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Roadway construction work zones are constantly exposed to interactions among construction

equipment, workers, and vehicles. Furthermore, ensuring safety in these areas is considered a

challenging task due to the complexity of the environment. As shown in the rising trend of fatal

accidents in roadway work zones, current OSHA regulations in construction safety are insufficient

in effectively detecting unsafe situations and mitigating the risks. Furthermore, best practices,

such as internal traffic control planning (ITCP), exhibit critical limitations requiring continuous

monitoring of active work zones as well as adjustments to the site coordination plans due to the

dynamic nature of work zone environments. To overcome the stated challenges, this study proposes

an innovative solution by integrating sensing and perception technologies of Autonomous Vehicles

(AVs) to detect unsafe situations around heavy construction equipment by integrating vision-based

sensors that can produce contextual information about the situation around the heavy equipment. To

perceive such information, a Robotics Operating System (ROS) based algorithm has been developed,

along with various PointCloud processing techniques aimed to identify and report the location of

workers and other vehicles. Moreover, a simulation-based methodology was introduced aimed to

devise an integrated sensor placement scheme, to facilitate a thorough sensor deployment strategy for

monitoring unsafe zones using the designed ROS-based algorithms through an interconnected network

of vision-based sensors. Furthermore, the designed sensor arrangement combined with the pipelines

underwent three major experiments, illustrating the work zone within an isolated environment. Firstly,

the experiments aimed to gauge the efficacy of both human and vehicle localization components by

comparing reported locations with predetermined ground truths. Secondly, they involved delineating

various human trajectory scenarios to analyze the tracking capabilities of the framework. Lastly,

the experiments entailed simulating sequential entrances and exits into unsafe zones to assess the

framework’s sensitivity and accuracy in monitoring these designated zones. By providing the

equipment with a precise understanding of its environment, the framework has proven its potential to



enhance safety protocols and prevent unforeseen and hazardous situations. Additionally, this study

represents a critical step toward the integration of autonomous rules and technologies into roadway

construction work zones.
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CHAPTER 1

Introduction

The construction industry has consistently been a prominent sector within the U.S. economy.

As the national population has increased, the industry has experienced substantial growth in the

total value of construction projects. Data from the U.S. Census Bureau indicates that from 2002

to 2023, the value of construction projects increased by over $1.2 trillion [1]. Furthermore, 2023

alone witnessed a remarkable surge, with the total value of construction projects rising by over $200

billion from the beginning to the end of the year. It should be noted that the roadway construction

industry has also been part of this trend. According to 2023 data from the American Road &

Transportation Builders Association (ARTBA), highway construction activities saw a 17 percent

increase in value from November 2022 to November 2023 [2], which further rose to 19 percent by

the end of December 2023 [3]. With significant growth over the past decades and recent years, the

efficiency and effectiveness of safety rules and regulations within roadway projects have become

increasingly important due to the corresponding rise in employment. According to recent data from

the U.S. Bureau of Labor Statistics, employment within the heavy and civil engineering construction

industry—which includes highway and roadway construction—reached over 1.1 million workers

by the end of 2023 [4]. This represents an increase of 45,000 workers since the beginning of 2023

and 222,000 workers since 2002. This growth underscores the necessity of monitoring and regularly

updating mandatory safety protocols to prevent an increase in injuries and fatalities.

Considering the roadway construction industry, several organizations are responsible for estab-

lishing and continually evaluating safety rules by analyzing trends in injuries and fatalities within

work zones. To provide a better understanding of these agencies, it is essential to first introduce the
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relevant organizations and examine their roles and the significance of their contributions to existing

safety regulations.

1.1 Responsible Organizations

Several organizations monitor and analyze trends in transportation-related injuries and fatalities,

particularly within roadway construction work zones involving motor vehicles, workers, and heavy

equipment. The Occupational Safety and Health Administration (OSHA), under the Department of

Labor (DOL), sets and enforces standards to protect worker health and safety, aiming to eliminate

on-the-job injuries, illnesses, and fatalities. OSHA provides guidelines for traffic control, worker

visibility, and protective measures, conducts inspections, and enforces compliance [5]. The National

Institute for Occupational Safety and Health (NIOSH), under the CDC within the Department of

Health and Human Services, analyzes statistical information from construction work zones and

conducts research to prevent work-related injuries, illnesses, and fatalities [6]. NIOSH collaborates

with OSHA, notably through the NIOSH/OSHA Alliance Program, to enhance occupational safety

by providing information, guidance, and training resources [7]. The Federal Highway Administration

(FHWA), part of the U.S. Department of Transportation, develops and promotes safety standards for

highway construction zones, focusing on worker visibility and traffic control planning [8]. While its

guidelines are suggestions from DOT studies, they serve as primary sources for OSHA to establish

or update enforceable standards.

1.2 Current Safety Protocols

Among the relevant organizations, OSHA holds the primary authority to establish or modify manda-

tory regulations concerning roadway work zone safety. Among these regulations, several focus on the

interaction between workers and vehicles, including both motor vehicles and construction equipment.

These rules are crucial for managing the movement of heavy construction equipment and motor

vehicles through the roadway work zone which are legislated on top of the Manual on Uniform Traffic

Control Devices (MUTCD) guideline. The Manual on Uniform Traffic Control Devices (MUTCD)

sets forth a uniform set of minimum standards established by the FHWA for the use of traffic control
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devices, such as signs, barricades, flags, and other equipment. These standards are designed to

ensure the safe movement of motor vehicles through construction work zones and to provide a secure

environment for heavy construction equipment to operate. To put the MUTCD-related practices

into play, OSHA introduced two sets of guidelines: External Traffic Control and Internal Traffic

Control planning regulations [5]. External Traffic Control planning, also known as Temporary Traffic

Control (TTC) planning, primarily focuses on providing a reasonably safe and efficient movement

of road users through or around work zones while protecting workers [9]. Internal Traffic Control

Planning (ITCP) rules serve as a tool for employers to coordinate the flow of construction vehicles,

equipment, and workers on foot within the work zone, ensuring their safe and efficient movement in

close proximity to one another [10], [11].

As FHWA and NIOSH conduct ongoing research on the impacts of the revisions on the regulations

associated with the TTCs and ITCPs, OSHA also revises them in a way to ensure a safer environment

for workers by keeping pace with evolving safety practices and technological advancements. However,

there remains a lack of effective implementation of these safety protocols. Recent studies by NIOSH

indicate an increasing trend in the number of injuries and fatalities within roadway work zones,

primarily due to incidents involving workers and vehicles. While several studies have highlighted

the positive impact of successful traffic control planning systems on reducing accident occurrences

within roadway work zones [12], it is worth noting that continuously updating such plans within the

job site can be time-consuming. This is primarily due to the dynamic nature of roadway construction

work zones, which necessitates ongoing modifications to ensure their effectiveness. Furthermore, it

is essential to have a competent person who will regularly monitor ongoing activities to identify any

unsafe situations while implementing road planning regulations within the work zone [13], which

may also be subject to human error.

According to a recent report published by the National Work Zone Safety Information Clear-

inghouse—a collaborative project funded by ARTBA, FHWA, and the Texas A&M Transportation

Institute—fatal crashes in work zones have increased from 557 in 2012 to 874 in 2021. The percent-

age of all fatal crashes occurring in work zones has also risen slightly, from 1.8% in 2012 to 2.2% in

2021. Additionally, work zone fatalities have increased from 619 in 2012 to 956 in 2021, equating to

nearly three persons per day being killed in work zones in 2021. Approximately four out of every

five work zone fatalities involve a driver or passenger of a vehicle. Furthermore, estimated injuries in
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work zones have risen from 31,000 in 2012 to 42,000 in 2021, which translates to approximately 112

injuries per day in 2021 [14]. Moreover, a recent report from NIOSH indicated that from 2003 to

2020, there were a total of 2,222 worker-related deaths reported at road construction sites, averaging

123 deaths per year [15]. Furthermore, the National Work Zone Safety Information Clearinghouse

reported that despite a reduction in the total number of fatal injuries to roadway construction work

zone workers, which decreased from its peak of 135 in 2019 to 94 in 2022, the percentage of fatalities

involving workers on foot being struck by a vehicle increased from 44.4% to 53.2% during the same

period. The report also noted that over 75% of the fatalities from 2020 to 2022 were associated with

interactions between workers and motor vehicles [16].

These trends indicate that despite recent modifications to OSHA regulations, the effectiveness of

these rules and regulations remains insufficient. Consequently, there is a pressing need for innovative

approaches and technologies to enhance safety protocols within roadway construction work zones.

This underscores the importance of state-of-the-art research focused on implementing additional

safety standards in work zones and highlights how these research approaches are designed to improve

worker safety.

1.3 State-of-the-art research

To address the escalating rates of injuries and fatalities within various types of construction work

zones, including roadway zones, and the inadequacy of current practices and regulations provided by

responsible organizations, several studies have proposed innovative approaches. These include 1)

Risk mitigation and assessment methods tailored for construction work zones. 2) Implementation of

automated monitoring systems utilizing non-perceptual sensing technologies (proximity solutions)

or perceptual sensing technologies (perception-based solutions). 3) Adoption of simulation-based

techniques integrating Building Information Modeling (BIM) simulation approaches with emerging

technologies such as Virtual Reality (VR) or Augmented Reality (AR) to dynamically inspect

work zones. 4) Implementation of automated inspection techniques through the integration of

Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs) with perceptual sensing

technologies.
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1.3.1 Fundamental Studies: Risk Mitigation and Assessment

Since the advent of the construction industry, the issues of safety and hazard prevention have been the

subject of extensive examination and analysis. These concerns are critical in construction projects due

to the paramount importance of protecting workers’ lives and the significant financial implications

associated with accidents. Moreover, effective safety measures can substantially influence the

contractor’s reputation [17]. Therefore, several studies have aimed to improve safety protocols by

identifying and mitigating the risks associated with various types of construction work zones.

Among the earliest research in this area, Gambatese and Hinze [18] provided pre-construction

recommendations for specific tasks, supported by OSHA regulations, during the design phase of

projects. These efforts aimed to reduce the number of exposures leading to hazardous situations.

Although this study was a preliminary effort to enhance existing safety regulations, it represented an

effective approach to identifying and analyzing the risks associated with various types of hazards

by categorizing them based on the work zone type. Furthermore, Gangollels et al. [17] undertook

an analysis of hazard exposure likelihood across various construction tasks, employing partial

categorization. They devised a model aimed at quantifying the risk probabilities associated with

these tasks, drawing upon the framework of expected values in their empirical investigation. This

approach enabled them to assess the likelihood of exposure to various identified risks during the

project’s design phase.

Moreover, several studies have endeavored to classify various types of hazards within specific

construction work zones and quantify their likelihood of occurrence by employing more sophisticated

statistical models. These methodologies have facilitated the identification of the severity levels asso-

ciated with different construction tasks, thereby highlighting the necessity for more comprehensive

observation, particularly for those deemed most hazardous. As a result, Hollowell and Gambatese

[19] proposed a Delphi-based methodology to assess the risk reduction attributed to manual safety

inspections. They determined observation criteria for various types of hazards within this framework.

They quantified the reduction rates by conducting a case study involving 13 experts who partici-

pated in multiple rounds of the Delphi process. This effort culminated in measuring risk reduction

values, expressed as the ratio of the raw severity reduction score to the worker-hours per incident.

