
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Theses, Dissertations, and Student Research
from Electrical & Computer Engineering

Electrical & Computer Engineering, Department
of

Winter 12-1-2011

Detection-assisted Object Tracking by Mobile Cameras Detection-assisted Object Tracking by Mobile Cameras

Li He
University of Nebraska – Lincoln, ritsu1228@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/elecengtheses

 Part of the Electrical and Computer Engineering Commons

He, Li, "Detection-assisted Object Tracking by Mobile Cameras" (2011). Theses, Dissertations, and
Student Research from Electrical & Computer Engineering. 29.
https://digitalcommons.unl.edu/elecengtheses/29

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and
Student Research from Electrical & Computer Engineering by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/elecengtheses
https://digitalcommons.unl.edu/elecengtheses
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses/29?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages

DETECTION-ASSISTED OBJECT TRACKING BY MOBILE CAMERAS

by

Li He

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Electrical Engineering

Under the Supervision of
Professors Senem Velipasalar and

Mustafa Cenk Gursoy

Lincoln, Nebraska

December, 2011

DETECTION-ASSISTED OBJECT TRACKING BY MOBILE CAMERAS

Li He, M. S.

University of Nebraska, 2011

Adviser: Senem Velipasalar and Mustafa Cenk Gursoy

Tracking-by-detection is a class of new tracking approaches that utilizes recent de-

velopment of object detection algorithms. This type of approach performs object

detection for each frame and uses data association algorithms to associate new ob-

servations to existing targets. Inspired by the core idea of the tracking-by-detection

framework, we propose a new framework called detection-assisted tracking where ob-

ject detection algorithm provides help to the tracking algorithm when such help is

necessary; thus object detection, a very time consuming task, is performed only when

needed. The proposed framework is also able to handle complicated scenarios where

cameras are allowed to move, and occlusion or multiple similar objects exist.

We also port the core component of the proposed framework, the detector, onto

embedded smart cameras. Contrary to traditional scenarios where the smart cameras

are assumed to be static, we allow the smart cameras to move around in the scene.

Our approach employs histogram of oriented gradients (HOG) object detector for

foreground detection, to enable more robust detection on mobile platform. Traditional

background subtraction methods are not suitable for mobile platforms where the

background changes constantly.

iii

ACKNOWLEDGMENTS

First, I would like to thank my advisers, Professors Senem Velipasalar and Mustafa

Cenk Gursoy for their guidance throughout my graduate study. I would like to

thank them for always encouraging me to work out my own solutions on challenging

problems and discussing with me. I highly appreciate the environment that they

foster in the group, which is very healthy and helpful for creative research. I also

would like to thank Professor Wenbo He for serving on my committee. I have learned

a lot from both her class and discussions with her.

Throughout my graduate program, I have been surrounded by an amazing group

of colleagues at UNL. My countless conversations with them have been invaluable

to my research and to learning about other fields. I especially thank the fellow

students from both Smart Vision Systems Laboratory and Wireless Communications

and Networking Laboratory; they are Zhe Zhang, Qing Chen, Deli Qiao, Junwei

Zhang and Bo Liang. The discussions, chats and laughters with them made my life in

Nebraska much more fun. I would like to thank Youlu Wang and Mauricio Casares.

They have helped me get started with the camera projects; I also learned a lot from

the discussions with them. I also would like to thank my friends — Tiantian Xu,

Tongqing Liu, Jinya Pu, Peggy Liu and Yao Wu — you have brought a lot fun to my

life; it is really good to meet you here.

Lastly, and most importantly, I would like to thank my parents Zhaoxiang He and

Nianyu Ye for always being loving, caring and encouraging. Even in the most difficult

times, they never lost their confidence and belief in me. I can always rely on their

advices and support. Without them, I could not reach this far.

iv

Contents

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Visual Tracking . 2

1.1.1 Applications . 2

1.1.2 Challenges . 3

1.1.3 Visual Tracking on Embedded Smart Cameras 5

1.2 Related Work . 5

1.3 Overview of the Thesis . 8

2 Probabilistic Visual Tracking and Object Detection 10

2.1 Overview of Bayesian Filtering . 11

2.1.1 Formulation of Bayesian Tracking 12

2.2 Monte Carlo Sampling . 14

2.2.1 Problems to Solve . 14

2.2.2 Basics of Sampling Methods 15

v

2.2.3 Importance Sampling . 16

2.2.4 Sampling-Importance Resampling 17

2.3 Particle Filters . 18

2.3.1 Sequential Importance Sampling (SIS) Filter 19

2.3.2 Sampling-importance Resampling (SIR) Filter 21

2.4 Histogram of Oriented Gradients . 22

2.4.1 Rectangular HOG Descriptor 23

2.4.2 Overall Processing Flow . 24

2.4.3 Feature Extraction . 24

2.4.4 The Classifier . 26

2.4.5 Multi-scale Localization . 26

2.5 Conclusion . 27

3 Detection-assisted Tracking by Mobile Cameras 28

3.1 System Architecture . 28

3.2 Detector . 29

3.3 The Tracker . 30

3.3.1 The Observation Model . 32

3.3.2 The Dynamic Model . 35

3.3.3 Correcting Trackers . 36

3.3.4 The Timing of Correction . 37

3.4 Implementation . 38

3.4.1 PC Platform . 38

3.4.1.1 Implementation Overview 38

3.4.1.2 TrackerManager and Trackers 40

3.4.2 CITRIC Platform . 43

vi

3.5 Conclusion . 44

4 Experiments and Evaluation on PC Platform 45

4.1 Overview . 45

4.1.1 PC Platform . 46

4.2 Evaluation of PC Implementation . 46

4.2.1 Tracking without Correction 46

4.2.2 Tracking with Detector . 47

4.2.3 Handling Occlusion . 48

4.2.4 Handling Similar Objects . 49

4.2.5 Handling Crowded Scenes . 50

4.3 Conclusion . 52

5 Experiments and Evaluation on CITRIC Platform 53

5.1 Overview . 53

5.1.1 CITRIC Platform . 54

5.2 Evaluation of Embedded Implementation 55

5.2.1 Running on Whole Frame . 56

5.2.2 Accelerating by Reducing Frame Size 57

5.2.3 Moving the CITRIC Camera 58

5.2.4 Adaptive Frame Cropping . 59

5.3 Conclusion . 65

6 Conclusion and Future Work 66

Bibliography 68

vii

List of Figures

2.1 State-space model represented using a graphical model 12

2.2 The overall processing flow of HOG detection algorithm 25

3.1 Overview of the system structure . 29

3.2 The divided histogram . 33

3.3 The procedure of correcting trackers . 36

3.4 Overview of implementation on PC platform 40

3.5 The relationship of TrackerManager, Tracker and ParticleFilter 42

4.1 The performance of the tracker with increasing number of resampling . . 47

4.2 The performance of the tracker with increasing number of resampling on

another video sequence . 48

4.3 The performance of the track with the assistance of the detector 49

4.4 A scenario where occlusion occurs . 50

4.5 A scenario where a similar target exists 50

4.6 A scenario where both the target and the camera are moving forward and

multiple similar objects exist . 51

5.1 The CITRIC camera mounted on a toy car 54

5.2 The CITRIC camera board . 55

viii

5.3 The camera is held by person and is moving around 57

5.4 The camera is fixed and the frames are cropped 58

5.5 The camera is mount on the top of a toy car 60

5.6 The camera is mounted on a toy car and is moving along a corridor . . . 61

5.7 The boundary of a detected object and flow for automatic cropping . . . 63

5.8 Automatic frame cropping is performed 64

ix

List of Tables

4.1 Summary of testing video sequence . 46

5.1 Summary of performance on CITRIC platform 64

x

List of Algorithms

1 The SIS particle filter . 21

2 The resampling algorithm . 22

3 The SIR particle filter . 23

1

Chapter 1

Introduction

Computer vision is the study of letting computers see, understand and further interact

with the world in the way we do. In order to understand and interact with the

world, computers must be able to locate objects of interest and continuously follow

these objects. This is the task of visual tracking. Visual tracking is also the heart

of many computer vision applications such as surveillance, robotic and monitoring

applications.

