a prime p ≤ nk′ that

makes Gwp distance isolated with respect to the initial configuration and terminat-

ing configurations, which makes Gwp have a unique minimum length path with

respect to this pair of configurations. The problem is that the UL algorithm for

reachability requires the graph to have a unique minimum length path from the

289

source to any other vertex. If this reach-type restriction could be replaced with a

path-type restriction, then the collapse FewL = UL would follow. This would be a

step towards solving the NL = UL problem.

290

Chapter 14

Reachability in Surface-Embedded

Acyclic Graphs

Graph reachability problems are central to space-bounded algorithms. Different

versions of this problem characterize several important space complexity classes.

The problem of deciding whether there is a path from a node u to v in a directed

graph is the canonical complete problem for non-deterministic log-space (NL). A

recent breakthrough result of Reingold [109] provides a deterministic log-space al-

gorithm for reachability in undirected graphs. It is also known that some restricted

promise versions of the directed reachability problem characterize randomized

log-space computations (RL) [110]. We aim to improve upper bounds on the space

required to solve the reachability problem in surface-embedded digraphs.

Prior Results

Savitch’s O(log2 n) space bound for the directed reachability problem [117], Saks

and Zhou’s O(log3/2 n) bound for reachability problems characterizing RL compu-

tations [116], and Reingold’s log-space algorithm for the undirected reachability

291

problem [109] are the three most significant results in this topic. Clearly, designing

an algorithm for general reachability problem that beats Savitch’s bound is one of

the most important open questions in this area. While this appears to be a difficult

problem, investigating classes of directed graphs for which we can design space

efficient algorithms is an important research direction. Recently, there has been

progress reported along this theme. Jakoby, Liśkiewicz, and Reischuk [68] and

Jakoby and Tantau [69] show that various reachability and optimization questions

for series-parallel graphs admit deterministic log-space algorithms. Series-parallel

graphs are a very restricted subclass of planar DAGs. In particular, such graphs

have a single source and a single sink. Allender, Barrington, Chakraborty, Datta,

and Roy [2] extended the result of Jakoby et al. to show that the reachability

problem for Single-source Multiple-sink Planar DAGs (SMPDs) can be decided in

log-space. Building on this work, in [126], the authors show reachability can be

decided in log-space for planar DAGs with O(log n) sources. Theorem 14.1 below

is implicit in [126].

Theorem 14.1 (Stolee, Bourke, Vinodchandran [126]). Let G(m) be the set of planar

DAGs with at most m = m(n) sources. The reachability problem over G(m) can be

solved by a log-space machine using a non-deterministic certificate with O(m) bits. This

yields deterministic space bound of either (1) O(log n + m) or (2) O(log n · log m) for

reachability over G(m).

The O(log n + m) space bound is by a brute-force search over all certificates

of length O(m). Setting m = O(log n) gives a log-space algorithm. The O(log n ·

log m) bound is obtained by first converting the nondeterministic algorithm to a

layered graph with p oly(n) vertices and m layers and then applying Savitch’s al-

goritm on this layered graph. The second bound leads to a deterministic algorithm

292

that beats Savitch’s bound for reachability over DAGS with 2o(log n) sources. How-

ever, if we are aiming for deterministic log-space algorithms, the above theorem

could not handle asymptotically more than log n sources. In this chapter we extend

the number of sources to 2O(
√

log n) while maintaining log-space computability. We

also extend our results to graphs embedded on higher genus surfaces. In addition,

techniques of this chapter also leads to new results on simultaneous time-space

bounds for reachability which are not implied by [126].

Investigating tree-width restricted graphs has also resulted in new space-effic-

ient algorithms. Elberfeld, Jakoby, and Tantau present a log-space algorithm for

reachability (and other problems) over graphs with constant tree-width [39]. An-

other interesting class of reachability problems for which we know an algorithm

that beats Savitch’s bound is the class of reach-unique problems – digraphs G with

vertex pair u, v where there is at most one path from u to any other vertex. Al-

lender and Lange showed that reachability in reach-unique graphs can be solved

in deterministic O(log2 n/ log log n) space [3]. Recently, reach-unique reachability

algorithms were shown to be strong enough to also compute reach-poly reachabil-

ity problems, where there are at most a polynomial number of paths from u to any

other vertex [48].

Designing algorithms for reachability with simultaneous time and space bound

is another important direction that has been of considerable interest in the past.

Since a depth first search can be implemented in linear time and O(n) space, the

goal here is to improve the space bound while maintaining a polynomial run-

ning time. The most significant result here is Nisan’s O(log2 n) space, nO(1) time

bound for RL [99]. The best upper bound for general directed reachability is the

O(n/2
√

log n) space, nO(1) time algorithm due to Barnes, Buss, Ruzzo and Schieber

[12].

293

Our Results

We consider the reachability problem over a large class of DAGs embedded on

surfaces. Since the graph is acyclic, there exist vertices with no incoming edge,

called sources. Define n = n(G) to be the number of vertices in the input graph.

Let G(m, g) denote the class of DAGs with at most m = m(n) source vertices em-

bedded on a surface (orientable or non-orientable) of genus at most g = g(n). Our

main technical contribution is the following log-space reduction that compresses

an instance of reachability for such surface-embedded DAGs.

Theorem 14.2. There is a log-space reduction that given an instance 〈G, u, v〉 where G ∈

G(m, g) and u, v vertices of G, outputs an instance 〈G′, u′, v′〉 where G is a directed graph,

u′ and v′ are vertices of G′, and

(a) there is a path from u to v in G if and only if there is a path from u′ to v′ in G′,

(b) G′ has O(m + g) vertices.

By a direct application of Savitch’s theorem on the reduced instance we get the

following result.

Theorem 14.3. The reachability problem for graphs in G(m, g) can be decided in deter-

ministic O(log n + log2(m + g)) space.

Compare Theorem 14.3 to Theorem 14.1 to see that the space bound has im-

proved from O(log n + m) or O(log n · log m) to O(log n + log2 m). By setting

m = g = 2O(
√

log n) we get a deterministic log-space algorithm for reachability

in G(2O(
√

log n), 2O(
√

log n)).

Corollary 14.4. The reachability problem for directed acyclic graphs with 2O(
√

log n) sources

embedded on surfaces of genus 2O(
√

log n) can be decided in deterministic logarithmic

space.

294

A more relaxed setting of parameters leads to deterministic algorithms that

asymptotically beat the Savitch’s bound of O(log2 n). By setting m and g to be

no(1) we get the following.

Corollary 14.5. The reachability problem for directed acyclic graphs embedded on surfaces

with sub-polynomial genus and with sub-polynomial number of sources can be decided in

deterministic space o(log2 n).

Combining our reduction with a simple depth-first search gives us better si-

multaneous time-space bound for reachability over a large class of graphs than

known before.

Theorem 14.6. The reachability problem for graphs in G(m, g) can be decided in polyno-

mial time using O(log n + m + g) space.

Note that Theorem 14.6 has a space bound which matches to O(log n + m) space

bound of Theorem 14.1, except it guarantees polynomial time, where the previous

bound gave 2O(m) poly(n) running time. In particular, for any ε < 1, we get a

polynomial time algorithm for reachability over graphs in G(O(nε), O(nε)) that

uses O(nε) space. This beats the Barnes et al. upper bound of polynomial time

and O(n/2
√

log n) space for this class of graphs.

Corollary 14.7. For any ε with 0 < ε < 1, the reachability problem for graphs in

G(O(nε), O(nε)) can be decided in polynomial time using O(nε) space.

We note that the upper bound on space given in Theorem 14.6 can be slightly

improved to O
(
(m + g)2−

√
log(m+g)

)
by using Barnes et al. algorithm instead of

depth-first search, which will give a o(nε) space bound in the above corollary.

Theorem 14.8. The reachability problem for graphs in G(m, g) can be decided in deter-

ministic polynomial time using O
(

log n + m+g

2
√

log(m+g)

)
space.

295

14.0.1 Outline

Theorem 14.2 is proven in several parts. We begin in Section 14.1 by reviewing

some concepts of topological embeddings including log-space algorithms on em-

bedded graphs. In Section 14.2, we present a simple structural decomposition

called the forest decomposition of the given directed acyclic graph. Based on this

decomposition, we classify the edges as local and global. We present log-space al-

gorithms of Allender, Barrington, Chakraborty, Datta, and Roy [2] to decide reach-

ability using local edges. In order to control how the global edges interact, we

define the notion of topological equivalence among global edges in Section 14.3.

We show that the number of possible equivalence classes is bounded by O(m + g).

Then, Section 14.4 describes a finite list of patterns that characterize how paths use

edges in these equivalence classes. We also analyze the structure of these patterns.

In particular, for each pattern type we identify a pair of log-space computable

edges in the corresponding equivalence class that has certain canonical proper-

ties. In Section 14.5, we describe a graph on O(m + g) vertices called the pattern

graph whose vertices are described by patterns on equivalence classes. The edges

in the pattern graph are defined by a very restricted reachability condition between

equivalence classes. We finally show that this pattern graph is computable in log-

space and preserves reachability between a given pair of vertices.

Before we begin, we note that throughout this chapter certain known log-space

primitives are frequently used as subroutines without explicit reference to them.

In particular, Reingold’s log-space algorithm for undirected reachability is often

used, for example to identify connected components in certain undirected graphs.

296

14.0.2 Notation

We mainly deal with directed graphs. A directed edge e = xy has the direction

from x to y and we call x the tail denoted by Tail(e), and y the head denoted by

Head(e).

We assume that the given graph is acyclic. Lemma 14.9 gives a technique

for converting a source-bounded reachability algorithm on graphs promised to

be acyclic into a cycle-detection algorithm without asymptotically increasing the

space requirement.

Lemma 14.9. Let s(n, m, g) = Ω(log n). If there exists an O(s(n, m, g))-space bounded

algorithm for testing uv-reachability over graphs in G(m, g) then there exists an O(s(n, m, g))-

space bounded algorithm to test if a graph is acyclic, given that it has at most m sources

and is embedded in a surface of genus at most g.

Proof. Let A(G, u, v) be the algorithm for testing uv-reachability on G ∈ G(m, g).

Fix an incoming edge at each non-source vertex, making a set F ⊆ E(G). By taking

reverse walks from each vertex, it can be verified that F has no cycles.

Order the edges E(G) as {e1, . . . , e|E(G)|}. For each i ∈ {0, 1, . . . , |E(G)|}, let

Gi be the subgraph of G where an edge ej is present in Gi if ej ∈ F or j ≤ i.

Iterate through all such i and test if A(Gi, Head(ei+1), Tail(ei+1)) ever returns with

success. If any returns True, then there is a cycle including the edge ei+1. Note that

A gives the correct response, since G0 was cycle free and by iteration, Gi is cycle

free. Each Gi is acyclic for i ∈ {1, . . . , |E(G)|} if and only if G is acyclic and all

queries A(Gi, Head(ei+1), Tail(ei+1)) return False.

297

14.1 Topological Embeddings and Algorithms

We assume that the input graph G is embedded on a surface S where every face

is homeomorphic to an open disk. Such embeddings are called 2-cell embeddings.

We assume that such an embedding is presented as a combinatorial embedding

where for each vertex v the circular ordering of the edges incident to v is specified.

In the case of a non-orientable surface, the signature of an edge is also given, speci-

fying if the orientation of the rotation switches across this edge. Since computing or

approximating a low-genus embedding of a non-planar graph is an NP-complete

problem [136, 28], we require the embedding to be given as part of the input and

we consider reachability in G(m, g) to be a promise problem. In the case of genus

zero, we can compute a planar embedding in log-space and the promise condition

can be removed.

Let G be a graph with n vertices and e edges embedded on a surface S with

f faces, then by the well known Euler’s Formula we have n − e + f = χS, where

χS is the Euler characteristic of the surface S. The number of faces in a graph is

log-space computable from a combinatorial embedding (for a proof, see [77]), so

χS is also computable in log-space. The genus gS of the surface S is given by the

equation χS = 2− 2gS for orientable surfaces and χS = 2− gS for non-orientable

surfaces.

Let C be a simple closed curve on S given by a cycle in the underlying undi-

rected graph of G. C is called surface separating if the removal of C disconnects

S. A surface separating curve C is called contractible if removal of the nodes in

C disconnects G where at least one of the connected components has an induced

embedding homeomorphic to a disc.

In order to perform log-space algorithms on curves in the graph, we must be

298

Figure 14.1: Splitting G at a curve C.

able to represent these curves in log-space. A curve C is log-space walkable if there

is a log-space algorithm which outputs the edges of C in order. Examples of such

curves are given in the following section. Given a log-space walkable curve C, it is

possible to detect the type (separating, contractible, or neither) of C in log-space.

First, note that if C is not orientable (i.e. there are an odd number of negatively-

signed edges in C) then C cannot be separating or contractible. By first checking

the parity of such edges, we can assume that C is orientable.

Given an orientable curve C = x1x2 . . . xk (indices taken modulo k), we can cre-

ate (in log-space) an auxilliary graph GC where each vertex xi is copied to two ver-

tices xi,1, xi,2 with edges xixi+1 copied to two edges xi,1xi+1,1 and xi,2xi+1,2. How-

ever, an edge from a vertex y in V(G) \ C to a vertex xi in C maps to one of two

edges:

1. yxi maps to yxi,1 if yxi appears between xi−1xi and xixi+1 in the clockwise

order about xi.

2. yxi maps to yxi,1 if yxi appears between xixi+1 and xi−1xi in the clockwise

order about xi.

There is a natural combinatorial embedding of GC induced from the embedding of

G by using the same cyclic relations for vertices y ∈ V(G) \ C and for split vertices

299

xi,1 and xi,2, use the orientation of xi but skip the edges which are not incident

to the new vertex. See Figure 14.1 for an example of such a split. The following

properties are simple to prove:

1. C is separable if and only if GC is disconnected. In this case, GC has two

components.

2. C is contractible if and only if GC is disconnected and at least one of the

components is embedded with characteristic zero.

Moreover, using Reingold’s undirected reachability algorithm we can detect that C

is separable. Given a vertex y /∈ C, we can also detect which connected component

of GC contains y. We shall exploit both of these properties in the following two

sections as we partition the edge set using topological information.

14.2 Forest Decomposition

A simple structural decomposition, called a f orest decomposition, of a directed

acyclic graph forms the basis of our algorithm. This forest decomposition has been

utilized in previous works [2, 126].

Let G be a directed acyclic graph and let u, v be two vertices. Our goal is to

decide whether there is a directed path from u to v. Let u, s1, . . . , sm be the sources

of G. If u is not a source, make it a source by removing all the incoming edges. This

will not affect uv-reachability, increases the number of sources by at most one, and

only reduces the genus of the embedding.

Definition 14.10 (Forest Decomposition). Let A be a deterministic log-space algo-

rithm that on input of a non-source vertex x, outputs an incoming edge yx (for

example, selecting the lexicographically-first vertex y so that yx is an edge in G).

300

This algorithm defines a set of edges FA = {yx : x ∈ V(G) \ {u, v, s1, . . . , sm}, y =

A(x)}, called a forest decomposition of G.