Furthermore, Zeng et al. [20] introduced a model known as "Failure Modes and Effects Analysis
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(FEMA)" for assessing the risk associated with OSHA predetermined hazards by categorizing various

hazards associated with causes such as Use of Equipment, Falling Objects, Electrocution, and others

to determine the Risk Priority Number (RPN) indicator. This metric is calculated as the product of

occurrence, severity, and detection ratings, as validated through a localized case study conducted in

China. In general, several studies have successfully approached the analysis of task hazards within

construction work zones so far, exemplified by a recent study conducted by Esmailli et al. [21]

which builds upon prior research conducted by Hallowell and Gambatese [19]. Therefore, such

advancements represent the ongoing need to continuously conduct studies on risk assessment within

construction work zones.

1.3.2 Automated Monitoring: Sensing Technologies

Generally, the automation of safety monitoring through sensing technologies involves developing a

pipeline that integrates input data from various types of sensors, which are systematically selected

and combined within a structured framework. Subsequently, this data undergoes processing through a

series of algorithms, resulting in interpretable outputs in human language. These outputs can then be

employed to verify adherence to established safety protocols requiring detailed monitoring measured

by the risk assessment studies. As illustrated in Figure 1.1, pipelines employing sensing technologies

are primarily categorized into two sections based on the types of devices they use: non-perceptual

and perceptual sensing technologies. The devices in each section generate different types of data,

which can significantly affect the outcomes. The nature of the data type determines the level of detail

and comprehensiveness of the interpretation, which in turn necessitates more computational power to

avoid delays and ensure real-time outcomes, a critical aspect in the safety monitoring sector. While

Figure 1.1 provides an overview of the concept of sensing technologies, the subsequent subsections

will offer a more detailed exploration of non-perceptual and perceptual sensing technologies.

Over the past two decades, technological advancements have significantly improved the under-

standing and application of wireless communication using low-frequency waves. This has led to

the development of electromagnetic wave sensors that can transmit and receive signals over limited

distances, facilitating the creation of algorithmic frameworks for interpreting distance-related data.

Radio Frequency Identification (RFID) and Bluetooth-based sensors have become key tools in safety

research, particularly in construction zones, to establish protocols responding to various hazardous
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Figure 1.1: Color-filled arrows visualize the potential directions sensory techniques can take. Green arrows
indicate the direction of this study.

scenarios. Notable studies include Teizer et al.’s [22] localization pipeline using Ultra-wideband

technology with Bluetooth-based devices to pinpoint personnel positions on construction sites.

Roofigari-Esfahan et al. [23], [24] developed a smart vest with Bluetooth and GPS for worker local-

ization. Park et al. [25], [26] introduced a proximity-based pipeline using electromagnetic sensors

to measure worker proximity to equipment, and a simulation-based pipeline to identify hazardous

scenarios with Bluetooth tracking sensors. Fang et al. [27] combined RFID sensor deployment with

simulation-based safety assessments within a Building Information Modeling (BIM) framework,

enabling worker presence detection in hazardous zones.

On the other hand, Recent advancements in Artificial Intelligence (AI) and Unsupervised Machine

Learning (ML), particularly Convolutional Neural Networks (CNNs), have enabled the analysis of

complex and large-scale data from sensors like RGB or depth images. These technologies allow

computers to generate descriptive information about their surroundings, including object existence,

proximities, and interactions, using perceptual sensors like cameras, depth sensors, and LiDAR.

Researchers have integrated these technologies into safety monitoring methodologies, creating

automated systems that yield detailed outcomes. Innovative studies in this field include Jeelani et

al.’s [28] hazard detection pipeline using an automated object detection algorithm to classify and

segment construction equipment based on image-based RGB data, assessing worker proximity to

hazards. Tang et al. [29] developed an image-based worker detection algorithm to identify worker
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exposure to potential hazards, generating descriptive text about the worker’s location, environment,

and potential hazards. Chen et al. [30] utilized deep learning algorithms to detect and classify

excavator activities, identifying hazards related to worker-equipment interactions, thereby enhancing

safety analysis and preventive measures on construction sites.

1.3.3 Digital Twins: BIM, VR, and AR Applications

With the emergence of Building Information Modeling (BIM) and simulation-based construction

methodologies in recent decades, numerous studies have sought to address the limitations of safety

monitoring through the use of simulation-based approaches within work zones. Implementing

systematic and simulated versions of entire projects, encompassing schedules and detailed task

breakdowns, can facilitate the monitoring of safety and task execution. The dynamic nature of these

simulations allows for modifications throughout the process, thereby enhancing robustness. This

adaptability enables responsible personnel to observe tasks and inspect progress effectively within

the work zone. Consequently, several studies have aimed to develop interactive monitoring systems

that alleviate worker pressure while improving task execution accuracy.

A notable study by Getuli et al. [31] designed a safety analysis framework that leverages BIM

and virtual reality (VR) devices to sequentially gather information from the workers’ surrounding

environment within the work zone. This framework modifies hazardous locations and protocols

by updating safe and unsafe zones within the simulation, which are then communicated to the

workers in real-time through their VR devices. Additionally, the generalized concept of utilizing

simulation-based monitoring systems involves integrating and analyzing real-world data in real-time

using various data collection devices to continuously modify responses. This approach has led

researchers to introduce the concept of Construction 4.0 [32].

1.3.4 Dynamic Monitoring: Unmanned Vehicle’s Application

Nowadays, Researchers have proposed the utilization of robots as an innovative approach to enhance

safety monitoring and inspection within work zones, employing both manual and automated control

systems. Robot manipulation encompasses a fusion of sensory techniques, predominantly perceptual

sensory methods, simulation-based technologies, and the application of deep learning algorithms.
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These elements collectively process input data from sensors affixed to the robot, enabling modification

or cross-referencing with simulations to yield descriptive information. This information serves as the

basis for implementing either a checking system or a monitoring framework throughout construction

projects, while the robot is programmed to navigate safely within the work zone. Furthermore,

various studies have explored the use of robots to perform diverse tasks while ensuring interaction

with workers within a secure environment. Such utilization of robots can be broadly categorized into

two main sections: aerial navigation employing Unmanned Aerial Vehicles (UAVs) or drones, and

ground-based navigation using Unmanned Ground Vehicles (UGVs).

In the realm of Unmanned Aerial Systems (UAS), Kim et al. [33] developed an image-based

pipeline aimed at localizing construction equipment such as excavators and loaders, along with

workers, to assess the proximity of equipment to the workforce and thus evaluate safety protocols

within the work zone. This methodology involved projecting images onto a global map to determine

the spatial relationship between equipment and workers. UAVs were employed to capture aerial

imagery, subsequently used to retrain an image-based object detection model known as You Only

Look Once (YOLO) [34]. This model facilitated the identification of the aforementioned objects. By

comparing the physical location of the UAV with predetermined global coordinates, the detected

objects were localized, enabling the evaluation of safety protocols pertaining to distance. This

approach not only highlighted the sensitivity of the situation but also facilitated the prediction of

potential hazards. Furthermore, Kim et al. [35] devised a safety monitoring system founded on a

digitalized iteration of an Internal Traffic Control Plan (ITCP) model tailored for a specific roadway

work zone. This system aimed to gauge unsafe conditions by leveraging retrained YOLO to ascertain

the positions of heavy construction equipment and workers. A manually controlled UAV was utilized

to capture aerial imagery throughout the work zone, which was subsequently analyzed in conjunction

with the pre-existing digitalized ITCP model. Moreover, Jaycob-Loyola et al. [36] devised an aerial

inspection pipeline aimed at quantifying the completion percentage of structural projects. This

methodology involved collecting both image and depth data utilizing a flying drone and analyzing

these structured inputs alongside a pre-designed 3D model of the building. The integration of these

elements facilitated the establishment of a robust physical progress monitoring system for building

construction projects.

Despite the successful utilization of UAVs in enhancing safety protocols, recent research has
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equally focused on the implementation of UGVs for monitoring, inspection, and task execution

[37]. Ibrahim et al. [38] developed a Reinforcement Learning (RL) model aimed at optimizing the

navigation of a 4-wheeled UGV robot within an indoor construction work zone. This model facilitated

the generation of a high-quality map of the area by collecting depth data during the navigation process.

Additionally, Liu et al. [39] introduced a pioneering robot-human interaction approach, presenting a

pipeline for adapting the behavior of robots while navigating through construction work zones. This

innovative method involves analyzing the body and mental state of existing workers by interpreting

information gathered from sensory devices affixed to them. Such an approach represents a pioneering

safety protocol that holds promise for implementation in work zones, facilitating collaboration

between robots and human workers.

1.4 Thesis Organization

The rest of this study is structured as follows: Chapter 2 reviews relevant literature on implementing

autonomous sensing systems, evaluating their processing models and algorithms as well as their

outcomes accuracies which caused this study’s direction. Chapter 3 outlines the problem statement,

focusing on the essential elements needed for developing autonomous safety monitoring frameworks

for construction equipment. Chapter 4 details the solution implemented to attain automated monitor-

ing objectives. Chapter 5 presents a real-world demonstration of the methodology implementations

within a case study provided by the Nebraska Department of Transportation (NDOT) in addition

to the testing scenario’s description. Chapter 6 represents the test results, evaluating the accuracy

and safety of the developed framework through the designed testing scenarios. Chapter 7 provides a

conclusion to the study and the potential future directions.
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CHAPTER 2

Literature Review

During the last two decades, several studies have attempted to address the limitations associated

with manual safety monitoring within construction work zones by utilizing various approaches. These

efforts have resulted in multiple research directions, each with its advantages and disadvantages,

which are described in this chapter.

2.1 The Importance of Automated Safety Monitoring

From the early stages of safety monitoring in construction job sites, numerous state-of-the-art research

studies have addressed the inefficiency of existing regulations by exploring various directions. These

efforts span from early risk assessment practices, which involved evaluating the sensitivity of

construction tasks based on predetermined OSHA regulations [17], [18], to the use of statistical

models that measure the importance and danger levels associated with these tasks [20], [21]. Recent

studies have focused on implementing supervised models on enhanced datasets, which are created

by converting expert opinion surveys into a computer-readable format [40]. This progression has

led to an increasingly accurate understanding, rating, and scoring of dangers in various construction

work zones, guiding safety experts in assessing the risks of construction tasks. However, the manual

effort required to observe and address tasks identified as more dangerous remains a limiting factor.

Additionally, human error in recognizing special or unforeseen situations can further constrain safety

measures. Consequently, with the recent developments in AI and decision-making models, it is

logical to consider semi- to fully automated frameworks for observing safety matters regardless of the
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growing imperative to leverage such categorizing models within the safety sectors of the construction

industry [41].

Furthermore, simulation-based research has emerged as one of the most successful and expanding

directions in safety monitoring systems within construction work zones [31]. However, practical

utilization of these technologies faces significant limitations. These include the extensive education

and training required for professionals and workers to become proficient with such technologies.

Wearable visualizer devices, such as VR and AR, are not only costly to implement but also present

significant challenges in terms of compatibility for practitioners. As a result, the gap between

traditional construction methods and the novel approach known as Construction 4.0 [32] remains

substantial.

