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Abstract 

Although many tasks have been developed recently to study executive control in the preschool 

years, the constructs that underlie performance on these tasks are poorly understood. In 

particular, it is unclear whether executive control is comprised of multiple, separable cognitive 

abilities (e.g., inhibition and working memory) or whether it is unitary in nature. A sample of 

243 normally developing children between 2.25 and 6 years of age completed a battery of age-

appropriate executive control tasks. Confirmatory factor analysis (CFA) was used to compare 

multiple models of executive control empirically. A single-factor, general model was sufficient 

to account for the data. Furthermore, the fit of the unitary model was invariant across subgroups 

of children divided by socioeconomic status or sex. Girls displayed a higher level of latent 

executive control than boys, and children of higher and lower SES did not differ in level. In 

typically-developing preschool children, tasks conceptualized as indices of working memory and 

inhibitory control in fact measured a single cognitive ability, despite surface differences between 

task characteristics. 

Keywords: executive control, inhibition, working memory, preschool, confirmatory factor 

analysis 
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Using confirmatory factor analysis to understand executive control in preschool children: 

I. Latent structure 

Executive control is a term used to refer broadly to those cognitive abilities that are 

associated with, or subserved by, prefrontal cortex and interconnected subcortical system 

(Diamond, 2001; Stuss, 1992). Although research on executive control has been underway for 

several decades, remarkably there remains no well-agreed-upon definition as yet. One school of 

thought has conceptualized executive control as a group of relatively independent, or 

fractionated, cognitive abilities, typically including working memory, the ability to keep 

information in mind to guide ongoing or later behavior (Baddeley & Hitch, 1974); inhibitory 

control, the ability to keep irrelevant or misleading information from interfering with 

performance (Diamond, 1990; Harnishfeger & Bjorklund, 1993); and set-shifting, or adapting 

strategies to changing situational demands (Zelazo, Frye, & Rapus, 1996). In contrast, others 

have argued that executive control is a unitary, domain general construct that manifests in 

different ways depending on contextual demands (e.g., Duncan & Miller, 2002; Duncan & 

Owen, 2000). 

Prefrontal systems undergo a protracted course of development (Benes, 2001). In 

comparison with posterior cortical areas, the phases of prefrontal cortical development, including 

neuronal generation, differentiation, and synaptic pruning, occur later and over a longer period of 

time (Giedd et al., 1999; Huttenlocher, 1990). Myelination of fibers within prefrontal cortex is 

not complete until early adulthood (Paus et al., 2001). Executive control undergoes a similarly 

delayed developmental trajectory where, for example, performance on “classic” executive tasks 

like the Tower of Hanoi or Stroop tasks improves through late childhood and adolescence 

(Welsh, Pennington, & Groisser, 1991). The preschool years are a particularly important phase in 
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the development of these skills (Espy, 2004). It is in this period that children make the transition 

from infancy to childhood, and are increasingly expected to exhibit greater control of their 

behavior in everyday life and to modulate behavior appropriately in contexts outside the home to 

achieve a goal, for example, to learn new information in school. Children’s developing ability to 

regulate their behavior depends not only on executive control, but also on the related processes 

of emotion regulation and effortful control (Kochanska, Murray, & Harlan, 2000). However, the 

focus of the present investigation is limited to executive control of cognition, which guided our 

review of the literature and the selection of tasks included in this study. 

Until recently, few measures of executive control were available for use in preschool 

children. Adult measures have strong verbal demands either in testing format or in instructions, 

so that preschoolers typically are unable to complete the tasks or exhibit floor levels of 

performance. There now is an established literature and a broad repertoire of executive tasks 

appropriate for preschool children (e.g., Carlson, 2005; Diamond, Prevor, Callender, & Druin, 

1997; Espy, Kaufmann, McDiarmid, & Glisky, 1999; Hughes, 1998). Nevertheless, 

disagreement remains regarding what exactly executive control entails. In the adult literature, a 

useful approach to addressing this problem has been to better characterize the interrelations 

among measures of executive control and thereby identify the organization of the underlying 

cognitive constructs of interest (e.g., Miyake et al., 2000).  

Factor Analysis and the Structure of Executive Control 

Factor analysis can be used to identify the latent structure underlying observed cognitive 

task performance (Gorsuch, 1983). Factor analysis capitalizes on true score variance and allows 

one to address the question of whether performance on different tasks can be summarized or 

represented by one, or several, latent common factors. Furthermore, by examining patterns of 
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factor loadings, the relations between the measured variables and the identified latent factors, it 

is possible to draw inferences regarding the interpretation of the identified factors and the shared 

cognitive abilities presumed to underlie relations among task performances. A table reviewing 

results from factor analytic studies on executive control is available as supplementary material. 

To date, many studies have used exploratory factor analysis (EFA) or principal 

components analysis (PCA) to examine the structure of executive control. Generally, these 

studies have identified more than one factor or component explaining variability in executive 

control task performance in samples of adults (Lamar, Zonderman, & Reznick, 2002; Robbins et 

al., 1998) and of children (Klenberg, Korkman, & Lahti-Nuuttila, 2001; Welsh, Pennington, & 

Groisser, 1991). A fractionated executive structure also is supported by other findings. For 

example, the reported correlations between different measures of executive control tend to be 

low and often fail to reach significance (Robbins, 1998). Focal lesions to different parts of the 

frontal lobes result in differential, discrete performance deficits (e.g., Stuss & Levine, 2002).  

However, because both PCA and EFA are exploratory techniques used to represent the 

observed data and do not include formal a priori hypothesis testing, the conclusions that can be 

drawn from these methods are limited. The degree of independence of the factors identified in 

some of these studies also is questionable. Many early exploratory studies used Varimax 

rotation, which solves for the best-fitting orthogonal, or uncorrelated, solution. Gorsuch (1997) 

has argued that this approach is biased to identify factors that are sample-specific and difficult to 

replicate. He recommends the use of oblique rotations that allow for correlated factors but 

nevertheless yield independent factors if they better fit the data. In studies where correlated 

factors have been allowed, substantial inter-factor correlations (rs = 0.30 - 0.70) have been 

observed (e.g., Boone et al., 1998; Brookshire et al., 2004; Lehto et al., 2003; but see Brocki & 
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Bohlin, 2004, for an exception). 

Further, differences in the executive tasks administered influence the larger conclusions 

drawn from factor analytic studies. Because executive control entails the regulation of other 

cognitive skills to achieve a goal or end-state, executive control tasks also require non-executive 

cognitive skills (Kane & Engle, 2002).  Not surprisingly then, executive control task 

performance can be influenced by non-executive task demands (Lamar, Zonderman, and 

Reznick, 2002), which may affect factor analysis results.  In some studies, multiple dependent 

measures from a single task were included in the factor analysis (e.g., Boone et al., 1998; Espy et 

al., 1999; Pineda & Merchan, 2003). To the extent that these measures are correlated due to 

shared method variance, they will load together on the same factor. This potentially spurious 

common loading can skew relations from dependent measures from other tasks and make it 

difficult to interpret the best-fitting solution. To prevent this problem, the inclusion of only one 

indicator variable per task is preferred (Gorsuch, 1983). In sum, the outcome of any exploratory 

factor analysis will be influenced by any source of common variability, including non-executive 

demands, not just the cognitive construct of interest.  