Since G is acyclic, the reverse walk x1, x2, . . . , where x1 = x and xi+1 = A(xi),

must terminate at a source sj, u, or v, so the edges in FA form a forest subgraph.

For the purposes of the forest decomposition, v is treated as a source since no

incoming edge is selected. If a vertex x is in the tree with source v, then all non-

tree edges entering x are deleted. This will not affect uv-reachability, since G is

acyclic and does not increase the number of sources or the genus of the surface.

Each connected component in FA is a tree rooted at a source vertex, called a source

tree. The forest forms a typical ancestor and descendant relationship within each tree.

For the remainder of this work, we fix an acyclic graph G ∈ G(m, g) embedded on

a surface S (defined by the combinatorial embedding) and F = FA a log-space

computable forest decomposition.

Definition 14.11 (Tree Curves). Let x and y be two vertices in some source tree T

of F. The tree curve at xy is the curve on S formed by the unique undirected path

in T from x to y. If xy is an edge, then the closed curve formed by xy and the tree

curve at xy is called the closed tree curve at xy.

Definition 14.12 (Local and Global Edges). Given an S-embedded graph G and a

forest decomposition F, an edge xy in E(G) \ F is classified as local1 if (a) x and

y are on the same tree in F, (b) the closed tree curve at xy is contractible (i.e. the

curve cuts S into a disk and another surface), and (c) No sources lie on the interior

of the surface which is homeomorphic to a disk. If S is the sphere, then the curve

cuts S into two disks and xy is local if one of the disks contains no source in the

interior. Otherwise, the edge xy is global.

1This definition of local differs from the use in [2] and [126].

301

14.2.1 Paths within a single tree

Definition 14.13 (Region of a tree). Let T be a connected component in the forest

decomposition F along with the local edges between vertices in T. The region of T,

denotedR[T] is the portion of the surface S given by the faces enclosed by the tree

and local edges in T.

The faces that compose R[T] are together homeomorphic to a disk, since R[T]

can contract to the source vertex by contracting the disks given by the local edges

into the tree, and then contracting the tree into the source vertex. This disk is

oriented using the combinatorial embedding at the source by the right-hand rule.

Reachability in such subgraphs T can be decided using the SMPD algorithm [2], in

log-space. Note that the restriction of a 2-cell embedding implies all global edges

are incident to vertices on the outer curve of the disk R[T]. Our figures depict

source trees as circles, with the source placed in the center, with tree edges span-

ning radially away from the source2. We can also assign a clockwise or counter-

clockwise direction to all local edges in a source tree regionR[Tsj].

Definition 14.14 (Rotational Direction withinR[T]). For a local edge xy, the closed

tree curve at xy is cyclicly oriented by the direction of xy. The edge xy is consid-

ered clockwise (counter-clockwise) if this cyclic orientation is clockwise (counter-

clockwise) with respect to the orientation ofR[T].

Definition 14.15 (Irreducible Path). A path P = x1x2 . . . xk in G is F-irreducible if

for each i < j so that xi is an F-ancestor of xj, then xixi+1 . . . xj−1xj is the path in

F from xi to xj. We say P is irreducible when the forest decomposition F is implied

from context.
2This visualization of source trees was crucial to the development of this work, and is due to

[2].

302

Lemma 14.16. If there is a path from x to y in G, there is an F-irreducible path from x to

y.

Proof. Replace the violating subpaths with the given tree paths.

A very useful property of irreducible paths is that they travel in a single rota-

tional direction within each source tree.

Lemma 14.17. Let P be an irreducible local path from x to y in a source tree T, where y is

on the boundary of R[T]. There is a unique direction (clockwise or counter-clockwise) so

that all non-tree edges of P follow this direction.

Proof. Let e be the first local edge in P. Without loss of generality, we assume it

takes a clockwise orientation. Assume for the sake of contradiction there exists a

local edge in P that takes a counterclockwise orientation. Let f be the first such

edge. Consider how P travels from the head of e to reach the tail of f . Note that all

non-tree edges in this path have a clockwise orientation. This gives three cases:

Case 1: P passes through the ancestor path of Head(f) at a vertex a. In this

case, P is not irreducible, since f is not a tree edge and an irreducible path would

take the tree edges from a to Head(f).

Case 2: P passes through the descendants of Head(f) at a vertex b. In this case,

following P from a to Head(f) then the tree path from Head(f) to a creates a cycle,

contradicting that G is a DAG.

Case 3: P travels around the descendants of Head(f) using a local edge e′.

Now, Head(f) is properly contained within the tree cycle given by e′. In order for

P to reach y on the boundary ofR[T], P must cross this curve. This must cross the

descendants of Tail(e′) or Head(e′), creating a cycle, contradicting that G is acyclic.

Therefore, such an f does not exist and all edges take the same orientation.

303

14.2.2 Reachability within a single tree

We now focus on the reachability problem within a single tree Tsj . By the definition

of local edges, we have the subgraph given by local edges within a single tree is a

single-source multiple-sink planar DAG. Allender et al. [2] solved the reachabil-

ity problem in this class of graphs. We review their method as well as adapt the

method to test directional reachability.

Definition 14.18 (Step and Jump Edges). A local edge e /∈ F is a jump edge if the

tree curve Ce partitions V(G) \ Ce into two non-trivial parts. Otherwise, e is a step

edge.

First, we discuss how to solve reachability when restricted to tree and step

edges.

Theorem 14.19 (Allender et al. [2]). Let sj be a source in G. Reachability withinR[Tsj]

using tree and step edges is log-space computable.

Proof. Here, we consider the subgraph in R[Tsj] given by the tree and step edges

to be a planar graph with a single source. Since we have removed the jump edges

in R[Tsj], all sinks in this graph are on the boundary of R[Tsj]. By adding a new

global sink t to the outer face, the graphR[Tsj] + t becomes a Single-source Single-

sink Planar DAG (SSPD).

The cyclic orientation of edges at each vertex must have the outgoing edges

and incoming edges in two consecutive blocks. If not, suppose that the edges

e1, e2, e3, e4 appear in clockwise order at a vertex x, with e1, e3 are outgoing edges

and e2, e4 are incoming edges. Since there is a single source sj, there are paths P2

and P4 from sj to x using the edges e2 and e4, respectively. Likewise, there are paths

P1 and P3 from x to t starting with edges e1, and e3, respectively. This gives two

304

closed curves C1 (composed of P1 and P3) and C2 (composed of P2 and P4) which

cross at x. Thus, they must cross at another point y. By following C1 from x to y

and C2 from y to x, there is a cycle in G, a contradiction.

Given that the outgoing edges at any vertex x are in a single block of the cyclic

orientation, we can define the notion of left-most and right-most outgoing edges of

x as those appearing as the first and last (respectively) outgoing edges of the block

with respect to the clockwise ordering. This defines a left-most walk and a right-most

walk from a vertex x by following the left-most and right-most edges, starting at x

and terminating at t. The left-most and right-most walks define a closed curve Cx

that includes x and t.

A vertex y is inside this curve Cx if and only if it is reachable from x: if y is

within Cx, any path from sj to y must cross the curve Cx, creating a path from x to

y, and if y is reachable from x via a path P, the edges of P must appear between

the left-most and right-most walks from x. Hence, by splitting R[Tsj] + t along Cx

and computing if y is within Cx, we can detect reachability.

Using the step-reachability algorithm as a subroutine, we now discuss direc-

tional reachability using all local edges.

Theorem 14.20 (Allender et al. [2]). Given vertices x, y on the boundary ofR[Tsj] and

a direction d (left or right), reachability from x to y in R[Tsj] using local edges using an

irreducible path in direction d is log-space computable.

Proof. We shall define a log-space data structure called an explored region which in

turn defines a set of vertices in R[T]. The crucial property of these vertices is that

all jump edges with tail in the set and head outside the set are reachable from x.

We will then use these edges to modify the explored region while maintaining this

property. When complete, the explored region will contain y if and only if y is

305

reachable from x via an irreducible path with rotational direction d, with respect

to the orientation of the source sj.

We shall assume that the direction d is Right (clockwise). The other direction

follows by symmetry.

Given a vertex w in Tsj , define ReachStep(w) to be the vertices in Tsj , reachable

from w by tree and step edges. Define functions StepLeft(w) and StepRight(w)

to be the vertices within ReachStep(w) which appear most counter-clockwise and

clockwise, respectively, breaking ties by selecting vertices closer to the source sj

along T.

We shall define two log-size variables ReachLeft and ReachRight and initialize

them as StepLeft(x) and StepRight(x). These two variables store enough infor-

mation for the explored region. The vertex set Between(ReachLeft, ReachRight)

is defined as the vertices which are strictly between ReachLeft and ReachRight in

the clockwise order of Tsj and the descendants of ReachLeft and ReachRight. Note

that this does not include the ancestors of ReachLeft and ReachRight.

Of particular interest to the explored region are jump edges with tail in the

explored region Between(ReachLeft, ReachRight) and head not in the explored re-

gion. We call these edges exiting edges. Note that a jump edge e is exiting if and

only if the tree curve at e contains ReachRight.

Since each d-directional exiting edge contains ReachRight, the exiting edges

form a linear order e1, e2, . . . , er where ei is contained within the tree curve on ej if

and only if i < j. We shall extend the explored region by using the minimal exiting

edge, denoted ejump, and setting ReachRight to StepRight(Head(ejump)).

Proceed to extend the explored region until one of two situations arise: if the

vertex y is within ReachStep(Head(ejump)), we return True; if there are no exiting

edges, stop and return False. This process is detailed in Algorithm 14.1.

306

1. StepLeft(x)

2. StepRight(x)

3. e(1)
jump

4. Head(e(1)
jump)

5. StepLeft(Head(e(1)
jump))

6. StepRight(Head(e(1)
jump))

7. e(2)
jump

8. Head(e(2)
jump)

9. e(3)
jump

10. Head(e(3)
jump)

11. e(4)
jump

12. Head(e(4)
jump)

The shaded region is the explored region. The flat gray areas are reachable
while the striped areas are not. The striped area is darker depending on
how many iterations that region was in the explored region.

Figure 14.2: An example execution of ReachLocal(x, y, R).

307

Algorithm 14.1 ReachLocal(x, y, d) — Returns True if and only if y reachable from
x

ReachLeft← StepLeft(x)
ReachRight← StepRight(x)
i← 1
while there exists a d-directional exiting edge do

e(i)
jump ← the minimal d-directional exiting edge

if y ∈ ReachStep(Head(e(i)
jump)) then

return True
else if d = Right then

ReachRight← StepRight(Head(e(i)
jump))

else if d = Left then
ReachLeft← StepLeft(Head(e(i)

jump))
end if
i← i + 1

end while
return False

The correctness of ReachLocal(x, y, d) requires the following claim regarding

the explored region.

Claim 14.21. At every stage of Algorithm 14.1, every exiting edge e has Tail(e) reachable

from x using a d-directional irreducible path.

Proof of Claim. Without loss of generality, we assume d = R. We proceed by in-

duction on the number of iterations in the execution of ReachLocal(x, y, d). When

ReachLeft and ReachRight are initialized, the explored region consists of vertices

within ReachStep(x) and vertices strictly within the curve given by concatenating

the following paths:

sj
T−→ ReachLeft

(local)−→ x
(local)−→ ReachRight T−→ sj.

If a jump edge e has tail within the explored region, then either (1) it is within

ReachStep(x) and is reachable, or (2) it is bound by the curve and must not be an

308

exiting edge. Thus, the claim holds for the first iteration.

Assume the claim holds for the kth iteration. Consider the next iteration’s se-

lection of ejump and let e be a jump edge with tail within the new explored re-

gion. If the tail of e is in the previous explored region, the induction step shows

the claim holds. Otherwise, there are only two cases. First, the tail of e is within

ReachStep(Head(ejump)) and e is reachable since ejump was reachable by induction.

Second, the tail of e is strictly within the curve given by concatenating the follow-

ing paths:

sj
T−→ Tail(ejump)

ejump−→ Head(ejump)
(local)−→ ReachRight T−→ sj,

and hence the edge e is not exiting. This proves the claim.

Given the above claim, observe that when ReachLocal(x, y, d) returns True it is

correct, as there is some subset of the ejump edges which can be combined with

local paths to create a path from x to y.

To finish, we must prove that if there is a d-directional irreducible path from x to

y inR[Tsj], then ReachLocal(x, y, d) returns True. Fix a path from x to y that uses the

minimum number jump edges and consider the sequence e1, . . . , et of jump edges

within this path. The minimum number of jump edges guarantees that Tail(ei) ∈

ReachStep(Head(ei−1)) and Tail(ei+1) 6∈ ReachStep(Head(ei−1)) for all suitable

i ∈ {2, . . . , t− 1}. The first jump edge e1 is an exiting edge for the first explored

region.

We claim that at each iteration where y is not in ReachStep(Head(ejump)), there

is an edge ei of the path that is an exiting edge. This is given by the choice of

ejump as the mimimal d-directional exiting edge. In the previous iteration, there

was some ei that was exiting. If ei was selected as ejump, then Tail(ei+1) is within

309

ReachStep(ejump) and Head(ei+1) is not. Since all jump edges are d-directional, the

edge ei+1 is an exiting edge and the claim holds for another iteration.

Suppose that ejump was not selected to be ei. Then, the tree curve at ejump is

contained within the tree curve at ei. This provides two cases:

1. Head(ei) 6∈ ReachStep(Head(ejump)) and ei is still an exiting edge, or

2. Head(ei) ∈ ReachStep(Head(ejump)) and hence Tail(ei+1) is in

ReachStep(Head(ejump)).

In the latter case it is not immediate that ei+1 is an exiting edge, but some edge ei′

with i′ > i will be an exiting edge, since y is not in ReachStep(Head(ejump)).

14.3 Topological Equivalence

The following notion of topological equivalence plays a central role in our algo-

rithms. It was originally presented in [126] for planar graphs, but we extend it to

arbitrary surfaces.

Definition 14.22 (Topological Equivalence). Let G be a graph embedded on a sur-

face S. Let F be a forest decomposition of G. We say two (undirected) global edges

xy and wz are topologically equivalent if the following two conditions are satisfied:

(a) They span the same source trees in F (assume x and w are on the same tree),

(b) The closed curve in the underlying undirected graph formed by (1) the edge

xy, (2) the tree curve from y to z, (3) the edge zw, and (4) the tree curve from w to

x bounds a connected portion of S, denoted D(xy, wz), that is homeomorphic to a

disk and no source lies within D(xy, wz).

Topological equivalence is an equivalence relation. For the sake of the reflexive

property, we take as convention that a single edge is topologically equivalent to

310

itself. The symmetry of the definition is immediate. Transitivity is implied by the

following lemma, which is immediate from the definitions.

Lemma 14.23. Let e1, e2 be topologically equivalent global edges and e3 a global edge.

1. If e3 has an endpoint in D(e1, e2), then e3 is equivalent to both e1 and e2.

2. If e3 is equivalent to e2, then one of the following cases holds:

a) e1 is in D(e2, e3).

b) D(e1, e2) and D(e2, e3) intersect at the curve given by e2 and the ancestor paths

from its endpoints to their respective sources, and D(e1, e3) = D(e1, e2) ∪

D(e2, e3).