Additionally, the utilization of automated inspection techniques, such as implementing UAVs

[34]–[36] or UGVs [37]–[39] in the construction environment to meet safety observation requirements

seems to be challenging. This challenge primarily arises from workers’ unfamiliarity with these

novel technologies. Further studies are needed to develop a safe framework for interactions between

automated equipment and the workforce to prevent distractions or destructive encounters that could

lead to additional hazardous situations. Moreover, the urgency of safety monitoring is heightened

by the fact that accidents can occur in mere seconds. This necessitates thorough inspections by

automated systems, which in turn requires increasing the number of active robots within the work

zone. However, this increase can lead to more encounters between robots and workers, potentially

creating further safety issues.

Regardless of the aforementioned challenges and limitations, a key concept in utilizing robots

(ground or aerial) for automatically observing, navigating, or executing hazardous construction tasks

within work zones is the application of sensing technologies. Designing a computer-brain entity that

can process information gathered from various sensors attached to it appears to be a highly effective

solution for observation. This implies that a robot equipped with multiple types of sensors, such

as RGB, depth, LiDAR, and others, can efficiently interpret and analyze environmental data using

automated decision-making frameworks, including convolutional neural networks (CNNs), in its

central processor. While this advancement enables robots to navigate, inspect, or execute tasks with

varying levels of autonomy, similar capabilities can be achieved with heavy construction equipment.

Autonomy in construction equipment can range from Level 1, where the operator maintains full
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control without any automatic interaction, to Level 5, which involves executing fully automated

construction tasks such as navigating, dumping, or drilling without causing hazardous interactions

with the workforce [42]. This insight led to the idea of designing a sensory framework mounted

on construction equipment. Such a framework aims not only to elevate the task execution of this

equipment to higher levels of autonomy but also to create an automated monitoring system around

the equipment. This system would prevent upcoming hazardous situations by facilitating meaningful

interactions between the system and the equipment operator. Moreover, this approach provides a

future-proof direction toward achieving the highest possible level of autonomy in heavy construction

equipment tasks, which can significantly reduce the number of incidents and fatalities within roadway

work zones.

2.2 Limitations of Non-Perceptual Sensing Technologies in Automation

Sensing Technologies can be categorized into two main groups: non-perceptual and perceptual

sensors. Non-perceptual sensors, such as electromagnetic and proximity-based sensors, primarily

use short-range waves like Ultrawide-band, Bluetooth, and Wi-Fi to measure proximity between

transmitters and receivers. Perceptual sensors, including RGB, Depth, and LiDAR sensors, employ

more sophisticated techniques to produce a multi-dimensional understanding of the environment,

generating two-dimensional images and three-dimensional point cloud data. Several studies have

attempted to utilize non-perceptual sensing technologies to determine the location of personnel

[22]–[24] within work zones. These studies often combine sensor data from various senders into

a unique cloud-based environment to identify potential hazards directly or analyze them within

simulations [27]. Additionally, many studies have employed channels of senders and receivers using

electromagnetic sensors or RFID-based sensors to measure the proximity of workers and equipment

within a work zone to predict upcoming hazards [25], [26].

Meanwhile, several studies have attempted to recognize the movements and activities of con-

struction equipment by attaching proximity-based devices to the machinery. in one of the novel

studies, Akhavian and Behzadan [43] developed a pipeline to assess construction equipment activity

based on detailed data and to interpret this data for use in simulation-based methodologies and

applications. They utilized data from accelerometers, gyroscopes, and GPS to obtain the linear
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and angular velocities of different parts of the construction equipment, as well as their location. A

supervised machine learning classification algorithm was employed to identify the tasks performed

by the equipment using the sensor data. More than that, A recent study conducted by Ansaripour

et al. [44] focused on designing a truck pose estimation system within construction work zones by

analyzing data gathered from proximity devices utilizing Ultrawide-band waves. These devices were

attached to a moving truck and interacted with a set of stationary receivers within the work zone. By

integrating the proximity data from these attached devices, the researchers were able to generate an

aerial 2D pose of the truck as it moved within the work zone.

However, regardless of the ongoing advancements occurring within the domain of non-perceptual

sensing technologies utilization within work zones, there are significant limitations associated

with these methods. These limitations hinder researchers from exclusively developing frameworks

based on such sensors. Firstly, the efficacy of these methodologies is often compromised by

environmental intricacies, particularly when signal pathways encounter obstacles that obstruct

transmission between transmitters and receivers. Furthermore, these modalities predominantly

assess object proximity, thereby constraining their capacity to offer a perceptually interpretable

understanding of environmental dynamics and to effectively identify diverse hazard typologies.

Moreover, dynamic construction work zones, such as roadways, are highly susceptible to the entrance

and exit of unrecognized objects, which may include workforce members, motor vehicles, and

construction equipment not defined by tag-based sensors. Consequently, new hazardous situations

can emerge from the interactions between the workforce and these unrecognized objects. Additionally,

the increase in obstacles between existing senders and receivers can further disrupt the system’s

functionality, exacerbating the challenge of accurately identifying and mitigating hazards in the work

zone. On the other hand, perceptual sensing technologies implemented in recent studies to design

automated safety monitoring systems have provided significant advancements in the context of safety

in construction work zones and roadway work zones. These techniques offer a more comprehensive

understanding of environmental dynamics and enhance the capability to identify and mitigate diverse

hazard typologies effectively.
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2.3 Automated Safety Monitoring Systems in Construction

Perceptual sensing technologies are generally developed using structured (manually descriptive) or

automated (CNN-based) algorithms applied to multidimensional data captured from sensors capable

of generating more than a 1D signal. These sensors provide detailed observations of the environment.

Two of the most commonly used sensors in such systems are image cameras (RGB) and depth

cameras (short-range depth cameras or long-range depth sensors, known as LiDARs). By analyzing

the color or depth images captured from the environment with various algorithms, researchers can

identify and localize workforces, recognize their activities, and detect construction equipment and

their interactions. This capability is crucial for monitoring hazardous situations and ensuring safety

within construction work zones.

In one of the early studies of this concept, Memarzadeh et al. [45] developed a structured

algorithm to detect construction equipment within video frame footage of a construction work

zone using Histograms of Oriented Gradients and Colors (HOG+C). Compared to previous studies,

their proposed algorithm was not only more efficient and accurate in detecting objects such as

workers, excavators, and dump trucks within the construction site, but it was also capable of detecting

these objects while they were idle, a capability that previous studies lacked. Furthermore, with

advancements in the utilization of Convolutional Neural Networks (CNNs) for object recognition

and classification, a novel study conducted by Kim et al. [46] designed a 2D construction equipment

detection model by retraining a novel region-based convolutional network developed by Dai et al.

[47], known as R-FCN, using the transfer learning technique. They achieved an accuracy of over

95% in detecting five different types of equipment. This advancement not only demonstrates the

value of CNNs in the safety monitoring sector but also significantly contributes to the development

of more accurate object detection and localization systems within work zones. As a subsequent study

in this field, Fang et al. [48] aimed to detect workers and construction equipment using image data

by retraining a recently published object detection CNN model called Faster R-CNN [49]. They

incorporated an additional image size matching step within their proposed pipeline to achieve higher

accuracy in detecting objects within the work zone which is noted as the IFaster R-CNN model.

Their results demonstrated that the improved Faster R-CNN increased detection accuracy for five

pre-trained equipment classes by 1% to 10%, depending on the detection class, compared to the
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standard retrained Faster R-CNN as well as the standard R-CNN model [50].

As the utilization of image-based pipelines provided by the ongoing studies were developing

more advanced workforce and equipment identification, segmentation, and activity recognition

[51]–[53] through an image data, emerging technologies of depth cameras helped the researchers to

localize the objects such as equipment and the workforce within the work zone by implementing

manual data processing algorithms on top of the point cloud data to make the automated systems

capable of earning a 3D understanding of the environment to then monitor the safety criteria in

real-time. In a pioneering study that was among the first to use long-range depth sensors, Wang

and Cho [54] designed a pipeline to visualize a 3D schematic of the construction work zone by

employing data processing techniques to distinguish construction equipment in 3D unstructured

environments. Their primary data processing technique involved using Convex Hull to filter the

point cloud data by removing interior points and generating a surface connecting the outer points.

This approach allowed them to visualize different construction equipment as structured 3D maps,

providing professionals with a clear view of the work zone. This capability enables construction

equipment operators to be aware of potential collisions with other objects, thereby helping to prevent

incidents by pausing tasks when necessary. In a follow-up study, Chen et al. [55] designed an

automated pipeline based on point cloud data obtained from a construction work zone to identify,

classify, and localize heavy construction equipment. The pipeline begins by downsampling the point

cloud data to create a uniform histogram, making it easier to process. Next, they used Random

Sample Consensus (RANSAC) [56] to remove surface points, followed by clustering the remaining

points and the Euclidean Distance Metric [57] to group points belonging to the same construction

equipment. For categorizing different types of heavy construction equipment, they employed a

pre-designed 3D object descriptor model called Ensemble of Shape Functions (ESF) [58]. Finally,

a machine learning classifier was applied to label and classify each point cloud cluster, enabling

the identification and localization of different types of heavy construction equipment using a laser

scanner.

In addition to the aforementioned safety monitoring frameworks designed to perceive interactions

between the workforce and construction equipment, few studies have addressed the challenge of

observing interactions between workers and motor vehicles in construction work zones. These

studies identified and localized vehicles using fast and efficient CNN models such as Super Fast and
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Accurate 3D Object Detection (SFA3D) [59] to process point cloud data captured from a LiDAR

sensor present at the job site [60]. This approach allows for real-time monitoring and enhances

safety by quickly and accurately identifying potential hazards involving motor vehicles within the

work zone. However, despite the accuracies and successes of perceptual sensing technologies,

there are still limitations associated with them. A comprehensive safety monitoring framework

must continuously monitor the entire construction work zone to detect potential hazards, which is

challenging to achieve in indoor construction work zones and nearly impossible in outdoor zones

such as roadways. This requirement necessitates numerous perceptual sensors placed throughout

the environment. Additionally, a roadway construction work zone is highly dynamic in two major

aspects: 1) The construction is ongoing, with machinery and workforces moving forward to the next

section multiple times a day. 2) The continuous movement of construction equipment (e.g., mixer

trucks, loaders) and motor vehicles passing through the work zone constantly creates new lines of

sight. This dynamic nature requires sophisticated placement and frequent relocation of perceptual

sensors to maintain the necessary safety monitoring criteria.

Lastly, there have been few studies in construction safety monitoring that combine image-based

sensors (RGB) and depth sensors (depth cameras and LiDAR). This combined approach first uses

RGB sensors to identify and segment objects within the work zone, and then utilizes depth data to

localize these objects relative to the sensor’s coordinates. This integrated framework has the potential

to enhance the accuracy and reliability of safety monitoring by leveraging the strengths of both sensor

types. Such frameworks have been successfully developed and tested in the context of Autonomous

Vehicles (AVs) by designing pipelines to identify and coordinate pedestrians and other vehicles to

avoid collisions and enable autonomous driving using perceptual sensing technologies. Adapting

similar methodologies to construction work zones could be highly beneficial. The proposed approach

would involve designing a pipeline to detect and localize workers and motor vehicles. By mounting

these sensors on construction equipment, the system could localize workers and vehicles within the

roadway work zone, enabling the equipment to stop tasks or alert workers to impending hazards.

Additionally, this framework could serve as a preliminary study for implementing autonomous task

execution of construction equipment within the work zone, potentially enhancing both safety and

efficiency. The following section highlights several research studies that have developed pipelines

for heavy construction equipment, serving as foundational support for the proposed concept in this
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study.

