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Quantum mechanics has fundamentally changed the way scientists think about

the world. Quantum mechanical theory has found it’s way into our everyday lives

through advances in technology. In this dissertation a fundamental quantum me-

chanical demonstration and the technological development of a new quantum me-

chanical device are presented.

Double-slit diffraction is a corner stone of quantum mechanics. It illustrates

key features of quantum mechanics: interference and the particle-wave duality of

matter. Here we demonstrate the full realization of Richard Feynman’s famous

thought experiment. By placing a movable mask in front of a double-slit to control

the transmission through the individuals slits. Probability distributions for single-

and double-slit arrangements were observed. Additionally, by recording single elec-

tron detection events diffracting through a double-slit, a diffraction pattern was

built up from individual events.

Additionally, a demonstration of a three grating Talbot-Lau interferometer for

electrons is presented. As a proof of principle the interferometer is used to measure

magnetic fields. The possibility to extend this work to build a scaled-up electron

interferometer for sensitive magnetic field sensing is discussed.

A theoretical model is presented to simulate the two experiments. This model is

developed from Richard Feynman’s path integral formalism, where a wave function

is propagated through the elements of the system. The theoretical simulations re-

produce the experimental data well, except for a large discrepancy of a factor of 5.5



between the experimental and theoretical sensitivity of the Talbot-Lau interferom-

eter. The origin of the discrepancy is currently unknown. These experiments were

built off of previous work done here at the University of Nebraska-Lincoln, and im-

provements to the preexisting system are discussed.

While these experiments likely did not demonstrate anything contrary to con-

ventional quantum mechanics, it is important to continually probe these types of

experiments to test the fundamental principles of quantum mechanics and explore

it’s technical applications.



iv

Preface

The electron double-slit diffraction experiment is described in Chapter 4 and

has been published in New Journal of Physics.1

The demonstration of a Talbot-Lau interferometer for electrons is described in

Chapter 5 and has been published in Applied Physics Letters.2

A wide-angle electron grating biprism beam-splitter is mentioned in Chapter 2

and has been published in Journal of Physics B: Atomic, Molecular & Optical Physics.3

Additional work not mentioned in this dissertation include: work on a trans-

verse quantum Stern-Gerlach magnets for electrons published in New Journal of

Physics ;4 and a low-power optical electron switch published in Journal of Physics

D: Applied Physics.5

We appreciate the support of the National Science Foundation and the Depart-

ment of Education.
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Chapter 1

Introduction

1.1 Talbot-Lau Interferometer

Interferometry is a class of techniques in which waves, electromagnetic or matter,

are superimposed in order to extract information about the waves.6 Interferome-

try is an important investigative techniques in the fields of astronomy, fiber optics,

engineering metrology, optical metrology, oceanography, seismology, spectroscopy,

quantum mechanics, nuclear physics, particle physics, plasma physics, remote sens-

ing, biomolecular interactions, surface profiling, microfuidics and velocimetry.7

Interferometers are widely used in science to measure small changes. The ulti-

mate sensitivity of a interferometer is determined by the wavelength of the wave.

The wavelength of visible light is less than 1 µm, while the wavelengths of elec-

trons, atoms, and molecules can easily reach below 50 pm. This motivates scientists

to develop interferometers utilizing these short wavelengths.

These interferometers can be utilized to measure different phenomena. For ex-

ample, light interferometers are currently being used to search for gravitational

waves with unprecedented sensitivity,8 atom interferometers are currently testing

general relativity,9,10and in this dissertation, electrons are used to sense magnetic
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fields.

One motivation for building a sensitive magnetic field detector is the develop-

ment of a magnetic anomaly detector (MAD). A MAD is an instrument used to

detect small variations in the Earth’s magnetic field.11 This device can be used to

search for minerals by detecting their disturbance of the normal magnetic field,

most notable diamond bearing kimberlite pipes can be detected by airborn mag-

netic serveys.12 Another use of MAD’s is detecting submarines by military forces.

A mass of ferromagnetic material (Iron) will create a detectable disturbance in the

Earth’s magnetic field. MAD detectors were employed to detect submarines dur-

ing World War II13 utilizing fluxgate magnetometers.14 MAD detectors can also be

used to detect mines, unexploded ordinance, buried drums, or any other iron-like

material.

In their famous 1927 experiment, Davisson and Germer showed that electrons

can behave like waves by observing diffraction from the periodic structure of a ma-

terial crystal.15 Soon after, Estermann and Stern reported diffraction of neutral he-

lium atoms by lithium fluoride crystals in 1930.16 An electron interferometer using

crystals was then developed.17,18 Solid crystals used in these interferometers absorb

low energy electron. Low energy electrons are necessary to improve the sensitivity

of an interferometer (see Equation 5.2). This is because the electrons stay in the

magnetic field longer at lower velocity. Another alternative developed soon after,

and was demonstrated by Möllenstedt and Düker in 1954, was the electron biprism

interferometer.19–21 An electron biprism is equivalent to a Fresnel biprism for light

(see Section 2.5).22 Electron biprism interferometer have been used for many tasks,

such as: testing the Aharonov-Bohm effect,23 viewing domain walls in type II su-

perconductors,24 and observing atomic steps in thin films.25 The largest separation

previously achieved between interferometer arms was about 120 µm.26,27 A large

separation is advantageous because the sensitivity of the interferometer scales with
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arm separation (see Equation 5.4). The limitations of the current biprism interfer-

ometers may be due to dephasing or decoherence processes. Dephasing and deco-

herence are difficult to eliminate because the lightweight, charged electron interacts

strongly with its environment.

To develop a useful large area electron interferometer nano-fabricated grating

were adopted. These gratings had been successfully developed for atom interferom-

etry and had been used for Na atom interferometry,28 He2 molecule diffraction,29

and bucky ball diffraction.30 The electron-grating interactions were determined to

be minimal at moderate energies but still needed to be accounted for in simula-

tions.31–33 Gronniger et al. successfully demonstrated a three grating electron inter-

ferometer in 2006.34

The Talbot-Lau interferometer is an extension of the previous work done with

nano-fabricated gratings and slits here at the University of Nebraska-Lincoln3,33,34

and was motivated by a collaborative project with the company Honeywell. The

original project was to characterizing the electromagnetic response of a three grat-

ing electron Mach-Zehnder interferometer.34 Those results are not published and

are not included in this dissertations. The last deliverable of the project, was to

test the feasibility of a Moiré deflectometer. A Moiré deflectometer is a classical de-

vice analogous to a Talbot-Lau interferometer. Chapter 5 covers the results of the

last deliverable of the collaborative project. An electron Talbot-Lau interferometer

was realized and demonstrated to have a sensitivity of of 4.7 nT Hz−1/2,

1.2 Double-Slit Diffraction

In the fall of 2008 Damian Pope, the outreach director of the Perimeter Institute

for Theoretical Physics in Waterloo, Ontario, contacted us about filming a short

education movie intended for high school students. The movie would feature the



4

electron double-slit experiment. Pope was wanting to cover wave-particle duality to

highlight the mystery of quantum mechanics.

Damian Pope had found a movie of the build-up of an electron diffraction pat-

tern from a grating that was posted online. I made the video during the summer of

2006 completing a Research Experience for Undergraduates (REU) with Professor

Batelaan. We approached Professor Sy-Hwang Liou to helped us with the manufac-

turing of a double-slit and we quickly put together an experiment to film.

The Perimeter Institute’s film staff came and filmed for two days. The experi-

ment is emphasized heavily and the script of the movie follows Feynman’s thought

experiment.35 The movie is currently being used in high schools across Canada and

is available on the Perimeter Institute’s website.∗

After some research, it was determined that no one had actually done an exper-

iment showing the build-up from a double-slit. The famous build-up pattern from

Akira Tonomura,36 shown in some introductory classes and can be found in books37

and online, is actually from a biprism wire. We decided to improve on the results

and make a diffraction build-up pattern that would replace the one from a biprism.

Several years later the results were published1 in New Journal of Physics following

Feynman’s famous thought experiment.35 Chapter 4 covers the results of the elec-

tron double-slit diffraction.

The double-slit diffraction is a corner stone of quantum mechanics. Even though

most physicists “understand” how it works, quantum mechanics doesn’t give a

mechanistic explanation of what happens to the electron between the source, the

double-slit, and the detector. Additionally the only experiments showing double-slit

diffraction build-up are done with biprims, where electric fields are used to bring

the separated beams back together. These facts can make understanding double-slit

diffraction, especially for high-school or undergraduate audiences, problematic. This

∗The Challenge of Quantum Reality; https://www.perimeterinstitute.ca/store/
perimeter-explorations/challenge-quantum-reality

https://www.perimeterinstitute.ca/store/perimeter-explorations/challenge-quantum-reality
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dissertation addresses the latter issue by demonstrating the double-slit diffraction

experiment in it’s cleanest form to date.

1.3 Summary of Chapters

Chapter 2 is a brief description of electron matter propagation. It covers Fraun-

hofer far field diffraction, an introduction to Feynman’s path integral formalism,

and some electron-slit interactions. This chapter covers in detail the theory and

implementation of the quantum mechanical simulations used in Chapters 4 and 5.

The first part of Chapter 3 gives a detailed description of the experimental setup

used in the experiments discussed in this dissertation. The latter part of Chap-

ter 3 covers the image analysis technique. Chapter 4 covers the double-slit elec-

tron diffraction experiment. Parts of this chapter were published in New Journal

of Physics.1 Experimental data and theory are compared. Chapter 5 contains the

experimental data and theoretical simulations for the Talbot-Lau interferometer

experiment. Parts of this chapter were published in Applied Physics Letters.2 The

experiment is compared to both a classical and quantum mechanical simulation.

Some conclusions and a short discussion of future directions are given in Chapter 6.

Appendix A is the path integral calculation of the propagator for the harmonic

oscillator. Appendix B gives a short description of the Labview image acquisition

program. Appendix C is a description of the image analysis code and path inte-

gral simulation codes. Appendix D is multiple computer aided design drawings

for different components manufactured in the machine shop at the University of

Nebraska-Lincoln, Department of Physics. Appendix E is several online articles

covering the release of the electron double-slit paper.1
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Chapter 2

Electron Matter Propagation

2.1 Introduction

The propagation of an electron matter wave can behave completely differently than

it’s classical counterpart. The simplest example of this is when an electron prop-

agates through a double-slit or grating. Classical mechanics predicts shadow like

patterns in the far field while what is observe is diffraction patterns (see Chapter 4

for experimental diffraction patterns). To correctly propagate an electron matter

wave, quantum mechanics must be used. To incorporate a full 4-dimensional∗ stan-

dard quantum mechanical propagation would be time consuming and non-practical.

A 2-dimensional Feynman path integral calculation38 and a matter wave analogy to

Fraunhofer far field diffraction22 were used to streamline simulations.

The first section of this chapter will give a brief overview of Fraunhofer far field

diffraction for single-slit, double-slit, and gratings. The rest of this chapter will

cover an introduction of Feynman’s path integral formalism and it’s application to

different components used in experiments, i.g., slits, double-slits, gratings, etc.

∗3 spatial dimensions + time
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2.2 Fraunhofer Far Field Diffraction

One similarity between the propagation of light and matter is that both can be de-

scribed by the Helmholtz equation ((∇2 + k2)Ψ = 0), but with different dispersion

relations.39 In free space the dispersion relation for matter waves is k =
√

2mω
~ ,

while for light waves it is k = ω
c

(with E = ~ω for both). This fact can be used to

form analogies between the two different propagations. Single-, double-, and multi-

slit diffraction are well know in optics and the equations developed for them can be

used in matter optics.

The simplest structure that exhibits diffraction is the single-slit. The far-field

diffraction pattern’s intensity can be represented by40

I = I0

[
sin(α)

α

]2

, (2.1)

where α = πa
λ

sin(θ) and I0 is the intensity at the center. The width of the slit is

a, λ is the wavelength, and θ represents the angle from the normal of the slit (see

Figure 2.1 top). This distribution has a maximum at the center with minimums

when α = πn (n 6= 0, n ∈ Z). This is in contrast to classical mechanics, which

only predicts a central maximum with a decreasing intensity as the magnitude of θ

increases.

Diffraction can also be seen from the double-slit, see Figure 2.1 middle. In addi-

tion to each individual slit exhibiting single-slit diffraction, there is mutual interfer-

ence between individual slits. The far-field diffraction pattern’s distribution can be

represented by40

I = 4I0

[
sin(α)

α

]2

cos2 β, (2.2)

where β = πd
λ

sin(θ). The center-to-center separation between individual slits is
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a
θ

a

d

θ

a

d

θ

Figure 2.1. Illustration of single-, double-, and multi-slit diffraction (top to bot-
tom). The width of the individual slits are a. The length d represents the center-
to-center separation for the double-slit and the periodicity for the multi-slit. The
corresponding intensity distribution is represented on the right. The single slit en-
velope is shown by a dashed (green) line for the double- and multi-slit. The same
values for a and d were used for each distribution, with d = 2a.

d. This distribution is the single-slit distribution multiplied by a cosine function

that depends on d. This is why the outline of the maximums is referred to as the

single-slit envelope, illustrated by the dashed (green) line in Figure 2.1. There are

additional minimums when β = π(n− 1
2
), n ∈ Z.

A multi-slit or grating shows properties of diffraction as well. The far field diffrac-

tion pattern’s distribution is represented by40

I = I0

[
sinα

α

]2 [
sin(Nβ)

sin β

]2

, (2.3)
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where N is the number of slits. This distribution is shown in Figure 2.1 bottom

and also has the single-slit envelope, shown by the dashed (green) line. The double-

slit diffraction is a subset of the multi-slit diffraction, with N = 2,

[
sin(2β)

sin β

]2

=

[
2 sin(β) cos(β)

sin β

]2

= 4 cos2 β. (2.4)

This distribution has maximums near β = mπ, m ∈ Z, which leads to

mλ = d sin(θ). (2.5)

Equation 2.5 is sometimes called the diffraction grating equation41 and m is identi-

fied as the order of the diffraction.

Equations 2.1, 2.2, and 2.3 represent an ideal situation; a single frequency source

producing plane waves. Real physical sources have finite frequency bandwidths and

finite spatial distributions. The amplitude and phase at any point in the field will

undergo fluctuations compared to constant amplitude and linear phase. This is due

to the specifics of the source. The characteristic time in which the fluctuations are

minimal is the coherence time.22 The coherence length is the characteristic distance

the correlations between the phase, still exist.

The source is not the only thing that can affect the coherence length. Interac-

tions of the wave with the environment can effect the coherence length.42–44 This is

not always bad, it can be used as a tool to probe an interaction, e.g., the interac-

tion between electrons and a double-slit (see Chapter 4). The transverse† coherence

length can be measured by diffracting the wave through a single, double, or multi-

slit. If the coherence length is much less than the slit width a, the diffraction will

lose visibility and revert to a classical beam.33 If a multi-slit is used, the pattern

will be different depending on how many slit are illuminated coherently. Figure 2.1

†Perpendicular to the direction of propagation
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V=0.9 V=0.6

V=0.4 V=0.2

Figure 2.2. Illustration of partial coherence for the double-slit. The solid (black)
line represents the far-field diffraction pattern’s distribution for different visibility
parameters. The dashed (green) line illustrated the maximum and minimum enve-
lope. The visibility parameter used in the distribution is shown in the upper right.
The same values for a and d were used for each distribution, with d = 4a.

illustrates this with 2 slits (center) and 10 slits (bottom) being illuminated fully

coherently.