The increasing number of video cameras in our daily lives becomes a more pro-

found driving force of visual tracking. These cameras generate a huge amount of

visual data for human analysis and understanding. Although it is possible to have

humans involved in analyzing and understanding these visual data, it is more prefer-

able that these tasks can be done in an automatic way. This requirement is even

more profound for robotic applications: robots are expected to be self-contained and

behave on their own with no or little human involvement.

Since video data is usually composed of background and a few moving objects of

interest, in order to automatically analyze and understand video data, it is important

to know which parts of a frame correspond to the objects of interest and where the

2

objects are. The task of determining which parts of a frame correspond to the objects

of interest is solved by object detection and the task of following an object at each

frame is solved by visual tracking.

1.1 Visual Tracking

Visual tracking is to consistently identify objects throughout a video sequence. A

tracking algorithm identifies the objects of interest in each frame and consistently

associates the identities of these object over time. It is important that the identifica-

tion is consistent, that is the same object in different frames must be given the same

identification. Any inconsistency causes the algorithm to fail.

In this section we will discuss several interesting applications of visual tracking;

these applications show the importance of visual tracking. Then we will discuss some

major challenges when we want to perform robust visual tracking.

1.1.1 Applications

To see the importance of visual tracking, we start by discussing some of its applica-

tions.

Video Surveillance This is the direct application of visual tracking and is still one

of the most important applications [1] [2] [3]. Human tracking is mainly used for ana-

lyzing and monitoring human behaviors. For example, we may be interested in where

a specific person has been. Vehicle tracking is mainly used for traffic monitoring.

For example, transportation department may be interested in installing cameras at

intersections and using these cameras to collect traffic statistics at different moments.

3

Mobile Robot Navigation This is another important area of for visual tracking

[4] [5]. A mobile robot is expected to have the ability to acquire and respond properly

to moving or static targets or obstacles. To perform this task, a mobile robot should be

able to detect and track such targets or obstacles. By tracking predefined landmarks

a mobile robot can know where it is and how it can reach certain target locations.

Human Computer Interface By tracking human and human actions (head, shoul-

der, whole body actions, eye gaze or facial expressions) and further understanding

these actions, it is possible to control computers by these actions [6] [7]. This is a new

type of human computer interface; it allows more natural interaction with computers

in certain scenario. One real world example of this type of human computer interface

is Microsoft Kinect.

1.1.2 Challenges

Consistent labeling is the heart of visual tracking, meaning that the same object

in different frames must be given the same identification. The whole task loses its

meaning if we are unable to perform consistent labeling.

Visual tracking has received a great deal of attention due to its importance. Yet

from the perspective of computer vision, visual tracking is quite a challenging task. A

good tracking algorithm has to be both robust and efficient. When performing visual

tracking, we may encounter several challenges.

Abrupt Motion It is common to assume that the motion of a specific target is

continuous, i.e. the difference between consecutive frames is small, when developing

a tracking algorithm. Whenever the motion of the target shows discontinuity, the

assumption may not hold and the algorithms fail. However, discontinuity of motion

4

is common in real world. One cause for the discontinuity is low frame rate, which

may be caused by low processing power.

Cluttered Background When the background contains objects that have simi-

lar appearance as the target, confusion occurs and the tracking results degenerate.

Therefore it is important to develop a measurement model that can discriminate

between to different targets in order to reduce the impact of cluttered background.

Changing Illumination Many tracking algorithms are based on background sub-

traction assuming that the background always remain the same throughout the whole

process. Changes of illumination may break this assumption. Such algorithms usually

fail when there are abrupt changes of illumination. To handle this, it is necessary to

develop a robust background model that can adapt to illumination changes.

Moving Cameras Moving camera settings are quite useful in mobile applications.

In such scenarios, the cameras are moving instead of being static. Since most tracking

algorithms assume a static background model, these algorithms fail when the back-

ground is no longer static. To handle moving camera settings, new algorithms and

methods must be developed.

Occlusions It is possible that a specific target is occluded by other objects or it

moves out of the field of view (FOV) of the camera in a complex scene. Occlusions

usually cause loss of information preventing the tracking algorithm from obtaining

necessary information to track the target, leading to tracking failures. Therefore, it

is important to correctly handle occlusions in order to achieve robust tracking. The

key to solving this problem is figuring out how to track the location of the target and

keep the identity when the target is occluded.

5

1.1.3 Visual Tracking on Embedded Smart Cameras

Embedded smart cameras are self-contained, standalone vision systems with built-in

vision sensors and processors. The discriminative feature of smart cameras is that they

not only captures visual data but also perform higher-level visual processing locally.

Smart cameras are usually equipped with communication interfaces for exchanging

information with other smart cameras. They are becoming more popular with the

advances in VLSI technology and embedded system architecture.

Multiple smart cameras can form a distributed camera network. A distributed

camera network has many advantages over traditional centralized camera systems.

For example, distributed camera network may be formed ad-hoc; it is convenient to

add or remove camera nodes from the network. Visual tracking can also be per-

formed on smart cameras. Smart cameras enable many applications in the areas of

surveillance, traffic control, health care, home assistance, environmental monitoring,

wildlife monitoring and industrial process control[8]. As discussed in 1.1.1, many of

these applications require visual tracking. However, due to the limited resources of

these embedded platforms, implementing visual tracking on smart cameras can be

more challenging.

1.2 Related Work

From the above discussion, we see that robust visual tracking is an interesting, im-

portant and yet challenging topic in computer vision. The inherent difficulty of this

task roots from the variability of object, background appearances as well as changes

of environment illumination. A mainstream of methods dealing with object tracking

is based on background modeling and sometimes calibrated cameras [9], [10], [11]. In

these methods, a background model is built based upon the fact that the background

6

is static and remains the same throughout the entire tracking process. This type

of methods can be extremely lightweight and fast [12]. However, their performance

mainly rely on the underlying model and the assumption of static cameras. If the

background model is not properly developed and updated, the performance is vul-

nerable to shadows and illumination changes. On the other hand, calibrated cameras

with known internal and external parameters are also used to facilitate tracking us-

ing geometric relations. But when the system contains a relatively large number of

cameras, e.g. 5, the calibration process becomes quite painstaking. Yet, the use of

calibrated camera also assumes static cameras.

To cope with the difficulties mentioned above, a new class of tracking methods,

called tracking-by-detection, has been introduced. These methods utilize object de-

tection algorithms rather than background subtraction. The main idea of these ap-

proaches is to employ an object detector in the place of background subtraction. Since

most object detection algorithms only require a single image to work, they are much

more robust to the changing background and illumination compared to traditional

background subtraction algorithms. In a typical tracking-by-detection framework,

the detection algorithm is invoked at each frame and then the detection results are

associated to existing targets in the system.