Confirmatory factor analysis (CFA), a latent variable approach, addresses these 

limitations, and provides a method by which to compare the utility of various structures. 

Importantly, CFA includes multiple indices of fit, which can be used to evaluate different 

models, and thereby empirically test models previously developed through EFA conducted on 

data from other samples (e.g., Strauss, Thompson, Adams, Redline, & Burant, 2000). 

Furthermore, using CFA to model the cognitive constructs thought to underlie performance on 

different tasks allows one to extract a more “purified” latent variable (Miyake et al., 2000), 

because different sources of performance variability can be modeled on an a priori basis, 
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utilizing what is known about task demands. In CFA, the tasks that are expected to share 

common executive demands, and thus to load on a common factor, are specified before the 

model is run. CFA also can be used to assess whether the same latent structure fits equally well 

to data for subsamples that differ on key characteristics, such as sex (Kim, Brody, & Murry, 

2003). A series of studies by Miyake and colleagues demonstrate successful application of this 

method in adults (Friedman & Miyake, 2004; Miyake, et al., 2000, 2001). Miyake et al. (2000) 

selected simple tasks to index inhibition, working memory updating, and set shifting. CFA 

results supported a 3-factor model, although correlations between the three factors were 

substantial (rs > .40). Models with fewer factors fit the obtained data significantly more poorly.    

Unfortunately, there is a paucity of factor analytic studies addressing the organization of 

executive control in children in the preschool years. Several studies of executive control 

development have included samples of preschoolers, but because many tasks could not be 

administered to these young children, their data were used for cross-age comparison but 

excluded from factor analyses (Klenberg et al., 2001; Welsh et al., 1991). To our knowledge, 

only one study has explored the structure of executive control in preschool children (Espy et al., 

1999), although Murray and Kochanska (2000) included PCA in their study of early self-

regulation, a closely related construct that encompasses socio-emotional dimensions in addition 

to executive control. Similar to reported findings in adults and older children, the best-fitting 

model of executive control in the preschool period included multiple factors (Espy et al., 1999). 

Confirmatory factor analysis has been applied even less frequently in child samples. Two notable 

exceptions used CFA to compare models originally derived from EFA, with other models 

including fewer factors (Brookshire et al., 2004; Lehto et al., 2003). Interestingly, the model 

confirmed by Lehto et al. was structurally similar to the 3-factor model favored by Miyake et al. 
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(2000). Unfortunately, however, both the CFA and EFA models were conducted using the same 

dataset, which unfortunately compromises the obtained evidence of validation of the observed 

latent structure. No study to date has used CFA to assess the structure of executive control in 

children under the age of 6 years—the goal of the present investigation. Previous successes in 

using exploratory methods with this age group indicate that it should be possible to apply CFA to 

preschool data. To construct a series of testable models, the literature on current theories of 

executive control was examined and then used to select multiple age-appropriate tasks to index 

each hypothetical latent variable. Our approach was modeled after that of Miyake and his 

colleagues (Friedman & Miyake, 2001; Miyake et al., 2000, 2001). 

Models of Executive Control 

 The primary task of an adequate model of preschool executive control is to define the 

processes that enable successful, goal-directed behavior in young children. Working memory and 

inhibition are central to executive control (Miyake et al., 2000, Zacks & Hasher, 1994). Diamond 

and her colleagues have argued that working memory and inhibition together play a critical role 

in the ability to overcome “attentional inertia,” that is, focusing on the same, previously-relevant 

aspects of a stimulus even when contextual demands change (Kirkham, Cruess, & Diamond, 

2003). The first model tested in the present study was a two-factor model including factors of 

Inhibition and Working Memory, with at least three tasks specified to load on each latent factor 

(see Figure 1). Another candidate executive control process is the ability to flexibly switch 

between modes of responding as environmental or task demands change (e.g., Miyake et al., 

2000). Unfortunately, it was not possible to consider a separate Shifting construct, because at the 

time of study design there were very few preschool tasks available in the literature.  The 

foremost task, the Dimensional Change Card Sort (Zelazo, Frye, & Rapus, 1996), is not suitably 
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scaled psychometrically for the purposes of CFA. Thus, the present investigation focused on the 

putative distinction between inhibition and working memory. 

 Some investigators have parsed the inhibition construct into unique sub-processes. For 

example, Nigg (2000) distinguished inhibitory control over cognitive processes from inhibitory 

control over motor responses. In contrast, Friedman and Miyake (2004) found differences 

between tasks where interference resulted from conflicting information present in the 

environment within a given trial (i.e., distractor interference) and tasks where interference built 

up over successive trials (i.e., proactive interference). The second and third models tested, then, 

grouped the inhibition tasks on the basis of inhibition type (motor vs. cognitive inhibition), and 

source of interference (distractor interference vs. proactive interference). 

There is an ongoing debate as to whether activation-only models can explain findings that 

others have argued require both inhibition and activation (Miller & Cohen, 2001; Munakata, 

Morton, & Yerys, 2003). These ideas are consistent with Duncan and Owen’s (2000) review of 

the neuroimaging literature, in which they identified a single network of frontal brain structures 

that were recruited consistently on tasks previously argued to differ in cognitive demands 

(working memory span, delay, response conflict, task novelty). Our fourth model included a 

single executive control factor, where all tasks in the battery loaded on a single factor. 

 Another, less interesting possibility is that variance in children’s performance on the 

executive control task battery is attributable to factors unrelated to executive control. The final 

three comparison models grouped the tasks on the basis of other non-executive task demands: 

specifically, tasks that required children to learn and remember a verbal rule were contrasted 

with nonverbal tasks requiring only reaching responses (e.g., delayed response); tasks that 

included visuospatial information were contrasted with tasks that did not; and tasks in which 
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children’s performance was timed were contrasted with tasks without such requirements. 

After identifying the model of preschool executive control that best fit to the data, model 

fit across subgroups of the sample was evaluated through analysis of measurement invariance. 

Age differences in executive control are fundamental to the preschool period, and thus were of 

central interest. Furthermore, some studies with children and with non-human primates have 

revealed sex differences in some aspects of executive control (Overman, Bachevalier, 

Schuhmann, & McDonough-Ryan, 1996), and a recent study by Noble, Norman, and Farah 

(2005) identified robust relations between SES and executive control in children. Thus, possible 

organizational differences in executive control were examined as a function of background 

characteristics of the child, namely, age, sex, and socioeconomic status (SES).  