In both cases (a) and (b), e1 is topologically equivalent to e3.

Let E be an equivalence class of global edges containing an edge e, where e

spans two different source trees. Consider the subgraph of G given by the vertices

in the source trees containing the endpoints of e, along with all local edges in those

trees and the edges in E. This subgraph is embedded in a disk on S, as given in the

following corollary.

Corollary 14.24. Given an equivalence class E of global edges, let SE =
⋃

e1,e2∈E D(e1, e2).

The surface SE is a disk.

Proof. Lemma 14.23, implies that for any triple e1, e2, e3 ∈ E and any pair of the

disks D(e1, e2), D(e1, e3), and D(e2, e3) are either adjacent or have a containment

relationship. There is an ordering e1, . . . , ek of the edges of E so that the disks

D(ei, ei+1) pairwise intersect only at boundaries. Gluing the disks D(ei−1, ei) and

D(ei, ei+1) along ei constructs SE as a disk.

We shall make explicit use of this locally-planar embedding. For an equiva-

lence class of global edges spanning vertices in the same tree, a similar subgraph

311

and embedding is formed by considering the ends of the equivalence class to be

different copies of that source tree.

The lexicographically-least edge e in a topological equivalence class of global

edges is log-space computable. By counting how many global edges which are

lexicographically smaller than e and are the lexicographically-least in their equiv-

alence classes, the equivalence class containing e is assigned an index i. The class

Ei is the ith equivalence class in this ordering. We shall use this notation to label

the equivalence classes.

Definition 14.25 (The Region of an Equivalence Class). Let Ei be an equivalence

class of global edges. Define the region enclosed by Ei asR[Ei] =
⋃

e1,e2∈Ei
D(e1, e2).

The region R[Ei] has some properties which are quickly identified. There are

two edges ea, eb ∈ Ei so that R[Ei] = D(ea, eb). These outer edges define the sides

of R[Ei]. The boundary of R[Ei] is given by these two edges and their ancestor

paths in F on all four endpoints. All vertices in a source tree T are contained in the

region R[T]. Let TA and TB be the two source trees containing the tail and head,

respectively, of the representative edge in Ei. The vertices within the boundary of

R[Ei] are within R[TA] and R[TB]. The vertices in R[Ei] are partitioned into two

ends, A and B, where the vertices are placed in an end determined by containment

in R[TA] ∩R[Ei] and R[TB] ∩R[Ei] when the trees TA and TB different or by the

two connected components of R[TA] ∩R[Ei] when the trees TA and TB are equal.

Note that the endpoints of edges in Ei lie on the boundary of the regions R[TA]

and R[TB]. There is an ordering ea = e1, e2, . . . , ek = eb of Ei so that the endpoints

of the ej on the A-end appear in a clockwise order in that tree. Two regions R[Ei]

and R[Ej] on different classes Ei and Ej intersect only on the boundary paths. The

vertices on the boundary are not considered inside the region, since they may be in

312

multiple regions.

Since global edges appear on the boundary of R[T] for a given source tree T,

there is a natural clockwise ordering on these edges, with respect to the orientation

of T. Further, we can order the incident equivalence classes (with possibly a single

repetition, in the case of global edges with both endpoints in T) by the clockwise

order the endsR[Ei] ∩R[T] appear on the boundary ofR[T].

The resource bounds we prove directly depends on the number of equivalence

classes. The following lemma bounds the number of equivalence classes.

Lemma 14.26. Let G be a graph embedded on a surface S with Euler characteristic χS

with a forest decomposition F with m sources. There are at most 3(m + |χS|) topological

equivalence classes of global edges. If gS is the genus of S, |χS| = O(gS) and there are

O(m + gS) equivalence classes of global edges.

Proof. Consider a graph G which has a maximal number of equivalence classes

and remove all but one representative of each class. Create a new multigraph H

on the m sources with edges given by the representatives of each class, with the

edges embedded in S by following the undirected path composed of the tree path

from the first source to the edge, the edge, then the tree path from the edge to the

second source. There are m vertices, and let e be the number of edges, f the number

of faces. Subdivide these edges twice to get a simple graph embedded in S. Note

that Euler’s formula holds in this graph on m + 2e vertices, 3e edges, and f faces.

Hence,

χS = (m + 2e)− (3e) + f

= m− e + f .

313

Moreover, each face must have at least three equivalence classes, and each edge

is incident to two faces, so 2e ≤ 3 f and f ≤ 2
3 e. This gives

χS = m− e + f ≤ m− 1
3

e

⇒ e ≤ 3m− 3χS ≤ 3(m + |χS|).

Now that all tree and local edges are embedded in disks of the form R[T] and

global edges are in O(m + g) disks of the form R[Ei], we are able to abandon all

other portions of S. The important information from S is that the ends of regions

incident to a given source tree appear in a clockwise order on the boundary of

R[T] and that there are O(m + g) equivalence classes of global edges. Each source

tree looks like a disk (R[T]) with strips (R[Ei] for incident classes Ei) stretching

radially away from it (as long as the other end of the stripR[Ei] is not considered).

Hence, the regionsR[Tsj] andR[Ei] form a ribbon graph, which encodes the entire

surface but has only m vertices and O(m + g) edges.

Consider an equivalence class Ei between source trees TA and TB, a rotational

direction d (clockwise or counterclockwise), and a vertex x in TA outside the region

R[Ei]. We say that the vertex x fully reaches Ei in the direction d if there is an

irreducible d-directional local path from x to an endpoint of each edge in Ei. If x

does not fully reach Ei in direction d, but there is a local path from x to an endpoint

of some edge of Ei, then we say x partially reaches Ei in this direction. If such a path

is irreducible, then the path follows a clockwise or counter-clockwise direction

within TA and we say x fully (or partially) reaches Ei using a clockwise (or counter-

clockwise) rotation.

Lemma 14.27. Let x be a vertex in a source tree TA. For each rotational direction (clock-

wise or counter-clockwise), there is an ordering Ei0 , Ei1 , . . . , Ei` of the edge classes reachable

314

via irreducible paths in that direction so that

1. x fully reaches each Eij for j ∈ {1, . . . , `− 1}.

2. x either fully or partially reaches Ei0 and Ei` .

3. If x is not in the interior ofR[Ei0], x fully reaches Ei0 .

Figure 14.3: A vertex x with three counter-clockwise reachable classes, Ei1,, Ei2 , and
Ei3 , as in Lemma 14.27.

Proof. Construct the list using all reachable classes in the given rotational direction

and order by their appearance. The irreducible path P from x to the class Ei` must

intersect the tree paths from the source to the edges in each class Eij for all j < `,

with x 6∈ R[Eij], since the edges in P lie in R[T], but the endpoints of the edges in

Eij are on the boundary ofR[T]. Hence, x fully reaches these classes.

14.4 Global Patterns

At this point, we take a very different approach than [126]. The algorithm de-

scribed in [126] focused on reachability within the regionsR[T] on the source trees

T. Here, we focus on reachability within and between equivalence classes Ei. We

create a constant number of vertices derived from each equivalence class. This

constant is given by the number of distinct ways a path can enter the regionR[Ei],

use edges in Ei, then leave the regionR[Ei]. We call these patterns.

315

Figure 14.4: Terminology for the entrance and exit of a pattern and the modifiers
of direction, end, and side. This example is an LXR pattern.

Definition 14.28 (The Pattern Set). Let Ei be an equivalence class of global edges.

An irreducible path P that involves an edge of the class Ei induces a pattern on

Ei defined by abc with a, c ∈ {L, R}, b ∈ {S, X} where a is the clockwise (R) or

counter-clockwise (L) direction the path takes as it enters R[Ei], c is the direction

the path takes as it leaves R[Ei], and if b = S, the path enters and leaves R[Ei] on

the same end and if b = X, the path enters and leaves R[Ei] on opposite ends. 3.

Define the pattern set, P = {RSR, LSL, RXR, RXL, LXR, LXL}.

Let Ei be an edge class andR[Ei] be the enclosed region. Let t be an end ofR[Ei]

(either A or B) and fix an orientation on that end and a pattern p that involves

Ei. Then the entrance (exit) of the pattern at the t-end is the ancestor path on the

boundary of R[Ei] on the t-end that a path must cross before (respectively, after)

using the edges in Ei that induce the pattern p with the given orientation. (See

Figure 14.4 for a visual representation of the entrance and exit of a pattern.)

We can now define pattern descriptions which are the vertices of the pattern

graph that we will define in the next section.

3The interested reader will find the notation for patterns derived from move sequences in the
Coin Crawl Game of [126].

316

Definition 14.29 (Pattern Descriptions). Let k be the number of topological equiv-

alence classes of edges of G. A pattern description is a tuple x = (i, t, o, p) where

i ∈ {1, . . . , k}, t ∈ {A, B}, o ∈ {+1,−1}, and p ∈ P . Here i represents the equiva-

lence class Ei, t represents the end ofR[Ei] that contains the entrance, o ∈ {+1,−1}

specifies if the orientation of the path is in agreement with (or opposite to, respec-

tively) the local orientation of the tree on the t-side of Ei, and p ∈ P represents

the pattern used in Ei. The set {1, . . . , k} × {A, B} × {+1,−1} × P of all pattern

descriptions is denoted by VP.

For example, the description (i, B, +1, RXL) is an element in VP corresponding

to a RXL pattern, using at least one edge of the class Ei starting at the B-side and

leaving the A-side, oriented to agree with the B-side. Lemma 14.26 implies the

number of descriptions is O(m + gS) where m is the number of sources and g the

genus of the surface. A pattern description can be represented with dlog ke+ 5 =

O(log(m + gS)) bits4.

We now investigate some properties of paths that induce these pattern descrip-

tions. We focus on a path which uses local edges and global edges in a single

equivalence class and induces a single pattern on that class. These single-pattern

paths will be concatenated to make larger paths once the structure of the shorter

paths is understood.

An important property of these patterns is that if the pattern is of full type or

the equivalence class is fully reachable, we can assume without loss of generality

that the path used two special edges, which we call the canonical edge pair.

Definition 14.30 (Canonical Edge Pair). Let x = (i, t, o, p) be a pattern description

centered at the edge class Ei. There are two edges (incoming and outgoing) in Ei,

4This bland fact is in fact very important for the later use of Savitch’s Theorem.

317

Figure 14.5: The edges used in the proof of Lemma 14.31 in an LXR pattern.

called the canonical edge pair for x. The outgoing edge, eout
x , is the edge e ∈ Ei with

head on the exit end that is farthest from the exit side so that there exists a local

path from Head(e) to the exit of R[Ei]. The incoming edge, ein
x , is the edge e ∈ Ei

with the tail on the entrance end that is closest to the entrance side so that either

e = eout
x or Tail(eout

x) is reachable from Head(e) using local paths and edges in Ei.

14.4.1 Full Patterns

Full patterns are named so because a path which induces a full pattern intersects

the ancestor path of at least one endpoint of every edge in the class. Hence, every

edge is reachable. This leads to the property that if an irreducible path induces

such a pattern, then the path might as well use the canonical edges in the corre-

sponding equivalence class.

Lemma 14.31. Let x be a pattern description of full type centered at an edge class Ei. Let

y, z ∈ V(G) be vertices not insideR[Ei], where y is in the source tree on the entrance end

of x and z is in the source tree on the exit end of x. Then there is a path from y to z in

G using only local paths and edges of the class Ei that induces the pattern x if and only

if Tail(ein
x) is reachable from y using a local path in the entrance direction of x and z is

reachable from Head(eout
x) using a local path in the exit direction of x.

318

Proof. Note that if the tail of ein
x is reachable from y using a local path in the entrance

direction, and z is reachable from the head of eout
x using a local path in the exit

direction, then there is a path from y to z that induces the pattern x using the path

between ein
x and eout

x given by the definition of the canonical pair.

If a path exists from y to z that induces the pattern x, then there is at least one

edge of the class Ei in the path. Let e1 be the first edge of class Ei used in the path

and e2 be the last. Consider where e1 and e2 are in comparison to the canonical pair

(ein
x , eout

x) in the ordering of the edges in Ei. An example of the edges e1 and e2 are

shown in Figure 14.5.

If e1 is closer to the entrance side of Ei compared to ein
x , then (by the definition of

ein
x) there is no path from the head of e1 to the tail of eout

x using local paths and edges

in Ei. Hence, a path from e1 that leavesR[Ei] in the exit direction can not cross the

ancestor path of the tail of eout
x , so it must cross the ancestor path of the head of

eout
x . This implies there is an edge e in Ei in the direction of eout

x that is farther from

the exit direction and whose head reaches the head of eout
x . This contradicts the

definition of eout
x , since there is now a local path from the head of e1 that reaches

the boundary ofR[Ei] in the exit direction.

Therefore, the edge e1 appears after ein
x in the order on Ei starting from the

entrance side. This implies that y has a local path that crosses the ancestor path

from the tail of ein
x and hence reaches the tail of ein

x . If eout
x is on the exit side of Ei

compared to e2, then by the definition of eout
x , there is no local path from the head

of e2 that reaches the boundary of R[Ei] in the exit direction. So, e2 is on the exit

side of Ei compared to eout
x . The local path that reaches the boundary ofR[Ei] from

the head of eout
x crosses the ancestor path to the head of e2, so z is reachable from

the head of eout
x using a local path.

319

Lemma 14.32. Let x be a pattern description of full type. The canonical edge pair (ein
x , eout

x)

is log-space computable.

Proof. The outgoing edge, eout
x , is computed by enumerating the set of edges in the

class Ei with head on the exit end ofR[Ei] which reach the boundary of the region

R[Ei] using local edges in the exit direction of the pattern.

The incoming edge is computed by an iterative procedure. Store two edge

pointers, e1 and e2. These edges will always be in the class Ei or null. The edge

e1 will have tail in the entrance end ofR[Ei] and e2 with have tail in the exit end of

R[Ei]. Initialize e1 = eout
x and set e2 to be null.

Proceed by iterating through the edges in Ei starting at eout
x to the last edge in

Ei on the entrance side ofR[Ei]. Each edge is a candidate to update e1 and e2.

If the tail is in the entrance side of R[Ei], check if the head reaches the tail of e2

or eout
x using a local path. If so, then update e1 to this edge.

If the tail is in the exit side of R[Ei], check if the head reaches the tail of e1 or

eout
x using a local path. If so, then update e2 to this edge.

After all edges have been tested, set ein
x = e1. There is a path from e1 to eout

x

using local paths and edges in Ei by considering the reverse sequence of e1 and e2

updates that allowed Tail(eout
x) to be reachable from Head(e1). Further, no edge

beyond e1 in the proper direction can reach eout
x because it must cross the ancestor

paths from e1 to the sources on each endpoint.

14.4.2 Nesting Patterns

Nesting patterns are named so because irreducible paths which induce such pat-

terns use exactly one edge of this class, and we may assume that the edge used

is the one farthest from the entrance that is reachable (and that a local path exists

320

from its head to the exit). The following lemmas describe properties of nesting

patterns.