The tracking-by-detection framework is driven by the recent development in object

detection and has been employed in recent works [13], [14], [15], [16], [17]. However,

most of them is based on associating detection responses with trajectories using sim-

ilarities of appearance, position and size. For example, Huang et al. [14] employed

an approach that is entirely based on data association; Li et al. [17] improved the

method used in [14] by integrating learning algorithms and the target of learning is

an affinity model. Zhang et al. [15] also used a data association based algorithm with

the exception that network flow was employed to perform the optimization.

7

Visual tracking on embedded smart cameras is another interesting yet challenging

research area. On embedded platforms, we no longer have intensive processing power

and large memory as we do in desktop or workstation computing environments. Lim-

ited resource is one of the main constraints for embedded systems. Wang et al. [10],

used a lightweight background subtraction algorithm described in [12], to detect the

foreground objects. The lightweight algorithm employs a temporal difference method

until a complete background model is built. The algorithm is designed for embedded

smart cameras, and can run fast on an embedded system. However, the algorithm

designed for static cameras, generates false positives when there are shadows.

The HOG descriptor for human detection is proposed in by Dalal et al. [18]

and is widely used for human detection. The basic idea of HOG is that local visual

features can be characterized well by the distribution of local intensity gradients

or edge directions. An image is divided into cells and 1-D histograms of gradient

direction are calculated. The calculated histograms are then normalized over cells to

get the HOG. A support vector machine (SVM) is then trained to classify human and

non-human regions.

The HOG detection algorithm has also been widely used for foreground detec-

tion. Although detection algorithms are more suitable for moving cameras and are

more robust towards background changes, they have not yet been used on embedded

smart cameras. In [19], we have introduced some initial work towards applying HOG

detection algorithm on the CITRIC embedded smart camera platform and reported

the performance. In this thesis, we continue this work introduced and try to make

the implementation more applicable. By applying HOG detector to embedded smart

cameras we can build robust tracking algorithm for real-world mobile applications.

The experimental results and performance also reveal certain limitations of such em-

bedded platforms.

8

1.3 Overview of the Thesis

By carefully studying the tracking-by-detection framework, we notice that the de-

tection is performed for every frame. However, the continuous application of the

detection algorithm and data association is not necessary on a frame basis. In

tracking-by-detection framework, detection algorithms have the same role as back-

ground subtraction algorithms in the traditional tracking framework. New observa-

tions are not necessary at each frame. For example, Bayesian tracking algorithms,

such as particle filter, can predict the location of the target with quite high accuracy.

New observations are only needed at the initialization stage or when the tracking

algorithm is unacceptably degenerated. In this thesis, we propose a new framework

called detection-assisted-tracking. In this framework, we combine particle filter and

object detection algorithm in a different way. Particle filter still has the main role

while the detection algorithm is only meant to assist the tracking algorithm when

it needs help. This is in contrast to the tracking-by-detection framework, where the

detection algorithm has a major role.

In Chapter 2, we discuss tracking algorithms and object detection algorithms

in detail. Tracking and object detection algorithms are the heart of the proposed

detection-assisted-tracking framework. In this thesis, we will use particle filter for

tracking and histogram of oriented gradient (HOG) detector for object detection.

These two topics are also covered in detail in this chapter.

In Chapter 3, we describe the proposed framework and its implementation in great

detail. We will discuss how the particle filter algorithm and HOG detector are con-

nected and several design consideration. From the software engineering perspective,

the architecture of a software system is also very important. Thus, we also discuss

the software architecture of the implementation and present how it performs.

9

In Chapter 4, we use several real world video sequence to test our proposed frame-

work and see how well it works. We finally conclude the thesis in Chapter 6 and discuss

future work.

10

Chapter 2

Probabilistic Visual Tracking and

Object Detection

The proposed framework consists of two major parts: a visual tracking algorithm and

an object detection algorithm. There are two categories of methods that solve the vi-

sual tracking problem: deterministic and probabilistic. Deterministic approaches are

usually formulated as an optimization problem. However, deterministic approaches

are usually vulnerable to variable settings, such as illumination changes, target oc-

clusion and merge. On the other hand, probabilistic approaches tackle the tracking

problem from a statistical perspective: they try to find the optimum solution in the

statistical sense. These approaches are usually more reliable than the deterministic

ones.

An object detection algorithm is the other major part of the framework. If we

consider an image as a set of features, then the detection algorithm extracts these

features. Extracting the feature set usually involves intensity patterns, texture de-

tails and shape information [18]. For the detection algorithm, both generative and

discriminative approaches can be used [20] [21] [22]. Generative approaches usually

11

build a Bayesian model and solve an optimization problem on this model; discrimi-

native approaches use deterministic machine learning methods to determine whether

a feature set belongs to an object.

In this chapter we will discuss particle filter and histogram of oriented gradient

(HOG) detection algorithm in detail.

2.1 Overview of Bayesian Filtering

Filtering is the process of extracting information about a quantity of interest at a

certain moment using the data measured up to and including the moment. Bayesian

filtering is based on the well-known Bayesian theorem, which describes the funda-

mental probability law governing the process of logical inference. Bayesian approach

to statistical inference has become an important branch in statistics and is widely

applied to statistical decision, detection and estimation, pattern recognition and ma-

chine learning [23] [24]. Bayesian theory was also applied to filtering framework. One

of the earliest work on Bayesian estimation can be found in [25].

In Bayesian filtering framework, a system is described using state-space model.

The state-space approach focuses on the state vector. The state vector is an aggrega-

tion of all the states that are necessary for describing the system. In visual tracking

problems, the state vector may include, for example, the position and the velocity

of the target. However, not all the system states are accessible: in tracking prob-

lems the system states are what we want to know. To solve a dynamic system using

Bayesian filtering framework, two models are required: dynamic model and measure-

ment model [26]. Dynamic model describes how the system evolves with time, and

measurement model relates the noisy measurement to the states.

12

.

.uk−1

.xk−1

.zk−1

.uk

.xk

.zk

.uk+1

.xk+1

.zk+1

Figure 2.1: State-space model represented using a graphical model.

2.1.1 Formulation of Bayesian Tracking

To give a formal definition of Bayesian tracking, we need to first define the two models.

We first define the dynamic model describing the evolution of system state with time.

xk = fk(xk−1, uk−1, vk−1) (2.1)

where xk−1 and uk−1 are the system state and system input at time instance k − 1,

respectively; vk−1 is an i.i.d. noise sequence; fk is function of the system state xk−1

and noise process vk−1 and it may be a non-linear function [26].

Since in most cases we have no direct access to the real system states, a measure-

ment model or observation model is needed to perform inference on the system states.

The output of the measurement model is the observation that is directly accessible.

The measurement model defines how the system states are reflected the observation.

zk = hk(xk, uk, nk) (2.2)

where zk represents the measurement of the system at time instance k, hk may also

be a non-linear function and nk is an i.i.d. measurement noise. Fig. 2.1 shows a

graphical model representation of state-space model of a dynamic system.

The essence of tracking problems is to estimate the current system state using

13

all the observations obtained up to that time. Given the initial probability p(x0),

transition density p(xk|xk−1) and likelihood p(zk|xk), the objective is to estimate the

optimal current state xk using observations up to time k, z0:k = {zi, i = 1, 2, ..., k};

this is equivalent to estimating the posterior density p(xk|z1:k).

The posterior density can be calculated recursively by using Bayesian rule. We

make two assumptions when performing the recursive calculation:

1. The state transition is a one-order Markov process, that is p(xk|x0:k−1) =

p(xk|xk−1);

2. The current observation is only determined by the current state, that is p(z1:k−1|xk) =

p(z1:k−1).