2.4 Autonomy in Construction Equipment

Despite the extensive research conducted in the realm of Autonomous Vehicles (AV), few studies

have addressed the development of Autonomous Construction Equipment (ACE). It is noteworthy

that all these studies have employed automated algorithms to process data gathered from perceptual

sensors, aiming to satisfy specific criteria such as obstacle avoidance, movement planning, execution

planning, and safety observation. These advancements, along with their successful implementations,

reinforce the concept of designing an automated safety framework for construction equipment to

provide comprehensive safety monitoring within work zones.

In one of the early studies, Kayhani et al. [61] developed a path-planning pipeline for construction

equipment to address the limitations associated with manual processes which tend to be more

time-consuming and costly based on robotic obstacle avoidance techniques. Their methodology

involved generating configuration space (C-Space) obstacles and using Dijkstra’s algorithm [62]

for pathfinding. This system was designed for the planar motion of convex 2D objects, assuming

continuous translational and discretized rotational movements. Although their study assumed a

well-known plan of the construction work zone, it serves as a preliminary automated task planning

pipeline for ACEs. Such autonomous navigation pipelines have been further developed within the

field of robotics. Furthermore, Zhang et al. [63] designed an autonomous excavator capable of

performing multiple tasks while addressing challenges such as collapse accidents, excessive dust,

and extreme weather conditions. From a perceptual sensing technologies perspective, they utilized

LiDAR sensors and RGB cameras to perform 2D and 3D parsing of the environment in front of the

equipment. This allowed them to generate a 3D localization map to avoid obstacles and execute a

task stop command when the cameras, using CNNs, detected humans or animals within the work

site and make the excavator capable of performing tasks such as loading dump trucks, capturing and

removing rocks, and clearing large piles. Moving forward, You et al. [64] proposed an autonomous

bulldozer designed to perform ground elevation tasks autonomously. They employed RGB cameras

and LiDAR sensors to detect and avoid obstacles during task execution. Additionally, they utilized

YOLO-v3 [34], [65] on their stereo camera data to detect and localize obstacles, particularly workers,
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to prevent incidents while performing the task. In one of the most pioneering studies, Khan et al.

[66] designed a predictive control model for bulldozer movement by simulating the dozer and its

behavior with a modified Husky robot. This robot was equipped with LiDAR, RGB, and Depth

sensors to avoid obstacles while performing navigation tasks.

In summary, it can be concluded that despite the varying success rates of perceptual sensing

technologies, the utilization of such sensors to acquire detailed environmental data, combined with

different types of CNNs to interpret this data, is highly effective in providing a 3D awareness for

autonomous construction tasks [67]. Therefore, this study proposes the design of two parallel

pipelines utilizing LiDAR and RGB-D sensors that not only identify hazardous situations around

construction equipment by the required safety checks associated with the ITCP rules but also enable

the equipment to perform tasks autonomously by implementing advanced navigation algorithms,

ensuring safe task execution.
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CHAPTER 3

Problem Statement

The primary objective of this study is to develop a pipeline that can be implemented in any heavy

construction equipment to provide autonomous safety monitoring through real-time observation of

the surrounding environment. This objective represents a significant advancement in the design of

automated monitoring systems within roadway work zones. Additionally, it can serve as a perception

framework for task planning and execution in autonomous construction equipment. To achieve this

goal, the study is structured around five main sub-objectives.

In the initial stage of this study, potential hazards and unsafe situations were identified based on

the movements of construction equipment within the work zone. These hazardous situations were

then categorized into two groups. The first group comprises situations arising from interactions

between workers and construction equipment. To design a fully automated awareness system for

monitoring these hazardous situations, each unsafe scenario was assigned to the corresponding

construction equipment. The second group includes hazardous situations associated with interactions

between other objects, primarily motor vehicles, and the workforce. Although these situations

do not directly result from the movement of construction equipment, it is feasible for the existing

construction equipment to observe and monitor them through a parallel framework alongside the

one designed for monitoring the first category of hazards. By identifying and assigning hazards

within work zones to each piece of construction equipment, we can develop a comprehensive

framework to observe and mitigate such situations. However, it is essential to establish a method for

translating these situations into a format understandable by computers before designing frameworks

for monitoring hazards. This necessity arises from the inaccuracies that automated models, including
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advanced Natural Language Processing models, have in interpreting descriptive data. To address this,

traditional ITCP rules [68] were employed to convert each hazardous situation into a corresponding

unsafe zone. Consequently, the primary objective of these frameworks is to accurately detect the

presence and location of objects, primarily workers and motor vehicles, within the designated unsafe

zones associated with them.

Subsequently, we designed localization frameworks capable of monitoring unsafe zones associ-

ated with construction equipment using RGB-D sensors and LiDAR sensors. While several previous

studies have focused on detecting, localizing, and recognizing the activities of workers or construc-

tion equipment using a single RGB-D or LiDAR sensor, our approach utilizes multiple RGB-D

sensors and LiDARs attached to construction equipment. This setup enables real-time monitoring of

designated unsafe zones by simultaneously analyzing the captured data through different models.

To achieve this, we developed frameworks based on automated data processing algorithms that

require minimal computational power. This approach allows us to run and test the pipeline through a

real-time case study, thereby demonstrating the efficiency of implementing autonomous techniques

in construction equipment. We employed one of the fastest object detection models, YOLO [34], [65],

in conjunction with point cloud processing libraries [69] based on the C++ programming language,

and SFA3D [59], one of the fastest vehicle localization models. By utilizing LiDAR point cloud data,

we were able to localize both the workforce and motor vehicles within the sensors’ boundaries.

Furthermore, the placement of sensors and the fusion of sensory data were carefully considered

to design an efficient arrangement and data combination of the aforementioned sensors. This was

achieved using the ROS-based simulation application called Gazebo [70] which helped to ensure the

elimination of any blind spots around the equipment from a sensory perspective. We simulated the

construction equipment and the virtual representation of the sensors in the Gazebo application, then

manually observed the simulated sensory data to design a placement configuration that avoids blind

spots. The resulting sensor placement can be replicated on actual construction equipment. By running

the pipeline with the designed sensor placement, we were able to effectively localize workers and

motor vehicles moving around the equipment. Lastly, the proposed pipeline was validated through a

series of testing scenarios within an isolated real-world environment having the algorithms tested on

top of the designed sensor placement. These tests aimed to measure the framework’s accuracy in

localizing workers and motor vehicles around the equipment, identifying trajectory patterns around
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the equipment, and assessing the pipeline’s robustness in detecting entries and exits from designated

unsafe zones.
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CHAPTER 4

Methodology

The following sections will provide an overview of the proposed solutions for designing a system

that ensures automated monitoring around heavy construction equipment.

4.1 Hazard Identification and Conversion to Unsafe Zone

Depending on the size and location of the roadway construction site, various types of workforces

and construction equipment are engaged in multiple tasks. The forward movement inherent in

constructing a roadway creates a dynamic environment while the project continues. Therefore, it is

reasonable to assume that construction equipment performs regular and repetitive movements while

completing tasks, as the ITCP regulations dictate, which delineate specific unsafe zones around the

equipment. Similarly, motor vehicles passing through the work zone exhibit predictable movement

patterns. Consequently, each vehicle, whether engaged in tasks or merely passing through the

roadway work zone, follows a consistent directional movement pattern (Figure 4.1 B). Additionally,

despite the workforce’s regular movement patterns within the work zone, the repetitive nature of

these movements cannot be conclusively determined due to the inherent uncertainty in human

decision-making. Each worker may choose a particular movement direction based on the prevailing

situation. Nevertheless, each workforce has a distinct task and purpose within the work zone,

causing them to stay in specific locations while performing their duties. This results in minor and

random movements within their designated areas (Figure 4.1 A). By assuming an offset threshold

for each working crew’s location and movements, multiple potential collisions can be identified
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between the working crew’s positions and the directional patterns of motor vehicles within the work

zone. These collisions result in hazardous situations (Figure 4.1 C) that must be monitored by at

least an automated safety monitoring system designed for construction equipment. Although single

construction equipment cannot observe all hazardous situations due to obstacles creating several blind

spots, each hazardous situation can be detected by at least one construction equipment. Therefore,

each identified hazardous situation is converted into unsafe zones based on the directional movement

pattern of the corresponding construction equipment (Figure 4.1 D) and the monitoring framework

designed for the corresponding equipment calculates the relative location of each assigned object to

the construction equipment within these unsafe zones. The implementation of such an automated

monitoring framework is facilitated through a specific arrangement of perceptual sensors (Section

4.3) and an automated algorithm for detection, localization, and safety checking, which processes

data received from these sensors (Section 4.2).

4.2 Perception Algorithms Pipeline

To ensure proper monitoring of unsafe zones through an automated perceptual framework, it is

crucial to identify the types of objects that sensors need to target to assess the hazard level of a

given situation. Generally, interactions occur between the workforce and construction equipment

or passing motor vehicles. Therefore, when implementing a perception framework on construction

equipment, it is imperative to detect and localize workers (or humans) in and around the equipment

and even beyond the unsafe zones related to their interactions with the machinery. Additionally, the

unpredictable nature of passing vehicles within work zones necessitates that construction equipment

detect and track motor vehicles as they enter and leave the work zone. This development is vital for

alerting workers to potential incidents involving motor vehicles.

To address these needs and following recent studies on automated safety monitoring, we devel-

oped two parallel pipelines for the workforce and motor vehicles which utilize perception technologies

to localize the targeted objects within the unsafe zones and beyond. Initially, we tested the accuracy of

each pipeline using a single sensor. Subsequently, we integrated them into the targeted construction

equipment as a unified framework. This framework combines and analyzes data gathered from

the corresponding sensor arrangement to determine whether the ongoing situation is hazardous, as
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Figure 4.1: A) Workforce identification, categorization, and localization. B) Vehicle identification and
tracking. C) Hazard identification. D) Hazard conversion to unsafe zone.
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detailed in Section 4.3. The first pipeline employs a CNN-based object detection model, followed by

point cloud data processing algorithms to ascertain the location of a person present in front of and

within the image, as well as within the depth range of an RGB-D sensor. The second pipeline involves

using a CNN-based vehicle localization model, which processes data captured from a LiDAR sensor.

4.2.1 Human Detection and Localization

In the initial stage of pipeline design for object detection and localization, particularly focusing on

humans, we developed an automated system to detect and localize objects relative to the coordinates

of a single RGB-D sensor. This pipeline is structured into four steps. Given the substantial GPU

computing power required for the implementation of CNN models, our objective was to design a

pipeline capable of localizing workers in real-time using not only a single RGB-D sensor but also

multiple sensors simultaneously. This was achieved using a single laptop as our hardware setup, as

detailed in the sensor placement and scenario testing sections.