A double-slit can be used to measure the coherence between its two slits. As-

suming the transverse coherence length to be larger than the width of the single

slits, the far-field diffraction pattern’s distribution can be represented by22

I = 2I0

[
sin(α)

α

]2

[1 + V cos(2β)] , (2.6)

where V is a measure of the coherence between the slits. If V is 1 then the two slits

are fully coherent with each other and Equation 2.6 will reduce to Equation 2.2 us-
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ing a double angle formula. If V is 0 then the slits are fully incoherent and Equa-

tion 2.6 will reduce to twice Equation 2.1. V is also the visibility parameter or con-

trast, V = (Imax − Imin)/(Imax + Imin) of the diffraction pattern. Figure 2.2 illus-

trates Equation 2.6 with different visibility parameters. The visibility parameter

can be used to discern information about the initial wave or the interaction with its

environment.

Because light waves interact differently with surfaces compared to with elec-

tron waves, the analogy between them is less obvious than the Helmholtz equation

suggests. An example is the image charge potential when an electron is beside a

grounded surface. To treat interaction between matter waves and surfaces or inter-

faces a Feynman’s path integral38 formalism was adopted to propagate the waves.

This is covered in the next section.

2.3 Feynman’s Path Integral Formalism

To overcome the shortcomings of the simple analogy between light and matter waves,

a more in-depth model was developed. The model is based off of Feynman’s path

integral formulation.38 Feynman’s method utilizes classical trajectories to calcu-

late the probability of finding a particle at a location. The contribution from a sin-

gle path is an exponential whose phase is the classical action, in units of ~. This

leads to a kernel or propagator which describes how the initial wave function moves

through the system.

2.3.1 Propagation

The wave function Ψ(~x, t) is propagated in time by

Ψ(~x, t) =

∫
d~x′ K(~x, t; ~x′, t′) Ψ(~x′, t′), (2.7)
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where t′ < t and K is the kernel given by

K(~x, t; ~x′, t′) = A(t; t′) exp

[
i

~
S(~x, t; ~x′, t′)

]
, (2.8)

A is a normalization factor that only depends on time and S is the classical action

of the path. The paths used are the classical paths that satisfy the principle of sta-

tionary action45 (δS = 0). This propagator holds when the typical vales of the

action are large compared to ~.46

2.3.2 Free Space

The simplest example is free space. The Lagrangian for the free particle in two di-

mensions is just the kinetic energy L = m
2
ẋ2 + m

2
ẏ2, where m is the mass of the

particle. The classical path can be found by solving the Euler-Lagrange equations:

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0, (2.9)

and similarly for y. In free space the x and y coordinates are not coupled, so they

can be solved separately. Solving Equation 2.9 results in ẋ = C, where C is a

constant. The constant can be solved for by integration with an initial point of

~x′ = (xa, xb), t
′ = ta and finial point of ~x = (xb, yb), t = tb. The path and the

velocity are:

x(t) = xa +
(t− ta)(xb − xa)

tb − ta
,

ẋ(t) =
xb − xa
tb − ta

. (2.10)
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The solution for y is identically solved for. The action can be calculated along this

path,

S(~xb, tb; ~xa, ta) =

∫ tb

ta

dt L(~xb, tb; ~xa, ta)

=

∫ tb

ta

dt
m

2

[(
xb − xa
tb − ta

)2

+

(
yb − ya
tb − ta

)2
]

=
m

2

[
(xb − xa)2

tb − ta
+

(yb − ya)2

tb − ta

]
. (2.11)

This can be put directly into Equation 2.8 to give the kernel,

K(~xb, tb; ~xa, ta) = A(t; t′) exp

{
i

~
m

2

[
(xb − xa)2

tb − ta
+

(yb − ya)2

tb − ta

]}
. (2.12)

The normalization factor can found by realizing that A(tb, ta) = K(0, tb, 0, ta) and

that for any time tc between ta and tb,

K(0, tb; 0, ta) =

∫ ∞
−∞

dxc

∫ ∞
−∞

dyc K(0, tb; ~xc, tc)K(~xc, tc; 0, ta). (2.13)

Substituting Equation 2.12 into Equation 2.13 results in,

A(tb; ta) = A(tb; tc)A(tc; ta)

∫ ∞
−∞

dxc

∫ ∞
−∞

dyc exp

{
i

~
m

2

[
x2
c

tb − tc
+

y2
c

tb − tc

]}
exp

{
i

~
m

2

[
x2
c

tc − ta
+

y2
c

tc − ta

]}
= A(tb; tc)A(tc; ta)×∫ ∞

−∞
dxc

∫ ∞
−∞

dyc exp

{
i

~
m

2
(x2

c + y2
c )

(
1

tb − tc
+

1

tc − ta

)}

= A(tb; tc)A(tc; ta)
2πi~
m

(
1

tb − tc
+

1

tc − ta

)−1

. (2.14)
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The previous equation can be rewritten as,

[(tb − ta)A(tb; ta)] =
2πi~
m

[(tb − tc)A(tb; tc)] [(tc − ta)A(tc; ta)] . (2.15)

One solution is

A(u+ u0;u0) =
m

2πi~u
, (2.16)

This allows us to fully write down the kernel,

K(~xb, tb; ~xa, ta) =
m

2πi~(tb − ta)
exp

{
i

~
m

2

[
(xb − xa)2

tb − ta
+

(yb − ya)2

tb − ta

]}
. (2.17)

This kernel is only dependent on the time difference T = tb − ta and not on the

initial time ta. This equation can be easily modified to include three-dimensions,

K(~xb, tb; ~xa, ta) =

[
m

2πi~(tb − ta)

]3/2

exp

{
i

~
m

2

[
(xb − xa)2

tb − ta
+

(yb − ya)2

tb − ta
+

(zb − za)2

tb − ta

]}
. (2.18)

The extra prefactor is from the extra integration needed to be performed in the

step at Equation 2.14. The propagator found from the Schrodinger equation ends

up being identical to Equation 2.18.47

2.3.3 Harmonic Oscillator

The next step, after free space in typical quantum mechanical classes, is to cover

the harmonic oscillator. In some books the propagator for the harmonic oscillator

is not even explicitly calculated.47,48 The path integral formalism end up being a

much simpler method for calculating the propagator. The potential for with a one

dimensional harmonic oscillator is V = mω2

2
x2. This gives a Lagrangian of L =
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m
2
ẋ2 − mω2

2
ẋ2, where ω is the classical frequency of the oscillator. The calculations

become quite lengthy and are put in Appendix A. The end result for the kernel is47

K(xb, tb;xa, ta) =

(
mω

2πi~ sin[ω(tb − ta)]

)1/2

×

exp

{
imω

~

[
(x2

a + x2
b) cos[ω(tb − ta)]− 2xaxb
2 sin[ω(tb − ta)]

]}
. (2.19)

The procedure to fine the kernel was identical to the one followed finding the free

space kernel.

2.3.4 External Magnetic Field

A more complicated example is for a particle in a constant external magnetic field

B, in the z direction. The Lagrangian is, L = m
2

(ẋ2 + ẏ2 + ż2) + qB
2

(xẏ − yẋ), where

q is charge of the particle. Following the same method outlined for the free particle

the kernel can be found,

K(~xb, tb; ~xa, ta) =
( m

2πi~T

)3/2
(

ωT/2

sin(ωT/2)

)
exp

{
i

~
m

2

[
(zb − za)2

T

+

(
ω/2

tan(ωT/2)

)[
(xb − xa)2 + (yb − ya)2

]
+ ω (xayb − xbya)

]}
, (2.20)

where ω = qB
m

. Calculation of this kernel was begun but was instead found in

Quantum Mechanics and Path Integrals, problem 3.10.49 This kernel was never used

because of the coupling between x and y. Using this kernel would require the ad-

dition of an extra dimension to our simulations. This would increase the computa-

tional time.
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2.3.5 Free Space Simplifications

Propagating a wave function in four-space can prove computationally intensive

for all but the most simplest initial wave-function. To remedy this it is assumed

that the wave function can be separated, i.e., the wave function can be written as

Ψ(~x, t) = ψx(x, t)ψy(y, t)ψz(z, t). Using this, Equation 2.7 can be simplified if

the kernel can also be separated. Equation 2.18 can be separated in all dimensions

while Equation 2.20 can only be separated in the z-dimension. The separated free

space kernel in 1-dimension is

Ku(ub, tb;ua, ta) =
( m

2πi~T

)1/2

exp

{
i

~
m

2

[
(ub − ua)2

T

]}
, (2.21)

where u can represent x, y, or z and T = tb − ta. Equation 2.7 becomes,

Ψ(~x, t) =

∫
dx′ Kx(x, t;x

′, t′)ψx(x
′, t′)

∫
dy′ Ky(y, t; y

′, t′)ψy(y
′, t′)∫

dz′ Kz(z, t; z
′, t′)ψz(z

′, t′). (2.22)

If the wave function is also only calculated along a line satisfying y = 0 and z = vt,

Equation 2.22 can be simplified further while using Equation 2.21,

Ψ(x, y = 0, z = vt, t) =
( m

2πi~T

)1/2
∫
dx′ exp

{
i

~
m

2

[
(x− x′)2

T

]}
ψx(x

′, t′)

( m

2πi~T

)1/2
∫
dy′ exp

{
i

~
m

2

[
(y′)2

T

]}
ψy(y

′, t′)

( m

2πi~T

)1/2
∫
dz′ exp

{
i

~
m

2

[
(vt− z′)2

T

]}
ψz(z

′, t′).

(2.23)

Next it is assumed that the expectation value of y and z are zero and vt respec-

tively. This is to say the particle has a velocity of v along the z-axis with while
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no velocity along the y-axis. The probability distribution is the square of the wave

function. The square of the 2nd and 3rd integrals will only produce a scaling factor

that will change with time. If the initial probability distribution in the y and z are

assumed to be a Gaussian and there is no interactions in that dimension, the prob-

ability distribution will stay a Gaussian shape in that dimension. Thus, at y = 0

and z = vt the probability distribution will be the largest.

The probability distribution will then be proportional to the square of ψx(x, t).

At t = z/v, this can be calculated by

ψx(x, z/v) =

[
mv

2πi~(z − z′)

]1/2 ∫
dx′ exp

{
i

~
mv

2

[
(x− x′)2

z − z′
]}

ψx(x
′, z′/v), (2.24)

where z′ is the center position of the initial wave function. Using the Taylor expan-

sion

[
(x− x′)2 + (z − z′)2

]1/2
= (z − z′)

[
1 +

1

2

(
x− x′
z − z′

)2

+O

{(
x− x′
y − y′

)4
}]

= (z − z′) +
1

2

(x− x′)2

z − z′ , (2.25)

The last equality holds under the assumption that
(
x−x′
z−z′

)2
<< 1, Equation 2.24 can

be rewritten as

ψx(x, z/v) =

[
mv

2πi~(z − z′)

]1/2

exp

{
i

~
mv

2
[−(z − z′)]

}
×

∫
dx′ exp

{
i

~
mv
[
(x− x′)2 + (z − z′)2

]1/2}
ψx(x

′, z′/v). (2.26)

The first exponential does not depend on x′ and was moved outside the integral.

It is also a global phase factor that does not come into play when calculating the

probability distribution, and is left out of further calculations for simplifications.
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Using the fact that the de Brolie wavelength is λdB = h
mv

and the reduced Planck

constant is ~ = h
2π

, Equation 2.26 can be written as

ψx(x, z/v) =

[
1

iλdB(z − z′)

]1/2

×

∫
dx′ exp

{
i

2π

λdB

[
(x− x′)2 + (z − z′)2

]1/2}
ψx(x

′, z′/v). (2.27)

This kernel has been used to model multiple different experiments3,33,34,50,51 and

was used to model the experiments described in Chapter 4 and Chapter 5, This

version of Equation 2.21 was used because of it’s simplicity and similarities to opti-

cal wave propagation (φ = 2πL
λ

).22

The prefactor in Equation 2.27 is independent of x and is thus a scaling factor.

Since it does not effect the shape of the probability distribution, it is left out of fur-

ther calculations. Also, to prevent confusion between Equation 2.21 and this equa-

tion an alternative notation was adopted. The wave function Ψ(x) was propagated

from one “plane” to the next (in z). This was done by

Ψf (x) =

∫
dx′Ki→f (x, x

′)Ψi(x
′). (2.28)

The kernel in Equation 2.28 is given by

Ki→f (x, x
′) = exp

{
i

2π

λdB

[
(x− x′)2 + (z − z′)2

]1/2}
, (2.29)

where z′ and z refers to the positions of the initial and finial planes respectively.

This notation will be used throughout the rest of the dissertation.
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2.4 Matter Wave Interactions

One of the reason for using Feynman’s path integral formalism, is it enforces the

idea of accumulating a phase along a path. This can be seen evidently in Equa-

tion 2.29. The phase is φ = 2πL
λ

, where L is the length the particle traveled from

the initial point to the final. Another benefit of using path integrals, is the way

physical structures can be dealt with. For example, if a wall exist where the path

of the electrons are, then the electrons can not pass through and that path does not

contribute to the finial probability distribution.

The following sections will utilize these facts to propagate a particle through

different components used in the experiments discussed in Chapter 4 and Chap-

ter 5. One important assumptions is made during the propagation. This is that the

interactions occur at or near the components and the particle propagates in free

space using Equation 2.28. Even under this assumption, experimental results can

be accurately simulated.

2.4.1 Single-, Double-, and Mult-Slits

The simplest structure is a single-slit. This can be used a collimation slit or a mask.

First the slit is idealized as a infinity thin sheet. The wave function is fists propa-

gated up to the slit plane and then the wave function is modified by

Ψout(x) = A(x)exp [iφ(x)] Φin(x), (2.30)

where A(x) describes the modification of the wave function by limiting the paths

and φ(x) describes the phase accumulated by the path as it passes through the slit.

The function A(x) is just a simple truncation representing the shape of the slits.
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For a single-slit

A(x) = H
(
x+

a

2

)
H
(
−x+

a

2

)
, (2.31)

where H is the Heaviside function and a is the width of the slit. For a double-slit,

it is just two single-slits separated center-to-center by d,

A(x) = H

(
x+

d

2
+
a

2

)
H

(
−x− d

2
+
a

2

)
+H

(
x− d

2
+
a

2

)
H

(
−x+

d

2
+
a

2

)
.

(2.32)

For a multi-slit or a grating the function becomes a sum

A(x) =
∑
n

H
(
x− nd+

a

2

)
H
(
−x+ nd+

a

2

)
, (2.33)

where here d represents the periodicity and the ration a/d is the open fraction. The

sum over n can be as small or as large as the number of slits.