Using Bayesian rule, we start from the posterior density:

p(xk|z1:k) = p(z1:k)p(xk)
p(z1:k)

(2.3)

= p(yk, y1:k−1)p(xk)
p(yk, y1:k−1)

(2.4)

= p(zk|z1:k−1, xk)p(z1:k−1|xk)p(xk)
p(zk|z1:k−1)p(z1:k−1)

(2.5)

= p(zk|z1:k−1, xk)p(xk|z1:k−1)p(y1:k−1)p(xk)
p(zk|z1:k−1)p(z1:k−1)p(xk)

(2.6)

= p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1)

(2.7)

To be more clear, we give names to the terms in (2.7):

1. Prior: p(xk|z1:k−1) contains the prior information. It can be calculated using

Chapman-Kolmogorov equation:

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.8)

14

2. Likelihood: The term p(zk|xk) is the likelihood of observing the measurement

zk when the system is in state xk. It determines the measurement noise model.

3. Evidence: The normalizing constant p(yn|y1:k−1) is called evidence. It can be

calculated as

p(zk|y1:k−1) =
∫

p(zk|xn)p(xn|z1:k−1)dxk (2.9)

The essence of Bayesian filtering or inference is to calculate the exact solution

or approximate solution of the above three terms. Although we have the recursive

expressions for them, it is generally difficult to obtain exact solutions. Exact solutions

can be obtained only when the posterior density is Gaussian for every time step, which

is known as Kalman filtering [27].

2.2 Monte Carlo Sampling

For most real world applications, the integrals in (2.8) and (2.9) are intractable.

Thus, it is impossible to obtain exact solutions for the system. Instead, we have to

use approximate algorithms to get approximate solutions.

Monte Carlo sampling denotes a class of the approximate algorithms. They con-

centrate on sampling from a given distribution and, using sampling and estimation

methods to obtain approximate solutions to mathematical problems.

Monte Carlo sampling is the heart of particle filters and is discussed here. Exam-

ples of Monte Carlo calculation and optimization can be found in [28] [29].

2.2.1 Problems to Solve

Monte Carlo sampling concentrates on solving two fundamental problems [30]:

15

• Generate samples {x(i)}Np

i=1 from a given distribution p(x), where p(x) is called

the target distribution.

• Estimate the expectation of a function f(x) under this probability distribution

p(x):

E[f] =
∫

f(x)p(x) d x (2.10)

To solve the first problem, we use a uniform distribution as the base and perform

transformation on it to obtain the target distribution. To solve the second problem,

we try to obtain a set of samples x(i) (where i = 1, ..., Np) drawn independently

from the target distribution p(x). When the number of samples is large enough, the

expectation in (2.10) can be approximated as

f̂ = 1
L

Np∑
i=1

f(x(i)) (2.11)

We encounter difficulties when solving the second problem. First, the samples x(i)

may not be independent, which makes the effective sample size much smaller than

the apparent sample size. Second, for many practical problems it is hard to directly

sample from the target distribution p(x). The later difficulty motivates the use of

proposal distributions.

2.2.2 Basics of Sampling Methods

We start with a pseudo-number generator. The pseudo-number generator is assumed

to generate numbers that are uniformly distributed over (0, 1). Thus, we need to

transform a uniform distribution to a given distribution that we are interested in.

Assume that x is uniformly distributed over (0, 1) and y is a function of x such

16

that y = f(x). From statistics we know that the distribution of y is given by

p(y) = p(x)∥d x

d y
∥ (2.12)

According to the assumption that x is uniformly distributed, we have p(x) = 1 in

the above equation. By integrating over y, we have

x = h(y) =
∫ y

−∞
p(ŷ) d ŷ =⇒ y = h−1(x) (2.13)

By choosing a function according to (2.13), we get an arbitrary distribution from

uniform distribution.

2.2.3 Importance Sampling

The goal is to sample a distribution in the region of importance, in order to achieve

computational efficiency. This is important for high dimensional problems where the

region of interest is relatively small compared to the whole data space.

The basic idea of importance sampling is to use a proposal distribution q(x)

to approximate the target distribution p(x) [31] [32]. The support of the proposal

distribution is assumed to cover that of the target distribution.

Assume, again, that the target distribution that we are interested in is p(x) and

the proposal distribution is q(x). Then we can express the expectation in (2.10) using

finite sum over samples x(i) drawn from q(x)

E[f] =
∫

f(x)p(x) d x =
∫

f(x)p(x)
q(x)

q(x) d x ≃ 1
Np

Np∑
i=1

p(x(i))
q(x(i))

f(x(i)) (2.14)

By defining the importance weight as W (x(i)) = p(x(i))
q(x(i)) , we can write the expecta-

17

tion as

E[f] = 1
Np

Np∑
i=1

W (x(i))f(x(i)) (2.15)

We normalize the importance weight and have the following expression for the

expectation

E[f] = 1
Np

Np∑
i=1

W̃ (x(i))f(x(i)) (2.16)

where W̃ is the normalized importance weight and is defined as

W̃ (x(i)) = W (x(i))∑Np

i=1 W (x(i))
(2.17)

The performance of importance sampling is crucially affected by the choice of

the proposal distribution q(x). If p(x)f(x) is strongly varying and has a significant

proportion of its mass concentrated over relatively small regions of x space, then a

large portion of the importance weights {W (x(i))} may be relatively insignificant,

resulting a much smaller effective sample size compared to the sample size Np. This

is a major drawback of importance sampling. To alleviate this drawback, resampling

must be applied according to certain rules.

2.2.4 Sampling-Importance Resampling

Sampling-importance-resampling is motivated by a collection of computationally in-

tensive methods, called bootstrap, that are based on resampling from the observed

data [33]. The goal of resampling is to eliminate the samples with small importance

weights.

The generic sampling-importance-resampling procedure includes the following steps:

1. Draw L samples {x(i)}Np

i=1 from the proposal distribution q(x);

18

2. Calculate the importance weight W (i) for each sample x(i);

3. Normalize the importance weight to obtain W̃ (i);

4. Resample with replacement N times from the sample set {x(i)}Np

i=1, where the

probability of resampling from each sample xi is proportional to W̃ (i).

The resampling step can be performed after each importance sampling, or when

necessary. To determine whether resampling is necessary, both dynamic and deter-

ministic strategies can be employed. Under the deterministic framework, resampling

step is taken out for every k importance sampling steps. Under dynamic framework,

the variance of the sample weights is monitored. Resampling is performed only when

the variance is above certain value. One commonly used method for determining

whether resampling is necessary is calculating the effective sample size N̂eff , defined

as

N̂eff = 1∑Np

i=1(W̃
(i)
n)2

(2.18)

A threshold NT is usually setup for N̂eff . If N̂eff < NT , then resampling step

is performed; otherwise no resampling step is performed. The advantage of dynamic

resampling framework is that it preserves desired performance while controls compu-

tational complexity to certain extent.

2.3 Particle Filters

Particle filters are also known as sequential Monte Carlo estimation. They work as

follows: The state space is partitioned into many parts and particles are filled in

according to certain probability measure; higher probability means denser particles.

The particle system evolves with time according to the dynamic model defined by an

19

evolving density function. Since the density function can be represented by point-

mass histogram, we can obtain a set of particles representing the evolving density

function by randomly sampling from the state space.

The core components in a particle filter are the sampling algorithm and the re-

sampling algorithm. Resampling is performed to restore the particle filter from de-

generation. Different types of particle filters can be obtained by combining different

sampling methods and timing of resampling.