As illustrated in Figure 4.2 A, the pipeline begins by capturing image data from the RGB-D

sensor and inputting it into the YOLO object detection model. This model (which is a pre-trained

model on the COCO [71] dataset) can identify and segment various objects, such as humans, within

the image data using bounding boxes. Once the coordinates of the detected object’s bounding

box are identified within the image (Figure 4.2 B.1), the pipeline processes the point cloud data

captured by the RGB-D sensor. It then modifies the point cloud data to remove the majority of points

that are not associated with the detected object. In the first step of point cloud modification, we

implemented a manual point cloud data removal algorithm. This algorithm operates based on the

RGB-D sensor’s elevation from the ground, with an offset of 20 centimeters, to eliminate points

related to the ground surface (Figure 4.2 B.2). The ground’s material and roughness can significantly

affect its captured point cloud data which might hinder automated surface removal algorithms, such

as Plane Segmentation, from accurately determining the features of the surfaces present in the point

cloud data. Such algorithms operate by determining the surface normals of different clusters of

points within the point cloud data to extract the flat-shaped clusters out of them since the roughness

of the utilized material in the surfaces can result in huge noises within the capturing point cloud data

(mostly ground surfaces). In addition to the manual ground removal technique, Plane Segmentation

[69] was employed to segment and remove remaining flat surfaces (roofs or walls), based on the
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normals value determination which has been described earlier. This approach prevents the remaining

points associated with horizontal surfaces from being counted. By combining manual ground removal

with Plane Segmentation, we successfully eliminated horizontal surfaces in both the foreground and

background of the objects within the point cloud data.

In the subsequent step, using the dimensions and coordinates of the detected object bounding

boxes within the image, we extracted the point cloud data of the detected object. This was achieved

by trimming a frustum out of the modified point cloud data (Figure 4.2 B.3). The frustum’s near

plane corresponds to the image plane, while the far plane is set to the maximum distance from the

RGB-D sensor at which the depth data is reliable, which we determined to be 6 meters. This distance

was standardized across different sensor models, including the Astra camera, RealSense camera,

and Microsoft Azure Kinect camera. This process was accomplished using a function from the

Point Cloud Library (PCL) [69] called Frustum Culling, which trims a frustum of point cloud data

from an input point cloud based on the provided horizontal and vertical Field of View (FOV). These

FOVs were calculated based on the relative dimensions of the reported bounding box to the image’s

size (Figure 4.2 B.1), which were then converted to a proportion of the camera’s depth FOV, both

horizontally and vertically (angular). By inputting the calculated FOVs into the Frustum Culling

function and setting the near and far planes as previously discussed, we extracted the trimmed point

cloud data of the detected object identified by the YOLO model. In the last step, another point

cloud data processing technique was applied to the trimmed data to remove outlier points, which

are typically generated due to the sensor’s inaccuracy, manifesting as sparse points around the solid

object points (Figure 4.2 B.3). This was achieved using the Statistical Outlier Removal function

from the PCL library, which employs a maximum distance threshold to determine whether a point is

an outlier or an inlier of a 3D object within the trimmed point cloud. This function computes the

distance of each targeted point to a fixed number of adjacent points around it.

By implementing these four major steps to the RGB-D sensor data and averaging the X, Y, and Z

values of the remaining points using a 3D centroid [69] calculation, we were able to determine the

relative distance of the detected object from the RGB-D sensor.
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Figure 4.2: A) Human Localization pipeline overview. B) Visualizing the results of the YOLO object
detection model (B.1), surface removal (B.2), frustum culling, and statistical outlier removal (B.3).

4.2.2 Motor Vehicle Localization

For the purpose of motor vehicle localization within a roadway construction work zone, it is essential

to design a pipeline capable of detecting and tracking vehicles from the moment they approach from

a distance until they exit the work zone area. This requires using sensors and algorithms that can

receive data from greater distances than the typical RGB-D sensor’s range. Additionally, the quality

of the received data must be sufficient for the localization algorithms to effectively analyze it. To

achieve this, we utilized the SFA3D model (which was trained on KITTI [72] dataset) to track the

motor vehicles within the work zone. The KITTI dataset includes images, short-range point cloud

data (Depth Sensor), and long-range point cloud data (LiDAR sensor) collected from a combination

of sensors mounted on a moving vehicle operating in urban areas. Although many algorithms have

been designed and trained using the KITTI dataset to detect and localize various objects through a

combination of image and point cloud data, SFA3D stands out as one of the few 3D vehicle detection



29

algorithms (CNN models) [73] that has been specifically designed and trained to operate solely using

LiDAR sensor data, which is long-range point cloud data.

To do so, we fed the point cloud data captured from a LiDAR sensor into the SFA3D model

(Figure 4.3 B.1) to extract the coordinates of the detected vehicles (Figure 4.3 B.2) relative to the

LiDAR sensor as they arrived and departed from the sensor’s location.

Figure 4.3: A) Vehicle Localization Pipeline Overview. B) Visualization of SFA3D vehicle detection CNN.
C) Overview of the sensor’s setup (C.1) and motor vehicle’s movement (C.2).

4.3 Sensor Placement and Combination Through Simulation

As discussed in Section 4.1, various hazardous situations can be identified within a roadway work

zone, influenced by the size of the work zone and the movements of the workforce and motor vehicles

(both equipment and passing vehicles). These hazardous situations are converted into specific unsafe

zones to enable the localization pipelines (detailed in Section 4.2) to detect, localize, and track target

objects within or beyond these zones, facilitating further analysis of the associated hazard levels

within the work zone.

The effectiveness of the localization pipelines described in Section 4.2 relies on the capabilities
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of RGB-D and LiDAR sensors to capture real-time image and depth data of objects (for workforce

localization) and real-time depth data of other objects (for motor vehicle localization). Therefore,

it is crucial to design a sensor placement for each construction equipment, based on the assigned

unsafe zones, as well as the equipment’s shape and size. Although the assignment of unsafe zones

is further elaborated in the Case Study chapter, the unsafe zones identified based on potential

interactions between construction equipment and the workforce are assigned to the equipment

causing the exposure. For unsafe zones caused by passing motor vehicles, the zones are assigned

to the equipment with the highest possible elevation to minimize obstruction by other obstacles.

Furthermore, the shape and size of the target equipment create various blind spots for the operator

and wider areas of workforce occupation, resulting in larger unsafe zones. To cover these unsafe

zones with the proposed pipelines, sensor placements must be capable of recording real-time image

and depth data, dependent on the field of view (FOV) of the RGB-D sensor.

To achieve this goal, it is practical to generate a simulated environment using a ROS-based

application (Gazebo [70]) to closely replicate the targeted work zone (Figure 4.4 A). This simulation

illustrates the locations of existing workforces and construction equipment to demonstrate hazardous

situations that need to be monitored. The shape and dimensions of the selected equipment should also

be implemented in the simulation, ensuring coverage of potential blind spots within or beyond the

designated unsafe zones. Furthermore, through a process of trial and replication by adding sensors

(Figure 4.4 B), the captured image and depth data can be visualized to determine if the objects

requiring detection within the sensor’s corresponding unsafe zone are visible within the framework’s

field of view (FOV). By adding additional sensors or rotating the existing ones to cover blind spots

(using RGB-D for close localization and LiDAR for distant localization) and visualizing the sensor

data accordingly, an effective sensor arrangement to monitor the unsafe zones through the proposed

pipelines can be achieved.

Subsequently, the localization pipelines can be employed to determine potential exposure by

comparing the relative locations of the objects to the equipment and its movements. To do this, it is

essential to calculate the relative location of each localized object (Figure 4.5 B) to the equipment

rather than to the corresponding sensor. Therefore, once sensor placement is completed, the coor-

dinates and orientation of each sensor should be calculated relative to a fixed axis (global axis) on

the equipment. Finally, it is possible to transform the location of each localized object to the global
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Figure 4.4: A) Simulation environment in Gazebo. B) Sensor Placement pipeline.

axis using transformation matrices (Figure 4.6), thereby determining exposures that cause unsafe

situations and validating the framework’s performance.

Once the final sensor placement has been achieved through the simulation and the global axis has

been set on the equipment, the framework can be validated in terms of localization accuracy, tracking

the localized objects (within and beyond the unsafe zones), and sensitivity in detecting entries or

exits from the assigned unsafe zones. This validation is described in more detail in the case study

and results chapters.
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Figure 4.5: A) Simulation environment in Gazebo. B) Localization Pipelines in the simulated environment
to ensure the effectiveness of the proposed placement.
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Figure 4.6: Global location determination utilizing transformation matrices.
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CHAPTER 5

Case Study

To validate the feasibility and accuracy of the proposed autonomous monitoring system for heavy

construction equipment, a real-world case study was conducted. This involved examining a simulated

sensor placement, implementing the localization pipeline, and conducting a series of real-world

validation scenarios in an isolated environment. A predetermined sensor arrangement (developed

through simulation) and the actual localization pipelines were utilized to assess the system’s accuracy

in localizing objects and measuring its sensitivity in analyzing results. Specifically, the scenarios

focused on determining the entrance, exit, and tracking of target objects (humans and motor vehicles)

within and beyond the unsafe zones. The outcomes of these scenarios are detailed in the Results

chapter.

5.1 Work Zone Analysis and Construction Equipment Selection

According to the case study presented in this research, which involves a set of aerial video frames

captured from a roadway construction project managed by the U.S. Nebraska Department of Trans-

portation (NDOT), we categorized the tasks and locations of the workers into four distinct groups:

operation crew, mixer operator crew, paver operator crew, and flattening and curing crew. These

groups are identified numerically from 1 to 4 in Figure 5.1 A. Additionally, we classified the equip-

ment and vehicles present in the work zone into four categories: mixer truck, paver machine, curing

machine, and motor vehicles, denoted by the letters A through D. Their respective directions of

movement, aligned with their tasks, are indicated by red directional arrows in Figure 5.1 B. By
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analyzing the interactions between each vehicle and the working crews, identified by their crew

numbers and vehicle categories, we identified five primary hazardous situations (Figure 5.1 C).

These situations should be monitored by implementing our automated framework on the construction

equipment.

Subsequently, after assigning each hazard to the corresponding equipment or the equipment

capable of monitoring it, we determined that four of these situations could be monitored by the mixer

truck (indicated by yellow-colored hazards in Figure 5.2), and two by the paver machine (indicated

by cyan-colored hazards in Figure 5.2). By examining the potential unsafe zones of each piece of

equipment based on its movement direction (highlighted in yellow in Figure 5.1 C) and utilizing the

ITCP and TTCP guidelines, we converted the detected hazardous situations into their corresponding

unsafe zones for monitoring. Without setting a fixed dimension for each unsafe zone, we decided

to extend the boundaries of the monitoring zones (unsafe zones) to the limit imposed by our sensor

models, which exceeds the minimum distances specified by the regulations. Given the differences in

the design of perceptual sensor arrangements on each construction equipment, we concluded that

we should provide a design and a case study focused on the equipment responsible for the most

hazards within the work zone. Although three types of construction equipment were identified in

our case study (Figure 5.1 B), we chose the mixer truck as our test equipment since it is responsible

for monitoring four hazardous situations. These hazardous situations are depicted as H1, H2, H3,

and H5 in Figure 5.2 B, representing unsafe zones that require continuous monitoring through the

designed sensor arrangement and the implementation of the proposed pipeline. Notably, the unsafe

zone associated with H2 can manifest on either side of the target equipment, contingent upon the

direction of concrete casting Therefore, this scenario creates a comprehensive 360-degree hazardous

zone around the equipment, necessitating thorough surveillance.

5.2 Sensor Selection in Real-World, Design, and Placement through

Simulation

To develop a practical sensor arrangement for the target equipment (mixer truck), it is essential to

select sensor models that minimize localization errors while meeting monitoring range requirements.