Method 

Participants 

The sample included 243 preschool children (135 girls, 108 boys) who were recruited 

through birth announcements, local preschools, the local health department, and by word of 

mouth. Children ranged in age from 2 years 4 months to 6 years (M = 3 years 11 months, SD = 

12 months). The sample was composed of 171 Caucasian, 43 African American, 9 Asian 

American, 1 Native American, 4 Hispanic, and 14 multi-racial children; one child’s race was not 

reported. The average maternal education of the sample was 14 years, 1 month (SD = 2 years, 3 

months; range = 8 years to 20 years). A sub-sample of the children were recruited as full-term 

preschool controls in a longitudinal study of preterm infants (n = 14); these children were 

assessed longitudinally, although only data from the first assessment were included in the present 

analysis. Each child was tested individually in a laboratory setting by trained child clinical 

psychology graduate students. In total, 9 examiners conducted testing for this study, and 
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adherence to experimental protocols was maintained by regular team meetings with the second 

author. Children received a small toy and parents received a gift card as compensation for their 

time and travel expenses. 

Executive Control Tasks 

 Participants completed a battery of preschool executive control measures that varied in 

format and demands, including 3 tasks considered a priori to demand working memory and 7 

tasks requiring inhibitory processes. The inhibition tasks were chosen so that they could be 

parsed further on the basis of types of interference (distractor vs. proactive interference) or of 

inhibition (motor vs. cognitive). A schematic depicting these comparative models is contained in 

Figure 1. Children’s task performance was scored online by the examiner, except for the 

Continuous Performance Task, which required a computer button press. Any scoring 

discrepancies were reviewed with the second author for resolution and consistent implementation 

across examiners. For each task, only one dependent measure was selected for inclusion in the 

analyses, listed in Table 1.  

Working Memory. In the Delayed Alternation task, a treat was hidden out of the child’s 

sight in one of two locations. After a pre-trial, the correct location alternated whenever the child 

correctly retrieved the reward, so the child had to remember the previous location across a 10-

second delay (Espy et al., 1999; Goldman, Rosvold, Vest, & Galkin, 1971). In the Six Boxes task 

(Diamond et al., 1997), 6 boxes differing in shape and color were initially baited, and the child 

was allowed to open one box on each trial. Box locations were scrambled between trials, so 

children had to remember which boxes had already been opened. Children also completed the 

digit span subtest of the Differential Abilities Scale (Elliott, 1990). 

Inhibitory Control. In the Delayed Response task (Goldman, Rosvold, & Mishkin, 1970), 
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treats were hidden in a pseudo-random order in two locations in the child’s view. After a 10-

second delay with active distraction, the child was allowed to search at one of the locations. 

Diamond has argued that this task requires inhibition, in that the child must inhibit a prepotent 

tendency to reach to the location that was rewarded on the previous trial (but may be incorrect on 

the present trial), but also must remember the treat’s present hiding location (e.g., Diamond & 

Doar, 1989). This task was included primarily as a measure of motor inhibition, as we reasoned 

that in preschool children difficulties emanate more from response conflict than memory of the 

treat’s current location (as it is hidden in plain sight of the child). It was included among the 

tasks requiring resistance to proactive interference, as interference with a current reach depends 

on reaches on previous trials. The Whisper task (Kochanska, Murray, Jacques, Koenig, & 

Vandegeest, 1996) required children to whisper the names of a series of pictures of familiar and 

unfamiliar characters. Children are presumed to have a prepotent tendency to speak or shout the 

names rather than whispering them, particularly for characters familiar to the child. This task was 

conceptualized as requiring motor inhibition and resistance to proactive interference. Two 

subtests of the NEPSY, a commercially available, norm-referenced developmental 

neuropsychological battery, were administered (Korkman, Kirk, & Kemp, 1998). In NEPSY 

Statue, children stood in a statue pose for 75 seconds while the examiner attempted to distract 

them by coughing, dropping her pencil, and so on. Each 5-second epoch was scored for eye and 

body movement, and talking. Statue was selected as index of motor inhibition, and resistance to 

interference from distractors. In NEPSY Visual Attention, children were asked to circle the 

target cats distributed on a page amidst a variety of distractors. This task was chosen because of 

its apparent cognitive inhibition demands and resistance to interference from distractors. In the 

Inhibit condition of the Shape School task (Espy, 1997; Espy, Bull, Martin, & Stroup, 2006), 
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children name the colors of different shape characters when cued with a happy face, but must 

suppress the naming response when characters have sad faces. Successful performance on the 

Shape School task was conceptualized as requiring cognitive inhibition, because of the 

internalized verbal response, and proactive interference, because children have to suppress a 

naming response that was established on previously named stimuli. In the Tower of Hanoi task 

(TOH; Simon, 1975, Welsh et al., 1991), children must move a set of rings into a goal 

configuration by moving one ring at a time and following rules about relative placement of the 

rings. The number of illegal moves divided by the total number of moves was used as an index 

of failure to inhibit tempting, but “illegal,” steps in problem solution (Bull, Espy, & Senn, 2004). 

Because interference from task performance was expected to result from the perceptual salience 

of the target configuration (present at all times), this task was categorized as requiring resistance 

to distractor interference and motor inhibition. Finally, in the Child Continuous Performance 

Test (CPT; Kerns & Rondeau, 1998) children pressed a button when pictures of infrequent target 

animals were displayed on a computer screen, but did not respond to frequent distractor pictures. 

All animal pictures were accompanied by animal sounds that conflicted with the picture 

identities and were thus an additional source of interference. This task was grouped with tasks 

requiring cognitive inhibition and resistance to distractor interference. 

Statistical Methods 

Descriptive analyses were conducted using SAS version 8.02. Confirmatory factor 

analyses were conducted using Mplus version 4.21 (Muthén & Muthén, 2006). First, a set of 

models derived from previous research were compared empirically, and the best-fitting model 

was selected using the appropriate fit statistics. The χ2 test indexes overall fit of a model; non-

significant values indicate acceptable fit. The root mean square error of approximation (RMSEA; 
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Browne & Cudeck, 1993) is an adjusted fit index, with values less than 0.08 indicating 

acceptable fit to the data. The comparative fit index (CFI) is a relative fit index used to compare 

each model to a baseline independence model (a model where all the correlations or covariances 

are zero) with values between 0.95 and 1.00 indicating good model fit (Hu & Bentler, 1999). All 

model comparisons were nested, and thus could be conducted using the difference in each 

model’s χ2 value. When two models did not differ significantly, the simpler model was favored 

because of greater parsimony (Bollen, 1989). The Bayes Information Criterion (BIC) also was 

examined, where a 10 point difference is evidence of a model difference in goodness of fit, 

favoring the model with the smaller BIC (Raftery, 1993).  