Lemma 14.33. If an irreducible path using local paths and edges in a global edge class Ei

induces a nesting pattern, then the path uses exactly one edge in the class Ei.

Proof. Let x and y be vertices outside Ei with a path from x to y that induces a

nesting pattern on Ei. Let e1 be the first edge in Ei used and e2 be the second. Note

that e2 cannot be closer to the entrance direction than e1, or else the head of e2 is

a descendant of the local path from x to the tail of e1, contradicting irreducibility.

Also, e2 cannot be farther from the entrance direction than e1 or else the path from

the head of e2 to y must cross the ancestor path at the head of e1, creating a cycle,

contradicting that the graph is acyclic.

Lemma 14.34. Let x be a pattern description of nesting type centered at a global edge class

Ei. Then, ein
x = eout

x , and eout
x is log-space computable.

Proof. By the definition of eout
x , there is a local path P from the head of eout

x to the

boundary of R[Ei] in the exit direction (which is also the entrance direction). All

edges in Ei closer to the boundary in the entrance direction from eout
x have at least

one endpoint reachable from P. If any of these edges could reach eout
x , then there

would be a cycle. Therefore, ein
x = eout

x .

Iterate through the edges in Ei starting on the exit side. Then, eout
x is the last

edge in this order with a local path from the head to the boundary of R[Ei] in the

exit direction.

Lemma 14.35. Let x be a nesting pattern centered at an edge class Ei. Let y and z be

vertices not inside R[Ei]. If there exists an irreducible path from y to z using local paths

and edges in the global edge class Ei which induces x, then z is reachable from Head (eout
x).

321

Figure 14.6: The most-interior edge from a vertex w in a pattern description x with
an RXR pattern.

While it would be useful to have a property similar to Lemma 14.31 for nesting

patterns, there may exist a vertex w from which there are paths that induce a nest-

ing pattern without reaching the canonical incoming edge. We can define a new

edge in the class that is similarly canonical, except with respect to the vertex w.

Definition 14.36 (Most-Interior Edge). Let x = (i, t, o, p) be a pattern description of

nesting type and w be a vertex not in the interior ofR[Ei]. The most-interior edge of

x reachable from w, denoted eint(w)
x , is the edge e in the class Ei that is farthest from

the entrance side of R[Ei] so that (a) there is a local path from w to Tail(e) in the

entrance direction, and (b) there is a local path from Head(e) to the exit boundary

ofR[Ei].

Lemma 14.37. Let x be a pattern description of nesting type and w a vertex not in the

interior of R[Ei]. The most-interior edge, eint(w)
x , is log-space computable. For any vertex

z not in R[Ei], there is a path from w to z that induces the pattern x if and only if there

is an irreducible local path from Head
(

eint(w)
x

)
to z in the exit direction of x. If w fully

reaches Ei, then eint w
x = eout

x .

Proof. The edges in the class Ei have an order using the rotation given by the en-

trance direction of the pattern description x, where two edges in Ei can be com-

pared using this order in log-space. Let eint(w)
x be the edge e of class Ei farthest

322

from the entrance side ofR[Ei] with tail reachable from w and the head has a local

path reaching the exit boundary of R[Ei] in the exit direction of x. Note that this

edge is computable in log-space using the SMPD algorithm and pairwise compar-

ison of the rotational order of edges.

Consider an irreducible path P from w that induces the pattern description x to

reach a vertex z outsideR[Ei]. By Lemma 14.33, the path P uses exactly one edge e

of the class Ei. The edge cannot farther from the entrance side of R[Ei] than eint(w)
x

or else either w does not reach Tail(e) or Head(e) does not reach the exit of R[Ei].

The path that exits the class Ei from the head of eint(w)
x must pass through the tree

path from the source to the head of e. Therefore, the head of e is reachable from the

head of eint(w)
x and so is anything reachable from the head of e, including z.

Since Tail(eint(w)
x) is reachable from w using a local path in the entrance direc-

tion, anything reachable from Head(eint(w)
x) using a local path in the exit direction

is reachable from w using a path that induces the pattern description x.

14.5 The Pattern Graph

We now describe a graph on O(m + gS) vertices that preserves uv-reachability.

Definition 14.38 (The Pattern Graph). Given G and F as above, the pattern graph,

denoted P(G, F) = (V′P, E′P) is a directed graph defined as follows. The vertex set

V′P = {u′, v′} ∪ VP = {u′, v′} ∪ ({1, . . . , k} × {A, B} × {+1,−1} × P). For two

pattern descriptions x, y ∈ VP, an edge x → y is in E′P if and only if there exists a

(possibly empty) list of nesting pattern descriptions z1, . . . , z` (called an adjacency

certificate), so that the following two conditions hold:

1. There is an irreducible path from Head(eout
x) to Tail(ein

y) which induces the

323

Figure 14.7: The nesting patterns z1 and z2 satisfy the adjacency conditions in Def-
inition 14.38 from x to each yj. The pattern adjacencies are enumerated during the
algorithm of Lemma 14.40 where e is assigned to e0, e1, and e2, sequentially. Note
that e0 = eout

x , e1 = eint(Head(e0))
z1 , and e2 = eint(Head(e1))

z2 . The pattern y1 is reachable
from w0 with no internal nesting patterns. The patterns y2 and y3 are reachable
from w0 using the nesting pattern z1. The pattern y4 is reachable from w0 using
the nesting patterns z1 and z2. The algorithm from Lemma 14.40 terminates at e2,
since e2 does not give a partially-reachable class.

sequence z1, . . . , z` of nesting pattern descriptions.

2. For each j ∈ {1, . . . , `}, Tail(ein
zj

) is not reachable from Head(eout
x) using irre-

ducible paths that induce the pattern descriptions z1, . . . , zj−1.

In addition, for a description x = (i, t, o, p) there is an edge u′ → x in E′P if and

only if x has the t-end in the tree Tu. Also, for a pattern description x = (i, t, o, p)

there is an edge x→ v′ in E′P, if and only if the class Ei is incident to v, t is the other

end of the class, and p ∈ {RXL, LXR}.

Theorem 14.39. There exists a path from u to v in G if and only if there exists a path from

u′ to v′ in P(G, F).

Proof. (⇒) Let P be an irreducible path from u to v in G. P induces a sequence

of pattern descriptions x1, . . . , x`. Note that x1 is centered at an edge class that is

324

incident to Tu and the entrance end is on Tu. Note also that x` is centered at an

edge class where the edges have head v. Thus, in P(G, F), u′ → x1 and x` → v′ are

edges.

For full pattern descriptions xi, Lemma 14.31 implies that we may assume the

first edge in the global edge class of xi used by P is ein
xi

and the last such edge is

eout
xi

.

Fix i ∈ {1, . . . , ` − 1} and let xj be the next full pattern induced after xi. If

j = i + 1, then the path P takes a local path between the edges that induce the

patterns xi and xi+1. By Lemma 14.31, ein
xj

is reachable from eout
xi

by a local path

and an adjacency exists from xi to xi+1 in P(G, F), using an empty list of nesting

patterns as the adjacency certificate.

Otherwise, j > i + 1 and there are j − i nested patterns between xi and xj.

Rename the nesting patterns between xi and xj as z1, . . . , zj−i where zi′ = xi+i′ .

If z1, . . . , zj−i compose an adjacency certificate for xi → xj, then this edge exists

in P(G, F). Otherwise, there exists such a k that violates the adjacency condi-

tion between xi and xj, then let i′ be the smallest such index. There is an edge

in P(G, F) from xi to the nesting pattern description zi′ , since Tail(ein
zi′

) is reachable

from Head(eout
xi

) by a path using the nesting patterns z1, . . . , zi′−1 as the adjacency

certificate. By Lemma 14.37, Tail(ein
xj

) is reachable from Head(eout
zi′

) using an irre-

ducible path which induces the patterns zi′+1, . . . , zj−i. By iteration, there is a path

from zi′ to xj in P(G, F), and hence a path from xi to xj in P(G, F). Connecting

all of the edges between the full patterns in x1, . . . , x` gives a path from u′ to v′ in

P(G, F).

(←) Given a path P = u′, x1, x2, . . . , x`, v′ in P(G, F), let xj = (ij, tj, oj, pj) for

each j ∈ {1, . . . , `}. Since u′ → x1 in P(G), Ei1 is a class incident to Tu and all edges

are reachable from u. Specifically, there is a tree path P0 from u to eout
x1

. Similarly,

325

since x` → v′ in P(G, F), Eik is a class incident to Tv and all edges have v as a head.

For each j ∈ {1, . . . , `− 1}, Lemmas 14.31 and 14.37 imply there is an irreducible

path Pi in G from the head of eout
xj

to the tail of ein
xj+1

that is either a local path or

induces a list of nesting pattern descriptions which form an adjacency certificate.

Also, by Definition 14.30, there exist (possibly empty) paths Qj from ein
xj

to eout
xj

using local paths and edges of the class Eij . These paths concatenate to a path

uP0eout
x1

P1ein
x2

Q2eout
x2

P2ein
x3

. . . eout
x`−1

P`−1ein
x`

v from u to v in G.

Lemma 14.40. The pattern graph P(G, F) is log-space computable.

Proof. Given a pattern description x, we describe a log-space algorithm for enu-

merating the pattern descriptions reachable by an edge in P(G, F). It is simple to

find the pattern descriptions x, y so that u→ x and y→ v.

A necessary subroutine takes a global edge e and enumerates all pattern de-

scriptions reachable from Head(e) using local paths in the exit direction of x. By

Lemma 14.27, there is an ordered list of topological equivalence classes Ei0 , Ei1 , . . . , Ei`

reachable by local paths from the head of e. Ei0 is the class containing e, so e is in

R[Ei0]. All other classes Eij (for j ≥ 1, except possibly j = `) are fully reachable.

Hence, each pattern description y centered at a class Eij with j ∈ {1, . . . , ` − 1}

(where the entrance direction of y, orientation, and end all match the exit direction

of x) has ein
y reachable from Head(e) using a local path. Each pattern description y

with entering direction the same as the exit direction of x and centered at Ei` can

be checked if ein
y is reachable from e. The only pattern that could be used without

having ein
y reachable is a nesting pattern.

To enumerate all neighbors of x in P(G, F), perform the above subroutine on

eout
x , adding edges from x to each reachable pattern description y. If the nesting

pattern z on Ei` is not fully reachable (i.e. there is no local path from e to ein
z in

326

the proper direction) then compute the most-interior edge eint(Head(e))
z . Repeat the

subroutine on this edge, continuing until the class Ei` is fully reachable (or the list

is empty). In the jth iteration, let wj−1 = Head(e) and zj = z. See Figure 14.7 for

an example of this iterative procedure.

It is clear this algorithm takes log-space. It enumerates all neighbors of x in

P(G, F), since a neighbor y requires a list of nesting classes z1, . . . , z` so that there

is an irreducible path from x to y inducing these classes. Each class zj has the

edge ein
zj

not reachable from x using the patterns z1, . . . , zj−1. This means that the

pattern zj is centered at the class Ei` computed by the iteration of the subroutine on

the edge e
int(wj−1)
zj−1 . Moreover, y appears as a reachable class from the most-interior

edge computed at z`, so y is enumerated. Finally, any pattern enumerated by this

procedure can reconstruct the list of z1, . . . , z` by using the nesting patterns used

in the subroutine iterations.

Theorem 14.41 (Main Theorem). There is a log-space reduction that given an instance

〈G, u, v〉 where G ∈ G(m, g) and u, v vertices of G, outputs an instance 〈G′, u′, v′〉 where

G is a directed graph and u′, v′ vertices of G′, so that

(a) there is a directed path from u to v in G if and only if there is a directed path from u′

to v′ in G′,

(b) G′ has O(m + g) vertices.

Proof. Fix a forest decomposition F and let G′ be the pattern graph P(G, F). Theo-

rem 14.39 shows that there is a path from u to v in G if and only if there is a path

from u′ to v′ in P(G, F) if and only if there is a path from u′ to v′ in P(G, F). Lemma

14.40 gives that G′ is log-space computable. By Lemma 14.26, there are at most

O(m + g) equivalence classes in G (with respect to F), and there is a constant mul-

tiple of pattern descriptions per equivalence class, so G′ has O(m + g) vertices.

327

14.6 Discussion

We have succeeded in enlarging the class of surface-embedded DAGs which admit

deterministic log-space algorithms for reachability. By extending the concept of

topological equivalence from [126], we have shown that this is a useful algorithmic

construct. Perhaps the structures built in this chapter have application to other

problems. Placing planar DAG reachability within ł will likely require significant

new ideas since the source-to-genus tradeoff hints that an algorithm for m-source

planar DAGs will also apply to m-genus DAGs.

Further, the algorithms developed in this work improve upper bounds for the

class G(m, g) for sub-polynomial values of m and g. See Table 14.1 for a list of

space bounds of different algorithms for reachability in certain classes of graphs.

Table 14.2 describes which results give which space bounds with simultaneous

polynomial-time algorithms.

Ealier known graph class Space bound s New graph class given by Theorem 14.3

Undirected Graphs [109]

O (log n) G
(

2O(
√

log n), 2O(
√

log n)
)

SMPD4 [2]

LMPD5 [126]

Poly-mixing time [110, 116] O
(

log
3
2 n
)

G
(

2O(log
3
4 n), 2O(log

3
4 n)
)

Reach-poly graphs [3, 48] O
(

log2 n
log log n

)
G
(

2
O
(

log n√
log log n

)
, 2

O
(

log n√
log log n

))

o(log2 n) G(no(1), no(1))

All directed graphs [117] O(log2 n)

Table 14.1: A table of graph classes (old and new) for which reachability can be
solved using space s, for various interesting values of s.

328

Earlier known graph class Space bound s
with poly-time

New graph class given by Theorem 14.8

Poly-mixing time [110, 99]
O(log2 n)

Reach-poly graphs6 [80, 32]

2
O
(

log
1
2 +ε n

)
G
(

2
O
(

log
1
2 +ε n

)
, 2

O
(

log
1
2 +ε n

))

o(nε) G(O(nε), O(nε)).

All directed graphs [12] O
(

n
2
√

log n

)
Table 14.2: A table of graph classes (old and new) with simultaneous time-space
bound (nO(1), s) for reachability for various values of s.

4SMPD: Single-source Multiple-sink Planar DAG
5LMPD: Log-source Multiple-sink Planar DAG
6It is a quick observation that reachability in reach-poly graphs is decidable by a LogDCFL

machine.

329

Bibliography

[1] E. Allender. NL-printable sets and nondeterministic Kolmogorov complexity.

Theor. Comput. Sci., 355(2):127–138, 2006.

[2] E. Allender, D. A. M. Barrington, T. Chakraborty, S. Datta, and S. Roy. Pla-

nar and grid graph reachability problems. Theory of Computing Systems,

45(4):675–723, 2009.

[3] E. Allender and K.-J. Lange. RUSPACE(log n) ⊆ DSPACE(log2 n/ log log n).