2.4.2 Image Charge Effects

When a particle passes the walls of a slit, it interacts through its charge. If the

walls are conductors, the surface charges will rearrange themselves to cancel the

electric field inside the conductor. This leads to a additional phase or force on the

particle. Treating the walls as infinite planes, the well known image charge solu-

tion to Laplace’s equation can be used.52 This method of using infinite planes to

describe the interaction between the particle and the walls has been used before

to describe van der Waals interactions between atoms (or molecules) and nano-

fabricated gratings.51,53,54

This image charge will produce a potential that will effect the particle as it

travels past the walls of the slit. The potential will produce a force that will pull
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Figure 2.3. Illustration of the image charge effects. (a) The image charge poten-
tial has an attractive force on the particle. If the particle is within a distance s it
will collide with the wall. (b) The particle will accumulate a phase shift from the
image charge potential.

the particles closer to the wall. If a path was initially close enough to the walls it

will be pulled into the walls. This has an effect of narrowing the slits by the dis-

tance s, see Figure 2.3(a). The paths not pulled into the walls will accumulate a

phase shift as they pass through the potential. For these paths a straight line tra-

jectory is assumed, and the path sees a potential from both walls, see Figure 2.3(b).

The image charge potential for a single infinite wall is

V (r) =
−kqeff

2r
, (2.34)

where r is the distance away from the wall, k is Coulomb’s constant, and qeff is the

effective image charge. This leads to an attractive force on a particle with charge q

of

F (r) =
kqqeff

4r2
. (2.35)

Calculating the maximum distance away that a classical particle can start while

still hitting the slit wall, the distance the slits are narrowed on each wall can be
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calculated. This distance is

s =

[
kqqeff

E

(
L

π

)2
]1/3

, (2.36)

where L is the length or thickness of the slit in the z-direction and E is the energy

of the particle.

The accumulated phase proportional to the classical action. The path used is

shown in Figure 2.3(b) by the dashed (green) line. The phase is given by

φ(x) =
1

~

∫
dt L =

1

~

∫
dt
m

2

(
ẋ2 + ż2

)
− qV (x, z). (2.37)

For straight line trajectories the first two terms are constant since there are no

change in the velocities. Assuming identical initial velocities these terms are a com-

mon global phase that can be ignored. Putting in the potentials, Equation 2.34,

from both walls, the leading image charge terms lead to a phase accumulation of

φ(x) =
kqqeffL

2~v

[
1

r
+

1

r′

]
, (2.38)

where the L/v comes from the time integration with v being the velocity of the

particle. The r and r′ variables are the distances from the two walls. Equation 2.38

can be simplified by using the width of the slit a and the distance from center line

x,

φ(x) =
2kqqeffL

~va

[
1

1−
(
x
a

)2

]
. (2.39)

The straight line approximation of the trajectories need to be justified. Fig-

ure 2.3 shows the trajectory that deviates most from a straight line. The scales in

the figure mislead the amount of the curve. The largest value of s, for the experi-
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ments presented here, is approximately 0.8 nm, while the value of L is 130 nm. Un-

fortunately the trajectory due to the image charge force is not analytically solvable,

−√xx0

√
x0 − x+ x

3/2
0 cot−1

[√
x0 − x
x

]
=

[
kqqeff

2m

]1/2

t+
π

2
x

3/2
0 , (2.40)

where x0 is the initial position of the particle at t = 0, with horizontal velocity

v. Equation 2.40 can be expanded to find the next leading term of the trajectory.

Taking the expansion of the left hand side about x = x0,

π

2
x

3/2
0 +2x0 [x0 − x]1/2−1

3
[x0 − x]3/2+O

[
(x0 − x)5/2

]
=

[
kqqeff

2m

]1/2

t+
π

2
x

3/2
0 . (2.41)

Using only the terms with O
[
(x0 − x)1/2

]
or less, a trajectory can be solved for,

x = x0 −
1

4x2
0

[
kqqeff

2m

]
t2. (2.42)

The phase can be found using Equation 2.37. The ż term still remains constant,

and is ignored like before. The phase now becomes,

φ(x) =
m

24~x4
0

[
kqqeff

2m

](
L

v

)3

+
kqqeff

2~

tanh−1

{(
1

4x3
0

[
kqqeff

2m

])1/2 (
L
v

)}
(

1
4x0

[
kqqeff

2m

])1/2
, (2.43)

where the limits of integration were from t = 0 to t = L
v
. The first term in Equa-

tion 2.43 will be referred to as φẋ(x) and the second term will be referred to as

φqeff (x). After expanding the inverse hyperbolic tangent, φqeff
(x) becomes,

φqeff (x) =
kqqeff

2~
L

x0v

{
1 +

1

3

(
1

4x3
0

[
kqqeff

2m

])(
L

v

)2
}
. (2.44)

The first term is the straight line trajectory and as long as the second term is small
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compared to 1, then the straight line trajectory remains valid. The largest deflected

trajectory that makes it through the grating and subsequently would cause the

largest deviation from a straight line is when x0 = s. Substituting s =
{

4
π

[
kqqeff

2m

] (
L
v

)2
}1/3

into the second term in the braces of Equation 2.44 gives a value of π/48 = 0.065,

which for the situation is much less than 1. Similarly, experimental values can be

substituted into φẋ(x) giving a value of approximately π/200. These values are a

small contribution to the accumulated phase and thus justifies the straight line ap-

proximation to the trajectories.

2.4.3 Random Potentials

Previous experiments have had the need of additional interactions between a parti-

cle and a slit to get agreement for single- and multi-slit diffraction.33 This interac-

tion was modeled by a series of random static Gaussian potentials.

The physical system, that motivates the random potential model, is based on

contact potential. the typical size of contact potentials is .1-1 eV. For example, the

contact potential between different crystal faces of copper is about 0.4 eV.55

This model was adopted to help describe a particle traveling through a slit. In

the model the potential had the form of

Vrandom(x) =
∑
i

Aiexp

[
−4 ln(2)(x− xi)2

σ2
i

]
. (2.45)

Here Ai is the amplitude, σi is the Full Width Half Max (FWHM) value, xi is the

center of the ith potential, and the 4 ln(2) comes from relationship between the vari-

ance of a Gaussian and the FWHM, see Figure 2.4.

The values of σi and Ai are obtained from random number generators, while

xi = σi + σi−1. The random number generators are Gaussian distributions with

means and FWHM values. The values used, in the Talbot-Lau experiment described



25

P
ot

en
ti
al

[ e
V

]

-.2

0

.2

-1 -.5 0 .5 1

A
m

p
li
tu

d
e

-1 -.5 0 .5 1
0

1

Position [µm]

Figure 2.4. Illustration of random potentials. The upper graphs show two differ-
ent random potentials generated from Equation 2.45. The bottoms graphs illus-
trates the dimensions typical grating. They were made using Equation 2.33, with
a = 50nm and d = 100nm.

in Chapter 5 (and used in Figure 2.4) are means of 250 nm for σi and 0 eV for Ai

and the FWHM is 250 nm and 0.35 eV respectively.

The phase accumulated was calculated identically to Equation 2.37. An ampli-

tude of about 0.2 eV gives a phase shift on the order of π. Because the electrons go

through different vertical (y) sections of the slit, the wave function was propagated

through each slit multiple times with different random potentials. Then individual

wave function are then incoherently added up, by first calculating the individual

probability distributions then adding each together.

The image charge effects are symmetric about the center of individual slits and

it has an identical shape between slits on the plane. This generally has the effect

of broadening the single-slit envelope. It does not however effect the zeros of the

double-slit or multi-slit, see Figure 2.1. The random potential caused the zeroes

to come up and destroy some of the contrast, similar to Figure 2.2. Both effects

were necessary to properly model the experimental double-slit diffraction data, see

Chapter 4.
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2.4.4 Implementation

The first collimation slits of the experiments were considered to be incoherent sources.

To describe these incoherent sources the wave function was initialized as

Ψχi
(x) = δ(x− χi), (2.46)

where χi is the center of the point source and located in the first collimation slit.

Multiple point sources were propagated through the system. A final probability

distribution was calculated for each initial points source. Then each probability dis-

tribution was added incoherently.

To accound for the image charge and random potential effects, a new effective

width was calculated for the slits (a′ = a − 2s), modifying Equation 2.33. Then

Equation 2.30, with the two phases (the image charge phase from Equation 2.39

and the random potential phase calculated from Equation 2.45) along with the

modified A, were applied to the wave function. Then the wave function was prop-

agated to the next component.

2.5 Electron Biprism

An electron biprism is constructed of a fine metallic filament or wire placed be-

tween two parallel plate electrodes. A voltage Vbp is applied to the biprims wire

causing a potential, which can be approximated as27

V (r) = Vbp
ln(r/Rel)

ln(Rbp/Rel)
, (2.47)

where r is the radial distance from the wire, Rbp is the radius of the wire, and Rel is

the distance from the wire to the grounded electrode. The potential given by Equa-

tion 2.47 results in a classical deflection to a particle traveling near the wire in the
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plane whose normal is parallel to the wire, which for small angles (δ) is27

δ =
πqVbp)

2E ln(Rbp/Rel)
. (2.48)

As seen from Equation 2.48, the electron biprism is useful because it can cause a

deflection that is independent of distance from the wire. This is analogous to the

Fresnel double prism for light.

Recent attempts at making a large area interferometer3 required the modeling

of an electron biprism with Feynman’s path integral formalism. The small deflec-

tion angles, where Equation 2.48 is valid, motivated a straight line trajectory ap-

proach. The wave function was propagated through the system with the free space

propagator, as described above. At the plane of the biprism, Equation 2.30 was ap-

plied. The biprism is treated as a solid barrier that blocks a portion of the plane,

effecting the amplitude of the wave function,

Abp(x) = H(−x−Rbp) +H(x−Rbp). (2.49)

The electrons that pass the biprism accumulate a phase shift. This phase shift is

due to the biprism potential given by Equation 2.47.

The phase shift is calculated using Equation 2.37. The ẋ and ż terms are not

calculated again because they are accounted for during the free space propagation.

The phase is,

φbp(x) =
q

~

∫
dt Vbp(r) =

q

~v

∫ ∞
−∞

dz Vbp(r(x, z)), (2.50)

where the last relation assumed a straight trajectory in z with a constant velocity

v. This integral diverges; however only local phase differences accumulated for tra-

jectories at different distances from the wire are relevant.
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A phase difference between trajectories can be calculated. Two paths at x and

x′ have a phase difference of

∆φbp(x, x
′) =

q

~v
Vbp

ln(Rbp/Rel)

∫ ∞
−∞

dz ln

(
[x2 + z2]

1/2

Rel

)
− ln

(
[x′2 + z2]

1/2

Rel

)

=
q

~v
Vbp

ln(Rbp/Rel)

1

2

∫ ∞
−∞

dz ln
(
x2 + z2

)
− ln

(
x′2 + z2

)
. (2.51)

Using the known integral56

∫ ∞
−∞

du ln
(
x2 + u2

)
= u

[
ln(u2 + x2)− 2

]
+ 2x tan−1

(u
x

)
, (2.52)

Equation 2.51 can be evaluated,

∆φbp(x, x
′) =

q

~v
Vbp

ln(Rbp/Rel)

1

2

{
z
[
ln(z2 + x2)− ln(z2 + x′2)

]
+ 2x tan−1

(z
x

)
− 2x′ tan−1

( z
x′

)}∞
−∞

(2.53)

=
qπ

~v
Vbp

ln(Rbp/Rel)
(x− x′) . (2.54)

The first terms in Equation 2.53 cancels out with the evaluation at the limits. The

last two terms’ arc-tangents evaluate to ±π/2 at the limits, giving the π in Equa-

tion 2.54. The global phase can be ignored, which is when x′ = 0. The phase at the

biprism plane can be simply written as

φbp(x) =
qπ

~v
Vbp

ln(Rbp/Rel)
x. (2.55)

The straight line trajectory approach, while not mathematically justified here,

accurately reproduced the results published by Caprez et al.3 Equation 2.55 pro-

duces a linear phase shift along x, this causes a deflection of an electron beam that
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is independent of the distance from the biprism wire. Similarly the derivative of

Equation 2.55 in x, divided by mv, gives the deflection angle, Equation 2.48.

2.6 Path Integral Simulations

Two major simulation were developed and ran to model both the electron double-

slit experiment, see Chapter 4, and the Talbot-Lau interferometer, see Chapter 5.

The simulations utilized Feynman’s path integral formalism outlined above. The

simulations were written in FORTRAN and ran on the University of Nebraska-

Lincoln Holland Computing Center’s clusters. The code is too lengthy to go into

detail here, see Appendix C.
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Chapter 3

Experimental Setup and Image

Analysis

3.1 Introduction

Both experiments discussed in Chapter 4 and Chapter 5 were completed on the

same general electron beam system. For each experiment some of the componets

were different. To prevent redundancy in the discription of the experimental setup

the major components are listed in the next section. The third section contains

an overview of the electron detection process and the last section covers the image

analysis techniques employed.

3.2 System Components

The vacuum system is shown in Figure 3.1 with the main components identified.

The compoenents are discussed in detail in the following subsections.
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Figure 3.1. The vacuum system is shown in the picture above. The major compo-
nents are indicated below the image with the spatial separations listed.

3.2.1 Electron Guns

A source of electrons were needed for the experiments. Depending on the require-

ments for the individual experiments, two different electron guns were used. The

main consideration was the energy range of the gun and the ease of adjustment of

the central energy.

The double-slit experiment (see Chapter 4) required lower energies to separate

the diffraction orders to larger angles. The de Broglie wavelength (λdB) scales with

the inverse of square root of energy (E),

λdB =
h√

2mE
, (3.1)
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Figure 3.2. The lower energy electron gun was capable of energies ranging from 50
eV to 1 keV, The labels refer to the flanges pin letters.

where h is Planck’s constant and m is the mass of the electron. Using Equation 3.1

and 2.5 the diffraction angle can be seen to be inversely proportional to the square

root of energy. Hoping to see the diffraction pattern directly on the detector with-

out any magnification, an electron gun was chosen that had a range of energy from

50 eV to 1 keV. This gun (donated by the University of Utrecht) produced elec-

trons by thermionic emission from a tungsten wire with an energy spread of less

than 3 eV, see Figure 3.2. It used 9 focusing elements and 4 individually address-

able plates for deflection to produce a usable beam. A Topward 3003A power sup-

ply ran approximately 2 amps of current through the tungsten wire and was floated

on a Ortec 556 high voltage power supply to provide the accelerating voltage for

the electrons. The focusing elements were individually held a different potentials

with multiple Agilent E3612A DC power supplies The opposing deflection plates

could be held at a potential difference while floated at a specific center voltage us-

ing a combination of a potentiometer box and two Agilent power supplies. The

multiple independent adjustments made changing the energy while keeping a well

focused beam difficult.
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Figure 3.3. The higher energy electron gun was capable of energies ranging from
100 eV to 10 keV. The gun was a Kimball Physics Egg-3101

The Talbot-Lau experiment (see Chapter 5) needed larger energies and the ca-

pability to easily sweep the energy. Previous experiments with similar gratings

demonstrated the need for energies of 500 eV or larger.33,34 This energy was nec-

essary to minimize unwanted interactions effects with the grating. To properly

demonstrate a three grating Talbot-Lau interferometer, It was necessary to observe

the maxima in contrast. These occur when the grating separation (L) is an integer

multiples of half the Talbot length (LT ), which is LT = 2d2/λdB, where d is the

grating period.57 If the grating periods and separation distances are fixed, the only

adjustable parameter is E. Using the above and Equation 3.1, the maxima occur at
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energies of

E =
1

2m

(
Lh

nd2

)2

, (3.2)

where n in an integer and the nth revival of the Fourier image of the first grating.58

The electron gun chosen for the Talbot-lau experiment was a Kimball Physics

Egg-3101, see Figure 3.3. This gun had an energy range capability of 100 eV to

10 keV, with an estimated energy spread of 1 eV. The electrons were produced

by thermionic emission from a lanthanium hexaboride cathode. A pair of deflec-

tion plates and a single focusing element allowed for for the production of a beam.