To assess factorial invariance, the total sample was divided into subgroups on the basis of 

sex (boys vs. girls), SES (indexed by maternal education: children whose mothers had a high 

school diploma or less vs. children whose mothers with at least some college-level education) 

and age (divided approximately at the sample mean: younger vs. older than 4 years). For each 

characteristic of interest in turn, levels of factorial invariance were tested through a series of 

models. Models were nested, so they could be compared using χ2 difference tests. Non-

significant χ2 differences between models represented acceptable fit of the more restrictive 

model, whereas a significant χ2 difference value favored the less restrictive model. For the first, 

least restrictive invariance model, no equality constraints were imposed; only the factor patterns 

were held constant across groups (i.e., the same factors are specified, reflecting the same tasks, 

but loadings, means, and residuals are allowed to vary freely; Meredith, 1993). The second 

model was a test of weak measurement invariance, so that the loadings of all tasks on their latent 

factors were held to be equal across groups. The third model tested strong measurement 

invariance, that is, the intercepts of the measured variables were held constant across group. 
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When strong invariance holds, group differences in means and variances of the latent variables 

are a function of group differences in means and variances of the measured variables, indicating 

that the same latent factors are identified in each group (Widaman & Reise, 1997). Fourth, as a 

test of strict measurement invariance, in the next model the residual variances of the measured 

variables were constrained to be equal across groups. Importantly, with strict invariance, group 

differences in means and variances of the measured variables reflect group differences in 

measurement that are solely attributable to their common factors. The fifth and sixth models 

constrained factor variances-covariances and factor means, respectively, to be equal across 

groups; as such they were not tests of metric invariance per se.  

Results 

 Mean scores and standard deviations for performance on each executive control task are 

presented in Table 1, for the total sample and for boys and girls separately, in addition to 

statistical tests for sex-related performance differences. In general, girls outperformed boys, and 

on many tasks, this difference reached or approached conventional levels of statistical 

significance. Zero-order correlations between executive control tasks and relations with age are 

shown in Table 2. With few exceptions, there were significant low to moderate correlations 

between tasks expected to require similar cognitive abilities. Correlations between putative 

working memory and inhibition tasks also were significant and of similar magnitude. All tasks 

were correlated with age. As expected, older children exhibited better performance. 

For all tasks, distributions of responses were examined to check for ceiling or floor 

effects and deviations from normality. For the Whisper task, there was a strong ceiling effect in 

that 52% of children achieved the maximum score. Consequently, this task was not included in 

factor analysis. Shape School latencies were log-transformed to normalize the distribution, and 
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outliers more than 3 standard deviations away from the mean were trimmed. Then, for all tasks, 

performance scores were converted to z-scores to minimize the impact of different variable 

scaling on fitting model invariance. For two tasks where higher scores indicated poorer 

performance, the scores were reflected to simplify factor loading interpretations. 

The proportion of available data for each task ranged from 56% to 98%. The two tasks 

with the most missing data were Shape School (44%) and the Continuous Performance Test 

(39%), with the remaining tasks having less than 23% missingness. The Continuous Performance 

Test was computer-administered, and the primary reason for data loss was intermittent computer 

failure. Less frequently, data were missing because a child could not be engaged in one of the 

tasks, or because of examiner error in task administration. Logistic regression analyses were 

conducted to assess relations between missingness and age, sex, and maternal education for each 

task. For DAS Digit Span only, missingness was related to maternal education (p < .05); sex was 

related to missingness for NEPSY Visual Attention (p < .05). No other tasks showed relations 

between missingness and sex or maternal education (ps > .10). Missing data were thus 

considered to be consistent with a missing at random pattern (MAR) with respect to sex and 

maternal education (Little & Rubin, 2002). However, unsurprisingly, younger children were 

more likely to have missing data than were older children. Age was related to missingness for all 

tasks except Delayed Response, where a marginal trend was observed (p < .06). Because age-

related differences in the structure of executive control were of central interest, invariance 

analyses grouping children by age were conducted nonetheless. However, these results must be 

interpreted with caution because the pattern of data missingness was related to age. Missing data 

were estimated using the EM algorithm in Mplus on the basis of all available data points 

(Muthén & Muthén, 2006). 
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Factor Solutions 

Confirmatory factor analysis (CFA) under maximum likelihood estimation (ML) was 

used to evaluate a model series illustrated in Figure 1. All multiple-factor models included 

correlations between factors, and error variances of the measured variables both within and 

across factors were uncorrelated. Table 3 lists the models and their fit statistics, and Table 4 

summarizes the model fit comparisons. Although, in general, the 2-factor and 3-factor models 

displayed acceptable fit to the data, their fit was not significantly better than that of the simplest, 

1-factor model (Model 4). The 3-factor model including working memory, proactive interference 

and interference from distractors (Model 2) approached a significant improvement in fit over the 

working memory/inhibition model (Model 1; p = .07), but did not differ from the 1-factor model. 

Thus, for reasons of parsimony, the unitary Executive Control model was preferred. As 

illustrated in Figure 2, the standardized factor loadings for Model 4 were significant and 

exceeded a cutoff value of 0.40 (Stevens, 2001). The proportion of variance in individual task 

scores explained by latent executive control varied considerably across tasks. Over half of the 

variability in NEPSY Visual Attention and CPT performance was related to latent executive 

control, whereas R2 values were closer to .20 for Six Boxes, Delayed Response, NEPSY Statue, 

and Delayed Alternation. This pattern is consistent with the definition of executive control as 

only one construct that contributes to performance on any individual task (Miyake et al., 2000).  

Tests of Invariance 

After the best-fitting model was established for the entire sample, relative model fit 

between groups of interest were evaluated. As detailed in the Statistical Methods, up to six 

increasingly restrictive models were tested, with each successive model retaining the equality 

constraints of the preceding model. Tests of invariance for children grouped by sex, maternal 
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education, and age are provided in Table 5. Strict measurement invariance was supported in 

analyses of sex, although boys and girls differed in latent variable means. Because girls were set 

as the referent group, their mean factor score was 0 (SD = 0.89), whereas boys’ mean factor 

score was -0.35 (SD = 0.66; Cohen’s d =  0.64, a medium effect size). When children were 

grouped by their mothers’ educational attainment, strict measurement invariance was again 

supported, even when latent means and variances-covariances could be constrained to equality. 

In these models, there was no difference in mean latent executive control, and the latent 

executive control factor accounted for the same proportion of variance in tasks across groups 

defined by the level of maternal educational attainment.  

Models that grouped children by age demonstrated an overall poorer fit to the data, with 

CFI values below the preferred value of .95. There was not a statistically significant worsening 

of fit until residuals were constrained to be equal across younger and older preschool children 

(M4 comparison in Table 5, Panel 3). Of the models tested, a strong invariance model was 

preferred, where equal unstandardized factor loadings were specified across age groups (see 

Figure 2). Although tasks load similarly on the latent executive control factor, the factor 

explained different amounts of variance in individual tasks at the two ages.  Executive control, 

then, likely drives task performance somewhat differently with development. Most notably, the 

latent factor explained 43% and 53% of for the variance in younger preschool children’s 

performance on CPT and NEPSY Statue respectively, but only 31% and 32% for older children.  