Theory of Computing Systems, 31:539–550, 1998. Special issue devoted to

the 7th Annual International Symposium on Algorithms and Computation

(ISAAC’96).

[4] E. Allender, K. Reinhardt, and S. Zhou. Isolation, Matching, and Counting

Uniform and Nonuniform Upper Bounds. Journal of Computer and System

Sciences, 59(2):164–181, 1999.

[5] N. Alon and S. Friedland. The maximum number of perfect matchings in

graphs with a given degree sequence. Electronic Journal of Combinatorics,

14(1), 2008. Note 13.

[6] C. Àlvarez and B. Jenner. A very hard log-space counting class. Theoret.

Comput. Sci., 107:3–30, 1993.

330

[7] S. Arora and B. Barak. Computational complexity: a modern approach, volume 1.

Cambridge University Press, 2009.

[8] A. Atamtürk, G. L. Nemhauser, and M. W. P. Savelsbergh. Conflict graphs

in solving integer programming problems. European Journal of Operational

Research, 121(1):40 – 55, 2000.

[9] L. Babai. On the minimum order of graphs with given group. Canadian

Mathematical Bulletin, 17:467–470, 1974.

[10] L. Babai. Automorphism groups, isomorphism, reconstruction. In Handbook

of combinatorics, Vol. 1, 2, pages 1447–1540. Elsevier, Amsterdam, 1995.

[11] R. Baker, G. Ebert, J. Hemmeter, and A. Woldar. Maximal cliques in the paley

graph of square order. Journal of statistical planning and inference, 56(1):33–38,

1996.

[12] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber. A sublinear space, poly-

nomial time algorithm for directed s-t connectivity. In Structure in Complexity

Theory Conference, 1992., Proceedings of the Seventh Annual, pages 27–33, 1992.

[13] M. Bašić and A. Ilić. On the clique number of integral circulant graphs. Ap-

plied Mathematics Letters, 22(9):1406–1411, 2009.

[14] E. Berlekamp. A construction for partitions which avoid long arithmetic

progressions. Canad. Math. Bull, 11(1968):409–414, 1968.

[15] A. Blokhuis. On subsets of gf (q2) with square differences. 87(4):369–372,

1984.

[16] B. Bollobás. Modern graph theory, volume 184. Springer Verlag, 1998.

331

[17] B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Math-

ematics. Cambridge University Press, Cambridge, second edition, 2001.

[18] B. Bollobás. Extremal graph theory. Dover Pubns, 2004.

[19] J. A. Bondy. A graph reconstructor’s manual. In Surveys in combinatorics, 1991

(Guildford, 1991), volume 166 of London Math. Soc. Lecture Note Ser., pages

221–252. Cambridge Univ. Press, Cambridge, 1991.

[20] C. Bourke, R. Tewari, and N. V. Vinodchandran. Directed planar reachabil-

ity is in unambiguous log-space. ACM Transactions on Computation Theory,

1(1):1–17, 2009.

[21] L. M. Brègman. Some properties of nonnegative matrices and their perma-

nents. Soviet Math. Dokl., 14:945–949, 1973.

[22] I. Broere, D. Döman, and J. Ridley. The clique numbers and chromatic num-

bers of certain paley graphs. Quaestiones Mathematicae, 11(1):91–93, 1988.

[23] J. Brown and R. Hoshino. Proof of a conjecture on fractional ramsey num-

bers. Journal of Graph Theory, 63(2):164–178, 2010.

[24] T. Brown, P. Erdös, and A. Freedman. Quasi-progressions and descending

waves.(in english). J. Comb. Theory, Ser. A, 53(1):81–95, 1990.

[25] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and im-

portance of logspace-mod class. Mathematical Systems Theory, 25(3):223–237,

1992.

[26] G. Buntrock, L. A. Hemachandra, and D. Siefkes. Using inductive count-

ing to simulate nondeterministic computation. Information and Computation,

102(1):102–117, 1993.

332

[27] G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith. Unambiguity and

fewness for logarithmic space. In Proceedings of the 8th International Conference

on Fundamentals of Computation Theory (FCT’91), Volume 529 Lecture Notes in

Computer Science, pages 168–179. Springer-Verlag, 1991.

[28] J. Chen, S. Kanchi, and A. Kanevsky. A note on approximating graph genus.

Information processing letters, 61(6):317–322, 1997.

[29] M. Chudnovsky. Berge trigraphs. J. Graph Theory, 53(1):1–55, 2006.

[30] S. Cohen. Clique numbers of paley graphs. Quaestiones Mathematicae,

11(2):225–231, 1988.

[31] D. Collins, J. Cooper, B. Kay, and P. S. Wenger, 2011. personal communica-

tion.

[32] S. Cook. Deterministic CFL’s are accepted simultaneously in polynomial

time and log squared space. In Proceedings of the eleventh annual ACM Sympo-

sium on Theory of Computing, pages 338–345. ACM, 1979.

[33] K. Coolsaet, J. Degraer, and E. Spence. The strongly regular (45, 12, 3, 3)

graphs. The Electronic Journal of Combinatorics, 13(R32):1, 2006.

[34] J. Cooper, J. Lenz, T. LeSaulnier, P. Wenger, and D. West. Uniquely c 4-

saturated graphs. Graphs and Combinatorics, pages 1–9, 2010.

[35] I. CPLEX. ILOG CPLEX 10.0, January 2006.

[36] J. Cutler and A. J. Radcliffe. An entropy proof of the Kahn-Lovász Theorem.

Electronic Journal of Combinatorics, 18(1), January 2011. P10.

[37] R. Diestel. Graph theory (graduate texts in mathematics vol 173), 2000.

333

[38] A. Dudek and J. Schmitt. On the size and structure of graphs with a constant

number of 1-factors. Discrete Mathematics, 2012. to appear.

[39] M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of

bodlaender and courcelle. In FOCS ’10: Proceedings of the 51st Annual IEEE

Symposium on Foundations of Computer Science, 2010.

[40] P. Erdős. Problems in number theory and combinatorics. In Proc. 6th Mani-

toba Conference on Numerical Mathematics, Congress Numer, volume 18, pages

35–58, 1976.

[41] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs

and some related questions. Infinite and finite sets, 10:609–627, 1975.

[42] P. Erdős and A. Stone. On the structure of linear graphs. Bull. Amer. Math.

Soc, 52:1087–1091, 1946.

[43] P. Erdös, A. Hajnal, and J. Moon. A problem in graph theory. The American

Mathematical Monthly, 71(10):1107–1110, 1964.

[44] P. Erdos and M. Simonovits. A limit theorem in graph theory. Studia Sci.

Math. Hungar, 1(51-57):51, 1966.

[45] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with

O(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[46] S. Friedland. An upper bound for the number of perfect matchings in graphs,

6 March 2008. arXiv: 0803.0864v1.

[47] R. Frucht. Herstellung von Graphen mit vorgegebener abstrakter Gruppe.

Compositio Math., 6:239–250, 1939.

334

[48] B. Garvin, D. Stolee, R. Tewari, and N. V. Vinodchandran. ReachUL =

ReachFewL. 17th Annual International Computing and Combinatorics Confer-

ence, 2011.

[49] D. Geller and B. Manvel. Reconstruction of cacti. Canad. J. Math., 21:1354–

1360, 1969.

[50] W. Gowers. A new proof of szemerédi’s theorem. Geometric and Functional

Analysis, 11(3):465–588, 2001.

[51] R. Graham. Some of my favorite problems in ramsey theory. Integers: Elec-

tronic Journal of Combinatorial Number Theory, 7(2):A15, 2007.

[52] B. Green*. Counting sets with small sumset, and the clique number of ran-

dom cayley graphs. Combinatorica, 25(3):307–326, 2005.

[53] B. Green and T. Tao. The primes contain arbitrarily long arithmetic progres-

sions. Ann. Math, 167(208):481–547, 2008.

[54] D. L. Greenwell. Reconstructing graphs. Proc. Amer. Math. Soc., 30:431–433,

1971.

[55] D. L. Greenwell and R. L. Hemminger. Reconstructing graphs. In The Many

Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich.,

1968), pages 91–114. Springer, Berlin, 1969.

[56] D. Gross, N. Kahl, and J. T. Saccoman. Graphs with the maximum or mini-

mum number of 1-factors. Discrete Math., 310:687–691, 2010.

[57] R. K. Guy. Unsolved problems in number theory. Problem Books in Mathemat-

ics. Springer-Verlag, third edition edition, 2004.

335

[58] P. Hall. On representatives of subsets. Journal of the London Mathematical

Society, 1(1):26–30, 1935.

[59] S. G. Hartke, H. Kolb, J. Nishikawa, and D. Stolee. Edge-reconstruction for

small 2-connected graphs, 2009. unpublished.

[60] S. G. Hartke, H. Kolb, J. Nishikawa, and D. Stolee. Automorphism groups of

a graph and a vertex-deleted subgraph. Electron. J. Combin., 17(1):Research

Paper 134, 8, 2010.

[61] S. G. Hartke and A. Radcliffe. Mckay’s canonical graph labeling algorithm.

In Communicating Mathematics, volume 479 of Contemporary Mathematics,

pages 99–111. American Mathematical Society, 2009.

[62] S. G. Hartke and D. Stolee. Uniquely Kr-saturated graphs, 2012. preprint.

[63] S. G. Hartke, D. Stolee, D. B. West, and M. Yancey. On extremal graphs with

a given number of perfect matchings, 2011. preprint.

[64] A. Hoffman and R. Singleton. On moore graphs with diameters 2 and 3. IBM

Journal of Research and Development, 4:497–504, 1960.

[65] R. Hoshino. Independence polynomials of circulant graphs. Citeseer, 2007.

[66] S. G. Hwang. A note on system of distinct representatives. Kyungpook Math.

J., 35:513–516, 1996.

[67] N. Immerman. Nondeterministic space is closed under complementation.

In Structure in Complexity Theory Conference, 1988. Proceedings., Third Annual,

pages 112–115. IEEE, 1988.

336

[68] A. Jakoby, M. Liśkiewicz, and R. Reischuk. Space efficient algorithms for

directed series-parallel graphs. Journal of Algorithms, 60(2):85–114, 2006.

[69] A. Jakoby and T. Tantau. Logspace algorithms for computing shortest and

longest paths in series-parallel graphs. In FSTTCS 2007: Foundations of Soft-

ware Technology and Theoretical Computer Science, pages 216–227, 2007.

[70] A. Jobson, A. Kézdy, H. Snevily, and S. C. White. Ramsey functions for quasi-

progressions with large diameter, 2010. preprint.

[71] A. Jobson, A. Kézdy, and D. Stolee. A new variant of van der Waerden

numbers, 2012. in preparation.

[72] P. Kaski and P. Ostergard. The steiner triple systems of order 19. Mathematics

of Computation, 73(248):2075–2092, 2004.

[73] P. Kaski and P. R. J. Östergård. Classification Algorithms for Codes and De-

signs. Number 15 in Algorithms and Computation in Mathematics. Springer-

Verlag, Berlin Heidelberg, 2006.

[74] W. Klotz and T. Sander. Some properties of unitary cayley graphs. Electronic

Journal of Combinatorics, 14, 2007.

[75] M. Kouril and J. Paul. The van der waerden number w (2, 6) is 1132. Experi-

mental Mathematics, 17(1):53–61, 2008.

[76] E. Kupin, B. Reiniger, and D. Stolee. Counting chains in width-two posets

with few cover edges, 2012. in preparation.

[77] J. Kynčl and T. Vyskočil. Logspace reduction of directed reachability for

bounded genus graphs to the planar case. ACM Transactions on Computation

Theory, 1(3):1–11, 2010.

337

[78] C. Lam, L. Thiel, and S. Swiercz. The non-existence of finite projective planes

of order 10. Canad. J. Math, 41(6):1117–1123, 1989.

[79] B. Landman. Ramsey functions for quasi-progressions. Graphs and Combina-

torics, 14(2):131–142, 1998.

[80] K.-J. Lange. An unambiguous class possessing a complete set. In STACS ’97:

Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer

Science, pages 339–350, 1997.

[81] J. Lauri and R. Scapellato. Topics in graph automorphisms and reconstruction,

volume 54 of London Mathematical Society Student Texts. Cambridge Univer-

sity Press, Cambridge, 2003.

[82] M. W. Liebeck. On graphs whose full automorphism group is an alternat-

ing group or a finite classical group. Proceedings of the London Mathematical

Society, 3:337–362, 1983.

[83] V. Linek, 2011. via D. B. West.

[84] L. Lovász. A note on the line reconstruction problem. J. Combinatorial Theory

Ser. B, 13:309–310, 1972.

[85] L. Lovasz. Ear-decompositions of matching-covered graphs. Combinatorica,

3(1):105–117, 1983.

[86] L. Lovász and M. D. Plummer. On bicritical graphs. Infinite and finite sets,

10:1051–1079, 1975.

[87] L. Lovász and M. D. Plummer. Matching Theory. AMS Chelsea Publishing

Series. AMS Bookstore, 2009.

338

[88] B. Manvel. Reconstruction of trees. Canad. J. Math., 22:55–60, 1970.

[89] B. Manvel. On reconstructing graphs from their sets of subgraphs. Journal of

Combinatorial Theory, Series B, 21(2):156–165, 1976.

[90] R. Martin and J. Smith. Induced saturation number, 2011. preprint.

[91] B. D. McKay. Small graphs are reconstructible. Australas. J. Combin., 15:123–

126, 1997.

[92] B. D. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26(2):306–

324, 1998.

[93] B. D. McKay. nauty user’s guide (version 2.4). Dept. Computer Science, Aus-

tral. Nat. Univ., 2006.

[94] B. D. McKay and E. Spence. Classification of regular two-graphs on 36 and

38 vertices. Australasian Journal of Combinatorics, 24:293–300, 2001.

[95] S. Micali and V. V. Vazirani. An o(v1/2e) algorithm for finding maximum

matching in general graphs. Proc. 21st Symp. on Foundations of Computer Sci-

ence, pages 17–27, 1980.

[96] S. D. Monson. The reconstruction of cacti revisited. Congr. Numer., 69:157–

166, 1989. Eighteenth Manitoba Conference on Numerical Mathematics and

Computing (Winnipeg, MB, 1988).

[97] V. Müller. The edge reconstruction hypothesis is true for graphs with more

than n · log2n edges. J. Combinatorial Theory Ser. B, 22(3):281–283, 1977.

[98] G. L. Nemhauser, M. W. P. Savelsbergh, and G. C. Sigismondi. MINTO, a

Mixed INTeger Optimizer. Operations Research Letters, 15:47–58, 1994.

339

[99] N. Nisan. RL ⊆ SC. In In Proceedings of the Twenty Fourth Annual ACM Sym-

posium on Theory of Computing, pages 619–623, 1995.

[100] S. Niskanen and P. R. J. Östergård. Cliquer user’s guide, version 1.0. Technical

Report, T48, 2003.

[101] P. A. Ostrand. Systems of distinct representatives, ii. J. Math. Anal. Appl.,

32:1–4, 1970.