Both the deflection plates and the focusing element were controlled by power sup-

plies that would ramp proportionally to the electron energy. This allowed for, when

properly aligned, the sweeping of energies with minimal adjustments, thus the cov-

ering of multiple contrast maxima. Using Equation 3.1, with a grating separation of

3 mm and a grating period of 100 nm, the n = 4, 5, 6, ..., 37 orders would be reach-

able.

The two electron guns were situated at different locations in the vacuum sys-

tem. The lower energy electron gun’s exit was located 15 cm from the first collima-

tion slit, see Figure 3.1, while the higher energy electron gun’s was located 32 cm

from it.

3.2.2 Beam Collimation

Previous experiments with this electron beam system utilized different collimation

slits.33,34,59 Previously the electron beam was collimated with laser cut 5 µm wide

by 3 mm tall metal slits. These collimation slits were manipulated externally from

the vacuum chamber with horizontal linear feedthroughs. No vertical adjustment

was necessary because of the tall height of the slits. During the double-slit exper-
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Figure 3.4. The vertical translation system allows for precise vertical control of
the first collimation slit, while the linear feedthrough controls the horizontal adjust-
ments

iment, the rough edges (approximately 500 nm roughness) caused the diffraction

pattern to appear unsatisfactory for publication.

Focused ion beam (FIB) milled silicon-nitride membrane windows were chosen

to replace the metal collimation slits. These slits had extremely smooth edges (less

than 10 nm roughness). Due to the thickness of the membranes and the manufac-

turing process the aspect ratio of the slits could not be too large or the membranes

would collapse. The slits now needed to be manipulated vertically as well as hori-

zontally.

A vertical translation system was designed and built to manipulate the first col-

limation slit, see Figure 3.4. The translation system was built in the University

of Nebraska-Lincoln, Department of Physics, student machine shop. The system

translated on a pair of stock crossed roller bearings. The hydraulically formed bel-
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Figure 3.5. The second collimation slit manipulator is pictured above. The hor-
izontal and vertical micrometers allow for precise manipulation of the collimation
slit over smaller distances while the “pedestal’s” steps cover a larger horizontal
distance

lows allowed the system to translated while still maintaining vacuum. The microm-

eter screw enabled precise control of the vertical position of the collimation slit,

while the linear feedthrough provided the horizontal adjustment.

To allow the second collimation slit to be adjusted vertically a different ap-

proach was used. A repurposed aperture manipulator, from a decommissioned elec-

tron microscope, was adapted to manipulate the second collimation slit, see Fig-

ure 3.5. The manipulator was designed to be able to select from 4 apertures, that

were separated horizontally by approximately 2.85 mm, by the adjustment of a

“pedestal”. Then the micrometer screws were used to fine tune the position of the

aperture. The horizontal micrometer’s motion is limited to less than 1.5 mm, mean-

ing that there are horizontal positions that the manipulator can not reach. A new

“pedestal” was built to have smaller steps or approximately 1.25 mm. This allowed

the different “pedestal” steps to overlap while still allowing the manipulator to

cover a large range of travel. One drawback of this manipulator is that the verti-

cal travel is coupled to a rotation of the collimation slit. This does not pose a prob-

lem for circular apertures, but for a slit, the rotation can be a hindrance, making a

beam that is slanted. The rotation axis is at the front of the manipulator and ro-
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tates in the xy-plane. For the current setup the rotation arm is approximately 32

cm long. This would cause a 3 mrad rotation for a 1 mm vertical travel. Currently

this does not seem to hinder the beam collimation but in the future the rotation

may need to be resolved.

Either one or two collimation slits were used to define the electron beam from

the gun. The second collimation slit was located 24 cm from the first collimation

slit, see Figure 3.1. In the double-slit diffraction experiment (see Chapter 4) only a

single collimation slit was needed because the double-slit itself restricted the trans-

verse momentum spread allowed. A 2 µm wide by 10 µm tall slit was used. The

slit was FIB milled in a 100 nm thick silicon-nitride membrane. After milling the

silicon-nitride was coated with approximately 5 nm of titanium and then approxi-

mately 10 nm of gold on both sides.

For the Talbot-Lau (see Chapter 5) experiment two collimation slits were needed

to restrict the transverse momentum spread. The 2 µm wide slit was moved to the

second collimation slit position and another slit was made to act as the first col-

limation slit. A 5 µm wide by 100 µm tall slit was milled in a 2 µm thick silicon-

nitride membrane. Again after milling the membrane was coated with metal. The

geometric angular spread of these two membranes is θgeom = (5 + 2)µm/24cm =

29µrad. This agrees with the observed beam width at the detection slit, located

30.5 cm from the second collimation slit, of 10 µm.

3.2.3 Deflection Plates and Detection Slit

To control the position of the beam or pattern after it passes through the sample

region two pairs of deflection plates are used. The deflection plates were located

20.5 cm from the second collimation slit, see Figure 3.1 and Figure 3.6. The plates

were used to position the resulting pattern on the two-dimensional detector or scan

the pattern across the detection slit.
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Figure 3.6. The electrons travel from the top where they pass through the de-
flection plates and travel on to the quadropole lens and then to the detector. The
detection slit (not shown) would be in between the the “can” and the deflection
plates.

The detection slit was located 30.5 cm from the second collimation slit, see Fig-

ure 3.1. The slit was a 5 µm wide by 3 mm tall molybdenum slit. The horizontal

position of the detection slit was controlled by a linear feedthrough, which if needed

could completely be remove from the beam path. The diffraction pattern could be

sampled by either moving the linear feedthrough or by deflecting the pattern with

the deflection plates. Both methods produced the same results, but the deflection

plates had finer spatial control and could be scanned by a function generator if

needed.
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Figure 3.7. The electrons were detected by a Beam Imaging Systems model BOS-
18 two chevron stack micro-channel plate phosphor screen detector

3.2.4 Detection

The electron detector used was a Beam Imaging Systems model BOS-18 two chevron

stack micro-channel plate (MCP) and phosphor screen detector, see Figure 3.7. The

MCP consists of an regular array of tubes made of highly resistive material. The

tubes are approximately 10 µm in diameter with a center to center diameter of

approximately 12 µm. The tubes are a a slight angle of approximately 5◦. Each

micro-channel act as an electron multiplier. A large potential is put across the ends

of the tubes. A single electron entering the low potential end will starts a cascade

effect. After hitting a wall the first electron will liberate multiple electrons. Then

the liberated electrons will be accelerated down the tube towards the higher po-

tential, hitting another wall, generating more electrons. An single initial electron
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will end up with approximately 104 electrons. In this two stack model the electrons

from the first MCP are sent into another MCP, where they will be amplified more.

After the two MCP’s the electrons are accelerated towards a phosphor screen. At

the phosphor screen the electrons excite the phosphor and the result is a flash of

light indicating an electron detection. The entire detector has a diameter of 18 mm.

The MCP detector allows for the viewing of a two-dimensional pattern, because

of the array of holes. The finite size of the micro-channels, the blurring from mul-

tiple MCP’s, and the phosphor screen all cause the MCP detector to have a fi-

nite resolution. To overcome this an electrostatic quadropole lens was employed.

The lens was placed 11 cm before the detector, see Figure 3.1. The lens consists of

four voltage addressable rods parallel to the beam arranged at 90◦ from each other.

Each opposite pair is held at the same potential, with the horizontal pair being at

+V and the vertical pair being at −V . This allows expansion of the pattern in the

horizontal direction but depending on the voltage either contraction or expansion in

the vertical direction. The lens was necessary because the entire size of some non-

magnified patterns would be comparable to the resolution of the MCP detector.

3.2.5 Vacuum Chamber

The experiments were performed in a stainless steel vacuum chamber shown in

Figure 3.1. The pressure was held at or below 10−7 Torr. This was accomplished

through the use of a turbo pump backed by a rotary vane pump (not shown in Fig-

ure 3.1).

The static external magnetic fields were shielded to better than 0.5 µT. A dual

layer of high magnetic permeability mu-metal allowed for the attenuation of exter-

nal field by a factor of 100.

To prevent stray electrons from bouncing around and getting to the detector

multiple precaution were taken. Two electron beam blocks were placed along the
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vacuum chamber. One between the electron gun and the first collimation slit and

the other between the sample region and the deflection plates, see Figure 3.1. An

electron beam block fills up a specific region of the vacuum chamber and only al-

lows the line of sight through the center of the system, but still allowing for air to

flow through the system to enable pumping. Another precaution was to place the

“can” over the detector, shown in Figure 3.6. The small opening of the “can” pre-

vents electrons from hitting the detector unless they travel straight down the sys-

tem. If the detection slit is used the hole in the “can” is covered up allowing only

the electrons traveling through the slit to reach the detector.

3.2.6 Sample Region

The sample region shown in Figure 3.1 has access from three sides. Initially, for

the double-slit diffraction experiment, the double-slit mount was connected to a

“wobble-flange” and linear feedthrough connected to the side of of the vacuum

chamber. The horizontal motion was controlled by the feedthrough while the ver-

tical motion was controlled by tightening an appropriate bolt on a special flange.

The flange consisted of multiple viton o-rings that would be compressed non-uniformly

causing the entire flange to tilt and vertically shift the double-slit. While the mo-

tion was not extremely accurate, care could be taken to prevent the vacuum seal

from failing and the double-slit could be positioned correctly.

While the “wobble-flange” and linear feedthrough design worked, the motion

was not repeatable or precise enough for the Talbot-Lau interferometer and other

future experiments5. Using two commercially available translation stages and an

edge welded bellows, a system was designed and constructed in the University of

Nebraska-Lincoln, Department of Physics’s student machine shop, see Figure 3.8.

The two micrometers allowed for micron level positioning and repeatability, all

while maintaining vacuum. The translation stages 25.4 mm of travel allowed the
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Figure 3.8. The two-dimensional sample manipulator can move the sample in and
out of the beam, with micron level positioning and repeatablity

two-dimensional manipulator to move the Talbot-Lau interferometer out of the

beam to allow for profiling of the beam.

3.3 Data Acquisition

Depending on the application, the electron events could be counted multiple ways.

The next section covers the general methods used to collect data.

3.3.1 Electron Counting

Each individual electron event could be counted. After amplification by the MCP’s

each electron event would impart charge on the phosphor screen. With a simple cir-
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cuit, the excess charge could be turned into a small voltage pulse. On average the

pulses had about -5 mV in amplitude. These pulses where amplified by a factor of

approximately 200 and then discriminated from the background. After discrimina-

tion the pulses where sent to multiple different counters.

The electron counts where sent to a general counter and a multichannel scaler

(MCS). The general counter was a Stanford Research Systems SR400 dual gated

photon counter. This counter was used to monitor the number of electrons hitting

the detector to prevent saturation and damage. The MCS was an Ortec MCS-pci.

The MCS allows for the recording of counts as a function of time. The MCS could

be externally triggered from an external device. For example, for beam profiling

the MCS was triggered by a function generator that would ramp the voltage on the

deflection plates, see Section 3.2.3. The deflection plates would pass the beam over

the detection slit sampling different portions of the beam. The time recorded by

the MCS would be related to a voltage from the function generator which in turn

would relate to a deflection position, thus allowing the MCS to record the profile

of the beam. Multiple passes would be stacked on top of each other allowing for

better statistics.

3.3.2 Camera

To record the position of the electron events on the phosphor screen a camera was

utilized to record the events. A Watec WAT-902B black and white camera was used

to capture images at 30 frames per second. The images were displayed on a moni-

tor to help with beam and sample alignments. The images were also sent to a com-

puter for recording and analysis.

The computer utilized a National Instruments PCI-1409 frame grabber card

to convert the analog video signal to a digital format. A Labview software pro-

gram was developed to be able to monitor and preform simple image analysis, see
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Appendix B for the Labview code. The main features of this program are: im-

age acquisition, cutoff filter, summing, projecting, and sequence saving. The pro-

gram would utilize the frame grabber card to convert the analog images to 8 bit

images. This means that each pixel could have a intensity ranging from 0-255. Be-

cause there is some intrinsic background noise associated with the camera a cutoff

filter could be used to set low intensity pixels to zero. The summing feature allowed

for multiple images to be stacked onto of one another while the intensity could be

scaled to prevent saturation. The cutoff filter was useful to prevent the background

noise from dominating the summed image. The summed image could be projected

onto the horizontal axis to produce a one-dimensional image of the beam or pat-

tern. The summed image and projection were especially useful in conjunction with

the quadropole lens, see Section 3.2.4, to detect deflections in the beam or measure

the beam width. The final feature of the Labview program was the sequence sav-

ing feature. This allowed for a set number of images to be saved to the hard drive

in bitmap format. This feature was used extensively during the double-slit experi-

ment, see Chapter 4, to save images for further analysis, which will be discussed in

the next section.

3.4 Image Analysis

One of the goals of the the double-slit experiment was to see a build-up of a diffrac-

tion pattern from single electrons. The electron events from the MCP detector

were captured by the camera and saved as images by the Labview program, see

Figure 3.9. These images had several problems. First, the background from the

camera (even when viewing nothing) would cause periodic stripes if the images

were summed. Second, each electron event would only be shown on every other

line in the image. This was caused by the interlaced pixel capture of the camera
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Figure 3.9. Several electron events from the MCP detector captured by the cam-
era. The inset shows a blow up section of the image, showing a single electron event

and the fast decay time of the phosphor screen (about 1 ms). Third, the intensity

of each electron event was not uniform. This is most likely due to variation in the

MCP amplification. A progressive scan camera (acquires all pixel data at one time)

would overcome the interlacing problem. The minimal amount of light coming from

each electron event required a very sensitive low-light camera. All the reasonable

progressive scan camera commercially available did not have enough sensitivity.