Discussion 

 The goal of this investigation was to better understand the structure of executive control 

in preschool children. A diverse battery of executive control tasks was administered to a sample 

of 243 children between 2.25 and 6 years of age. A series of models was tested using 
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confirmatory factor analysis to assess the utility of differing conceptualizations of executive 

control organization in explaining variability in children’s task performance. The simplest 

model, a single Executive Control factor, was supported over other multi-factor models, where 

tasks were parsed in terms of working memory and inhibitory control demands as well as 

alternative explanations regarding differences in non-executive skills. Simply put, no explanatory 

power was gained by retaining multiple distinct factors in the model. 

The findings of a unitary model of executive control contrast with extant findings. 

Studies of older children and adults utilizing both exploratory and confirmatory factor analytic 

methods typically have supported the existence of multiple dimensions of executive control, the 

fractionation view, although these dimensions are by no means independent (e.g., Brookshire et 

al. 2004, Miyake et al. 2000). Because of the more limited behavioral repertoire of preschool 

children, the tasks used are simpler by necessity, and therefore might be more homogeneous in 

executive demands than those used with adults. However, a cursory review of the tasks included 

in the present study contradicts this view. The responses required of children varied 

considerably, from simply standing still (NEPSY Statue), to searching for hidden rewards 

(Delayed Response), to pressing a button (CPT), to providing a verbal response (Shape School). 

Furthermore, the models in which tasks were grouped on the basis of non-executive task 

demands did not result in a significant improvement in fit to the data. 

Given that different components of executive control seem to be identifiable in school-

aged children, the single-factor executive control model may be specific to the preschool years. 

For example, for young children, inhibitory processes may be actively developing during this 

period, and may not be fully mature until later in development. The design of the present study 

and the observed relation between age and missingness limit the conclusions that can be drawn 
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regarding age invariance. However, the results of exploratory analyses indicated that the overall 

unitary executive control model could be fit for both younger and older preschoolers, with 

relatively subtle differences in model specification between the age groups, in that the portion of 

variability explained by the latent executive control factor differed for several tasks. If there were 

developmental differences in the underlying cognitive subprocesses that drive performance on 

executive control tasks early in life, substantial differences in model fit with advancing age 

would be expected. Test for replication is needed in other preschool samples to further confirm 

this intriguing preliminary finding. 

 Some have argued that even in mature adults, a single cognitive process underlies 

performance on executive or frontally-supported tasks (Duncan & Owen, 2000; Miller & Cohen, 

2001). Duncan and Miller (2002) have proposed an adaptive coding model, in which prefrontal 

activation serves to bias neural processing in other regions of cortex, depending on the specific 

context. In this model, prefrontal neurons may boost the activation of subdominant information 

or responses, allowing them to “win out” over prepotent response tendencies and thereby be 

expressed in overt behavior. When behavior is dominated by prepotent responding, this response 

pattern may not necessarily be due to failure of inhibition, but rather may result from failure to 

enhance the activation of the correct stimulus-response relation (Munakata, 1998; Miller & 

Cohen, 2001). In the preschool years, the connections between the correct stimuli and responses 

likely are weaker than in older children. At this age then, the default prepotent response may be 

expressed across different contexts and degrees of conflict because the signal strength of the 

connection to the correct response is small in magnitude, and the immature nervous system of the 

preschool child may be less able to enhance the activation of the correct stimulus-response 

relation. In this framework, the common thread that characterizes executive control across tasks 



Preschool Executive Control 21 

is the enhancement of relevant stimulus-response relations to achieve goal-oriented executive 

control of thought and action, whether the information to be sustained is “stand still” in NEPSY 

Statue, “look under the left cup on this trial” in Delayed Response, or “name only the characters 

with happy faces” in Shape School. This model may hold particular appeal in its potential to 

explain dysexecutive behavior in preschool children, who, across a variety of circumstances and 

tasks, typically provide the most obvious response.  

The single-factor Executive Control model showed strict measurement invariance for 

boys and girls, although girls displayed higher absolute levels of latent executive control than did 

boys. Strict measurement invariance also was observed between children whose mothers had 

only a high school education versus those with college-level educational attainment. In contrast 

to sex-related differences in latent executive control, children whose mothers differed in 

educational attainment did not differ in the latent level of executive control. These findings 

contrast with those of Noble, Norman, & Farah (2005), which might be related to sampling or to 

our use of maternal education as a proxy for SES. Importantly, the meaning of the executive 

control construct did not differ by this demographic characteristic. 

 Improved understanding of executive control will shed light on children’s ability to 

achieve well-regulated, goal-directed thought and action more broadly. Effortful control is an 

important regulatory aspect of child temperament that underlies behavior in the everyday context 

(Rothbart, Ahadi, & Evans, 2000). Beyond executive control of cognition, development of the 

ability to regulate both positive and negative emotions is important for socialization and 

functioning in the broader societal context (Kochanska, Murray, & Harlan, 2000). The approach 

to executive control development taken in the present study is informed primarily by 

neuropsychological models of prefrontal function, although clearly executive control is but one 
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aspect of the broader concept of self-regulation.  Future efforts need to examine potential 

convergences with related self-regulatory behaviors in the socio-emotional domains, for 

example, by linking children’s executive control observed in the laboratory with self-regulatory 

abilities observed in the everyday context.  Using the CFA approach applied here will help to 

reveal interrelations among self-regulatory processes across different contexts and methods.  

Because executive control processes appear to be central in the etiology of externalizing 

behavior disorders (Nigg & Casey, 2005), the current findings have substantive clinical 

implications. For example, the observed sex difference in latent executive control, a more pure 

measure of the executive construct, may have clinical relevance given substantially higher risk 

for ADHD and disruptive behavior disorders in boys (Scahill & Schwab-Stone, 2000). The 

literature has been equivocal as to the nature of sex difference in executive control, with 

differences found for some types of tasks but not others (Overman, Bachevalier, Schuhmann, & 

McDonough-Ryan, 1996; Seidman et al., 2005), despite the fact that the neural substrates of 

executive control, prefrontal cortex, reach maturity more quickly in girls than boys (Giedd et al., 

1999). The noted differences in executive control likely better reflect true sex differences in the 

executive process common across all tasks, as the latent variable approach parses executive 

control from non-executive task demands, such as language, that may show sex-related 

differences. 

There also are methodological implications for future studies of executive control in 

preschool children. Subtle differences in relations between individual tasks and the latent 

executive control process imply that different tasks are better indexes of executive control at 

different ages in the preschool age range. Carlson (2005) drew similar conclusions analyzing 

equated task performances by age group.  To adequately measure developmental change or to 
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detect performance impairments in clinical populations, selected tasks must be equally valid and 

comparably discriminative across groups.  However, the age-related findings must be taken with 

caution because missing data was related to age, and the decision to split the sample at age 4 

years was arbitrary, as children were recruited to cover the entire preschool age span. To address 

age effects with a cross-sectional design, groups of children should be explicitly selected in 

narrow age bands.  More critically, the fundamental question at issue is how executive control 

dynamically unfolds across development, and how it supports key childhood competencies or 

marks problematic behaviors.  To begin to address these questions, children who vary in 

pertinent background characteristics need to be evaluated repeatedly with age with concurrent 

assessment of everyday behavior and functioning.  