2.3.1 Sequential Importance Sampling (SIS) Filter

To utilize sampling methods, we use a tuple, {x(i)
0:k, w

(i)
k }, to characterize the posterior

density p(x0:k|z1:k). {x(i)
0:k, i = 0, ..., Np} is a set of samples and {w

(i)
k , i = 0, ..., Np} is

the associated normalized weights. The posterior density can be expressed as

p(x0:k|z1:k) ≈
Ns∑
i=1

w
(i)
k δ(x0:k − x(i)

0:k) (2.19)

The weights {w(i)} are then selected according to the principle of importance

sampling: if it is hard to sampling from a given density p(x) but it is easy to evaluation

a proposed density q(x), then we can use samples from q(x) to approximate that

from p(x). If we sample {x(i)
0:k, i = 0, ..., Ns} from the proposed density q(x), then the

weights in (2.19) can be written as

w
(i)
k ∝ p(x(i)

0:k|z1:k)
q(x(i)

0:k|z1:k)
(2.20)

To calculate the importance weights in (2.20), we first assume that the proposed

20

density can be factorized in the following way

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) (2.21)

We can express p(x0:k|z1:k) in terms of p(x0:k−1|z1:k−1), p(zk|xk) and p(xk|xk−1):

p(x0:k|z1:k) = p(zk|(xk|xk−1))
p(zk|z1:k−1)

p(x0:k−1|z1:k−1) (2.22)

∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1) (2.23)

Then, we obtain the weight update equation:

w
(i)
k ∝

p(zk|x(i)
k)p(x(i)

k |x(i)
k−1)p(x(i)

0:k−1|z1:k−1)
q(x(i)

k |xi
0:k−1, z1:k)q(x(i)

0:k−1|z1:k−1)
(2.24)

= w
(i)
k−1

p(zk|x(i)
k)p(x(i)

k |x(i)
k−1)

q(xi
k|x(i)

0:k−1, z1:k)
(2.25)

= w
(i)
k−1

p(zk|x(i)
k)p(x(i)

k |x(i)
k−1)

q(xi
k|x(i)

k−1, zk)
(2.26)

where we assume that q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk) for the last line. This as-

sumption is useful when only one filtered estimation of p(xk|z1:k) is required for each

time step. Then the posterior density can be expressed as

p(xk|z1:k) ≈
Np∑
i=1

wi
kδ(xk − x(i)

k) (2.27)

Using the above derivation, the SIS filtering algorithm can be written as the

following pseudo-code. The algorithm recursively propagate the importance weight

and the initial samples.

21

Input: Initial particles and weights {x(i)
k−1, w

(i)
k−1}

Np

i=1 and observations zk

Output: Propagated particles and weights {x(i)
k−1, w

(i)
k−1}

Np

i=1
begin1

foreach i = 1 : Np do2

Draw x(i)
k ∼ q(xk|x(i)

k−1, zk)3

Calculate the importance weights w
(i)
k according to (2.26)4

Normalize the obtained weights5

end6

end7

Algorithm 1: The SIS particle filter

2.3.2 Sampling-importance Resampling (SIR) Filter

The SIS particle filter is simple to implement but has a common problem known as

degeneracy. As time evolves, more and more particles will have negligible weights.

This is described in [34] that the variance of the importance weights can only increase.

To alleviate degeneracy, resampling should be performed. It is worth noting that

although resampling can alleviate degeneracy, but cannot eliminate it. Meanwhile,

resampling brings new problems. For example, since the particles with larger weights

are statistically selected many times, the diversity of the particles decrease and the

resulting resampled particles include many duplicated ones.

The basic idea of resampling is to eliminate the particles with small importance

weight and replace them with the particles with larger importance weights. There

exist many resampling methods such as stratified sampling, residual sampling [35]

and systematic resampling [36]. Systematic resampling is the algorithm used in [37]

and preferred by the authors of [26] and will be used in our proposed framework.

Algorithm 2 shows the systematic resampling algorithm.

By combining the resampling algorithm and the SIS filtering algorithm, we obtain

the generic SIR filtering algorithm, as shown in Algorithm 3.

22

Input: A set of particles with weights {x(i)
k−1, w

(i)
k−1}

Np

i=1

Output: Resampled set of particles {x∗(i)
k−1, w

∗(i)
k−1}

Np

i=1
begin1

Let c1 = 02
foreach i = 2 : Np do3

ci = ci−1 + w
(i)
k4

end5
Set i = 16
Draw u1 ∼ U(0, 1

Np
)7

foreach j = 1 : Np do8
uj = u1 + N−1

p (j − 1)9

while uj > cj do10
i = i + 111

end12

x∗(j)
k = x(i)

k13

w
∗(j)
k = 1

Np
14

end15

end16

Algorithm 2: The resampling algorithm

2.4 Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) is an effective feature descriptor for object

detection. It is first introduced by Dalal and Triggs [18]. The descriptor counts the

occurrences of gradient orientation in localized portions of an image. HOG is simi-

lar to edge orientation histograms and scale-invariant feature transform descriptors

(SIFT) [38]; it differs from these methods in that it is computed on a dense grid of

uniformly spaced cells and uses overlapping local contrast normalization for improved

accuracy. The HOG detection algorithm combines the HOG descriptor with machine

learning algorithms to detect a certain class of objects in a given image.

23

Input: Particles from previous time step {x(i)
k−1, w

(i)
k−1}

Np

i=1 and current
observation zk

Output: Updated particles {x(i)
k , w

(i)
k }Np

i=1
begin1

foreach i = 1 : Np do2

Draw x(i)
k ∼ q(xk|x(i)

k−1, zk)3

Calculate the importance weights w
(i)
k according to (2.26)4

Normalize the obtained weights5

end6

t = ∑Np

i=1 w
(i)
k7

foreach i = 1 : Np do8

w
(i)
k = w

(i)
k

t
9

end10

Calculate ˆNeff using (2.18)11

if ˆNeff ≥ NT then12
Resample using Algorithm 2 to obtain a new set of particles13

{x∗(i)
k−1, w

∗(i)
k−1}

Np

i=1
end14

end15

Algorithm 3: The SIR particle filter

2.4.1 Rectangular HOG Descriptor

There are four types of HOG descriptors: rectangular HOG (R-HOG), circular HOG

(C-HOG), bar HOG and center-surrounded HOG. R-HOG is the simplest HOG de-

scriptor among the four and is used for object detection in the proposed framework;

detailed discussion about the other three HOG descriptors can be found in [39].

HOG descriptors are based on evaluating a dense grid of well-normalized local

histograms of image gradient orientations over the image windows. The idea of the

method is that the distribution of local intensity gradient or edge directions can char-

acterize local object appearance and shape quite well, even without precise knowledge

of the corresponding gradient or edge positions [39]. To calculate HOG descriptors,

an image is first divided into small spatial regions called cells. Larger spatial regions

24

called block are used to normalize the calculated histograms.

Overlapping square or rectangular grids of cells are used for calculating R-HOG.

The descriptor blocks are calculated over dense uniformly sampled grids and are

usually overlapped; each block is normalized independently. Using square R-HOG as

an example, the orientation histogram is calculated on a grid of ς × ς of cells of η × η

pixels, each of which contains β orientation bins [39].

2.4.2 Overall Processing Flow

HOG detection algorithm consists of two phases: learning phase and detection phase.

In the learning phase, the HOG features of known objects are used to train a binary

classifier; in the detection phase, the trained classifier is used to perform a dense

multi-scale scan for preliminary object decisions at each location of the test image

and these preliminary decisions are then used to get the final detection decision. The

processing flow of the two phases are shown in Fig. 2.2.