For RGB-D sensors, several factors must be considered to determine their suitability. One of the
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Figure 5.1: A) Workforce type, task, and movement visualization (1 through 4). B) Construction equipment
task and movement categorization (A through D). C) Hazard identification by assigning the interaction

between the workforce and the equipment’s movement.

Figure 5.2: A) Hazard assignment (Yellow-colored situations are assigned to the Mixer Truck and
cyan-colored situations are assigned to the Paver Machine). B) Conversion of hazardous situations to

unsafe zones.
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most crucial factors is the field of view (FOV), both vertical and horizontal, associated with their

image and depth data. This can significantly influence the number of sensors needed in the proposed

arrangement. Additionally, the minimum and maximum capturing distances for depth data are critical

in determining the capability of the proposed pipelines to localize objects at varying distances, as

these parameters differ among RGB-D sensors. Furthermore, the quality of depth data must be

monitored to establish the reliable distance within which the sensor’s depth data can be trusted,

typically closer than the sensor’s maximum depth capability. Finally, the sensor’s data quality (both

image and depth) should be evaluated under different conditions to ascertain its suitability for outdoor

environments. Therefore, regarding the selection of RGB-D sensors, we examined three sensor

models with varying capabilities: the Astra Camera, Microsoft Azure Kinect, and RealSense sensors.

Regarding the field of view (FOV), the Astra Camera had a horizontal FOV of 60 degrees and a

vertical FOV of 75 degrees, while both the Azure Kinect and RealSense sensors had a horizontal

FOV of 90 degrees and similar vertical FOVs. Given the importance of capturing real-time images of

the entire unsafe zones for the designed localization pipeline, a wider horizontal FOV is beneficial

as it reduces the number of sensors required. Therefore, we decided to eliminate the Astra Camera

and consider only the Azure Kinect and RealSense sensors. In terms of the maximum and minimum

depth capturing distances, the RealSense sensor offered the best performance, with a minimum range

of 40 cm and a maximum range of up to 8 meters. This was comparable to the other sensors in

terms of minimum range but exceeded the maximum range of the Azure Kinect, which was 5.5

meters. Consequently, we chose the RealSense sensor and designed a simulated version to develop

our RGB-D sensor arrangement within the simulation. It is important to note additional reasons for

the elimination of the Astra Camera and Azure Kinect sensors. The Astra Camera was incapable of

capturing depth data under sunlight conditions, a significant drawback for an outdoor monitoring

system. Additionally, the computational resources required to operate more than one Azure Kinect

sensor exceeded the hardware configuration we used to test up to six RealSense sensors. Therefore,

after validating several commercial and widely used RGB-D sensors, we decided to utilize the

RealSense sensor. However, we limited the maximum depth-capturing distance of the RealSense

sensor to 6 meters. This decision was due to the sparsity and waviness in the depth data at distances

greater than 6 meters, which significantly reduced data quality and introduced noise and inaccuracies

in the close object localization pipeline. Table 5.1 illustrates the close localization pipeline’s accuracy
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using the RealSense sensor.

Table 5.1: Human detection and localization pipeline test results utilizing RealSense RGB-D sensor

Actual X (M) Actual Y (M) Measured X (M) Measured Y (M) Error (M)
0 6 0.33 5.62 0.38
0 5 0.32 5.11 0.34
0 4 0.27 3.97 0.27
0 3 0.23 2.93 0.24
0 2 0.16 1.86 0.21
0 1 -0.09 0.94 0.11

In addition to selecting an appropriate RGB-D sensor, it is crucial to choose a suitable LiDAR

sensor for the system design. Although the number of commercially available LiDAR sensors is

limited, we tested the SFA3D algorithm in a simulated environment with simulated versions of two

different LiDAR sensors provided by Velodyne company: the VLP-16 and the HDL-32E. By feeding

the simulated sensor data from the simulated environment into the algorithm, we observed that the

SFA3D was only capable of localizing vehicles using the data received from the VLP-16. This could

be attributed to several factors, such as the lack of accuracy in simulating the sensors compared to the

real ones, the difference in data quality between simulation and real-world scenarios, or the specific

sensor type used to capture the KITTI dataset, which was used to train the SFA3D algorithm. As

a result, the HDL-32E was found to be incompatible with the SFA3D algorithm. Based on these

observations, we decided to utilize the VLP-16 as the LiDAR sensor for the system. This choice

ensures compatibility with the SFA3D algorithm and provides practical functionality for the intended

application.

In conclusion, we selected the RealSense model as the RGB-D sensor for the close localization

pipeline and the VLP-16 model as the LiDAR sensor for the vehicle localization pipeline. Figures 4.2

and 4.3 illustrate the proposed pipelines utilizing these sensors.

Moving on to the design of the sensor placement, it is necessary to simulate the selected sensors

within the Gazebo simulation application, as well as the work zone environment. As visualized in

Figure 5.3, we simulated the environment using several SketchUp models of construction equipment

and workforces, accurately depicting the unsafe zones that need to be monitored. The mixer truck was

centered as the target equipment, and a specific sensor placement was designed to effectively observe

the assigned unsafe zones. While the selected LiDAR sensor has a pre-designed simulated version
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published by Velodyne, we used Gazebo plugins to create a simulated version of the RealSense sensor.

This enabled us to begin the process of adding and re-coordinating the sensors to ensure 360-degree

image and depth coverage of the close-range area around the target equipment. This coverage is

essential for monitoring the aforementioned unsafe zones around the equipment. Additionally, we

ensured that the depth coverage extended to long ranges at the highest possible elevation to make the

vehicle localization pipeline work effectively.

Figure 5.3: Simulated environment visualization.

To determine the optimal RGB-D sensor placement on the target equipment, we began by

mounting four RealSense sensors on each side of the equipment to provide 360-degree real-time

image and depth coverage of the unsafe zones (Figure 5.4 A). Due to the RealSense sensor’s minimum

depth capturing distance of 40 cm, we added three additional RealSense sensors on the equipment’s

hood and two on the back at higher elevations. Additionally, we placed two sensors on each side of

the equipment, angled at 45 degrees to ensure the framework could localize objects closer than 40

cm to the equipment. This was necessary because the initially mounted sensors at lower elevations

caused the YOLO model to fail in detecting humans within the image data when they were too close,

and the sensors could not capture any point cloud data to measure the relative and global location of

these humans to the equipment (Figure 5.4 B). Furthermore, we added an extra RealSense sensor on

each corner of the equipment, angled at 45 degrees, to cover the remaining blind spots around the

corners (Figure 5.4 C). By adjusting the positions of these sensors within their initial locations, we

achieved a configuration capable of receiving image and depth data all around the target equipment

and within and beyond the workforce-related unsafe zones. For the required LiDAR sensor placement

for the vehicle localization pipeline, we decided to use two VLP-16 sensors. One was placed on
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the cabin’s roof and the other on top of the mixer’s back to ensure full-depth coverage of passing

vehicles, as illustrated in Figure 5.4 D.

Figure 5.4: Sensor placement process.

By combining the placements of the RealSense sensors and the VLP-16 sensors and setting the

equipment’s origin in the middle of the front bumper and within the same directions as proposed in

the methodology chapter, we designed a sensor arrangement to validate the localization pipelines

for the mixer truck (Figure 5.4 E). This integrated setup ensures effective monitoring of the unsafe

zones and accurate localization of objects and vehicles, thereby enhancing the overall safety and

functionality of the system.

5.3 Validation Scenario Design and Description

To evaluate the performance of the proposed system, including the activation of localization pipelines

on the designed sensor placement, we conducted three sets of experiments. These experiments

assessed the system’s accuracy, reliability, and sensitivity by partially implementing the proposed

sensor placement on actual equipment within a controlled environment. This environment featured

the equipment positioned centrally, with a surrounding area extending up to six meters and a safe

passageway extending up to 30 meters in the direction of the mixer truck’s stance, provided by the

Lyman-Richey Corporation (Figure 5.5). The partial placement of the sensors involves dividing the

equipment’s unsafe zones to validate the system’s performance in each division (sub-zone), with
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sensors responsible for each specific sub-zone being placed and activated, and the corresponding

experiments being performed within the three major sets.

Figure 5.5: Isolated environment and zone division around the target equipment.

Given that the proposed sensor placement is symmetrical for the left and right parts of the

equipment, we decided to divide the examined unsafe zones observed through this symmetric

placement (H1 and H3) into equal leftward and rightward sub-zones. This approach simplifies the

sensor placement and experiment execution process by assigning sensors specifically responsible

for each sub-zone. Consequently, this reduces the number of testing sensors and the hardware

requirements for parallel pipeline execution, as the testing scenarios were completed using only an

Alienware M16 laptop. Additionally, without dividing the side unsafe zone (H2), we considered

it as a separate sub-zone and performed the experiments accordingly. Furthermore, since the
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proposed pipeline for vehicle localization solely relies on data gathered from the VLP-16 sensors, we

considered the unsafe zone associated with motor vehicles (H4) as an individual sub-zone requiring

specific experimentation. Therefore, we divided the unsafe zone related to the interaction between

motor vehicles and personnel (H4) into two sections: from the mixer truck forward and from the

mixer truck backward. This division allowed us to perform the corresponding experiment using a

single VLP-16 sensor mounted on the truck’s cabin roof for just the forwarding sub-zone).

The aforementioned divisions split the overall system design into four discrete segments that

needed to be validated through a series of experimental scenarios without affecting each other’s

results. Figure 5.6 illustrates the zone division as well as the coordination and orientation of the

launching sensors for each sub-zone examination. Additionally, we established a local origin axis for

each sub-zone sensor launch, converting the reported locations to the corresponding local origin and

subsequently converting the results for each sub-zone to a global origin (located on the equipment’s

front bumper) for visualization purposes in the results chapter.

Figure 5.6: A) Zone division and the corresponding local origin. B) sensor locations and coordination that
are color-coded relative to the local origin (rotation degrees are based on the z-axis).

The experiments performed for each sub-zone include three primary tests. First, we tested the

partial placement error by comparing the reported locations from the launching pipeline with the

marked ground truth within each sub-zone, measuring the error in reporting distances from the
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system around the equipment. Second, we evaluated the partial placement’s ability to track objects

by executing a set of pre-determined trajectories within the validating sub-zone, from 6 meters to

the closest possible location to the equipment on parallel lines. The reported trajectories were then

compared with the performed trajectories’ ground truth to measure the error. Third, we assessed

the partial placement’s ability to detect a series of entries and exits in a marked unsafe zone by

performing multiple trajectories around the edges of the marked unsafe zone, executing a set of

pre-determined exits and re-entries to and from the marked area, and evaluating the system’s accuracy

in detecting these movements.