Preschool Executive Control 24 

References 

Baddeley, A., & Hitch, G. (1974). Working memory, In G. A. Bower (Ed.), The psychology of 

learning and motivation (Vol. 8, pp. 47-89). New York: Academic Press. 

Benes, F. M. (2001). The development of prefrontal cortex: The maturation of neurotransmitter 

systems and their interactions. In C. A. Nelson & M. Luciana (Eds.), Handbook of 

developmental cognitive neuroscience (pp. 79-105). Cambridge, MA: MIT Press. 

Bollen, K.A. (1989). Structural equations with latent variables. New York: John Wiley & Sons. 

Boone, K. B., Pontón, M. O., Gorsuch, R. L., González, J. J., & Miller, B. L. (1998). Archives of 

Clinical Neuropsychology, 13, 585-595. 

Brocki, K. C., & Bohlin, G. (2004). Executive functions in children aged 6 to 13: A dimensional 

and developmental study. Developmental Neuropsychology, 26, 571-593. 

Brookshire, B., Levin, H. S., Song, J. X., & Zhang, L. (2004). Components of executive function 

in typically developing and head-injured children. Developmental Neuropsychology, 25, 

61-83. 

Browne, M.W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. Bollen & J. 

S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park: Sage 

Publications. 

Bull, R., Espy, K. A., & Senn, T. E. (2004). The Towers of London and Hanoi: Contributions of 

inhibition, switching and memory span in preschool children. Journal of Child 

Psychology & Psychiatry, 45, 743-754. 

Carlson, S. M. (2005). Developmentally sensitive measures of executive function in preschool 

children. Developmental Neuropsychology, 28, 595-616. 

Diamond, A. (1990). Developmental time course in human infants and infant monkeys, and the 



Preschool Executive Control 25 

neural bases of, inhibitory control of reaching. In A. Diamond (Ed.), The development 

and neural bases of higher cognitive functions (pp. 637-676). New York: New York 

Academy of Sciences. 

Diamond, A. (2001). A model system for studying the role of dopamine in the prefrontal cortex 

during early development in humans: Early and continuously treated phenylketonuria. In 

C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience 

(pp. 433-472). Cambridge, MA: MIT Press. 

Diamond, A., & Doar, B. (1989). The performance of human infants on a measure of frontal 

cortex function, the delayed response task. Developmental Psychobiology, 22, 271-294. 

Diamond, A., Prevor, M. B., Callender, G., & Druin, D. P. (1997). Prefrontal cortex cognitive 

deficits in children treated early and continuously for PKU. Monographs of the Society 

for Research in Child Development, 62, Serial No. 252. 

Duncan, J., & Miller, E. K. (2002) Cognitive focusing through adaptive neural coding in the 

primate prefrontal cortex. In D. Stuss & R. T. Knight (Eds.), Principles of frontal lobe 

function (pp. 278-291). Oxford: Oxford University Press. 

Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by 

diverse cognitive demands. Trends in Neuroscience, 23, 475-483. 

Elliott, C. D. (1990). Differential Abilities Scale. San Antonio, TX: Psychological Corporation. 

Espy, K. A. (1997). The Shape School: Assessing executive function in preschool children. 

Developmental Neuropsychology, 13, 495-499. 

Espy, K. A. (2004). Introduction: Executive control in preschool children. Developmental 

Neuropsychology, 26, 379-384. 

Espy, K. A., Bull, R. B., Martin, J. & Stroup, W. (2006). Measuring the development of 



Preschool Executive Control 26 

executive control with the Shape School. Psychological Assessment, 18, 373-381. 

Espy, K. A., Kaufmann, P. M., McDiarmid, M. D., & Glisky, M. L. (1999). Executive 

functioning in preschool children: Performance on A-not-B and other delayed response 

format tasks. Brain and Cognition, 41, 178-199. 

Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control 

functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133, 

101-135. 

Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., 

Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and 

adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861-863.  

Goldman, P. S., Rosvold, H. E., & Mishkin, M. (1970). Evidence for behavioral impairment 

following prefrontal lobectomy in the infant monkey. Journal of Comparative and 

Physiological Psychology, 70, 454-463. 

Goldman, P. S., Rosvold, H. E., Vest, B., & Galkin, T. W. (1971). Analysis of the delayed-

alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey. 

Journal of Comparative and Physiological Psychology, 77, 212-220. 

Gorsuch, R. L. (1983). Factor Analysis (2nd ed.). Hillsdale, NJ: Erlbaum. 

Gorsuch, R. L. (1997). Exploratory factor analysis: Its role in item analysis. Journal of 

Personality Assessment, 68, 532-560. 

Harnishfeger, K. K., & Bjorklund, D. F. (1993). The ontogeny of inhibition mechanisms: A 

renewed approach to cognitive development. In M. L. Howe & R. Pasnak (Eds.), 

Emerging themes in cognitive development: Vol. 1. Foundations. New York: Springer-

Verlag. 



Preschool Executive Control 27 

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: 

Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55. 

Hughes, C. (1998). Finding your marbles: Does preschoolers’ strategic behavior predict later 

understanding of mind? Developmental Psychology, 34, 1326-1339. 

Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. 

Neuropsychologia, 28, 517-27. 

Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, 

executive attention, and general fluid intelligence: An individual differences perspective. 

Psychonomic Bulletin & Review, 9, 637-671. 

Kerns, K. A., & Rondeau, L. A. (1998). Development of a continuous performance test for 

preschool children. Journal of Attention Disorders, 2, 229-238. 

Kim, S., Brody, G.H., & Murry, V.M. (2003). Factor structure of the Early Adolescent 

Temperament Questionnaire and measurement invariance across gender. Journal of Early 

Adolescence, 23, 268-294. 

Kirkham, N. Z., Cruess, L. M., & Diamond, A. (2003). Helping Children Apply their Knowledge 

to their Behavior on a Dimension-Switching Task. Developmental Science, 6, 449-467. 

Klenberg, L., Korkman, M., & Lahti-Nuuttila, P. (2001). Differential development of attention 

and executive functions in 3- to 12-year-old Finnish children. Developmental 

Neuropsychology, 20, 407-428. 

Kochanska, G., Murray, K., & Harlan, E. T. (2000). Effortful control in early childhood: 

Continuity and change, antecedents, and implications for social development. 

Developmental Psychology, 36, 220-232. 

Kochanska, G., Murray, K., Jacques, T. Y., Koenig, A.L., & Vandegeest, K. A. (1996). 



Preschool Executive Control 28 

Inhibitory control in young children and its role in emerging internalization. Child 

Development, 67, 490-507. 

Korkman, M., Kirk, U., & Kemp, S., (1998). NEPSY: A developmental neuropsychological 

assessment. San Antonio, TX: The Psychological Corporation. 