2.4.3 Feature Extraction

In order to train the binary classifier and perform detection, features must be ex-

tracted. The feature extraction process contains five major steps:

• Normalization: global image normalization/equalization is performed to reduce

the influence of illumination effects. Gamma (power law) compression, either

computing the square root or the log of each color channel, is used for this step

[39].

• Computing the gradient: first order image gradients are computed in this step.

The locally dominant color channel that provides color invariance is used to

perform the computation. These gradients provide information about contour,

25

Create normalized

training set

Encode images into

feature space

Train the binary

classifier

Detection decision

(a) Learning process

Scan the image at all

scales and locations

Run the trained

binary classifier

Fuse multiple

detections

Detected objects

(b) Detection process

Figure 2.2: The overall processing flow of HOG detection algorithm

silhouette and certain texture information; they also resist illumination varia-

tions.

• Encoding: The encoding is designed to be sensitive to local image content while

it still provides resistance to small changes in pose or appearance. The im-

age window is divided into smaller cells. For each cell accumulated local 1-D

histogram of gradient or edge orientations over all the pixels in the cell is calcu-

lated. This cell-level 1-D histogram is the basic form of orientation histogram.

The range of gradient angle is divided into a predefined number of bins. The

gradient magnitudes of the pixels in a cell are used to vote into the orientation

histogram.

26

• Normalizing the histogram: the gradient histogram calculated in the previous

step is normalized for further processing. Normalization provides better invari-

ance to illumination, shadowing, and edge contrast. The accumulated local

histogram energy over a group of local cells, known as a block, are computed to

normalize each cell in the block. There are overlaps among different blocks, that

is a cell is shared by several blocks; but each block has a different normalizing

constant. Therefore, a cell appears several times in the normalized histogram

but with different normalizing constant. This normalized histogram is known

as the histogram of oriented gradient (HOG).

2.4.4 The Classifier

Extracted HOG features are then used to train a classifier. A linear SVM is used in

[39] and will be used in our proposed framework as well. The SVM can be trained

using SVMLight [40]. With calculated SVM coefficients it becomes easy to perform

classification on observed HOG features.

2.4.5 Multi-scale Localization

To detect and precisely localize any objects that appear in the image, the detector

scans the image with a window at all positions and scales; the classifier is then

executed in each window and multiple overlapping detections are fused to obtain the

final detections. The following steps are used to perform the multi-scale localization:

• Computing scales: the scales are computed according to the normalized window

size used for training the classifier and the image size.

• Rescaling: bilinear interpolation is used to rescale the image at each scale.

27

• Classification: features are extracted on each scaled image and a dense scan is

performed; the detection results are stored in a list.

• Non-maximum suppression: each detection is first represented in 3-D position

and scale space; a mean shift vector is iteratively calculated for each point until

a convergence mode is reached and the list of all modes give the final results.

• Computing the bounding box: for each mode the bounding box is calculated

according to the final center and scale.

2.5 Conclusion

In this chapter, we have discussed particle filters and HOG object detection algorithm.

These are the two major parts in our proposed framework. With the knowledge of

the two major components, we can proceed to the details of the proposed framework

and how it is implemented.

28

Chapter 3

Detection-assisted Tracking by

Mobile Cameras

Now we have the preliminary knowledge for developing and implementing the detection-

assisted tracking framework. The goal of this framework is to perform robust visual

tracking using mobile cameras and without invoking object detection at every frame.

We first introduce the system architecture and then discuss each component in more

detail. Then, we describe the implementation on PC platform. Since smart cameras

are becoming more popular and they allow mobility, it is very important to detect ob-

jects without relying on static background subtraction. Thus, we have implemented

the proposed on embedded smart cameras and describe our initial results in Chapter

4.

3.1 System Architecture

Fig. 3.1 shows the architecture of the framework. The detector and the tracker

manager form the heart of the system. The detector provides observation to the

29

Detector Cue Extractor

Tracker Manager

request update

Tracker

Figure 3.1: Overview of the system structure

rest of the system. Cue extractor extracts various visual cues from the observations

and trackers use the extracted cues to perform visual tracking. Since the framework

is designed to track multiple objects, there is a tracker manager for maintaining all

trackers. The tracker manager creates a new tracker when there is a new observation.

In the initialization stage, the detector is invoked to provide the initial obser-

vations. The tracker manager creates trackers according to the initial observation.

The tracker manager is also responsible for maintaining the states of trackers such as

whether they need correction. For each frame, tracker manager checks each existing

tracker to see whether it needs new observation and report this to the system. Then,

the system invokes object detector for the next frame according to this information

and provides the new observation to the tracker manager. The observation is pro-

vided as a list of regions of interest (ROI). Tracker manager then dispatches these

observations to the trackers that need correction.

3.2 Detector

In the implementation, we use the standard histogram of oriented gradient (HOG)

human detector. HOG human detector was first introduced in [18]. As discussed in

30

Chapter 2, the basic idea of HOG is that local visual features can be characterized

well by the distribution of local intensity gradients or edge directions. An image

is divided into cells and 1-D histograms of gradient direction are calculated. The

calculated histograms are then normalized over cells to get the HOG. A support

vector machine (SVM) is then trained to classify human and non-human regions.

3.3 The Tracker

There are various choices for trackers. The simplest tracker can be implemented by

performing simple data association. For each region detected by the detector, a simple

feature, such as color histogram, is calculated. Then the features are associated across

frames by maximizing the similarity between two regions in two different frames. This

method is simple, however, it is vulnerable to changes in environment settings such

as lighting and it is difficult to handle complex scenarios such as occlusion.

Instead of using the simple data association approach, we use particle filter-based

trackers in our implementation. As discussed in Chapter 2, particle filter is a prob-

abilistic tracking method; instead of setting fixed threshold for associating data, it

uses the prediction-correction approach. The tracker is continuously corrected by

newly available observations. It is more robust to environmental changes and can

handle occlusions better. Each tracker corresponds to a target in the scene so that

the system can track multiple targets.

As discussed in Chapter 2, there are many types of particle filters. SIR (sampling-

importance resampling) particle filter is one of the simple yet powerful particle filters.

In a standard SIR particle filter [37], the resampling stage is performed for every time

step. However, it is not necessary to perform resampling stage so frequently. In our

implementation, a slight modification is done. Instead of perform resampling for each

31

time step, we perform resampling according to a certain predefined criterion, which

will be discussed below.

One of the important steps in implementing particle filter is the calculation of the

importance weight. According to the discussion in Chapter 2, the importance weight

is calculated as

wi
k = wi

k−1p(zk|xi
k) (3.1)

where xk is the particle filter state at time step k and zk is the observation at time

step k. The term p(zk|xi
k) is in fact the likelihood; it can be calculated by comparing

the state of particles with the observations.

At the initialization stage, all the particle weights are set to w = 1
Np

where Np is

the number of particles. To decide when to perform resampling, we define the number

of effective particles, Neff [35]. However, it is impossible to calculate the exact solution

for Neff , we use N̂eff to approximate Neff ; N̂eff is calculates as

N̂eff = 1∑Np

i=1(wi
k)2

(3.2)

Then a predefined ratio, peff , is used to decide whether resampling should be per-

formed. If N̂eff ≤ peff × Np, then resampling is performed; here 0 ≤ peff ≤ 1.

A tracker is not only a particle filter in the proposed framework. It contains

the tracking algorithm and other necessary algorithms such as fusing algorithms for

combining multiple visual cues and classification for selecting the best observation.

Particle filter is an instance of tracking algorithm and is used in our implementation.