Although we only tested the placement’s error for motor-vehicle localization in terms of ground

truth accuracy, we validated the close localization system by performing all three experiments for

each determined sub-zone individually. The detailed procedures and results of these validations are

demonstrated and described in the results chapter.
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CHAPTER 6

Results

To validate the proposed system, we divided the monitoring zones around the equipment into

four separate sub-zones: front-left, side, back-left, and motor-vehicle zones. This division enabled

us to distinguish the sensors operating within the proposed pipelines both in parallel and as a

unified framework, creating four individual sub-frameworks to be tested within their respective

sub-zones. Additionally, We identified three major experiments for each sub-zone, which were

performed and recorded using the corresponding sensors (sub-frameworks). Instead of recording

raw data (images and point cloud data) from the running sensors for each scenario, we implemented

the proposed pipeline during our tests and recorded only the essential data needed to validate the

framework for each scenario, thereby avoiding the creation of large, cumbersome files. For each

RealSense sensor within each sub-framework, we recorded the X and Y coordinates relative to the

local origin (demonstrated in Figure 5.6) at the same timestamps as the other RGB-D sensors, along

with the number of points in the resulting point cloud data (after performing the proposed point

cloud processes for human localization) and the sensor number, which was uniquely assigned to each

sensor in each sub-framework (as illustrated in Figure 5.6). Additionally, we recorded the X and Y

values generated by the SFA3D algorithm, which was fed with the VLP-16’s point cloud data relative

to the testing local origin. For safety monitoring validation, we recorded a positive or negative pulse

by comparing the final calculated location for each sub-framework to manually defined unsafe zones

within each sub-zone, as described in detail in the last section.

Although the records for each scenario in each sub-zone were captured separately, we established

the global origin as proposed in section 4.3, located on the front bumper which is the local origin
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for the front-left sub-zone as well. Subsequently, we transformed the X and Y values of each

record to this global origin to visualize the results of each designed experiment as a single outcome.

This approach ensured the absence of errors, as the divided sub-frameworks for each sub-zone do

not overlap in real-time monitoring—primarily point cloud data—due to their specific mounting

coordination and orientation.

6.1 Location Report Accuracy

The initial experiment for each sub-zone involved drawing a 1-meter by 1-meter grid within each

sub-zone and capturing the corresponding sub-framework outcomes to compare the reported locations

with the predetermined ground truths. By conducting this test in the sub-zones around the equipment

(zones 1 to 3), we generated a distance-based error map and calculated the average error in terms of

distance around the equipment. For the last zone (zone 4), we marked the ground at intervals from

5 meters to 30 meters away from the equipment’s bumper. Lastly, it is important to note that the

distance-based error measurement in this section was derived by calculating the square root of the

differences between the reported X and Y values and the X and Y values of the ground truth.

6.1.1 Human Localization

Although each sub-framework has no overlap in terms of recording data with other distinguished

sub-frameworks, there is a record overlap within each sub-framework itself. This means that within

each sub-zone, a single RealSense sensor observes a human’s presence in its image and depth data

at least, resulting in multiple location reports of the same person standing or walking in a unique

location by different sensors observing the human’s presence. Therefore, determining the most

reliable reported location within a timestamp from the reports of several RealSense sensors requires

careful consideration (Figure 6.1). To address this, we established two key assumptions for the

framework. First, locations reported from different sensors are considered to represent a single person

if the distances between them are 50 cm or less, based on an average error of 25 cm in individual

RealSense reports (Table 5.1). Second, observations with fewer than 200 points in their point cloud

data are not considered human locations. This threshold was determined by analyzing point cloud

data from the human localization pipeline at various distances and angles in front of a single RGB-D
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sensor, tested by both RealSense and Astra Camera. By applying these assumptions to the captured

data from the testing experiments, we were able to analyze the framework’s accuracy in terms of

distance error, leading to findings used for subsequent validation tests.

Figure 6.1: A) Overview of the framework’s human localization accuracy. B) Visualization of different
location reports of the same human by different RealSense sensors.

Figure 6.2 A visualizes an error-based color map within the zones requiring human localization,

assuming that for each standing location, the report from the RealSense sensor with the least amount

of error compared to the ground truth has been selected. This results in an average error of 27.1

cm. Although this error value is derived from manually selecting the best reporting location from

all overlapping RealSense sensors, it indicates that the proposed framework can achieve a distance

reporting error of 27.1 cm at its best performance. However, this does not qualify as an automated

monitoring system since the reports were manually selected. Therefore, After removing reports

with fewer than 200 points within their depth data, we tested two approaches for determining the

final report for a specific location. The first approach involved averaging the reported locations

within the same timestamp and within a range of 50 cm from each other (Figure 6.2 B). The second

approach involved selecting the reported location with the maximum number of points within its

point cloud data compared to other reported locations within the same timestamp (Figure 6.2 C).

Among these two potential methods, averaging the reports resulted in an error of 34.1 cm, while

selecting the report with the maximum number of points resulted in an average error of 32.8 cm.

Although the error difference between these two methods is not significant, we decided to adopt the

latter approach—selecting the report with the most points—as the third assumption of this study.
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This decision was based on the rationale that a higher number of points within the reporting data

of the human localization pipeline is more reliable. Temporary obstacles at closer distances can

significantly reduce the accuracy of the human localization pipeline and decrease the number of

points within the trimmed point cloud data. Consequently, we moved forward with this approach for

the tracking and safety monitoring validation sections.

Figure 6.2: Color-mapped plot of the location report’s error: A) Least error pick. B) Averaging the
coordination of reported locations. C) Picking the location having the highest number of points in its point

cloud data.

In conclusion, considering the aforementioned assumptions, the proposed system is capable of

localizing workers within the areas surrounding the equipment with an average distance error of 32.8

cm. Additionally, the localization boundaries of this framework are limited in terms of the maximum

distance at which it can localize workers. Specifically, it is capable of accurately localizing workers

at distances of 5 meters or more from the equipment, as demonstrated by the red-dotted circles in

Figure 6.2 A. This limitation is primarily due to the RealSense sensor’s point cloud data capturing

range, which is restricted to 6 meters, as discussed in Section 5.3.

6.1.2 Motor Vehicle Localization

In addition to the close localization framework for monitoring human-interacted unsafe zones, the

motor vehicle localization pipeline’s distance-based accuracy was also examined. To achieve this,

we simulated a scenario where a motor vehicle approached the equipment within the passing lane,

specifically in sub-zone 4 at a distance of 5 meters from the equipment (Figure 5.5). We compared

the reported location of the pipeline to the pre-marked ground truth at every 5-meter interval from

30 meters to the equipment (Figure 6.3A). As a result, the motor vehicle localization pipeline
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determined the location of the test motor vehicle with an average distance error of 1.05 meters

(Figure 6.3 C). However, within the marked distances closer than 10 meters, the pipeline failed

to localize any motor vehicle around the equipment. This failure was primarily due to the lack of

depth data associated with the motor vehicle within the VLP-16’s point cloud data. This issue arose

from the LiDAR sensor’s mounting height and its vertical field of view (FOV), which prevented the

sensor from capturing point cloud data near ground level at distances closer than 9.87 meters—the

last location where the motor vehicle pipeline successfully localized the vehicle (Figure 6.3 B).

Consequently, we concluded that the LiDAR sensor’s mounting height affects the closest distance

from which the sensor can capture point cloud data, creating a dynamic blind spot for motor vehicle

localization at close distances.

Figure 6.3: A) Motor Vehicle validation test visualization. B) Pipeline’s perception and outcome. C)
color-mapped distance error of the recorded locations.

Although the framework was capable of localizing motor vehicles approaching or leaving the

roadway work zone from almost 10 meters to a distance of 30 meters in the direction of the work

zone, which is sufficient to estimate the vehicle’s approach time and monitor safety criteria, we

also integrated the human localization pipeline with the motor vehicle pipeline. Instead of forcing

the YOLO algorithm in the first step of human localization to further process images of cars, we

allowed the human localization pipeline to follow the same procedure. This involved capturing,

trimming, and averaging the coordinates of the extracted cluster from the RGB-D sensor’s point

cloud data to localize motor vehicles as well. This integration enables the system to efficiently

monitor both human and vehicular movements, enhancing overall safety in the work zone. Therefore,

despite the increased error due to differences in shape and size when processing motor vehicles,
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running the RealSense sensor placed on the front right corner of the equipment (the blue-colored

sensor in Figure 5.6 B) within the proposed framework alongside the VLP-16 sensor enabled the

pipelines to localize the testing motor vehicles from 30 meters to 10 meters and from 5 meters to the

equipment. By moving the motor vehicle from the 5-meter distance to the endpoint in 50 cm by 50

cm increments and recording the outcome (Figure 6.4 A), we achieved a distance-based accuracy of

50.1 cm (Figure 6.4 B) within the 5-meter range from the mixer truck. However, due to the length

and shape of the target object, the error increased at closer distances. This increase occurred because

the averaged value of the trimmed points from the depth data was captured from only the two visible

sides of the motor vehicle, causing the values to be skewed toward the sensor rather than representing

the exact locations.

Figure 6.4: A) Modified experiment visualization by adding the close localization pipeline parallel to the
motor vehicle localization pipeline. B) color-mapped distance error of the recorded locations.

To conclude, the modified system, which combines the close localization algorithm with the

motor vehicle localization pipeline, enabled the framework to localize an approaching motor vehicle

from a distance of 30 meters to approximately 10 meters with an average distance-based error of

1.05 meters. Additionally, from a distance of 5 meters (limited by the depth capturing capability of

the RealSense sensor in the close localization pipeline) to the target equipment, the system achieved

an average distance-based error of 50.1 cm.
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6.2 Tracking Accuracy

Tracking moving objects, particularly the workforce, within unsafe zones is crucial as well due to the

dynamic nature of the environment. This tracking not only localizes objects around the equipment but

also predicts unforeseen situations and analyzes them from a safety perspective. To achieve this, we

designed a second validation scenario to compare the framework’s records in terms of auto-capturing

a human’s location continuously and mapping their movement around the equipment while following

a predetermined movement pattern. These predetermined patterns were marked as straight lines

starting from 5 meters away from the equipment and ending upon reaching it. By following the

same trajectory at intervals of 1 meter within each sub-zone, we collected observations from each

RealSense sensor responsible for the corresponding unsafe zone (Figure 6.5 A). Considering the

timestamps of each observation for the trajectories, we applied the assumption of removing locations

calculated with fewer than 200 points within their depth data and selecting the location associated

with the RealSense sensor that collected the most points within its finalized and trimmed point cloud

data (maximum number of point cloud assumption). We then extracted the final trajectory record

from the recording data and compared the accuracy of each trajectory by averaging the distance error

of the selected location for each timestamp to the actual trajectory line. Each performed trajectory

was assigned a number to illustrate its error (Figure 6.5 B).

Figure 6.5: A) Recorded Trajectories. B) Assumption implemented trajectories. C) Trajectory errors.

Additionally, figure 6.5 C demonstrates the calculated error of each performed trajectory. While

the error value for most trajectories remained under 50 cm, one trajectory (number 21) exhibited

higher error values (51 cm) and was not properly observed within the framework. This issue is
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visually apparent through the jumps observed in this trajectory in Figure 6.5 B, representing errors in

observing a solid, directional, and continuous movement pattern. We concluded that such errors are

due to the need for further RGB-D sensor calibration before the experiment, specifically in terms of

orientation. Misalignment of sensor coordination relative to the local and global origin can result in

captured trajectories that do not overlap with the intended trajectory line (or the trajectory ground

truth). The collected observations (Figure 6.5 B) indicate that, within each trajectory, observations

from different sensors are recorded as semi-diagonal lines. These lines are centered at closer

distances and act as overlapping lines on the trajectory line. Thus, the placement of sensors in

each sub-framework had an angular error relative to the local origin, resulting in diagonal lines and

finalized lines that incorrectly depict the performed trajectories with random jumps. This occurs

because the assumption of selecting the observation with the most point clouds causes the system to

choose a different observation from a different sensor at each timestamp, creating significant gaps

and jumps in the final trajectories, especially when only two sensors are observing that trajectory

(such as in the aforementioned trajectories).