[102] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. In

IPCO ’07: Proceedings of the 12th international conference on Integer Program-

ming and Combinatorial Optimization, volume 4513 of LNCS, pages 104–118,

Berlin, Heidelberg, 2007. Springer-Verlag.

[103] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Constraint orbital

branching. In A. Lodi, A. Panconesi, and G. Rinaldi, editors, Integer Pro-

gramming and Combinatorial Optimization, 13th International Conference, IPCO

2008, Bertinoro, Italy, May 26-28, 2008, Proceedings, volume 5035 of Lecture

Notes in Computer Science. Springer, 2008.

[104] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Solving large steiner

triple covering problems. Technical Reports of the Computer Sciences Depart-

ment, University of Wisconsin-Madison, (1663), 2009.

[105] R. E. A. C. Paley. On orthogonal matrices. J. Math. Physics, 12:311–320, 1933.

[106] A. Pavan, R. Tewari, and N. V. Vinodchandran. On the power of unambigu-

ity in logspace. Computational Complexity, 2010. to appear.

340

[107] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery,

K. Blackburn, T. Wenaus, et al. The Open Science Grid. In Journal of Physics:

Conference Series, volume 78, pages 12–57. IOP Publishing, 2007.

[108] J. Radhakrishnan. An Entropy Proof of Brégman’s Theorem. Journal of Com-

binatorial Theory, Series A, 77(1):161–164, 1997.

[109] O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4),

2008.

[110] O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom walks on regular

digraphs and the RL vs. L problem. In STOC ’06: Proceedings of the thirty-

eighth annual ACM Symposium on Theory of Computing, pages 457–466, New

York, NY, USA, 2006. ACM.

[111] K. Reinhardt and E. Allender. Making nondeterminism unambiguous. In

Foundations of Computer Science, 1997. Proceedings., 38th Annual Symposium

on, pages 244–253. IEEE, 2002.

[112] R. Robinson. Tables. available at http://www.cs.uga.edu/ rwr/publications/tables.pdf.

[113] R. Robinson. Enumeration of non-separable graphs*. Journal of Combinatorial

Theory, 9(4):327–356, 1970.

[114] G. Sabidussi. On the minimum order of graphs with a given automorphism

group. Monatsh. Math., 63:124–127, 1959.

[115] G. Sabidussi. On the minimum order of graphs with given automorphism

group. Monatshefte für Mathematik, 63(2):124–127, 1959.

[116] M. Saks and S. Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer

and System Sciences, 58(2):376–403, 1999.

341

[117] W. J. Savitch. Relationships between nondeterministic and deterministic tape

complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[118] J.-P. Serre. Trees. Springer-Verlag, Berlin, 1980. Translated from the French

by John Stillwell.

[119] N. J. A. Sloane. A001349: Number of connected graphs with n nodes, 2000.

http://oeis.org/A002218.

[120] N. J. A. Sloane. A002218: Number of unlabeled nonseparable (or 2-

connected) graphs (or blocks) with n nodes, 2000. http://oeis.org/A002218.

[121] E. Spence. The strongly regular (40, 12, 2, 4) graphs. Electr. J. Combin, 7:R22,

2000.

[122] D. Stolee. TreeSearch users guide, 2010.

[123] D. Stolee. Generating p-extremal graphs, 2011. preprint.

[124] D. Stolee. Isomorph-free generation of 2-connected graphs with applications.

Technical Report #120, University of Nebraska–Lincoln, Computer Science

and Engineering, 2011.

[125] D. Stolee. Automorphism groups and adversarial vertex deletions, 2012.

preprint.

[126] D. Stolee, C. Bourke, and N. V. Vinodchandran. A log-space algorithm for

reachability in planar acyclic digraphs with few sources. 25th Annual IEEE

Conference on Computational Complexity, pages 131–138, 2010.

342

[127] D. Stolee and N. V. Vinodchandran. Space-efficient algorithms for reachabil-

ity in surface-embedded graphs. 27th Annual IEEE Conference on Computa-

tional Complexity, 2012. to appear.

[128] Z. Szabo. An application of lovász’local lemma-a new lower bound for the

van der waerden number. Random Structures & Algorithms, 1(3):343–360,

1990.

[129] R. Szelepcsényi. The method of forced enumeration for nondeterministic

automata. Acta Informatica, 26(3):279–284, 1988.

[130] E. Szemerédi. On sets of integers containing no four elements in arithmetic

progression. Acta Mathematica Hungarica, 20(1):89–104, 1969.

[131] E. Szemerédi. On sets of integers containing no k elements in arithmetic

progression. Acta Arithmetica, 27:199Ð245, 1975.

[132] E. Szemerédi. Regular partitions of graphs. Technical report, DTIC Docu-

ment, 1975.

[133] Z. Szigeti. The two ear theorem on matching-covered graphs. J. Combin.

Theory Ser. B, 74(1):104–109, 1998.

[134] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice:

the Condor experience. Concurrency - Practice and Experience, 17(2-4):323–356,

2005.

[135] T. Thierauf and F. Wagner. Reachability in K3,3-free graphs and K5-free

graphs is in unambiguous log-space. In FCT, pages 323–334, 2009.

[136] C. Thomassen. The graph genus problem is NP-complete. Journal of Algo-

rithms, 10(4):568–576, 1989.

343

[137] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436–

452, 1941.

[138] W. T. Tutte. The factorization of linear graphs. J. London Math. Soc., 22:107–

111, 1947.

[139] L. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8(2):189–201, 1979.

[140] B. van der Waerden. Beweis einer baudetschen vermutung. Nieuw Arch.

Wisk, 15:212–216, 1927.

[141] S. Vijay. On a variant of van der waerden’s theorem. Integers, 10(2):223–227,

2010.

[142] T. Walsh and E. Wright. The k-connectedness of unlabelled graphs. Journal

of the London Mathematical Society, 2(3):397, 1978.

[143] D. J. Weitzel. Campus Grids: A framework to facilitate resource sharing. Masters

thesis, University of Nebraska - Lincoln, 2011.

[144] P. S. Wenger. Uniquely ck-saturated graphs. in preparation.

[145] P. S. Wenger, 2011. personal communication.

[146] D. B. West. Introduction to Graph Theory. Prentice-Hall, second edition, 2001.

[147] H. Whitney. Congruent Graphs and the Connectivity of Graphs. Amer. J.

Math., 54(1):150–168, 1932.

[148] L. Xu, Z. Xia, and Y. Yang. Some results on the independence number of

circulant graphs c(n; {1, k}). OR Trans., 13(4):65?70, 2009.

344

[149] Y. Z. Yang. The reconstruction conjecture is true if all 2-connected graphs are

reconstructible. J. Graph Theory, 12(2):237–243, 1988.

[150] Q. Yu and G. Liu. Graph factors and matching extensions. Springer, 2009.

345

Appendix A

Symbols

Symbol Meaning
∃ Existential Quantifier
∀ Universal Quantifier
∧ And
∨ Or
≡ Equality Comparison
← Assignment
⇒ Implication

max←− Assignment, when the input value is larger than the cur-
rent value.

Table A.1: Symbols

346

Appendix B

TreeSearch User Guide

B.1 Introduction

The computation path of a dynamic search frequently takes the form of a rooted

tree. One important property of each node in this tree is that the computation at

that node depends only on the previous nodes in the ancestral path leading to the

root of the computation. If the search is implemented in the usual way, subtrees

operate independently.

For a search of this type, all search nodes at a given depth can be generated by

iterating through the search tree, but backtracking once the target depth is reached.

Each of the subtrees at this depth can be run independently, and hence it is com-

mon to run these jobs concurrently (See [73] Chapter 5 for more information). Since

the subtrees are independent, no communication is necessary for these jobs, and

the jobs can be run on a distributed machine such as a cluster or grid.

The TreeSearch library was built to maximize code reuse for these types of search.

It abstracts the structure of the tree and the recursive nature of the search into cus-

tom components available for implementation by the user. Then, the ability to

347

generate a list of jobs, run individual jobs, and submit the list of jobs to a cluster

are available with minimal extra work.

TreeSearch is intended for execution on a distributed machine using Condor

[134], a job scheduler that uses idle nodes of a cluster or grid. Condor was chosen

as its original development was meant for installation in computer labs and office

machines at the University of Wisconsin–Madison to utilize idle computers.

The C++ portion of TreeSearch is independent of Condor. The Python scripts

which manage the input and output files as well as modifying the submission

script are tied to Condor, but could be adapted for use in other schedulers.

B.1.1 Acquiring TreeSearch

The latest version of TreeSearch and its documentation is publicly available on

GitHub [?] at the address http://www.github.com/derrickstolee/TreeSearch/.

B.2 Strategy

Let us begin by describing the general structure and process of an abstract tree-

based search. There is a unique root node at depth zero. Each node in the tree

searches in a depth-first, recursive manner. There are a number of children to

select at each node. One may select this child through iteration or selecting via a

numerical label. Before searching below the child, a pruning procedure may be

called to attempt to rule out the possibility of a solution below that child. Another

procedure may be used to find if this node is a solution. Now, the search recurses

at this node until its children are exhausted and the search continues back to its

parent.

348

B.2.1 Subtrees as Jobs

This tree structure allows for search nodes to be described via the list of children

taken at each node. Typically, the breadth of the search will be small and these

descriptions take very little space. This allows for a method of describing a search

node independently of what data is actually stored by the specific search appli-

cation. Moreover, the application may require visiting the ancestor search nodes

in order to have consistent internal data. With the assumption that each subtree

is computationally independent of other subtrees at the same level, one can run

each subtree in a different process in order to achieve parallelization. These path

descriptions make up the input for the specific processes in this scheme.

Figure B.1: A partial job description.

Each path to a search node qualifies as a single job, where the goal is to expand

the entire search tree below that node. A collection of nodes where no pair are in

an ancestor-descendant relationship qualifies as a list of independent jobs. Recog-

nizing that the amount of computation required to expand the subtree at a node is

not always a uniform value, TreeSearch allows a maximum amount of time within a

given job. In order to recover the state of the search when the execution times out,

the concept of partial jobs was defined. A partial job describes the path from the

root to the current search node. In addition, it describes which node in this path

is the original job node. The goal of a partial job is to expand the remaining nodes

349

in the subtree of the job node, without expanding any nodes to the left of the last

node in this path. See Figure B.1 to an example partial job and its position in the

job subtree.

B.2.2 Job Descriptions

The descriptions of jobs and partial jobs are described using text files in order to

minimize the I/O constraints on the distributed system. The first is the standard

job, given by a line starting with the letter J. Following this letter are a sequence of

numbers in hexadecimal. The first two should be the same, corresponding to the

depth of the node. The remaining numbers correspond to the child values at each

depth from the root to the job node.

A partial job is described by the letter P. Here, the format is the same as a

standard job except the first number describes the depth of the job node and the

second number corresponds to the depth of the current node. For example, the job

and partial job given in Figure B.1 are described by the strings below:

J 3 3 10 14 2

P 3 5 10 14 2 4 3

B.2.3 Customization

The TreeSearch library consists of an iterative implementation of the abstract search.

The corresponding actions for a specific application are contacted via extending

the SearchManager class and implementing certain virtual functions. The list of

functions available are given in Table B.1.

In addition to supplying the logic behind these functions, protected members of

the SearchManager class can be modified to change the operation of the search.

350

LONG_T pushNext() Deepen the search to the next child of the
current node.

LONG_T pushTo(LONG_T child) Deepen the search to the specified child
of the current node.

LONG_T pop() Remove the current node and move up
the tree.

int prune() Perform a check to see if this node should
be pruned.

int isSolution() Perform a check to see if a solution exists
at this point.

char* writeSolution() Create a buffer that contains a descrip-
tion of the solution.

char* writeStatistics() Create a buffer that contains custom
statistics.

Table B.1: List of virtual functions in the SearchManager class.

These parameters are listed in Table B.2.

B.3 Integration with TreeSearch

This section details the specific interfaces for implementation with TreeSearch.

It is important to understand the order of events when the search is executing.

The search begins when the doSearch() methd is called. The first call initializes

the search, including starting the kill timer. Then, each recursive call expands the

current search node at the top of the stack. Figure B.3 describes the actions taken

by the recursive doSearch() method takes at each search node.

B.3.1 Virtual Functions

The two most important methods are the pushNext() and pushTo(LONG_T child)

methods. Both deepen the search, manage the stack, and control the job descrip-

tions. Each returns a child description (of type LONG_T)

351

Type Name Option Description
int maxdepth -m [N] The maximum depth the search

will go. In generate mode, a job
will be output with job description
given by the current node.

int killtime -k [N] Number of seconds before the
search is halted. If the search has
not halted naturally, a partial job
is output at the current node.

int maxSolutions -maxsols [N] The maximum number of solu-
tions to output. When this num-
ber of solutions is reached, a par-
tial job is output and the search
halts.

int maxJobs -maxjobs [N] The maximum number of jobs to
output (generate mode). When
this number of jobs is reached, a
partial job is output and the search
halts.

bool haltAtSolutions -haltatsols [yes/no] If true, the search will stop deep-
ening if isSolution() signals
a solution. If false, the search
will continue until specified by
prune() or maxdepth.

Table B.2: List of members in the SearchManager class.

Figure B.2: The conceptual operation of the doSearch() method.

pushNext(): Advance the search stack using the next augmentation available at

the current node. Return a label of LONG_T type which describes the augmen-

tation. Return −1 if there are no more augmentations to attempt at this stage,

signaling a pop() operation.

pushTo(LONG_T child): Advance the search stack using the augmentation spec-

ified by child. If the augmentation fails as specified, return −1, and the search

352

Figure B.3: The full operation of the doSearch() method.

353

will terminate in error. Note: If this method is called during the partial portion

of a job description, the later augmentations will be called using the pushNext()

method, so the current augmentation must be stored for later.

pop(): Clean up any memory used for the current level and/or revert any data

structures to the previous level.

prune(): Check if the current node should be pruned (i.e. detect if there are no

solutions reachable from the current node by performing the specified augmenta-

tion). Return 1 if the node should be pruned, 0 otherwise. A prune signal will be

followed by the pop() method.

isSolution(): Check if there is a solution at this node. If there is a solution, store

the solution data and return 1. The writeSolution() method will be called to

pass the solution data to output. If the haltAtSolutions option is set, a solution

will trigger a pop() method. Otherwise, the node will be used for augmentations

until the maximum depth is reached or the prune() method signals a prune for

all later nodes.

writeSolution(): Return a buffer containing the solution data for the output.

This data will be sent to standard out along with the job description of the current

node (with an ‘S’ prefix). If your data is prohibitively large for sending over the

network, this job description can be used to generate the current node where the

solution data can be recovered. Note: The buffer must be allocated using malloc,

as it will be deallocated using free.

writeStatistics(): Write a buffer of custom statistics information. Each line

must follow the format

T [TYPE] [ID] [VALUE]

where [TYPE] is one of “SUM", “MAX", or “MIN", [ID] is a specified name, and

354

[VALUE] is a number. These statistics are combined by the compactjobs script

using the [TYPE] specifier (either sum the values or store the maximum or mini-

mum) and the statistics are placed in the allstats.txt file. The combinestats

script converts the allstats.txt file into a comma separated value file, group-

ing by depth over variables with [ID] of the form [SUBID]_AT_[#]. This allows

per-depth statistics tracking.