With the low count rates needed to build up a diffraction pattern from single

electrons, these problems produced sub par patterns. To make a more uniform and

background free build up a “blob” detection scheme60,61 was utilized. The following

sections will cover how this scheme was implemented.
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3.4.1 Overview

The “blob” detection scheme is based off scale-space theory62. The image intensi-

ties can be represented by f(x, y). First the image is represented in a scale space,

L(x, y, t) =

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′ f(x′, y′)g(x− x′, y − y′, t). (3.3)

Which is taking the convolution of the data with a Gaussian kernel,

g(x, y, t) =
1

2πt
exp

[
−x

2 + y2

2t

]
, (3.4)

where t represents the length of the scale space. The next step is to determine the

scale-normalized determinant of the Hessian matrix of Equation 3.3, ,

H(x, y, t) = t2
(
LxxLyy − L2

xy

)
, (3.5)

where Lxx represent the second partial derivative in x and similarly for Lyy and

Lxy. Finally, the local maxima are found in x, y, and t. These maxima are blob

points with scales t.

For illustration an example is considered. Suppose the image consists of a sin-

gle blob located at (x0, y0) and with amplitude A. Also this blobs is shaped like a

Gaussian with width c. The image intensity would be

f(x, y) = Aexp

[
−(x− x0)2 + (y − y0)2

2c

]
. (3.6)

The scale space representation would then be

L(x, y, t) =
Ac

t+ c
exp

[
−(x− x0)2 + (y − y0)2

2(t+ c)

]
. (3.7)
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Figure 3.10. Shown above is a comparison of the scale-normalized determinant of
the Hessian matrix of L(x, y = y0, t = c), shown left, and the integrated H(x, y, t),
shown right.

The scale-normalized determinant of the Hessian matrix of L can be calculated,

H(x, y, t) =
t2c2A2

(t+ c)5

[
t+ c− (x− x0)2 − (y − y0)2

]
exp

[
−(x− x0)2 + (y − y0)2

2(t+ c)

]
.

(3.8)

It can be easily seen that Equation 3.8 is maximum when x = x0 and y = y0. The

maximum in t can be determined by taking the partial derivative with respect to t

at (x0, y0),

∂H(x = x0, y = y0, t)

∂t
= 2tA2c2 c− t

(t+ c)5
. (3.9)

The local maximum in H(x = x0, y = y0, t) is when Equation 3.9 is zero. This

occurs when c = t, and this matches with the intensity function, Equation 3.6.

In most of the applications the length of the scale space of the “blob” was not

necessary to determine. To simplify the searching for local maxima and helping

with the interlacing of the images, Equation 3.5 can be integrated to eliminate t,
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∫ ∞
0

dtH(x, y, t). (3.10)

This reduces the comparing of 33 − 1 = 26 neighboring points to just 32 − 1 = 8,

to determine the local maximum. In the example, the integration of Equation 3.8

results in,

2A2c3

((x− x0)2 + (y − y0)2)3

{(
(x− x0)2 + (y − y0)2 − 2c

)
+
(
(x− x0)2 + (y − y0)2 + 2c

)
exp

[
−(x− x0)2 + (y − y0)2

c

]}
. (3.11)

This expression is hard to interpret but the maximum is when x = x0 and y = y0.

The integration of H was not in the initial “blob” detection scheme set out by

Lindeberg.61 For comparison, the values of Equation 3.8 and Equation 3.11 are

shown in Figure 3.10.

3.4.2 Analysis Program

An extensive program was developed to analyze the large amount of images ob-

tained from the double-slit build-up experiment. Overall there were 6 separate runs

with each run having over 65,000 images each. The general scheme is outline in

the previous section. The images were all in bitmap form, allowing relatively easy

access to the raw image data. Figure 3.11 shows a general outline of the analysis

scheme.

First the Bitmaps were loaded into memory. The leading header was stripped

and the data was put into an array. A hard cutoff filter was applied to the data.

Any pixel with a value of 40 or less was set to zero. This was used to eliminate

most of the background noise from the camera. Next L(x, y, t) was calculated, with
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Calculate H(x,y)

Calculate L(x,y,t)

Apply Hard Cutoff

Read Bitmap
Info & Data

Store Locations
in Master List

Search ±.5 Pixels

Find Local Maximum

Cutoff On H(x,y)

Figure 3.11. Shown above is general outline of the analysis program used to in the
double-slit build-up experiment.

x and y centered on each pixel. The value of t ran from 4 to 10, with the limits of

the integration in Equation 3.3 running from x− t...x+ t and y− t..y+ t. These lim-

its were chosen to help improve speed while still being able to locating the electron

events.

The scale-normalized determinant of the Hessian matrix of L(x, y, t) was then

determined. The Bitmaps were 640 pixels wide by 480 pixels tall. To search the en-

tire image, both L(x, y, t) and H(x, y, t) would have to be calculated over 2,150,000

times each. H(x, y, t) was then integrated over t and a cutoff of 1750 was applied.

This value was used to prevent a single bright pixel from triggering a “blob” detec-

tion. The value was determined by making a completely black bitmap and setting a

single pixel to 50. The cutoff prevented the single pixel from being detected.

The value of H(x, y) was then compared to the nearest 8 neighbors to determine

if it was a local maximum or not. If it was, the location was saved to a list. After
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the entire image was checked the program brought back the original data (before

the hard cutoff) and searched ±.5 pixels with a more smaller step size. The inte-

gral in Equation 3.3 was calculated again but with larger limits, x − 2t...x + 2t

and y − 2t..y + 2t, with t ranging from 4 to 10. Then like before H(x, y, t) and

H(x, y) were calculated and a local maximum was found. The final locations were

then stored in a master list for use later. This method allowed for sub-pixel accu-

racy to be obtained.

The master list was used by another program to generate images with the back-

ground noise eliminated and the electron events uniform. The intermediate images

were used to make a movie of the build-up of the double-slit diffraction pattern one

electron at a time.∗ These programs are lengthy and too extensive to explain in de-

tail here, see Appendix C.

To determine the accuracy of the search algorithm, several test were used. First

over 100 images were checked manually to ensure the correct location and num-

ber of electron events were detected. Next the program was ran on approximately

8300 images. The maximum intensity of the blobs were compared to the maxi-

mum intensity of the image itself, see Figure 3.12. The vast majority of the inten-

sity around 41 was determined to be background noise. No electron events were

found below the hard cutoff. Applying a larger cutoff, to filter out more of the

background noise, would eliminate quite a few electrons events. Instead the cutoff

on H(x, y) prevented the large background noise from triggering a detection.

The images could also be used to analysis the resolution of the MCP detector

and camera. Figure 3.13 shows a histogram of the electron detection events full

width half maximum (FWHM). The detection program was ran on approximately

65,000 images and the electron events locations were recorded. Each image was

then fit with a least-squares procedure using a two-dimensional Gaussian centered

∗New Journal of Physics’ Website; http://iopscience.iop.org/1367-2630/15/3/033018/
media

http://iopscience.iop.org/1367-2630/15/3/033018/media
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Figure 3.12. Shown above is histogram of the maximum pixel intensity, square
(blue) points, for of a set of approximately 8300 images. The circles (green) points
are the maximum intesity located at a “blob” detection. The inset shows a 10 times
zoomed in section of the main graph. The detection program was able to discrimi-
nate the background noise, whose maximum values were centered around 41.

at the previously recorded electron event center. The amplitude of the Gaussian

was set to the maximum intensity of the “blob”.

From the distribution of the widths, a detector resolution can be calculated.

Multiple Gaussian were added together. Each was centered at zero with an am-

plitude related to it’s width. The relation was taken from the histogram shown in

Figure 3.13. The resulting curve was then fit to another Gaussian, whose FWHM is

the detector resolution. The MCP detector and camera had a resolution of 238.2 ±

6.6 µm.
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Figure 3.13. Shown above is histogram of the width of the electron events for of
a set of approximately 65,000 images. The lower axis shows the FWHM in pixel
units, while the upper axis is converted to µm

3.5 Big Move

During the summer of 2010 the University of Nebraska-Lincoln’s Physics Depart-

ment moved into a new building. While the facilities were an upgrade the move

required the entire vacuum system to be disassembled and then reassembled at

the new building. The timing was unfortunate because the double-slit experiment

was only half-way through. The new lab had to be put together from essentially

scratch. Figure 3.14 shows the lab after a few things have been moved into it (left)

and the current state of the lab today (right). The setup of the new lab, set back

the experiments almost a year.
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Figure 3.14. Shown above left, is a picture of the lab a few days after moving
in. The vacuum system had only been set on the optics table. The picture on the
right, shows the current state of the lab
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Chapter 4

Double-Slit Diffraction

4.1 Introduction

Richard Feynman described electron diffraction as a phenomenon “which has in

it the heart of quantum mechanics. In reality, it contains the only mystery.”35 He

went on to describe a thought experiment for which he stated “that you should not

try to set up” because “the apparatus would have to be made on an impossibly

small scale to show the effects we are interested in.” He used these effects to help

illustrate the phenomena of wave-particle duality, which is a postulate that all par-

ticles exhibit both wave and particle properties. The effects he described were: the

relations between electron probability distributions from single- and double-slits,

and the observation of single particle diffraction.

The general perception is that the electron double-slit experiment has already

been performed. This is true in the sense that Jönsson demonstrated diffraction

from single, double, and multiple (up to five) micro-slits,63 but he could not observe

single particle diffraction, nor close individual slits. In two separate landmark ex-

periments, individual electron detection was used to produce interference patterns;

however, biprisms were used instead of double-slits.36,64 First, Pozzi recorded the
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Figure 4.1. An illustration of Feynman’s thought experiment is shown above. (a)
An electron beam passes through a wall with two slits in it. A movable mask is po-
sitioned to block the electrons, only allowing the ones traversing through slit 1 (P1),
slit 2 (P2), or both (P12) to reach the backstop and detector. (b),(c) Probability
distributions are shown, (Experimental in false-colour intensity) for electrons that
pass through a single slit (b), or the double-slit (c). This figure is an adaptation
from Feynman Lectures on Physics, Volume III, Figure 1-3, with the mask and
experimental data added. The experimental data is taken from Figure 4.4.

interference patterns at varying electron beam densities. Then, Tonomura recorded

the positions of individual electron detection events and used them to produce the

well known build-up of an interference pattern. It is interesting to point out that

the build up of a double-slit diffraction pattern has been called “The most beautiful

experiment in physics,”65,66 while the build-up for a true double-slit had never been

reported.

More recently, electron diffraction was demonstrated with single- and double-

slits using Focused Ion Beam (FIB) milled nano-slits.33,67 In addition, one single

slit in a double-slit was closed by FIB induced deposition.68 This process is not re-

versible, so observation of the electron probability distribution through both single-

slits could not be done. Also, using a fast-readout pixel detector, electrons were

recorded one at a time and stacked into a final diffraction pattern,69 but intermedi-

ate spatial patterns were not reported.
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Feynman’s thought experiment is summarized in Figure 4.1. The thought ex-

periment contained two parts. The first involved observing probability distributions

in three scenarios: electrons traveling through slit 1 with slit 2 closed (P1); elec-

trons traveling through slit 2 with slit 1 closed (P2); and electrons traveling through

both slits (P12). These scenarios illustrate the quantum mechanical superposition

principle, i.e., the wave properties, and can be demonstrated with control of the

slits (Figure 4.4). The second part of the thought experiment was the observation

of individual electrons associated with detection “clicks”. This illustrates that a

quantum mechanical electron wave can not be thought of as comprising multiple

electrons, i.e., the particle properties, which can be demonstrated with the build-up

of the diffraction pattern (Figure 4.5).

4.2 Setup

The experimental setup is explained in detail in Chapter 3 and illustrated in Fig-

ure 4.2. An electron beam with energy of 600 eV, which corresponds to a de Broglie

wavelength of approximately 50 pm, was generated with a thermionic tungsten fila-

ment and several electrostatic lenses. The beam was collimated with a slit of 2 µm

width and 10 µm height. The resulting patterns were magnified by an electrostatic

quadrupole lens and imaged on a two-dimensional microchannel plate and phospho-

rus screen detector, then recorded with a camera.

Two methods were used to analyze the images taken by the camera, see Sec-

tion 3.3.2. To investigate the probability distributions (part 1 of Feynman’s thought

experiment), the images were summed up by adding each images’s intensity, then

normalized. This resulted in a false colour probability distribution (Figure 4.4).

To study the build-up of the diffraction pattern (part 2 of Feynman’s thought ex-

periment), each electron was localized using the “blob” detection scheme laid out
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Figure 4.2. Illustration of the double-slit experiment. Electrons pass through a
collimated slit. The resulting patterns from the double-slit and mask were either
sampled be a movable detection slit, or magnified by an electrostatic quadropole
lens and imaged on a two-dimensional microchannel plate and phosphorus screen
detector. The mask was movable and was used to block none, one, or both of the
slits of the double slit.

in detail in Section 3.4. The “blobs” were compiled together to form the electron

diffraction patterns (Figure 4.5).

The double-slit consisted of two 62 nm-wide slits separated center-to-center by

272 nm. The individual slits where approximately 4 µm tall with a 150 nm support

structure midway along it’s height. Figure 4.3 inset (b) shows an electron micro-

graph of the double-slit.

A 4.5 µm wide by approximately 20 µm tall mask was placed 240 µm away from

the double-slit, see Figure 4.3 inset (a). The mask was held securely in a frame that

could slide back and forth and was controlled by a piezoelectric actuator (Thorlabs’

AE0505D16F). The actuator allowed for nm precision movement but the exact po-

sition was only inferable from the voltage applied to it.

The double-slit and mask were made by FIB milling into 100 nm-thin silicon-

nitride membrane windows. The FIB milling was performed on a 30 keV Ga+ sys-

tem (FEI Strata 200xp). After milling, each membrane was coated with approx-
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Figure 4.3. Shown above is an expanded view of the mount used to hold the
double-slit and mask. The lower section allowed for motion of the double-slit, for
initial alignment. The top section allowed the piezoelectric actuator to slid the
mask from left to right. The insets show electron micrographs of the mask (a) and
double-slit (b). The double-slit and mask are located in the center of the square
transluent membrane.

imately 2 nm of gold. They were both held together (see Figure 4.3) in an alu-

minum mount that is attracted horizontally to the “wobble-flange” and linear feedthrough,

see Section 3.2.6.

4.3 Results

The movable mask was placed behind the double-slit, see Figure 4.2. The mask was

moved from one side to the other (Figure 4.4 top to bottom). Initially the majority

of the electrons are blocked. As the mask is moved, slit 1 becomes partially, then
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Figure 4.4. A mask is moved over a double-slit (inset) and the resulting probabil-
ity distributions are shown. The mask allows the blocking of one slit, both slits, or
neither slit. The labeled dimensions are the positions of the center of the mask. P1,
P2, and P12 are the probability distributions shown in Figure 4.1.
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fully open. When one slit is open, single-slit diffraction can be observed (P1 in Fig-

ure 4.4). Feynman indicates this as the solid black curve P1 in Figure 4.1(b), which

is just the central order of the single-slit diffraction pattern. Because of the finite

separation of the mask and double-slit, weak double-slit diffraction can be seen in

the negative first order of the single-slit diffraction pattern (see left edge of P1 in

Fig. 4.4).