Therefore, we can conclude that the proposed system is capable of tracking human movements

around the equipment with an average error of 28 cm. This implies that each observed trajectory

should have a 28 cm offset to its side (left and right) if it is to be used for measuring interactions

for safety monitoring criteria. However, this error can be significantly reduced by enhancing the

accuracy of sensor calibration, specifically by further verifying their relative location and alignment

to the predetermined origins.

6.3 Safety Monitoring Validation

As the final set of experiments, the framework’s sensitivity should be evaluated in recognizing the

entrance and exit of several pre-defined unsafe zones around the equipment. To date, the framework

has been assessed in terms of location report accuracy for both humans and motor vehicles and

tracking accuracy for humans within the sensors’ boundaries. These boundaries extend up to 5 meters

from the equipment due to RealSense’s depth data quality and up to 30 meters due to the limitations

of the SFA3D algorithm. Although the sub-zones marked around the equipment cover a monitoring

area exceeding the requirements set by ITCP rules, it is crucial to measure the framework’s accuracy
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in detecting the workforce’s entry into and exit from these unsafe zones. The size of these zones may

vary depending on the work zone’s situation. For our final validation test, we defined unsafe zones

based on predetermined hazardous situations caused by workforce movements within these zones.

These zones include the area surrounding the mixer truck, extending up to 3 meters from it on each

side (Figure 6.6 A). To validate the framework’s sensitivity, we conducted three sets of trajectories

for each unsafe zone. This involved performing movement patterns along the boundary of the unsafe

zone and slightly within it while making exits and re-entries perpendicular to the boundary line

at fixed locations (represented by colored dots in Figure 6.6). During these tests, we recorded the

reported locations and the duration of movements (as the time window). By knowing the starting

and ending timestamps of each exit and re-entry performed in the tests, we measured the duration of

these movements within the performed trajectories for each set of tests (three time windows for each

sub-zone and each test). By calculating the number of location reports indicating a positive value

(being outside) among all reported locations, we measured the framework’s accuracy (in percentage)

in detecting the exit and entrance of workforces within our predefined unsafe zones (Table 6.1).

Additionally, figure 6.7 A illustrates the combined recorded trajectories of all RealSense sensors

in each experiment set (each set of colored exits and re-entries in Figure 6.6) within the unsafe

zones. This figure assumes the removal of records with fewer than 200 data points. Additionally,

Figure 6.7 B shows the results of implementing the second assumption of selecting the location with

the highest number of points within each timestamp. In this figure, locations outside the unsafe zones

are represented by green dots, while those within the unsafe zones are represented by red dots.

According to Table 6.1, the framework was able to recognize entrances and exits in 16 out of

24 scenarios with an accuracy of over 90%. For the remaining scenarios, it achieved an accuracy of

over 80%, except for one scenario where the accuracy was 36% (exit and re-enter number 4 within

the second test in Figure 6.6 B). This lower accuracy is mainly due to the side sub-framework’s

monitoring environment, which should not exceed the front-left corner of the equipment (the sub-

framework associated with the front-left sub-zone is responsible for that particular area). Since the

timestamps associated with each exit and re-enter are different, it is important to reduce the weight

of percentage values that have more timestamps (duration) compared to those with less duration.

We distinguished the sensitivity percentage for each unsafe zone and re-calculated the framework’s

sensitivity percentage for each sub-zone (by combining the positive/negative values of all tests within
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Figure 6.6: Overview of the safety test scenario (B) by visualizing the unsafe zone’s dimensions and the
trajectory details.

each sub-zone separately) using the Inversed Weighted Averaging method. As a result, we achieved

a sensitivity percentage of 91.73% for the front-left unsafe zone, 82.86% for the side unsafe zone,

and 90.18% for the back-left unsafe zone. This means that for each unsafe zone, the framework can

detect the entrance or exit of the workforce with the corresponding percentage accuracy. It is worth

mentioning that the sensitivity accuracies are likely to improve by launching the system as a single

framework without dividing it into sub-frameworks, which could resolve the low sensitivity accuracy

in the side scenario. Additionally, the issue of the RealSense sensor’s orientational calibration is

evident in Figure 6.7 A, as the recorded trajectories of the sensors do not overlap to represent a
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Figure 6.7: Results of plotting the recorded trajectories (A) and the assumption implementations (B).

unique trajectory. This misalignment caused several incorrect recognitions of being inside or outside

the unsafe zones, especially within the front-left and side unsafe zones. There are extra green-colored

reports that should have been reported within the unsafe zone rather than outside of it.

Table 6.1: Success percentage of the trajectories (exit/re-enters).

Scenario Place Out/In No. Starting Timestamp Ending Timestamp Observation Period (Timestamps) Wrong Responses Percentage of Right Responses

Test #1

Front Left 1 65 109 44 2 95%
Front Left 2 130 159 29 1 97%

Side 3 16 64 48 0 100%
Front Left 4 146 166 20 2 90%
Back Left 5 20 35 15 2 87%
Back Left 6 52 65 13 0 100%

Test #2

Front Left 1 17 45 28 0 100%
Front Left 2 64 88 24 4 83%

Side 3 111 129 18 1 94%
Side 4 14 28 14 9 36%
Side 5 108 144 36 0 100%
Side 6 209 228 19 1 95%

Back Left 7 7 25 18 0 100%
Back Left 8 49 88 39 2 75%
Back Left 9 76 88 12 2 83%

Test #3

Front Left 1 12 43 31 1 97%
Front Left 2 67 90 23 1 96%
Front Left 3 115 134 19 2 89%

Side 4 126 142 16 2 86%
Side 5 184 198 14 3 79%
Side 6 142 158 16 1 94%

Back Left 7 11 42 31 1 97%
Back Left 8 48 58 10 1 90%
Back Left 9 90 101 11 1 91%

In conclusion, the framework’s sensitivity in detecting the entrance and exit of workforces to
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and from a rectangular unsafe zone (the most common type of unsafe zone) within the surrounding

environment of the target equipment is 88.26%. This indicates that the framework can detect instant

entries or exits with less than 12% uncertainty. This error can be further reduced by improving sensor

calibration and testing the framework as a single unified arrangement of sensors.
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CHAPTER 7

Thesis Conclusion and Future Directions

To summarize, this study aimed to propose a novel safety monitoring system utilizing the current

emerging autonomous vehicle (AV) technologies being industrialized these days. This system is

designed to detect unforeseen unsafe situations by aiming to localize objects within various unsafe

zones utilizing visual-based sensors. Furthermore, it seeks to bridge the gap between controversial

safety observation techniques and pioneering ideas of how to autonomously perceive and react to

sudden changes in different fields of research studies. Additionally, the capability to reduce inaccu-

racies, as determined and described in the results chapter, through more sophisticated localization

pipelines can be considered the second reason for the efficiency of implementing such automated

safety monitoring systems in heavy construction equipment.

Regardless of the accuracy and response speed of the utilized pre-trained detection models

(CNNs) within the proposed pipelines of this study, the analysis of vision-based sensor data (image

and point cloud) can be approached in different and novel directions. These approaches could result in

outcomes as accurate as, or even more accurate than, those of this study, with varying computational

speeds. This is primarily due to the variety of architectures and approaches developed for designing

CNN models, as well as their training procedures, which result in detection models with different

response times and accuracies (tested for each model on its training dataset). Therefore, the lack

of accuracy in selecting models not being able to fully distinguish the workers or motor vehicle

objects within the images can be considered as the first limitation of this study. The utilization of

new versions of YOLO is expected to be one of the main enhancements in localization pipelines, as

the identification and segmentation of workers can be performed with greater accuracy compared
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to older versions. This improvement will lead to more precise trimming of the point cloud data

corresponding to the detected workers. The primary objective of this enhancement is to reduce

inaccuracies in capturing and trimming point cloud data that are incorrectly assigned to workers

and thus improperly trimmed. Additionally, the analysis of point cloud data is another critical area

that requires attention. Compared to image data, point cloud data has a more complex structure,

necessitating more investigation and innovation in its analysis. This can be achieved through testing

more efficient and accurate algorithms or developing new CNN models specifically for point cloud

data, such as the SFA3D, to improve processing. This also represents the second limitation of this

study, aimed at enhancing or redesigning the proposed pipelines in terms of effectiveness.

In addition to the accuracy of the localization pipelines presented in this study, the placement and

selection of sensors on the equipment to ensure high-quality environmental data were constrained

by the limited availability of RGB-D and LiDAR sensor models. As commercial products in

AV technologies continuously optimize sensor placement and models to enhance the quality of

surrounding data, which results in more accurate outcomes, the selection of the most efficient

sensors and their optimal placement becomes crucial. This optimization should consider blind spot

prevention, cost efficiency, and time efficiency of the implemented system. Therefore, the selection

and placement of sensors are essential areas for follow-up research to complement the findings of

this study.

Moreover, as noted in the results chapter, the accuracy of sensor placement (sensor calibration)

significantly impacts the reported locations of detected objects. Errors in the locational and orien-

tational placement of each sensor can result in consistent local location reports but varied global

location reports. This discrepancy reduces the accuracy of the system’s synchronization of captured

locations from parallel pipelines. Issues such as treating a single person as multiple individuals,

recording the trajectories of people walking around the equipment in patterns diagonal to their actual

paths, or producing wavy scattered lines offset from the actual paths are consequences of sensor

calibration errors. These issues can be effectively addressed by dedicating sufficient time to achieve

millimeter-level accuracy in calibration.

Furthermore, it is worth mentioning that in this study, the utilization of vision-based sensors was

limited to localization purposes. While we received multi-dimensional data from the surrounding

environment of the equipment, it was only used to determine the location of target objects. However,
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this perception data can be further exploited to generate a virtual 3D model of the environment.

This model could be utilized not only by the AV systems mounted on the equipment (acting as a

robotic perception system for autonomous task execution) but also to enhance real-time situational

awareness for the workforce using AR devices. Such visualization could mitigate the limitations of

human perception—such as field of view constraints, blind spots, and hearing impairments in noisy

environments—thereby reducing the likelihood of exposure to hazardous situations. This potential

application represents another important future direction for this study, as many researchers have

recognized the positive impact of employing VR/AR devices to improve workforce understanding of

work zones. Moreover, the technical implementations proposed in this study aim to provide a proof

of concept for the further integration of sensing technologies into the autonomous operation of heavy

construction equipment. The outcomes of this study, or similar studies, can facilitate advancements

by incorporating ITCP rules as fundamental assumptions for defining safety protocols for both

workers and autonomous heavy construction equipment. These protocols are typically established

for autonomous vehicles to focus on identifying and addressing high-risk zones, thereby ensuring the

equipment can pause, shut down, or restart tasks with heightened attention to safe navigation within

the work zone. By integrating these predefined rules with visualization technologies such as AR

devices, it will be possible to illustrate safe and unsafe zones around heavy construction equipment.

This approach aims to create an automated awareness system that notifies workers of impending

dangers, thereby enhancing safety and preventing accidents.

Although this study aimed to address the limitations of existing safety monitoring regulations

and systems, its scope was limited to hazardous scenarios occurring within roadway work zones,

particularly those resulting from interactions between workforces and motor vehicles. It is important

to note that further research is needed to implement such autonomous systems in equipment used in

various types of work zones. This is due to the differing nature of exposures that cause hazardous

situations in different work environments.
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