B.3.2 Helper Methods

The following methods are useful when constructing a TreeSearch application.

importArguments(int argc, char** argv): Take the command line argu-

ments and set the standard search options. The options from Table B.2 such as

killtime, maxJobs, and maxdepth are all set in this way.

readJob(FILE* file): Read a job from the given input source, such as stan-

dard in. It will read only one line, and prepare the manager for the doSearch()

method.

doSearch(): This method starts the search on the current job as well as returns

the status of the search: 1 if completed with a solution, 0 if completed with no

solution, and −1 if halted early due to error or time constraints.

B.3.3 Compilation

To compile TreeSearch, run make in the source directory. This command compiles

the object file SearchManager.o which must be linked into your executable.

Moreover, it compiles the example application presented in Section B.5. Your

code must reference the header file SearchManager.hpp and link the object file

SearchManager.o.

355

B.4 Execution and Job Management

To execute a single process, simply run your executable with the proper argu-

ments. However, to run a distributed job via Condor, a set of scripts were created

to manage the input and output files, the Condor submission file, and monitor the

progress of the submission during execution.

B.4.1 Management Scripts

The TreeSearch library works best with independent subtrees and hence does not

suffer from scaling issues when the parallelism is increased. However, managing

these large lists of jobs requires automation.

B.4.1.1 Expanding jobs before a run

When the generation step is run, a list of jobs is presented in a single file. Con-

dor requires a separate input and output file for each process. The role of the

expandjobs script is to split the jobs into individual files and to set up the Con-

dor submission file for the number of jobs that are found.

There are a few customizable options for this script.

• -f [folder] – change the folder where the jobs are created. Default is ./.

• -m [maximum] – set the maximum number of jobs allowed. Default is un-

limited.

• -g [groupsize] – set the number of jobs per process. Default is 1.

Inside the specified folder, the file condorsubmit.sub.tmp is modified and

copied to condorsubmit.sub with the proper queue size based on the number

356

of jobs found. Any remaining jobs that did not fit within the maximum are held as

back jobs. They will be added to the job pool when the jobs are completed.

B.4.1.2 Collecting data after a run

Once Condor has completed the requested jobs, the output must be collected to

discover which jobs completed fully, which are partially complete, and how many

solutions have been found. The script compactjobs was built for this purpose.

This script takes the output files and reads all new jobs that may have been

generated using the staging feature, finds if the input job completed or is partial,

and reports on the total number of jobs of each type. Moreover, it will find and

store the solutions found, along with the corresponding data.

Finally, it compiles statistics from each run. Using the writeStatistics

method, the application may report statistics by starting the line with a “T" fol-

lowed by the type (MAX, MIN, SUM), variable name, and variable value. These

are collected using the specified type and compiled with existing statistics from

previous batches.

B.5 Example Application

An example application is given in the file example.cpp. This example appli-

cation takes an extra option -bits [k], where k is an integer no more than the

maximum depth specified (m). The solutions are the incidence vectors for all sub-

sets of [m] which have exactly k elements. The augmentation procedure places a 0

or 1 in the next bit of the incidence vector, corresponding to the choice of placing d

in the set (0 it is out, 1 it is in) where d is the current depth. The prune() method

prunes when there are more than k elements selected.

357

This example should highlight a few nuances when working with the TreeSearch

library, specifically how the root node is used to hold the latest label of the first

node, and how the SearchNode class is extended to include necessary informa-

tion for the current node so that the prune() and isSolution() methods do

not need to access more than one position in the stack.

B.6 Example Workflow

When managing a distributed search, there are several choices to make as the user.

What depth should I generate to? How many jobs should I run? How long should

I set the kill time? These questions are answered based on your application and

experience. This section guides you through the use of the management scripts as

well as strategies for different situations.

B.6.1 Create the Submission Template

The file condorsubmit.sub contains the necessary information for submission

to the Condor scheduler. The number of processes is automatically managed by

the expandjobs script. However, you may modify the arguments of the run de-

pending on the type of job you want to run. More on this later.

B.6.2 Generate initial jobs

To create a beginning list of jobs, run a single process in generate mode with

a reasonably small maximum depth. Send the output to a file called “out.0" in

order to have it viewed by the compactjobs script. To start at the root search

node, use the job description “J 0 0". The jobs created could be reasonably small.

358

B.6.3 Compact data

After any run, use the compactjobs script to combine the list of results, partial

jobs, and new jobs from the output files into a collection of data files. This will also

give you the number of jobs which completed, failed, are partial, or are new.

B.6.4 Evaluate Number of Jobs

Based on this number of jobs, you have a few options.

1. You have a lot of jobs (≥ 20, 000 for instance). This is probably too many to

run each job as a single process, so they must be grouped together. When

using the expandjobs script, use the -g flag to group jobs together into

processes, so that there are a reasonable number of total processes. For ex-

ample, if there were 100, 000 jobs, using expandjobs -g 10 would result

in a list of 10, 000 processes. After running expandjobs, modify the gen-

erated condorsubmit.sub script to set the killtime so that all of the jobs

in the process can complete. For example, if I want to run the previous list

of 10, 000 processes for an hour each, I want to set the per-job killtime to six

minutes, or 360 seconds.

Hopefully, many of your processes will complete in this short time interval,

and you can run the remaining processes for a longer period. If this does not

occur, and you still have many jobs remaining, perhaps using the -m flag on

the expandjobs script to bound the total number of jobs will allow fewer

jobs per process while storing the remaining jobs for execution later.

2. You have a decent number of jobs (between 2, 500 and 20, 000). This is a good

number for running each as an individual process. Running expandjobs

359

with no grouping will allow a bijection between processes and jobs. Modify-

ing the generated condorsubmit.sub file for a per-process killtime of one

hour (3600 seconds) will allow a reasonable amount of computation per job.

3. You have very few jobs (below 2, 500) which did not terminate in an hour of

computation. With the number of jobs, just repeating another hour-per-job

submission will not take full advantage of parallelism. Use the expandjobs

script (possibly with grouping) to generate a list of input files for your jobs.

Modify the condorsubmit.sub script to be in generate mode with a

maximum depth beyond your current job-depth. Depending on the density

of your application’s branching, this could be between one to ten or more

levels beyond the current job depth. It is usually a good goal to create a

large number (≥ 20, 000) of jobs which can be run with grouping at a small

computation time in order to quickly remove small subtrees of the search.

This hopefully isolates the “hard cases" that kept the current list of jobs from

completing.

B.6.5 Submit Script

Using the condor_submit script, submit the processes using the condorsubmit.sub

submission script. Now, wait for the processes to complete. You can monitor

progress by using two Condor commands:

1. condor_status -submitters will give you a list of running/idle/held

jobs for each submitter. This is a good way to watch your queue when many

jobs are running.

2. condor_q [-submitter username] or condor_q [clusterid] will

return a per-process list of run times, statuses, and other useful information.

360

This is not recommended when there are many processes running, but when

there are less than 100 processes, this can help to find processes that are not

completing or when you should expect the processes to complete. Use the

-currentrun flag to see how long the processes have run since their last

eviction or suspension.

If the above methods are not telling you the information you want, view the

tail of the log file (as specified in your submission script). This contains the most

up-to-date information including the amount of memory each process is using and

the reasons for evictions or other failures.

If your processes are not completing, or you have found that you incorrectly

set the submission script, remove the jobs using the condor_rm [clusterid]

command.

B.7 Summary

You should now have the necessary information to develop your own applications

using the TreeSearch library. For support questions or bug reports, please email the

author at s-dstolee1@math.unl.edu.

B.8 Acknowledgements

This software was developed with the support of the National Science Foundation

grant DMS-0914815 under the advisement of Stephen G. Hartke.

The author thanks the faculty and staff at the Holland Computing Center, es-

pecially David Swanson, Brian Bockleman, and Derek Weitzel for their extremely

helpful advice during the design and development of this library.

361

Appendix C

ChainCounting User Guide

C.1 Acquiring ChainCounting

The latest version of ChainCounting and its documentation is available online as

part of the SearchLib collection at the address

http://www.math.unl.edu/~s-dstolee1/SearchLib/

ChainCounting is made available open-source under the GPL 3.0 license.

To complile ChainCounting, use a terminal to access the ChainCounting/src/

folder and type make. The executables will be placed in ChainCounting/bin/

C.1.1 Acquiring Necessary Libraries

There is one SearchLib project used by ChainCounting.

1. TreeSearch is a project in SearchLib that abstracts the structure of a backtrack

search in order to allow for parallelization. TreeSearch is available on the same

web site as ChainCounting. Consult the TreeSearch documentation [122] for

details about the arguments and execution processes.

362

C.1.2 Full Directory Structure

For proper compilation, place the different dependencies in the following directory

structure:

• SearchLib/ – The SearchLib collection.

– ChainCounting/ – The ChainCounting project.

∗ bin/ – The final binaries are placed here.

∗ docs/ – This folder contains documentation.

∗ src/ – Contains source code. Compilation occurs here.

– TreeSearch/ – A support project from SearchLib.

C.2 Execution

The ChainCounting project uses a single executable: chains.exe. This executable

evaluates a given formula fC(a; b) for some configuration C of a certain size. These

formulas are hard-coded into the source files, but they were generated automati-

cally using the methods described in [?].

363

Appendix D

Progressions User Guide

D.1 Acquiring Progressions

The latest version of Progressions and its documentation is available online as part

of the SearchLib collection at the address

http://www.math.unl.edu/~s-dstolee1/SearchLib/

Progressions is made available open-source under the GPL 3.0 license.

To complile Progressions, use a terminal to access the Progressions/src/

folder and type make. The executables will be placed in Progressions/bin/

D.1.1 Acquiring Necessary Libraries

There are two SearchLib projects used by Progressions.

1. TreeSearch is a project in SearchLib that abstracts the structure of a backtrack

search in order to allow for parallelization. TreeSearch is available on the same

web site as Progressions. Consult the TreeSearch documentation for details

about the arguments and execution processes.

364

2. Utilities is a project in SearchLib containing useful objects and functions nec-

essary by other projects in SearchLib. Utilities is available on the same web

site as Progressions.

D.1.2 Full Directory Structure

For proper compilation, place the different dependencies in the following directory

structure:

• SearchLib/ – The SearchLib collection.

– Progressions/ – The Progressions project.

∗ bin/ – The final binaries are placed here.

∗ docs/ – This folder contains documentation.

∗ src/ – Contains source code. Compilation occurs here.

– TreeSearch/ – A support project from SearchLib.

– Utilities/ – A support project from SearchLib.

∗ src/ – Type make in this directory to compile the Utilities project.

D.2 Execution

The main executable is progressions.exe.

D.2.1 Progessions-Specific Arguments

• -mode [quasi|pseudo]— Select which type of progression to avoid: Quasi-

Arithmetic or Pseudo-Arithmetic.

• -R # — The number of colors to use (default: 2).

365

• -n # — The minimum length of a good coloring to report. Will be used by

constraint propagation to prune the search space.

• -N # — The maximum number of elements to color. Propagation and color-

ing will not extend beyond this value.

• -K # — The length of the progressions.

• -D # — The diameter of the progressions.

• -I # — The diameter as d = k− i. (Warning: Must follow the argument of

-K #).

• -skew-symmetric — If present, the colorings will be restricted to skew-

symmetric colorings. In this case, the colorings span {−n, . . . ,−1, 0, 1, . . . , n−

1}.

• -backward [on|off] — Specify if the backward propagation should be

enabled.

• -forward [on|off] — Specify if the forward propagation should be en-

abled. If enabled, the backward propagation will be enabled as well.

366

Appendix E

EarSearch User Guide

E.1 Introduction

The EarSearch library implements the generation algorithm of [92] to generate

families of 2-connected graphs. It is based on the TreeSearch library [122]. The

class EarSearchManager extends the class SearchManager and manages the

search tree, using ear augmentations to generate children. It automates the canon-

ical deletion selection in order to remove isomorphs.

E.2 Acquiring EarSearch

The latest version of EarSearch and its documentation is available online as part of

the SearchLib collection at the address

http://www.math.unl.edu/~s-dstolee1/SearchLib/

E.2.1 Acquiring Necessary Libraries

There are two SearchLib projects and an external library used by EarSearch.

367

1. TreeSearch is a project in SearchLib that abstracts the structure of a backtrack

search in order to allow for parallelization. TreeSearch is available on the same

web site as EarSearch. Consult the TreeSearch documentation for details about

the arguments and execution processes.

2. Utilities is a project in SearchLib containing useful objects and functions nec-

essary by other projects in SearchLib. Utilities is available on the same web

site as EarSearch.

3. nauty performs isomorphism and automorphism calculations. nauty was

written by Brendan McKay and is available at

http://cs.anu.edu.au/~bdm/nauty/

E.2.2 Full Directory Structure

For proper compilation, place the different dependencies in the following directory

structure:

• SearchLib/ – The SearchLib collection.

– EarSearch/ – The EarSearch project.

∗ bin/ – The final binaries are placed here.

∗ docs/ – This folder contains documentation.

∗ src/ – Contains source code. Compilation occurs here.

– TreeSearch/ – A support project from SearchLib.

– Utilities/ – A support project from SearchLib.

∗ src/ – Type make in this directory to compile the Utilities project.

– nauty/ – The nauty library must be placed and compiled here.

368

E.3 Data Management

E.3.1 Graphs

Graphs are stored using the sparsegraph structure from the nauty library.

During the course of computation, these graphs are modified using edge and

vertex deletions. To delete the ith vertex, set the v array to −1 in the ith position.

To delete the edge between the i and j vertices, set the e array to −1 in two places:

in the list of neighbors for i where j was listed and in the list of neighbors for j

where i was listed. To place the vertices or edges back, place the previous values

into those places.

E.3.2 Augmentations and Labels

The labels for each augmentation use two 32-bit integers. The first is the order of

the augmented ear. The second is the index of the pair orbit which is used for the

endpoints of the ear.

E.3.3 EarNode

Each level of the search tree is stored in a stack, where all data is stored in an

EarNode object. All of the members of EarNode are public, in order to easily add

data structures and flags that are necessary for each application. All pointers are

initialized to 0 in the constructor and are checked to be non-zero before freeing up

any memory in the destructor.

The core data necessary for EarSearchManager is stored in the following

members:

• ear_length – the length of the augmented ear.

369

• ear – the byte-array description of the augmented ear.

• num_ears – the number of ears in the graph.

• ear_list – the list of ears in the graph (-1 terminated).

• graph – the graph at this node.

• max_verts – the maximum number of vertices in all supergraphs. Default to

max_n from EarSearchManager.

• reconstructible – TRUE if detectably reconstructible

• numPairOrbits – the number of pair orbits for this graph.

• orbitList – the list of orbits, in a an array of arrays. Each array orbitList[i]

contains pair-indices for pairs in orbit and is terminated by -1.