32

3.3.1 The Observation Model

The observation model is one of the core components in particle filter tracking. The

observation model defines how the measurements are related to the system states. The

cue extractor in Fig. 3.1 is responsible for generating the observation model. Many

features, such as color or intensity histogram, shape or texture of the target, can be

selected as visual cues for the observation model. Color histogram is a commonly

used visual cue for many vision applications. It is relatively easy to calculate yet

provides details of the object. Therefore, we use color histogram for the observation

model in our framework.

Representation Different from intensity histograms, we have to consider all the

three components in a color histogram. 3-D color histograms are used for the observa-

tion model. Each color component has a range of [0, 255]; then this region is equally

divided into N sub-regions. Then, the 3-D color histogram contains a N -D vector for

each color component, (r, g and b). Each component of the N -D vector represents

the number of pixels whose corresponding color value falls into the corresponding

range. We use p = {pi}N
i=1 to denote the color histogram.

Similarity A similarity measure for two color histograms is necessary to calculate

the importance weights. A lot of similarity measures exist, such as Kullback-Leibler

distance, sum of square distance, etc. The Bhattacharya coefficient is the one com-

monly used to measure similarity between two histograms and is defined as:

B = B[p, q] =
N∑

i=1

√
piqi (3.3)

33

Upper part

Lower part

Figure 3.2: The divided histogram. For a detected object, it is divided into two parts
and the overall similarity is calculated on the two parts.

Divided Histogram To make color histogram a more reliable descriptor, we equally

divide the target region into two parts and then combine the similarity of the two

parts, as shown in Fig. 3.2. This is based on the fact that the color appearance is

usually consistent for shirts and pants, respectively. Assume that the similarities of

the two parts are B1 and B2 respectively. Then the overall similarity is calculated

using

B = α1 × B1 + α2 × B2 (3.4)

In our implementation, we consider the two parts to have the same importance

and therefore set α1 = α2 = 0.5. The overall similarity B is used to measure the

similarity between two histograms.

Determining the Best Observation It is possible that the detector returns more

than one candidate target regions. Trackers are responsible for choosing the best

observation when more than one ROI is returned. The following two criteria are used

to determine this and a similarity score is calculated using these two criteria for each

34

ROI. The comparison is made between a tracker and each candidate target region.

The candidate that is most similar to the tracker is selected as the new observation

and is used to update the tracker.

1. Color histogram: it measures the similarity of appearance; this is the most

intuitive criterion. The color of a detected region must match that of the tracker

in order to become a valid candidate.

2. Distance in image: the distance between a detected region and the tracker.

This is used to eliminate false detections. This is based on the fact that the

movement of a person is continuous. If a detected region has a very similar

appearance but is far from the tracker, then it will not be considered as a valid

candidate.

To describe how the similarity score is calculated, we first define the operator []:

[x] =


1 x ̸= 0

0 x = 0
(3.5)

Let di denote the distance in image space and si the similarity of the color his-

tograms; they are for the ith candidate ROI and the tracker, respectively. Let wd be

the score for measuring the distance di and dth denote the predefined threshold for

distance. Then, we define the following expression for wd.

wd = (1 − di

dth

× di)[di ≤ dth] (3.6)

Let ws denote the score for measuring the similarity of color histograms and sth

denote the corresponding threshold. We define ws as follows.

35

ws = si × [si ≥ sth] (3.7)

Let βs and βd be the weights associated with color histogram and distance, re-

spectively. The best candidate ROI will then be calculated by solving the following

optimization problem, where the superscript i indicates the ith candidate, βs and βd

satisfy that 0 ≤ βs ≤ 1, 0 ≤ βd ≤ 1 and βs + βd = 1.

C = argmax
i

(β(i)
s w(i)

s + β
(i)
d w

(i)
d) (3.8)

3.3.2 The Dynamic Model

Besides the observation model, particle filter also needs a dynamic model to work.

The dynamic model describes how the system states transit. Many system variables

can be selected for the space model. In our implementation we use the position of

the target in the image space, x = {x, y}.

A simple dynamic model is used to propagate the system state. We assume that

the position of the target is offset by a random value at each time step. Since both the

target and the camera may be moving, it may not be suitable to assume a constant

velocity model. Therefore, we use the random offset model to describe the movement

of the target. The dynamic model is defined in (3.9).

(x, y)t = (x, y)t−1 + (∆x, ∆y) (3.9)

36

Tracker

Detector

Tracker

Manager

Request

for correction

Invoke

Correct

at next frame

Figure 3.3: The procedure of correcting trackers. A tracker is aware of whether it
needs correction; it sends request to the tracker manager. Then the tracker manager
invoke the detector at the next frame.

where ∆x and ∆y are the increment of position and satisfy

p(xk|xk−1) ∼ N (µx, σx) (3.10)

p(yk|yk−1) ∼ N (µy, σy) (3.11)

The values of µ and σ are set by experiments to achieve the best performance.

3.3.3 Correcting Trackers

If the tracker can always track the target accurately, then it is not necessary to use

a detector. However, as discussed in Chapter 2, particle filters degenerate with time,

i.e. particle filters become less and less accurate as time goes. Therefore, we must

have certain means for correcting trackers and putting them into good states so that

they can perform tracking accurately. In our framework, we use HOG detector for

this purpose. At each frame the trackers check themselves for degeneracy. If any

of the trackers finds that it has degenerated, then it reports to the tracker manager

and the detector will be invoked at the next frame. Fig. 3.3 shows the correction

procedure.

37

3.3.4 The Timing of Correction

The detector is only invoked to assist the trackers when needed. We use the de-

generacy state of the particle filter for determining whether the detector should be

activated. Two different criteria are discussed in this section: the absolute number of

resampling and the rate of resampling. For the absolute number of resampling each

tracker maintains the number of resampling performed; for the rate of resampling

each tracker maintains the number of frames between two resampling stages.

Absolute Number of Resampling Recall that we use the number of effective

particles, Neff , to describe the degree of degeneracy of a particle filter. Once the ratio
Neff
Np

reaches the predefined threshold peff , then resampling will be performed.

Although resampling is aimed at alleviating degeneracy, it cannot completely elim-

inate degeneracy. When the particle filters degenerate, the performance becomes

worse. Each tracker maintains the number of resampling performed, Nresampling, to

monitor the degeneracy. Since resampling occurs when the degeneracy is no longer ac-

ceptable, Nresampling is a good criterion for monitoring degeneracy. When Nresampling is

above a predefined threshold Nth, then the tracker will report that it needs correction.

Rate of Resampling Another criterion for determining whether detector should

be invoked is the rate of resampling. We measure it as frames per resampling, i.e. the

number of frames between two samplings. This is a local feature of video sequence

describing how fast the tracker is degenerating at this moment. If the tracker is

degenerating fast enough, then we invoke the detector to correct the tracker.

38

3.4 Implementation

In this section we will discuss implementation of the proposed framework in detail.

The framework has been implemented and tested on PC platform. An initial attempt

of implementing this framework on embedded smart camera platform has also been

made. We will first describe the PC implementation and then the attempt on CITRIC

smart camera platform.

3.4.1 PC Platform

The implementation on PC platform is done using C++, Qt and OpenCV 2.2; Qt is

used for user interface and OpenCV is for common image processing tasks. The basic

idea of implementing the framework is to utilize publicly available libraries whenever

possible and to make the implementation extensible.

3.4.1.1 Implementation Overview

Fig. 3.4 is an overview of the implementation on PC platform. As shown in the

figure, the Pipeline is top level component; it contains all the functional parts, such

as VideoCapture, ObjectDetector and TrackerManager, and necessary glue logic

that combine all the components together. The Pipeline exposes a very interface:

Start and Stop whose functions are as the name suggest. A utility function called

TakeSnapshot is also provided for saving screenshots to disk files.