As the mask is moved further, more electrons can travel through both slits,

changing the pattern from single-slit to double-slit diffraction. When the mask

is centered on the double-slit, both slits are completely open and full double-slit

diffraction can be observed (P12 in Fig. 4.4). In this position, interaction between

the mask and the diffracting electrons is negligible. The edges of the mask are 2250

nm away from the center and would only affect diffraction orders greater than the

50th. The mask is then moved further and the reverse happens; double-slit diffrac-

tion changes back to single-slit diffraction (P2 in Figure 4.4). Now, the single-slit

diffraction pattern has a weak contribution of double-slit diffraction in its positive

first order (see right edge of P2 in Fig. 4.4).

Electron build-up patterns were recorded with the mask centered on the double-

slit. The electron source’s intensity was reduced so that the electron detection rate

in the pattern was about 1 Hz. At this rate and kinetic energy, the average distance

between consecutive electrons was 2.3 × 106 meters. This ensures that only one

electron is present in the 1 meter long system at any one time, thus eliminating

electron-electron interactions. The electrostatic quadrupole lens was set to zoom

in on the central five diffraction orders. In Figure 4.5 the build-up of the diffraction

pattern is shown. In Figure 4.5(a)-(c), the electron hits appear to be completely

random and only after many electrons are accumulated can a pattern be discerned,

Figure 4.5(d). In Figure 4.5(e) the pattern is clearly visible. The final build-up

of the pattern took about 2 hours. A complete build-up of the diffraction pattern
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a

b

c

d

e

Figure 4.5. Buildup of electron diffraction. “Blobs” indicate the locations of de-
tected electrons. Shown are intermediate build-up patterns from the central five
orders of the diffraction pattern (P12) magnified from Figure 4.4, with 2, 7, 209,
1004, and 6235 electrons (a-e).
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was generated from all the intermediate images and is available at New Journal of

Physics’ website.∗

4.4 Measurements and Fits

Scanning electron microscope (SEM) images were taken on an electron beam lithog-

raphy system (Zeiss Supra 40). The images are shown in Figure 4.3 inset (a) and

(b). The dimensions obtained using the SEM images are shown in Table 4.1

The detection slit (see Figure 4.2) allowed for the acquisition of diffraction pat-

terns with resolution of approximately 5 µm, see Section 3.2.3. This data was fit

with a least-squares procedure using a modified version of Equation 2.6,

I = A0 + A

[
sin(αx)

αx

]2

[1 + V cos(2βx)] , (4.1)

where α = πa
λdBD

and β = πd
λdBD

. The de Broglie wavelength (λdB) was 50.07 ±

0.13 pm and the propagation distance (D) was 240 ± 5 mm. A0, A, a, d, and V are

fit parameters with a representing the slit width, d the center-to-center separation,

and V the visibility parameter, V = (Imax − Imin)/(Imax + Imin), of the diffraction

pattern. A normalized fit of the data, along with the scaled data, is shown in fig-

ure 4.6(a). The width and separation dimensions found are listed in Table 4.1. The

visibility parameter was 0.819 ± .032.

One drawback of using the detection slit was the low count rate. This caused

long acquisition times (approximately 130 secconds per point, more than 3 hours

total) and limited the spatial range of the diffraction pattern that was able to be

sampled. Drifts in the electron emission current could change the relative count

rate as the pattern was acquired (left to right). This could be an explanation why

∗New Journal of Physics’ Website; http://iopscience.iop.org/1367-2630/15/3/033018/
media

http://iopscience.iop.org/1367-2630/15/3/033018/media
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a (nm) d (nm) d
a

Mask (nm)

SEM 64.6 282.7 4.38 4680

Detection Slit 69.9± 3.3 272.6± 11.3 3.90± .09

MCP Detector 62.3± 4.0 272.6± 17.6 4.38± .01

Simulation 62.3 272.6 4.38 4520

Table 4.1. Double slit specifications. The dimensions found using different mea-
surement techniques and the dimensions used in the quantum mechanical simula-
tion. The SEM dimensions were taken from the images shown in Figure 4.3 insets,
while the Detection Slit’s and MCP Detector’s dimensions were taken from the fit
of the date obtained from the respective detector. The width of each of the slits in
the double-slit is a and d is the separation of the slits. The majority of the errors in
the width and separation come from the uncertainty in the wavelength, propagation
distance, and fitting. The error in the ratio is from the uncertainty in the fitting.

the diffraction pattern in Figure 4.6(a) shows an asymmetry between the left and

right sides. These effects can cause the a parameter to be an overestimate of the

actual slit width, but should not affect the d parameter because it is only depen-

dent on the location of the peaks and not the heights.

The same fitting procedure, using Equation 4.1, was used on the data acquired

from the MCP detector (see Figure 4.4). Since the quadropole only magnifies the

horizontal dimension the vertical dimension was summed up to perform the fit in

one dimension, see Figure 4.6(b). Now the fitting parameters a and d will consist

of a magnification factor as well as the slit width and separation. To determine the

magnification factor both d parameters (detection slit and MCP detector) were set

equal to each other. For the voltages used during the acquisition of data in Fig-

ure 4.4 (and Figure 4.6(b)) the magnification factor was 16.58 ± 0.90. This allows

the slit widths and separation to be determined, they are given in Table 4.1. The

visibility parameter was 0.477 ± .0034.

The main reason for the drop in visibility between the detection slit and MCP

detector (Figure 4.6(a) and b) was the increase in detection resolution. The MCP

detector and camera setup had a resolution of 238.2 ± 6.6 µm, see Section 3.4.2.
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Figure 4.6. Diffraction recorded at the detection slit (a) and the MCP detector
(b). The squares (black) represent the experimental data, the solid line (green)
represent the results of the path integral model, and the dashed line (blue) rep-
resents the fit from Equation 4.1. The diffraction pattern was magnified by the
electrostatic quadropole lens when it was recorded by the MCP detector.

All three methods of determining the double-slit dimensions gave slightly dif-

ferent values. One parameter that could be determined independently in each sit-

uation was the ratio of d
a

(see Table 4.1). This values is independent from the cali-

bration of the SEM or the magnification factor. The SEM and MCP detector both

obtained the same ratio. There is a only a 3.6% difference between the individual

measurements.

4.5 Quantum Mechanical Simulation

To compare with experimental results, a quantum mechanical numerical simula-

tion was produced. The theoretical description is discusses in detail in Section 2.3

and 2.4. The wave function was propagated from the plane of the collimation slit to

the double-slit, mask and then to the detection plane. At the collimation slit multi-

ple incoherent sources were propagated through the system. The resulting probabil-

ity distribution at the detection plane represents what the detection slit samples.

At the collimation slit, double-slit, and mask an image charge potential was
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Image Random Potential

Charge Width Amplitude

qeff Mean FWHM Mean FWHM

Barwick et al.33 0.13e 250 nm 250 nm 0 eV 0.350 eV

Current Simulation 0.13e 250 nm 250 nm 0 eV 0.225 eV

Table 4.2. Comparison of simulation parameters between current simulation and
the simulation done by Barwick et al.33

added. Additionally at the double-slit a random potential was added. The values

describing the interaction were identical to the ones used by Barwick et al. except

the full width half max of the amplitude of the random potential.33 The values are

summarized in Table 4.2. The physical system that motivates the random potential

was based on contact potentials. The metal coating that was used on the gratings

by Barwick et al. was different than the coating used during this current experi-

ment. This difference warranted small changes in the amplitude of the random po-

tential to accurately model our experimental data. These values were not obtained

through fitting, but merely changed until an acceptable agreement was obtained

with the contrast of the experimental data, see Figure 4.6

The parameters for the double slit used in the simulations are listed in Table 4.1.

The diffraction pattern calculated at the detection slit is shown in Figure 4.6(a)

with an offset to account for background.

To simulate the pattern obtained at the MCP detector, the quadropole and de-

tector needed to be accounted for. To do this the magnification factor, determined

in section 4.4, was multiplied with the value of the x coordinate and then the prob-

ability distribution was convoluted with a Gaussian, with a width of the MCP de-

tector’s resolution, see Section 3.4.2. The probability distribution calculated at the

MCP detector is shown in Figure 4.6(b). There is excellent agreement between the

simulation and the experiment. The small asymmetry between the right and left
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orders is gone because with this detection method the pattern is built up all at

ounce and variation in the initial beam’s intensity will not affect each side differ-

ently. There is a slight discrepancy on the positions of the leftmost orders. This is

most likely due to the interaction of the quadropole. That section of the pattern

was not magnified uniformly as the rest of the pattern was.

To represent the mask movement and fully reproduce the patterns on the MCP

detector, the simulation was performed multiple times with the mask in a different

position. Then the probability distribution was multiplied by a Gaussian in the y

direction. The distribution was then made into a false colour plot in the exact same

manner as the data was. A transformation function was used to highlight outer or-

ders by over saturating the central orders

Aout(x, y) = 1− exp (−20Ain(x, y)) , (4.2)

where Ain and Aout are the before and after probability distributions respectively

and both have values between 0 and 1. The value of 20 was chosen for visual ap-

pearance.

The different positions of the mask are shown in Figure 4.7, experimental left

and theory right. For comparison purposes the theoretical distributions were for-

matted identically to the experimental. The agreement between theory and exper-

iment is excellent, with a few exceptions. As mentions before the left edge of the

experimental data is moved inwards slightly. At 2080 nm the central 7 orders are

almost fully visible in the simulation as compared to the experiment data show-

ing only the left side. This is probably due to an inaccuracy in the mask position,

which was inferred from the piezoelectric transducer voltage. The mask mount can

stick until the piezoelectric transducer generates enough force to unstick it. This

extra force causes the voltage reading to misrepresent the position.
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Figure 4.7. Mask movement for experiment and the quantum mechanical sim-
ulation are shown left and right respectively. A mask is moved over a double-slit
(inset) and the resulting probability distributions are shown. The labeled dimen-
sions are the positions of the center of the mask.

4.6 Conclusion

These results show a full realization of Feynman’s thought experiment and illus-

trate key features of quantum mechanics: interference and the wave-particle duality
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of matter. By controlling the transmission through the individual slits of a double-

slit, the diffraction patterns from slit 1 (P1), slit 2 (P2), and both (P12) were ob-

served, thus observing the wave properties of electrons. Also, by recording single

electron detection events diffracting through a double-slit a diffraction pattern was

built, thus observing the particle properties of electrons.

Overall the path integral simulation represents the experimental data, which in

turn is in agreement with quantum mechanics. Moving the mask to block one of

the slits does not give anything unexpected.
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Chapter 5

Talbot-Lau Interferometer

5.1 Introduction

In the past decades matter-wave interferometers have been used to demonstrate

fundamental quantum phenomena and perform precision measurements. Applica-

tions include accelerometers,70,71 gravitational measurements,72,73 studies of deco-

herence,43 and the measurement of fundamental constants.73,74 A lot of work has

been carried out with atomic, molecular, or neutron beam interferometry.58,75,76

Electron beam interferometers have made use of the electron’s charge to demon-

strate the Aharonov-Bohm effect,77 to visualize super-conducting vortices, and ob-

serve degeneracy in free space.78 It is also well-known that electron interferometers

share with their electron microscope counterparts the requirement that external

electromagnetic fields need to be carefully shielded. In Tonomura’s work, nearby

commuter trains caused instability, while in the work at Tubingen a radio station

reduced interference contrast. In view of this, it appears natural to investigate us-

ing this sensitivity to our advantage.

Several different interferometer designs exist. The present discussion is lim-

ited to free electron beam interferometers and does not include the exciting field
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of mesoscopic or solid state electron interferometry. Far-field interferometers using

gratings34 and crystals18 as well as biprism interferometers79,80 have been demon-

strated. Larger interferometers are usually more sensitive to fields, but also have

to meet stringent mechanical demands. The recent observation of Talbot81 and

Lau82 interference fringe patterns using two gratings, motivated the construction

of a near-field three-grating Talbot-Lau interferometer (TLI). A near-field interfer-

ometer with crystals would require extremely small crystal separations. Biprism

interferometers use small electron acceptance angles. The promise that a TLI of-

fers is mechanical stability in a small design with a large electron beam acceptance

angle.

The rest of this chapter covers, the construction and demonstration of a near-

field three-grating TLI for electrons. A TLI consists of three identical gratings. The

first two gratings produced fringes downstream utilizing the Lau effect.58 The third

grating was added and used as a mask to sample these fringes.

5.2 Setup

The experimental setup is illustrated in Figure 5.1 and explained in detail in Chap-

ter 3. An electron beam was first collimated by a 5 µm wide by 100 µm tall slit.

For further collimation, one of two collimation slits could be used. Either a 2 µm

wide by 10 µm tall slit or a 30 µm wide by 10 µm tall could be used. The colli-

mated beam then passed through the TLI. The total electron transmission through

the interferometer was counted on a two dimensional microchannel plate (MCP)

and phosphorus screen detector. An electrostatic quadrupole lens was used to spa-

tially magnify the electron transmission to prevent saturation of the MCP detector.
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Figure 5.1. Illustration of the Talbot-Lau experiment. An electron beam is first
collimated by two slits, then it is incident on the three grating Talbot-Lau interfer-
ometer. The throughput of the interferometer is counted by a microchannel plate
detector. To apply magnetic and electric fields, the interferometer was placed in
a cradle with current carrying wires and located between two charged plates (not
shown)

5.3 Talbot-Lau Interferometer

5.3.1 Design

The TLI consists of three identical sections, see Figure 5.2. Each section consisted

of a 30 mm diameter aluminum body with an 8 mm hole in the center, see Ap-

pendix D for a technical drawing. Attached to each section is a metal-coated silicon-

nitride 100 nm period transmissive grating, see Figure 5.1 inset, which were made

by Savas and Smith at the MIT NanoStructures laboratory using achromatic in-

terferometric lithography.83,84 The distance between adjacent gratings is 3.06 ± .01

mm.

5.3.2 Alignment

Rotational alignment between all gratings is necessary to observe contrast. If the

third grating is rotated about the the z-axis, the top and bottom segments of the

grating will sample different patterns. If the top and bottom are miss-aligned by 50
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Figure 5.2. Shown above it the three grating Talbot-Lau Interferometer. It con-
sists of three identical sections, each having a metal-coated silicon-nitride 100 nm
period transmissive grating attached. Shown left is the assembled TLI, while shown
right is an expanded CAD drawing of the TLI.

nm then they will cancel each other, resulting in diminished contrast of the signal.

A HeNe laser was sent through the interferometer in the opposite direction of

the electron beam path, see Figure 5.3. The laser diffracted off of the 1.5 µm grat-

ing support structure, see Figure 5.1 inset. Due to the separation distances and the

size of the gratings the ±1st orders of the first grating could not be used. Instead

an alternate path was used to determine the rotational position of the first grating.

The 13 resulting dots were allowed to propagate until the outer 4 were separated

from the inner 5 by approximately 1 meter. Then they were aligned in a straight

line to within approximately 1 mm. This gives a rotational alignment of 10−3 rad.