• canonicalLabels – the canonical labeling of the graph, stored as an integer

array of values for each vertex

• solution_data – the data of a solution on this node.

• violatingPairs – A set of pair indices which cannot be endpoints of an ear.

E.4 Pruning

The interface PruningAlgorithm has an abstract method for pruning nodes of

the search tree. The method checkPrune takes two EarNode objects: one for the

parent and another for the child. Using this data, the method decides if no solution

exists by augmenting beyond the child node. Since the pruning algorithm is called

before the canonical deletion algorithm, this can also remove nodes which cannot

possibly be canonical augmentations.

370

E.5 Canonical Deletion

The interface EarDeletionAlgorithm has an abstract method for finding a canon-

ical ear deletion. The method getCanonical takes two EarNode objects for the

parent and child and returns the array corresponding to the canonical ear. The

EarSearchManager will determine if this canonical ear is in orbit with the aug-

mented ear.

E.6 Solutions

The interface SolutionChecker is an abstract class which contains methods for

finding solutions given a search node, storing the solution data, reporting on these

solutions, and reporting application-specific statistics.

The method isSolution takes the parent, child, and depth and reports if there

is a solution at the child node. It returns a non-null string if and only if there is a

solution, and that string is a buffer containing the solution data. This buffer will

be deallocated with free() by the EarSearchManager.

The method writeStatisticsData() returns a string of statistics (using the

TreeSearch format) to be reported at the end of a job.

E.7 Example 0: 2-Connected Graphs

To enumerate all 2-connected graphs, the interfaces were implemented to only

prune by number of vertices and possibly by number of edges. The search space is

defined by three inputs: N, emin, and emax. These implementations are give by the

following classes:

371

• EnumeratePrunerwill prune a graph if it has more than N vertices or more

than emax edges. Also, if e(G) + (N− n(G) + 1) > emax, it will prune since we

cannot add the remaining N − n(G) edges without surpassing emax edges.

• EnumerateDeleter implements the default deletion algorithm: over all

ears e in G so that G − e is 2-connected, find one of minimum length, then

use the canonical labels to select the canonical ear.

• EnumerateChecker detects “solutions" as any graph with exactly N ver-

tices and between emin and emax edges.

E.8 Example 1: Unique Saturation

The input consists of two numbers r and N, and we are searching for uniquely

Kr-saturated graphs of order N. The unique saturation problem utilizes the dele-

tion algorithm in EnumerateDeleter, but adds some data to EarNode in order

to track the constraints. The SaturationAlgorithm class implements both the

PruningAlgorithm and SolutionChecker interfaces.

Note: The SaturationAlgorithm class is implemented only for r ∈ {4, 5, 6}

in order to use compiler optimizations for the nested loop structure.

E.8.1 Application-Specific Data

The following fields were added to EarNode for tracking constraints during the

search. Most information is tracked in adj_matrix_data, which stores infor-

mation as an adjacency matrix. The others are boolean flags which mark differ-

ent properties of the current graph. These flags are set during the checkPrune

method, and are accessed by the isSolution method.

372

• adj_matrix_data – Data on the (directed) edges. For unique saturation,

this gives -1 for edges, and for non-edges counts the number of copies of H

given by adding that edge. Values are in {0, 1, 2}, since when 2 is listed, then

there are too many copies of H.

• any_adj_zero – A boolean flag: are any of the cells in adj_matrix_data

zero?

• any_adj_two – A boolean flag: are any of the cells in adj_matrix_data at

least two?

• dom_vert – A boolean flag: is there a dominating vertex?

• copy_of_H – A boolean flag: is there a copy of H?

E.9 Example 2: Edge Reconstruction

The Edge Reconstruction application takes an integer N and searches over all 2-

connected graphs of order up to N and up to 1 + log2 N! edges. The deletion is

built to make graphs with the same deck be siblings. Then, all siblings which are

not detectably edge reconstructible are checked to have different edge decks.

The following three classes implement the interfaces:

• ReconstructionPruner implements the PruningAlgorithm interface

and prunes any graph with more than N vertices or more than 1 + log2 N!

edges.

• ReconstructionDeleter implements the EarDeletionAlgorithm in-

terface and performs two different deletions:

373

1. If the graph is detectably edge reconstructible, the deletion can be inde-

pendent of the application and utilizes the standard deletion algorithm

from EnumerateDeleter.

2. If the graph is NOT detectably edge reconstructible, the canonical ear is

selected by using only the edge deck. Further, if the deletion is canon-

ical, the graph is stored in the parent EarNode for later comparison

of edge decks. The GraphData class was implemented specifically for

storing these children within the parent EarNode.

• ReconstructionChecker implements the SolutionChecker interface

and compares the current graph’s edge deck against all previous siblings.

This is done using three levels of comparison, which are implemented in the

GraphData class.

E.9.1 Application-Specific Data

The GraphData class stores all information for a child graph. It implements three

levels of comparison, which are checked in order within the compare method.

1. computeDegSeq computes and stores the standard degree sequence for the

current graph.

2. computeInvariant calculates and stores a more complicated function based

on the degree sequence and the degrees of the neighborhood for each vertex.

3. computeCanonStrings computes canonical strings for every edge-deleted

subgraph and sorts the list. These are then compared, card-for-card.

In order to store these GraphData objects, the following members were added

to the EarNode class:

374

• child_data – the GraphData objects for immediate children, used for pairwise

comparison.

• num_child_data – the number of GraphData objects currently filling the data.

• size_child_data – the number of pointers currently allocated.

E.10 Example 3: p-Extremal Graphs

This problem is investigated in [123] and is the most involved of all applications.

See [38] and [63] for background on this problem. The input is given as Pmin,

Pmax, C, and N. The search is for elementary graphs with p perfect matchings

(for Pmin ≤ p ≤ Pmax) with excess at least C and at most N vertices. The search

actually runs over 1-extendable and almost 1-extendable graphs, which are the

graphs reachable by the ear augmentations. A second stage adds forbidden edges

to maximize excess without increasing the number of perfect matchings.

The following classes implement the EarSearch interfaces:

• MatchingPruner implements the PruningAlgorithm interface. Graphs

are pruned for three reasons:

1. There are an odd number of vertices. By the Lovász Two Ear Theorem,

we know that every ear augmentation has an even number of internal

vertices.

2. There are more than Pmax perfect matchings.

3. The parent graph was not 1-extendable, and neither is the current graph.

By the Lovász Two Ear Theorem, we can always go from 1-extendable

to 1-extendable using at most two ear augmentations.

375

4. Let c be the maximum excess of an elementary supergraph of the cur-

rent graph, which is of order n, and let p be the current number of

perfect matchings. If c + 2(Pmax − p) − 1
4(n′ − n)(n − 2) < C for all

n ≤ n′ ≤ N, then prune. Otherwise, maximize the n′ so that the in-

equality c + 2(Pmax − p)− 1
4(n′ − n)(n− 2) ≥ C holds. That value of n′

is then used to bound the length of future ear augmentations, since no

graph reachable from the current graph can have excess at least C and

more than n′ vertices.

In addition to pruning, the pruning algorithm also performs the on-line algo-

rithm for updating the list of barriers by using the current ear augmentation.

• MatchingChecker implements the SolutionChecker interface. Given a

1-extendable graph with between Pmin and Pmax perfect matchings, forbid-

den edges are added in all possible ways and the elementary supergraphs

with excess at least C are printed to output. If any are found, the isSolution

method returns with success. The algorithm for enumerating all elementary

supergraphs is implemented in the BarrierSearch.cpp file.

• MatchingDeleter implements the EarDeletionAlgorithm interface. The

following sequence of choices describe the method for selecting a canonical

ear to delete from a graph H:

1. If H is almost 1-extendable, we need to delete an ear e′ so that H − e′ is

1-extendable. By the definition of almost 1-extendable, there is a unique

such choice.

2. If H is 1-extendable, check if there exists an ear e′ so that H − e′ is 1-

extendable. If one exists, select one of minimum length and break ties

376

using the canonical labels of the endpoints.

3. If H is 1-extendable and no single ear e′ makes H− e′ 1-extendable, then

find an ear e so that there is a disjoint ear f with H − e is almost 1-

extendable and H − e − f is 1-extendable. Out of these choices for e,

choose one of minimum length and break ties using the canonical labels

of the endpoints.

E.10.1 Application-Specific Data

The following members were added to EarNode to help the perfect matchings

application.

• extendable – A boolean flag: is the graph 1-extendable?

• numMatchings – The number of perfect matchings for this graph.

• barriers – The list of barriers of the graph, given as an array of Set point-

ers. This barrier list is updated at each level by an on-line algorithm.

• num_barriers – the number of barriers in the graph.

E.10.2 Perfect Matching Algorithms

There are a few algorithms that are implemented in order to solve certain sub-

problems, such as counting perfect matchings or enumerating independent sets.

These are computationally complex problems, but the implementations are very

fast for these small instances. The algorithms are mostly un-optimized and rely on

simple instructions and low overhead in order to be run many many times during

the course of the search.

377

• countPM(G, P) counts the number of perfect matchings in a graph G, with

an upper bound of P. It operates recursively, selecting an edge e in G and

attempts to extend the current matching using e and not using e. When a

perfect matching is found, the counter increases. There are two shortcutting

strategies:

1. If there is ever a vertex with no available edges, the recursion is halted

with a count of zero perfect matchings, since the current matching does

not extend to a perfect matching.

2. If the current count of perfect matchings ever surpasses P, then the cur-

rent value is returned. During the search, we only care about graphs

with at most Pmax perfect matchings, so graphs with many more will

only be pruned.

• isExtendable(G) tests if the given graph is 1-extendable. This is done by

storing an array of boolean flags for each edge, marking each as they are

found to be in perfect matchings. This algorithm is explicitly used in the

deletion algorithm. During the pruning algorithm, where a specific augmen-

tation is given, we can detect 1-extendability by asking if there is a perfect

matching using the proper alternating path within the augmented ear.

• enumerateAllBarrierExtensions(G,B, C) and

searchAllBarrierExtensions(G,B) are two methods which take a 1-

extendable graph G with barrier list B and attempts to add forbidden edges

to G to attain the maximum excess. The difference is that enumerateAllBarrierExtensions

will output any graphs with excess at least C, while searchAllBarrierExtensions

will simply return the largest excess. The algorithm essentially enumerates

378

all independent sets within the barrier conflict graph B, where conflicts are

computed on the fly. The enumeration is recursive, simply testing if the next

available barrier should be added to the current independent set. As each

set is added, it tests which barriers with larger index are in conflict with this

graph. These barriers are then not considered in deeper recursive calls. Due

to the low overhead for each independent set, this simple algorithm runs fast

enough for the search to be feasible.

379

Appendix F

Saturation User Guide

F.1 Acquiring Saturation

The latest version of Saturation and its documentation is available online as part of

the SearchLib collection at the address

http://www.math.unl.edu/~s-dstolee1/SearchLib/

Saturation is made available open-source under the GPL 3.0 license.

To compile Saturation, use a terminal to access the Saturation/src/ folder

and type make. The executables will be placed in Saturation/bin/

F.1.1 Acquiring Necessary Libraries

There are two external libraries and two SearchLib projects used by Saturation.

1. nauty performs isomorphism and automorphism calculations. nauty was

written by Brendan McKay [93] and is available at

http://cs.anu.edu.au/~bdm/nauty/

380

2. cliquer performs clique calculations, including finding the clique number and

counting the number of cliques. cliquer was written by Niskanen and Östergård [100]

and is available at

http://users.tkk.fi/pat/cliquer.html

3. TreeSearch is a project in SearchLib that abstracts the structure of a backtrack

search in order to allow for parallelization. TreeSearch is available on the same

web site as Saturation. Consult the TreeSearch documentation for details about

the arguments and execution processes.

4. Utilities is a project in SearchLib containing useful objects and functions nec-

essary by other projects in SearchLib. Utilities is available on the same web

site as Saturation.

F.1.2 Full Directory Structure

For proper compilation, place the different dependencies in the following directory

structure:

• SearchLib/ – The SearchLib collection.

– Saturation/ – The Saturation project.

∗ bin/ – The final binaries are placed here.

∗ docs/ – This folder contains documentation.

∗ src/ – Contains source code. Compilation occurs here.

– TreeSearch/ – A support project from SearchLib.

– Utilities/ – A support project from SearchLib.

381

∗ src/ – Type make in this directory to compile the Utilities project.

– cliquer/ – The cliquer library must be placed and compiled here.

– nauty/ – The nauty library must be placed and compiled here.

F.2 Execution

There are two executables in the Saturation project.

• saturation.exe runs an orbital branching search for uniquely Kr-saturated

graphs of a given order n.

• cayley.exe generates Cayley complements and checks if they are uniquely

Kr-saturated for some r.

F.2.1 saturation.exe

This executable generates all uniquely Kr-saturated graphs of a given order n. It

uses a customized orbital branching approach.

saturation.exe [TreeSearch args] -N # -r # [--cliquer]

• -N # specifies the number n of vertices to use. All uniquely Kr-saturated

graphs of order n will be generated.

• -r # specifies the value of r to use when searching for uniquely Kr-saturated

graphs.

• --cliquer is an option that specifies to use the cliquer library in the pruning

steps of the search. If not specified, the search uses a tabulation method.

382

F.2.2 cayley.exe

This executable generates Cayley complements and checks if they are uniquely Kr-

saturated for some r. For a fixed number of generators g, it selects a set S = {1 <

s2 < s3 < · · · < sg} and then selects integers n so that 2sg + 1 ≤ n ≤ Nmax. Then,

it uses

To execute cayley.exe, use the following format of arguments:

cayley.exe [TreeSearch args] -N # -G # -t # [--verbose]

[--dihedral]

• -N # specifies Nmax, the maximum value of n to use when searching for a

uniquely Kr-saturated Cayley complement C(Zn, S).

• -G # specifies the number of generators to place in the set S.

• -t # specifies the number of seconds to allow a call to the cliquer library run

before terminating. If a call is terminated early, the graph that was being

tested is output as a job (using TreeSearch job descriptions).

• --verbose is an option to output the status of the search while testing a

specific Cayley complement. Not recommended for a large-scale search, but

only for a long test of a specific example.

• --dihedral is an option that checks for uniquely Kr-saturated Cayley com-

plements over the dihedral groups. (Note: We have not yet found any gener-

ator sets that create uniquely Kr-saturated Cayley complements of dihedral

groups.)

383

F.3 TreeSearch Arguments

• -k # — The killtime: How many seconds before halting the process and

reporting a partial job.

• -m # — The maximum depth: the maximum number of steps to go before

halting (or in generation mode, a new job is written at this depth).

• run — Run mode: The input jobs are run until finished or the killtime is

reached.

• generate — Generation mode: The input jobs are run and new jobs are

listed when reaching the maximum depth.

• -maxjobs # — The maximum number of jobs to generate before halting

with a partial job (default: 1000).

• -maxsols # — The maximum number of solutions to output before halting

with a partial job (default: 100).

	Combinatorics Using Computational Methods
	

	tmp.1331747342.pdf.JWgyp