Lamar, M., Zonderman, A. B., & Resnick, S. (2002). Contributions of specific cognitive 

processes to executive functioning in an aging population. Neuropsychology, 16, 156-

162. 

Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive 

functioning: Evidence from children. British Journal of Developmental Psychology, 21, 

59-80. 

Little, R. J., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd edition). New 

York: John Wiley & Sons. 

Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. 

Psychometrika, 58, 525-543. 

Miller, E., & Cohen, J. (2001). An integrative theory of prefrontal cortex function. Annual 

Reviews of Neuroscience, 24, 167-202. 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. 

(2000). The unity and diversity of executive functions and their contributions to complex 

“frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49-100. 

Miyake, A., Friedman, N. P., Rettinger D. A., Shah, P., & Hegarty, M. (2001). How are 

visuospatial working memory, executive functioning, and spatial abilities related? A 

latent-variable analysis. Journal of Experimental Psychology: General, 130, 621-640. 

Munakata, Y. (1998). Infant perseveration and implications for object permanence theories: A 



Preschool Executive Control 29 

PDP Model of the A-not-B task. Developmental Science, 1, 161-184. 

Munakata, Y., Morton, J. B., & Yerys, B. E. (2003) Children's perseveration: attentional inertia 

and alternative accounts. Developmental Science, 6, 471-473. 

Murray, K. T., & Kochanska, K. (2002). Effortful control : Factor structure and relation to 

externalizing and internalizing behaviors. Journal of Abnormal Child Psychology, 30, 

503-514. 

Muthén, L. K., & Muthén, B. O. (2006). Mplus user’s guide (4th edition.). Los Angeles, CA: 

Muthén & Muthén. 

Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: Views from 

cognitive and personality psychology and a working inhibition taxonomy. Psychological 

Bulletin, 126, 220-246. 

Nigg, J. T., & Casey, B. J. (2005). An integrative theory of attention-deficit/hyperactivity 

disorder based on the cognitive and affective neurosciences. Development and 

Psychopathology, 17, 785-806. 

Noble, K. G., Norman, M. F., & Farah, M. J. (2005). Neurocognitive correlates of 

socioeconomic status in kindergarten children. Developmental Science, 8, 74–87. 

Overman, W. H., Bachevalier, J., Schuhmann, E., & McDonough-Ryan, P. (1996). Cognitive 

gender differences in very young children parallel biologically based cognitive gender 

differences in monkeys. Behavioral Neuroscience, 110, 673-684. 

Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., & Zijdenbos, A. (2001). Maturation 

of white matter in the human brain: A review of magnetic resonance studies. Brain 

Research Bulletin, 54, 255-266. 

Pineda, D. A., & Merchan, V. (2003). Executive function in young Colombian adults. 



Preschool Executive Control 30 

International Journal of Neuroscience, 113, 397-410. 

Raftery, A.E. (1993). Bayesian model selection in structural equation models. In K. A. Bollen & 

J. S. Long (Eds.), Testing structural equation models (pp. 163-180). Newbury Park, CA: 

Sage Publications. 

Robbins, T. W. (1998). Dissociating executive functions of the prefrontal cortex. In A. C. 

Roberts, T. W. Robbins, & L. Weiskranz (Eds.), The prefrontal cortex: Executive and 

cognitive functions (pp. 117-130). Oxford: Oxford University Press. 

Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Lawrence, A. D., McInnes, L., & 

Rabbitt, P. M. A  (1998). A study of performance on tests from the CANTAB battery 

sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications 

for theories of executive functioning and cognitive aging. Journal of the International 

Neuropsychological Society, 4, 474-490. 

Rothbart, M. K., Ahadi, S. A., & Evans, D. E. (2000). Temperament and personality: Origins and 

outcomes. Journal of Personality and Social Psychology, 78, 122-135. 

Scahill, L. & Schwab-Stone, M. (2000). Epidemiology of ADHD in school-age children. Child 

and Adolescent Psychiatric Clinics of North America, 9, 541- 555. 

Seidman, L. J., Biederman, J., Monuteaux, M. C., Valera, E., Doyle, A. E., & Faraone, S. V. 

(2005). Impact of gender and age on executive functioning: Do girls and boys with and 

without Attention Deficit Hyperactivity Disorder differ neuropsychologically in preteen 

and teenage years? Developmental Neuropsychology, 27, 79-105. 

Simon, H. A. (1975). The functional equivalence of problem solving skills. Cognitive 

Psychology, 7, 268–288. 

Stevens, J. P. (2001). Applied Multivariate Statistics for the Social Sciences (4th ed.). Mahwah, 



Preschool Executive Control 31 

NJ: Lawrence Erlbaum Associates. 

Strauss, M. E., Thompson, P., Adams, N. L., Redline, S., & Burant, C. (2000). Evaluation of a 

model of attention with confirmatory factor analysis. Neuropsychology, 14, 201-208.  

Stuss, D. T. (1992). Biological and psychological development of executive functions. Brain and 

cognition, 20, 8-23. 

Stuss, D. T., & Levine, B. (2002). Lessons from studies of the frontal lobes. Annual Review of 

Psychology, 53, 401-433. 

Welsh, M. C., Pennington, B. F., & Groisser, D. B. (1991). A normative-developmental study of 

executive function: A window on prefrontal function in children. Developmental 

Neuropsychology, 7, 131-149. 

Widaman, K.F., & Reise, S.P. (1997). Exploring the measurement invariance of psychological 

instruments: Applications in the substance abuse domain. In K.J. Bryant, M. Windle, & 

S.G. West (Eds.), The science of prevention: Methodological advances from alcohol and 

substance abuse research (pp. 281-324). Washington, DC: American Psychological 

Association. 

Zacks, R. T., & Hasher, L. (1994). Directed ignoring: Inhibitory regulation of working memory. 

In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, and 

language (pp. 241-264). San Diego: Academic Press. 

Zelazo, P. D., Frye, D., & Rapus, T. (1996). An age-related dissociation between knowing rules 

and using them. Cognitive Development, 11, 37-63. 

 

 



Preschool Executive Control 32 

Table 1 

Descriptive statistics for Executive Control Task performance and Age, for the complete sample and by sex. 