5.3.3 Mounting

The TLI was mounted from the top on the two-dimensional translation mount in

the “sample region”, see Section 3.2.6. The translation mount allowed for move-

ment in the x and y directions. This allowed the TLI to be completely removed
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Figure 5.3. Rotational alignment was done by diffracting a HeNe laser beam off
the grating support structure. The left figure shows the laser beam paths and from
which grating they diffract from. The image on the right shows the resulting 13
spots that were used for alignment. Only 9 are visible, the rest are overlapping.

from the beam path, see Figure 5.4, and be positioned to test different portions of

the gratings.

5.4 Magnetic and Electric Fields

To apply magnetic and electric fields the TLI was placed in a cradle, see Figure 5.5.

The cradle had a wire arranged around a cube’s edges as shown in Figure 5.1. This

arrangement produces a maximum magnetic field,

B =
2√
3

µ0I

πw
, (5.1)

at the center of the structure in the vertical direction with no field in the horizon-

tal directions. Here µ0 is the permeability of free space, I is the current through

the wires, and w (54 mm) is the length of the cube’s edges that the wires are ar-

ranged on. The cradle also had a pair of individually addressable deflection plates.

The plates were 46 mm long by 28 mm tall and separated by 50.8 mm. The cradle

was built in the University of Nebraska-Lincoln, Department of Physics, student
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Figure 5.4. Show above left is the TLI mounted inside the vacuum system. The
TLI was attached from above. The two dimensional translation mount allowed mo-
tion in the plane of the images. The first and second collimation slits can be seen
behind the TLI. The Right image shows the magnetic cradle installed in the vac-
uum chamber. The translation mount allowed the TLI to be placed in the center of
the magnetic cradle.

machine shop, see Appendix D for a design drawing.

5.5 Results

The total electron throughput of the TLI was recorded as a function of current, see

Figure 5.6. The theoretical magnetic field at the center of the cradle, using Equa-

tion 5.1, is shown along the top axis, while the actual current through the wire is

shown along the bottom. The electron counts were summed from multiple sweeps

of the magnetic field. The Fourier transform of the data yields a period of 77 mA

or 0.66 µT.

The classical deflection of a particle with charge q in a uniform magnetic field

B, requiring that it pass through two aligned slits (along x) separated by L (along

z), yields a transverse displacement s (along x) measured a distance L (along z)
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Figure 5.5. Shown above is the electric and magnetic cradle. The cradle had two
addressable deflection plates and a coil of wire to run current through. The TLI
was held in the center of cradle, where the electric and magnetic field were the
largest. Shown left is the assembled and right is an expanded CAD drawing of the
magnetic cradle.

from the second slit,

s =
qBL2

mv
. (5.2)

Here m is the mass of the particle and v is the velocity of the particle. Alterna-

tively, from quantum mechanics, the phase difference between different paths can

be given by85

∆φ =
q

~

∫
~B · d ~A =

q

~
BLnd, (5.3)

where n is an integer representing the number of grating openings that the paths

are separated by, and n also equals the multiple of half the Talbot length (LT ) the

gratings are separated by (L = nLT/2). Here, LT = 2d2/λdB, where d is the period

of the grating and λdB is the de Broglie wavelength.57 Both Equation 5.2 and 5.3
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Figure 5.6. Electron throughput of the Talbot-Lau interferometer with varying
magnetic field. The current through the magnetic cradle was scanned from a nega-
tive to positive value. The magnetic field is shown along the top axis.

can be solved for B with a displacement of d or a 2π phase difference, respectively,

giving

B =
2π~
q

1

Lnd
=
mvd

qL2
. (5.4)

In Figure 5.6 the energy used was 10 keV. The magnetic field needed to produce

successive maxima in the count rate according to Equation 5.4 is 3.6 µT. A direct

measurement at the location of the TLI gave a field approximately 20% larger than

the field calculated using Equation 5.1. This was caused by the placement of the

TLI inside the cradle and the effect of the magnetic shielding of the vacuum cham-

ber around the cradle. The origin of the large discrepancy of a factor of approxi-
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Figure 5.7. The experimental and theoretical contrasts of the Talbot-Lau inter-
ferometer are compared as a function of energy. (a) Experimental results using a
2 and 30 µm second collimation slit are shown using circles (blue) and triangles
(green) respectively. (b) The solid and dashed line represent a Quantum me-
chanical simulation with 2 and 30 µm second collimation slit. Similarly classical
theoretical contrasts are shown using dashed-dotted and dashed-dotted-dotted lines.

mately 5.5 from the theoretical period to the observed period is currently unknown.

One key difference between a TLI and a classical Moiré deflectometer70 is the

energy dependence. A Moiré deflectometer’s contrast has little energy dependence,

whereas in a TLI there is a strong contrast dependence on energy. For the current

setup, the maximum contrast occurs at lengths around multiples of half the Tal-

bot length.58 The length was fixed at 3.06 mm and the electron gun could easily

reach energies from 4.5 to 10 KeV. This allowed us to probe two different contrast

maxima, at 8.8 and 5.6 keV or de Broglie wavelengths of 13.1 pm and 16.3 pm re-

spectively. The contrast, (Smax − Smin)/(Smax + Smin), is plotted as a function of
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energy in Figure 5.7(a). The maxima are clearly seen in the experimental data.

Another feature of the TLI is that the contrast should be unaffected by the

beam width. That is, a TLI can tolerate a large transverse momentum spread in

the beam.58 This prediction is explored by comparing data obtained with a 2 µm

collimation slit and data with a 30 µm collimation slit, see Figure 5.7(a). Our data

shows that the contrast is somewhat affected by the larger larger momentum spread,

but still clearly shows the maxima. In theory the TLI could be used without colli-

mation slits. This is not possible in our setup because the non-perfect rotational

alignment of the three gratings would cause different vertical sections of the beam

to be out of phase and diminish the contrast.

5.6 Quantum Mechanical Simulation

To determine if the observed contrast is consistent with quantum mechanics and to

rule out a classical explanation, both quantum mechanical and classical numerical

simulations were performed. The quantum mechanical theoretical description of the

physical system is based on Feynman’s path integral formalism, and is discussed

in detail in Section 2.3 and 2.4. while the classical description is based on particle

trajectories.

In the quantum mechanical description the wave function was propagated from

the plane of the first collimation slit to the second collimation slit then to each

grating (three in total). At the first collimation slit multiple incoherent sources

were propagated through the system. The resulting probability distribution at the

third grating was integrated in x, this was the throughput of the TLI.

At the collimation slits and gratings an image charge potential was added. Ad-

ditionally at the gratings a random potential was added. The values describing the

interaction were identical to the ones used by Barwick et al.,33 see Table 4.2. In
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fact the exact grating used to determine the values of the image charge and random

potential was one of the three gratings used in the TLI.

In the classical description random electron trajectories were propagated from

the first collimation slit through the rest of the system. At each plane an image

charge force, determined by Equation 2.35, was applied that gave an impulse in the

transverse direction.

To enable the simulations to be competed in a reasonable time, the magnetic

field was left out. Instead the third grating was translated transversely to mimic

the deflection from the magnetic field. The contrast was determined from the through-

put as a function of the third grating position. This procedure was repeated for dif-

ferent energies. The experimental and theoretical results for both the classical and

quantum mechanical simulations are shown in Figure 5.7(a) and (b) respectively.

The shape of the quantum simulation qualitatively matches the experimental

data better than the classical, but the scale of the contrast is different. The sim-

ulations represent the best case scenario of a perfectly shielded environment and

ideal rotational alignment. Estimating a beam height of 33 µm at the TLI and a

misalignment of 10−3 rad, the contrast would be reduced by a factor of 2.4. This

is beleved to be the dominant contribution to the discrepancy between the experi-

ment and theory. The only fit parameter was the open fraction. An open fraction

of 35% best represented the two contrast maxima, whereas the gratings were origi-

nally manufactured to be 50-60%.

The effect of the image charge and random potential was to generally lower the

contrast and smooth out the energy dependence, see Figure 5.8. The effects were

needed to simulate the double-slit diffraction, see Section 4.5, so they were included

in the simulations to be complete, even thought they do not change the general fea-

tures of the contrast. The classical Moire-Deflectometer’s contrast increases to 56%

and 49% (2 and 30 µm collimation slit respectively), with no image charge, and has
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Figure 5.8. The quantum mechanical simulation can be run with the image charge
effects and random potentials on, solid (blue) line, or off, dashed (green) line. The
contrast as a function of energy is shown above for the 2 µm (a) and 30 µm second
collimation slit.

no energy dependence.

5.7 Stability

The fringe pattern is stable over hours. Generally the contrast would vary only af-

ter more than 4 hours but could be regained by moving the beam to a different lo-

cation on the interferometer. This may be due to some degradation of the gratings.

Figure 5.9 shows two runs that were used in Figure 5.6. These runs were separated

by 2 hours, the lower being taken after the upper. During this time the electron

gun’s energy was ramped down to 4.5 keV and then back up, so the incident inten-
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Figure 5.9. Shown above are two runs separated by 2 hours, the lower being taken
after the upper. The horizontal shift corresponds to a magnetic field of approxi-
mately 55 nT or an equivalent electric field

sity was not held constant, due to having to slightly change the alignments of gun

during ramping. The energy was 8.5 keV and the 30 µm collimation slit was used.

There is an increase in the contrast (13% → 18%) and the horizontal shift corre-

sponds to a magnetic field of approximately 55 nT or an equivalent electric field.

This could possibly result from charging or some uncontrolled external magnetic

field, since the system shielding only attenuated the magnetic field by a factor of

100.
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Figure 5.10. To demonstrate the measurement of a magnetic field, a small current
was turned on then off repeatedly. The main graph shows the throughput of the
Talbot-Lau interferometer. A current of 2.5 mA, which corresponds to a field of 22
nT, was tuned on for 10 s then left off for 10 s. The inset shows a larger scan of the
current. The two vertical lines represent the currents used during the magnetic field
measurement

5.8 Sensitivity

To determine the sensitivity of the TLI a small magnetic field was applied. A small

voltage on the set of parallel plates placed the TLI in an electric field of approxi-

mately 200 V/m to shift the throughput to be most sensitive to a change in mag-

netic field (Figure 5.10 inset). A 2.5 mA current was turned on for 10 s and then

left off for 10 s. The electron throughput is shown in Figure 5.10. Each point rep-

resents 1 sec of integration. The current corresponds to a field of 22 nT. The signal

to noise in Figure 5.10 is approximately 4.5 for a measurement of 1 s duration. The
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sensitivity is thus about 4.7 nT Hz−1/2.

This is a modest result as compared to what can be reached with conventional

devices, e.g., fluxgate magnetometers,14 atomic sensors,86 or squids,87 but is a proof

of principle for the operation of the device. The scalability of the TLI magnetic

sensor is discussed below.

5.9 Scalability

Several steps can be taken to scale the device. The electron beams become sepa-

rated at a grating distance of 20 mm and changes from a near-field to a far-field

Mach-Zehnder interferometer.34 For a separation of approximately 9 mm, the de-

vice length L increases by a factor of 3 as compared to our present design, which

would still be an integer multiple of half the Talbot length. For an improved ro-

tational alignment, the full surface of the grating (1 mm × 3 mm) could be used

at the same electron beam density to increase the throughput N by (1 mm × 10

mm)/(30 µm × 30 µm) ≈ 11000. Finally the magnetic flux can be improved by a

factor C of 20 with a typical weak iron magnetic field concentrator.88 The sensi-

tivity scales with L2CN1/2 (using Equation 5.4 and assuming a shot noise limited

signal). An expected performance of a scaled device would thus be 250 fT Hz−1/2.

Additionally, the device works in modest bias fields (3 µT), while its frequency re-

sponse remains to be explored.

5.10 Conclusion

In summary, a Talbot-Lau electron interferometer has been demonstrated. The de-

vice acts as a magnetometer with a modest sensitivity of 4.7 nT Hz−1/2, but ap-

pears to be scalable to higher sensitivity. The use of charged particle interferometry

as an alternative means to magnetic field sensing as a proof of principle is clear and
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appears interesting, because its parameter space remains largely unexplored.
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Chapter 6

Conclusion

6.1 Talbot-Lau Interferometer

One main result of this work is the realization of a three grating Talbot-Lau in-

terferometer for electrons. In fact this work it the first demonstration of this kind

of interferometer for any charged particle. While, the current sensitivity of 4.7 nT

Hz−1/2 is modest compared to what can be reached with conventional devices, e.g.,

fluxgate magnetometers,14 atomic sensors,86 or squids,87 the predicted scaling of

250 fT Hz−1/2 could push the device into a competitive domain. In a commercial

device, such as a magnetic anomaly detector, the mechanical stability, the ability

to work in biased fields, and the frequency response all come into play. All of which

have not been explored for this Talbot-Lau interferometer.

Using the current Talbot-Lau interferometer to probe fundamental physics or

as a magnetic anomaly detector might prove challenging. But, based on the suc-

cess of this device and other atomic or molecular interferometers28,34,42,43,51,70,71,89,90

using gratings, it may be interesting to investigate electron grating interferometers

further.
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6.2 Double-Slit Diffraction

The double-slit diffraction experiment is a corner stone of quantum mechanics, and

as such, has, and still is, receiving justifiably extreme scrutiny.91–94 Even though

the quantum mechanics we know now, has been around for over 85 years, some

things are still uncertain about the double-slit. One major question is what hap-

pens between the source, the double-slit, and the detector.

There are many interpretations of what happens. The electron exists in many

worlds and all possible detection outcomes are realized.95,96 The electron exists

at all times as a particle but is guided by a quantum wave to it’s detected posi-

tion.97,98 Others say that it is wrong to speak of “what it is doing” between the

source and the detector.99 They say that the elementary quantum phenomenon is

a “great smoky dragon.” The beginning and end are sharp but about “what the

dragon does or looks like in between we have no right to speak.” Nevertheless, all

interpretations predict the same measurable phenomenon.

A fascinating recent result is the observation of double-slit diffraction buildup

for oil droplets.100 This experiment is performed at macroscopic scales, where the

physical system is well described by classical equations of motion, but can neverthe-

less produce a diffraction pattern from the build-up of individual droplets. In the

experiment a bouncing oil droplet and an accompanying fluid wave excitation travel

together, reminiscent of de Broglie-Bohm theory.97,98 However, the guidance in this

experiment is affected by a “real” fluid wave. This widely publicized result101 has

stimulated further discussion of the interpretations of quantum theory and specula-

tion on quantum mechanics emergent from an unknown underlying theory.102

Such “emergent” quantum physical theories are not merely interpretations, but

can make testable, differing predictions. For example, in the past decades, the the-

ory of stochastic electrodynamics has been considered by some an alternative to

quantum mechanics.103,104 Claims in this research area include that double-slit
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electron diffraction can be obtained with a full classical theory that includes the

electromagnetic vacuum field.105–111 These claims are based on the idea that the

double-slit provides a boundary condition for the vacuum field. An electron inter-

acting with the vacuum field can sense the presence of both slits even if the elec-

tron itself is localized to one slit. This idea led one group to suggest that electrons

that are limited to move through one slit, while both slits are present, would still

show a double-slit diffraction pattern,110 in stark contrast to what quantum me-

chanics predicts. Our experiment shows that this suggestion is in general not cor-

rect, but a full calculation with stochastic electrodynamics for the double-slit sce-

nario (with or without blocking one of the slits) has still not been performed.