 
All Children 

(N = 135-239) 

Girls 

(N = 83-135) 

Boys 

(N = 52-109) 

Sex 

Differences 

Task Range M SD M SD M SD t p 

Delayed Alternation: correct searches 1 - 16 9.06 2.39 9.17 2.42 8.93 2.36 0.74 .46 

DAS Digit Span: maximum span 1 – 6 3.38 1.31 3.53 1.29 3.18 1.33 1.86 .06 

Six Boxes: efficiency (correct searches / total searches) 0.33 – 1.00 0.68 0.18 0.71 0.19 0.65 0.17 2.54 <.05 

Delayed Response: correct searches 2 – 17 13.43 2.84 13.69 3.12 13.12 2.70 1.52 .13 

NEPSY Statue: 5-second epochs without movement 0 - 30 14.49 10.45 15.81 10.86 12.62 9.55 2.15 <.05 

Whisper: correct trials 0 – 20 16.55 5.05 17.13 4.46 15.87 5.62 1.81 .07 

Continuous Performance Test: efficiency (hits / total 

responses) 0 - 1 0.49 0.33 0.55 0.34 0.41 0.29 2.71 <.01 

Shape School (Inhibit condition): latency (seconds)* 10 – 125 30.19 19.74 27.83 18.27 33.94 21.53 -1.76 .08 

Visual Attention: efficiency (correct responses – errors 

/ latency) -0.35 - 0.62 0.13 0.16 0.16 0.17 0.10 0.14 3.17 <.01 

Tower of Hanoi: “inefficiency” (illegal moves / total 

moves)* 
0 - 1 0.31 0.24 0.30 0.22 0.33 0.25 -0.85 .40 

Age (years) 2.25 - 6.00 3.95 0.98 4.03 1.04 3.87 0.89 1.27 .21 

* A higher score indicates poorer performance
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Table 2 

Correlations Between Executive Control Task Performance Scores, Age, and Maternal Education 

 Task 1 2 3 4 5 6 7 8 9 10 

1. Delayed Alternation ---          

2. DAS Digit Span .23** ---         

3. Six Boxes .21** .27** ---        

4. Delayed Response .22** .26** .22** ---       

5. NEPSY Statue .29** .46** .37** .31** ---      

6. Whisper .14+ .32** .17* .20** .35** ---     

7. Continuous Performance Test .30** .46** .31** .27** .57** .16+ ---    

8. Shape School (Inhibit condition) .15+ .26** .22* -.01 .32** .08 .30** ---   

9. NEPSY Visual Attention .38* .42** .24** .23** .57** .30** .50** .34** ---  

10. Tower of Hanoi .17* .37** .14+ .26** .30** .28** .30** -.01 .29** --- 

Age (years) .38** .64** .43** .27** .59** .31** .58** .48** .58** .38** 

Maternal education (years) 0.11+ 0.14+ 0.11 0.16* 0.21** 0.17* 0.22** 0.10 0.16* 0.03 

*p < .05; **p < .01; + p < .10
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Table 3 

Goodness of Fit Indices for Alternative CFA Models 

Model (Number of Factors) χ2 df p RMSEA CFI BIC 

1. Working Memory and Inhibition (2)* 31.07 26 .23 .03 .987 4859.00 

2. Working Memory, Interference from Distractors, and 

Proactive Interference (3)* 

25.87 24 .36 .02 .995 4864.79 

3. Working Memory, Motor Inhibition, and Cognitive 

Inhibition (3)* 

30.33 24 .17 .03 .983 4869.25 

4. General Executive Control (1) 31.14 27 .27 .03 .989 4853.58 

5. Verbal and Nonverbal Rule (2) 29.55 26 .29 .02 .991 4857.48 

6. Spatial and Nonspatial Tasks (2) 30.69 26 .24 .03 .988 4858.63 

7. Timed and Untimed Tasks (2) 28.58 26 .33 .02 .993 4856.52 

*Not Positive Definite Residual Covariance Matrix 
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Table 4 

Comparative Fit of CFA Models 

Model Comparison χ2 difference df difference p BIC difference 

Model 1 vs. Model 2 5.20 2 .07 5.79 

Model 1 vs. Model 3 0.74 2 .69 10.25 

Model 1 vs. Model 4 0.07 1 .79 5.42 

Model 4 vs. Model 5 1.59 1 .21 3.90 

Model 4 vs. Model 6 0.45 1 .50 5.05 

Model 4 vs. Model 7 2.56 1 .11 2.94 

Model 4 vs. Model 2 5.27 3 .15 11.21 

Note: Favored model is underlined. When two models did not differ statistically, the more 

parsimonious model was chosen (Bollen, 1989). 
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Table 5 

Tests of Invariance for the Best-Fitting CFA Model 

Model χ2 df p RMSEA CFI BIC χ2 

difference 

df 

difference

p 

difference

Baseline 31.14 27 .27 .03 .989 4767.99    

Tests of invariance by sex  

M1 66.62 54 .12 .04 .965 4969.07 --- --- --- 

M2 71.35 62 .20 .04 .974 4929.85 4.73 8 .79 

M3 75.13 70 .32 .03 .986 4889.68 3.78 8 .88 

M4 83.09 79 .35 .02 .989 4848.20 7.96 9 .54 

M5 89.18 80 .23 .03 .974 4848.81 6.09 1 .01 

M6 99.45 81 .08 .04 .948 4853.58 10.27 1 .001 

Tests of invariance by maternal education 

M1 67.44 54 .10 .05 .965 4975.90 --- --- --- 

M2 74.38 62 .13 .04 .967 4938.89 6.94 8 .54 

M3 81.82 70 .16 .04 .969 4902.39 7.44 8 .49 

M4 89.46 79 .20 .03 .972 4860.59 7.64 9 .57 

M5 90.28 80 .20 .03 .973 4855.92 0.82 1 .37 

M6 93.43 81 .16 .04 .967 4853.58 3.15 1 .08 

Tests of invariance by age 

M1 69.69 54 .07 .05 .905 4802.52 --- --- --- 

M2 82.07 62 .04 .05 .879 4770.96 12.38 8 .14 

M3 89.71 70 .06 .05 .881 4734.65 7.64 8 .47 

M4 112.15 79 .008 .06 .800 4707.65 22.44 9 .008 

Baseline = no invariance constraints; M1 = configural invariance; M2 = weak measurement invariance;  

M3 = strong measurement invariance; M4 = strict measurement invariance; M5 = equivalent latent  

variable variance-covariance matrices; M6 = equivalent latent variable means. 
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Figure Captions. 

Figure 1.  

Path diagrams for Planned CFA models 1 through 7. Single-headed arrows represent paths of factor 

loadings; double-headed arrows represent factor correlations. 6B = Six Boxes; CPT = Continuous 

Performance Test; DA = Delayed Alternation; DR = Delayed Response; DSP = DAS Digit Span; SSI 

= Shape School Inhibit condition; ST = NEPSY Statue; TOH = Tower of Hanoi; VA = NEPSY Visual 

Attention (cats only); WH = Whisper.  

Figure 2.  

Best-fitting model for the full sample and for the sample split at age 4 years. Standardized factor 

loadings (λ) are given within each indicator box along with observed variable R2 values. 

Standardized residual variances (ε) are listed below each error term box. Note that for the figures 

depicting model differences across age, unstandardized factor loadings are constrained to 

equality but standardized loadings differ because of differences in standard errors between age 

groups.  6B = Six Boxes; CPT = Continuous Performance Test; DA = Delayed Alternation; DR 

= Delayed Response; DSP = DAS Digit Span; SSI = Shape School Inhibit condition; ST = 

NEPSY Statue; TOH = Tower of Hanoi; VA = NEPSY Visual Attention (cats only).  
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