Our experimental control also points towards, future quantum matter optics

experiments with free electrons. Recently, a three slit buildup experiment with con-

trollable slits was reported for photons investigating the Born rule.92 It was shown

that terms in the probability that are proportional to the third power of the wave

function are negligible. Such control is now available for electrons and our experi-

ment shows that a similar Born rule test for massive particles, i.e., electrons, is fea-

sible.

In summary a full realization of Feynman’s thought experiment was shown and

the present results are an important milestone in the development of technology

and methods relevant to testing the foundations of quantum mechanics.
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Appendix A – Path Integral Calculation for the

Harmonic Oscillator

The harmonic oscillator is a important system. Not only is it a system that can be

exactly solved, but any potential with a stable equilibrium may be described by a

oscillator near the equilibrium. The calculation of the propagator is a formidable

task with the Schrodinger equation. The path integral formalism gives us a simpler

method for calculating the propagator or kernel. The kernel in path integral formal-

ism is

K(~x, t; ~x′, t′) = A(t; t′) exp

[
i

~
S(~x, t; ~x′, t′)

]
, (A.1)

where A is a normalization factor that only depends on time and S is the classical

action of the path.

Starting with the Lagrangian for a one dimensional harmonic oscillator, which

is L = m
2
ẋ2 − mω2

2
x2, the classical paths can be found. Here m is the mass of the

particle and ω is the classical frequency of the oscillator. The classical paths can be

calculated by solving the Euler-Lagrange equation,

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0. (A.2)

This gives the differential equation ẍ + ω2x = 0. This has known solutions of the

form:

x(t) = A cos(ωt) +B sin(ωt),

ẋ(t) = −Aω sin(ωt) +Bω cos(ωt),

ẍ(t) = −Aω2 cos(ωt)−Bω2 sin(ωt). (A.3)
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Here A and B are unknown constants that can be solve for by using the boundary

conditions x(ta) = xa and x(tb) = xb.

There are two equations with two unknowns after using the boundary condi-

tions:

x(ta) = A cos(ωta) +B sin(ωta), (A.4)

x(tb) = A cos(ωtb) +B sin(ωtb). (A.5)

Solving Equation A.4 for A and substituting into Equation A.5, the constant B can

be determined. Similarly A can found, giving:

A =
xa sin(ωtb)− xb sin(ωta)

sin [ω(tb − ta)]
, (A.6)

B =
xb sin(ωta)− xa sin(ωtb)

sin [ω(tb − ta)]
. (A.7)

Substituting these back into Equation A.3 and using some trigonometric addition

formulas, the classical paths are:

x(t) =
1

sin [ω(tb − ta)]
{xa sin [ω(tb − t)] + xb sin [ω(t− ta)]} ,

ẋ(t) =
ω

sin [ω(tb − ta)]
{−xa cos [ω(tb − t)] + xb cos [ω(t− ta)]} ,

ẍ(t) =
−ω2

sin [ω(tb − ta)]
{xa sin [ω(tb − t)] + xb sin [ω(t− ta)]} . (A.8)

In the limit of ω = 0 Equation A.8 reduces to the free particle solution, Equa-

tion 2.10,

x(t) =
1

tb − ta
[xa(tb − t) + xb(t− ta)] =

1

tb − ta
[xa(tb − ta − t+ ta) + xb(t− ta)]

= xa +
(t− ta)(xb − xa)

tb − ta
. (A.9)
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The next step in solving the propagator for the harmonic oscillator is to cal-

culate the classical action. To do this, Equation A.8 is substituted into the La-

grangian,

L(xb, tb;xa, ta) =
mω2

2

1

sin [ω(tb − ta)]
{
x2
a

[
cos2 [ω(tb − t)]− sin2 [ω(tb − t)]

]
+x2

b

[
cos2 [ω(t− ta)]− sin2 [ω(t− ta)]

]
−2xaxb cos [ω(tb − t)− ω(t− ta)]} .

(A.10)

Then Equation A.10 need to be integrated in time from ta to tb to calculate the

action,

S(xb, tb;xa, ta) =
mω2

2 sin(ωT )

{
x2
a + x2

b

ω

∫ ωT

0

du
[
cos2(u)− sin2(u)

]
−xaxb

ω

∫ ωT

−ωT
dv cos(v)

}
, (A.11)

where substitutions were used: u = ω(tb − t), u = ω(t − ta), and v = ω(tb −

t)− ω(t− ta), in the first, second, and last terms in Equation A.10 respectively, and

T = ta − tb. After evaluation the classical action becomes,

S(xb, tb;xa, ta) = mω

{
(x2

a + x2
b) cos [ω(tb − ta)]− 2xaxb
2 sin [ω(tb − ta)]

}
. (A.12)

The normalization factor in Equation A.1 can be found using K(0, tb; 0, ta) =
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A(tb; ta) and that for any time tc between ta and tb,

K(0, tb; 0, ta) =

∫ ∞
−∞

dxcK(0, tb;xc, tc)K(xc, tc; 0, ta)

= A(tb; tc)A(tc; ta)

∫ ∞
−∞

dxc exp

[
imω

~

{
x2
c cos [ω(tb − tc)]
2 sin [ω(tb − tc)]

}]
×

exp

[
imω

~

{
x2
c cos [ω(tc − ta)]
2 sin [ω(tc − ta)]

}]

= A(tb; tc)A(tc; ta)

√
2πi~
mω

[
cos [ω(tc − ta)]
sin [ω(tc − ta)]

+
cos [ω(tb − tc)]
cos [ω(tb − tc)]

]−1/2

.

(A.13)

After some trigonometric substitutions this equation simplifies down to,

A(tb; ta) {sin [ω(tb − ta)]}1/2 =

√
2πi~
mω

A(tb; tc) {sin [ω(tb − tc)]}1/2×

A(tc; ta) {sin [ω(tc − ta)]}1/2 (A.14)

The solution to the normalization constant is

A(tb; ta) =

√
mω

2πi~ sin [ω(tb − ta)]
. (A.15)

Substituting Equation A.15 and Equation A.12 into Equation A.1,tThe end result

for the kernel is

K(xb, tb;xa, ta) =

(
mω

2πi~ sin[ω(tb − ta)]

)1/2

×

exp

{
imω

~

[
(x2

a + x2
b) cos[ω(tb − ta)]− 2xaxb
2 sin[ω(tb − ta)]

]}
. (A.16)

This is the propagator or kernel for the harmonic oscillator. It can also be easily

seen that in the limit of ω → 0, Equation A.16 reduces to the free particle propaga-
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tor in one dimension, Equation 2.21.
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Appendix B – Image Aquisition Labview Code

Front Panel
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Appendix C – Computer Simulations and Analysis

Programs

The simulation and analysis programs should be available online through the Uni-

versity of Nebraska-Lincoln’s data repository. Searching for “Electron Double-Slit”

or “Talbot-Lau Interferometer,” will allow for the code and data to be found.

Double-Slit Image Analysis Programs

bitmap_locations.cpp

This program take a sequence of images and analyses each, looking for electron

events. The program uses the four custom classes: Blob_Detection, location_

list, location_list_double, and bitmap8. Using the makefile below, will

generate an executable blob_finder_<date>.out. The first time this pro-

gram is run it will generate a specifications.txt file, which can be edited

to change the basename and sequence numbers of the images to be analyzed.

After running again, the program will output a master list, Master_list_

<basename>.txt, containing the electron event’s locations. It will also gener-

ate an image, Master_bitmap.bmp, that represents the locations of the electron

events.

blob_placement.cpp

This program takes a list of electron events and generates a stacked set of im-

ages. The program uses the four custom classes Blob_Detection, location_

list, location_list_double, and bitmap8. Using the makefile below, will

generate an executable blob_placer_<date>.out. This program requires the

Master_list_<basename>.txt and specifications.txt files from bitmap_

locations.cpp to run. The first time this program is run it will generate a
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placement_specifications.txt file, which can be edited to change the zoom

window and angle; progress bar, size of the mapped window, and whether to

generate intermediate bitmaps. After running again, the program will read the

master list, Master_list_<basename>.txt, and generate a stacked sequence

of images showing the build-up of the images replacing the electron events with

blobs of a specified size.

makefile

This is the makefile to compile blob_placement.cpp and bitmap_locations.

cpp. It requires the files: header_files/bitmap8.cpp, header_files/location_

list.cpp, and header_files/Blob_Detection.cpp, to compile and uses the

gnu g++ compiler. It will generate the two executables: blob_finder_<date>

.out and blob_placer_<date>.out, where <date> is the current date.

cpp_files/ and header_files/

These contain the header and .cpp files for the classes Blob_Detection, location_

list, location_list_double, and bitmap8.

bitmap8

Custom class designed to handle reading and writing 8-bit bitmaps. The

class can also do some basic functions. These include: assigning values to

pixels, reading pixel values, getting the bitmap’s width or length, getting

the maximum value, and copying bitmaps.

location_list

Custom class designed to handle a list of (x, y) integer locations. The list

can be expandable on demand. The class can also do some basic functions.

These include: adding locations, changing locations, removing locations,

reading locations, copying lists, and adding lists.
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location_list_double

Custom class designed to handle a list of (x, y) double locations. This class

is identical to location_list except that this list includes an error associ-

ated with each location.

Blob_Detection

Custom class designed to handle the search algorithm. It is given a bitmap

file loaded into the bitmap8 class. This class has several function to search

an entire bitmap, an area of the bitmap, or search within a single pixel

with more accuracy. Also this class has ways to adjust the parameters of

the search.

Double-Slit Quantum Mechanical Simulation

Double_Slit.F90

This program propagates a quantum mechanical wave function through the

experimental setup. The program is written in FORTRAN with support for

shared-memory and distributed memory parallel computing through OpenMP

and Open MPI. The code is 2129 lines long and required approximately 2.5

hours of run time on 24 processors on Tusker cluster at the Research Comput-

ing Facilities at the University of Nebraska-Lincoln. The code was compiled

with the makefile listed below. The program outputs multiple text files that

represent the probability distribution of the propagated wave function at differ-

ent elements of the system.

graph_cs.py, graph_ds.py, graph_ma.py, graph_sc.py, and graph_conv.py
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These programs take the outputted text files from Double_Slit.F90 and gen-

erate graphs of the probability distributions. The programs graph the proba-

bility distributions at the: collimation slit, double-slit, mask, detection sceen,

and the detection screen after being magnified and convoluted.

makefile

This is the makefile used to compile Double_Slit.F90 and generate graphs of

the data. It uses Open MPI’s wrapper compiler and defaults to compile with

OpenMP. Running the default make is used to compile on the cluster, while

running:

[shell]$ make laptop

will use the compiler /opt/openmpi/bin/mpif90, and will not compile with 64

bit support. A shortcut for generating all the graphs is:

[shell]$ make graph

Talbot-Lau Interferometer Classical Simulation

Moire.F90

This program propagates classical electrons through the experimental setup.

The program is written in FORTRAN with support for shared-memory parallel

computing through OpenMP. The code is 774 lines long and required approxi-

mately 6 hours of run time on 16 processors on Tusker cluster at the Research

Computing Facilities at the University of Nebraska-Lincoln, for the optimal set-

tings. The code was compiled with the makefile. The program outputs multi-

ple text files that represent the electron’s positions at different elements of the

system.

graph2.py, graph3.py, graph4.py, graph5.py, and graph6.py, graph7.py
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These programs take the outputted text files from Moire.F90 and generates

histograms of the electron’s positions. The programs graph the histograms at

the: second slit, first grating, second grating, third grating, throughput at the

third grating, and the throughput with a magnetic field.

makefile

This is the makefile used to compile Moire.F90 and generate graphs of the

data. It defaults to compile with OpenMP. Running the default “make” will

compile it with the gnu gfortran compiler. A shortcut for generating all the

graphs is:

[shell]$ make graph

Talbot-Lau Interferometer Quantum Mechanical Simulation

Talbot-Lau.F90

This program propagates a quantum mechanical wave function through the

experimental setup. The program is written in FORTRAN with support for

shared-memory and distributed memory parallel computing through OpenMP

and Open MPI. The code is 1957 lines long and required approximately 100

hours of run time on 32 processors on Tusker cluster at the Research Comput-

ing Facilities at the University of Nebraska-Lincoln, for the optimal settings.

The code was compiled with the makefile. The program outputs multiple text

files that represent the probability distribution of the propagated wave function

at different elements of the system.

graph1.py, graph2.py, graph3.py, graph3.py, and graph5.py, graph6.py, contrast.

py

These programs take the outputted text files from Talbot-Lau.F90 and gener-

ate graphs of the probability distributions. The programs graph the probabil-
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ity distributions at the: second grating, third grating, throughput at the third

grating, first grating, first collimation slit, and second collimation slit

makefile

This is the makefile used to compile Talbot-Lau.F90 and generate graphs of

the data. It uses Open MPI’s wrapper compiler and defaults to compile with

OpenMP. Running the default “make” is used to compile on the cluster, while

running:

[shell]$ make mpi_laptop

will use the compiler /opt/openmpi/bin/mpif90, and will not compile with 64

bit support. A shortcut for generating all the graphs is: [shell]\$ make graph
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Appendix D – Computer-Aided Design Drawings

Talbot-Lau Interferometer
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Magnetic Cradle

The design for the magnetic cradle was quite complicated. Multiple CAD drawing

were made showing intermediate steps. To prevent unnecessary bloat of the disser-

tation the drawing were compacted. The images can be zoomed in on a digital copy

of this dissertation and all dimension can be viewed.
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Appendix E – Online Articles

The publication of the electron double-slit diffraction experiment garnered attention

from several online and print news agencies. Below are a few screen shots of the

stories covering the publication.

Figure E.1. Physics World; http://physicsworld.com/cws/article/news/
2013/mar/14/feynmans-double-slit-experiment-gets-a-makeover

http://physicsworld.com/cws/article/news/2013/mar/14/feynmans-double-slit-experiment-gets-a-makeover
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Figure E.2. Live Science; http://www.livescience.com/27881-feynman-
double-slit-experiment-performed.html

Figure E.3. The Huffington Post; http://www.huffingtonpost.com/2013/03/
17/physicist-richard-feynman-thought-experiment_n_2883913.html

http://www.livescience.com/27881-feynman-double-slit-experiment-performed.html
http://www.huffingtonpost.com/2013/03/17/physicist-richard-feynman-thought-experiment_n_2883913.html
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Figure E.4. R&D.com; http://www.rdmag.com/news/2013/03/feynmans-
double-slit-experiment-brought-life

Figure E.5. The Statesman

http://www.rdmag.com/news/2013/03/feynmans-double-slit-experiment-brought-life
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