VideoCapture is the input component; it supports input video data from both

disk files and video devices such as webcam. We directly use cv::VideoCapture

class from OpenCV for VideoCapture component. VideoCapture outputs a serial of

39

frames in the form of OpenCV’s matrix objects, cv::Mat. The frame sequence is

then sent to the Detector for further processing.

ObjectDetector is the one of the two core components in the framework. It em-

ploys HOG-based human detection algorithm to detect humans in an image. Since

OpenCV provides a class called cv::HOGDescriptor, we use this class to imple-

ment our object detector. cv::HOGDescriptor contains a default SVM trained

for detecting humans; we find it performs well on our data so we keep the default

SVM. ObjectDetector takes as input an object of cv::Mat containing a frame and

returns a list of possible regions corresponding to humans. The detected regions are

directly sent to TrackerManager. The detector’s only responsibility is to discover any

possible regions; it does not associate the detected regions to corresponding trackers.

ObjectDetector also provides a simple interface containing only two functions: Init

and Run, for initializing the detector and running detection on a frame.

TrackerManager manages all the trackers in the system and is responsible for

associating detected regions to trackers. TrackerManager can be considered as the

top level interface of trackers; it maintains a list of all trackers and contains glue logic

for managing the trackers. TrackerManager takes a cv::Mat object containing a

frame and a list of detected regions as input and directly outputs the tracking results.

It is also responsible for determining whether any tracker needs correction. In the

common operation, Pipeline queries TrackerManager for the need of correction at

each frame. TrackerManager and trackers are discussed in detail below.

VideoOutput outputs processed video data to a specified disc file. It also outputs

processed data to screen. OpenCV provides cv::VideoWriter class for archiving

40

Video

File

Video

Device

Video

Capture

Object

Detector

Tracker

Manager

Video

Output
Pipeline

Figure 3.4: Overview of implementation on PC platform. The Pipeline is the top
level component; it contains all the functional components and necessary glue logic.
VideoCapture is responsible for input video data, supporting both video file and video
devices. TrackerManager is responsible for managing trackers. VideoOutput is respon-
sible to output processed video data, to both screen and disk files.

video data to disk files; we use this class to perform the same task. Every processed

frame is encapsulated in a cv::Mat object and is sent to this component.

3.4.1.2 TrackerManager and Trackers

The TrackerManager maintains all the trackers and related control logic. The man-

ager maintains a list of trackers. TrackerManager is the interface through which

trackers interact with the other components in the framework; it is responsible for

the following tasks:

• Creating new trackers

• Associating newly detected regions to the correct tracker

• Determining whether any tracker needs correction.

Trackers are self-contained components in the implementation. To make the sys-

tem flexible, all trackers share a common interface defined in TrackerBase and

41

are derived from this interface. The TrackerBase interface supports the following

operations:

• Run: perform tracking task on the provided frame;

• DrawParticles: draw the bounding box of the target in the frame;

• NeedCorrection: determines whether the tracker itself needs correction;

• CorrectTracker: performs the actual correction for the tracker.

At each frame, the tracker manager polls all the trackers that it maintains and

checks whether there is any tracker that needs correction. If there is any, then the

tracker manager notifies Pipeline and the detector will be invoked. Upon receiving the

detected regions, the tracker manager passes the regions to the trackers; the trackers

will then pick the best regions.

The main part of trackers is a Bayesian filter. In the implementation, a com-

mon interface for Bayesian filter, BayesianFilter, is defined. BayesianFilter

provides a similar set of functions as TrackerBase except that it also outputs

the expected position of the target. Any other Bayesian filters are expected to use

BayesianFilter interface.

We have implemented a more concrete class ParticleFilter that implements

BayesianFilter interface. As described in Chapter 2, different types of particle fil-

ters can be obtained by using different sampling methods. Therefore, ParticleFilter

also serves as the foundation of particle filters. However, ParticleFilter inter-

face adds Resample to BayesianFilter since particle filters needs resampling to

alleviate degeneration while some Bayesian filters, such as Kalman filter, do not need

this step.

42

TrackerManager TrackerBase

Tracker_Color

1 n

BayesianFilter

ParticleFilter

ParticleFilter_Color_2
1

1

ParticleFilter_Color

Figure 3.5: The relationship of TrackerManager, Tracker and ParticleFilter. It is
easy to introduce new types of Bayesian filters and trackers to extend the system.

Fig. 3.5 summarizes the relationship among TrackerManager, Tracker and Par-

ticleFilter. It is easy to extend the system deriving from the base classes. For

example, a KalmanFilter class, which performs Kalman filtering, can be de-

rived from BayesianFilter implementing required interface. To corporate the

KalmanFilter into the system, we can define Tracker Kalman that derives

from TrackerBase.

43

3.4.2 CITRIC Platform

In addition to implementing the proposed framework on PC platform, we also im-

plemented the HOG-based detector on the CITRIC platform. CITRIC is a Linux-

powered embedded smart camera platform that was introduced in [41]. The platform

is equipped with an XScale processor and a CMOS image sensor and runs a cus-

tomized Linux operating system. Detailed information on the platform is provided

in Section 4.1.1.

Due to the limited resources of the embedded camera, the training stage is per-

formed on a PC. The size of each training sample is 64 × 128. A trained SVM vector

is then ported onto the camera board.

For the HOG descriptor, unsigned orientations, spanning from 0 to 180 degree,

in conjunction with 9 histogram bins are used to achieve the best performance. The

size of the sliding window, the cells and the blocks are 64 × 128, 8 × 8 and 2 × 2,

respectively. The overlapping between the blocks in the normalization step is 1. To

handle the problem of different resolutions between the training samples and the test

image, the test image is downsampled to multiple levels to search the possible positive

detections. The final decision is made based on the distance between the HOG feature

vector and the trained SVM vector.

The HOG calculation and classification are performed on the camera board. The

frames are captured by the image sensor. After each frame is captured, it is searched

through for the positive detections. Once a target object is found, a rectangle is

drawn around the object. Then, this frame is saved in the camera.

44

3.5 Conclusion

In this chapter we have discussed the design and implementation of the proposed

framework in detail. A full implementation of the proposed framework is done on PC

platform using C++ and OpenCV 2.2. The proposed framework itself is extensible:

any proper tracking and detection algorithms can be put in the places of tracker and

detector. When implementing the framework, extensibility is also considered. As

described in Section 3.4.1, it is easy to employ other types of Bayesian filters into the

framework. We have also ported part of the framework onto the CITRIC embedded

smart camera platforms. In the next chapter, we will look at the performance of the

framework, on both PC and CITRIC platforms.

45

Chapter 4

Experiments and Evaluation on PC

Platform

The experiments and evaluation are divided into two parts: on PC platform and on

CITRIC platform. In this chapter we evaluate our implementation of the proposed

framework on PC platform and on CITRIC platform in Chapter 5. The framework

is extensible by plugging in different components. Although any object detection

algorithm, such as detectors for cars or faces, can be used in our framework, we mainly

focus on human detection in this thesis. We first describe how the experiments are

performed and then present the experimental results.

4.1 Overview

For evaluating the PC implementation, we use the BoBoT dataset maintained by

Bonn University [42]. The video sequences in BoBoT dataset are of size 320 × 240

and contain both human and objects. Since we mainly focus on human tracking, we

only use the sequences that contain human. These sequences are recorded using a

46

Name Size Length (frames) Features
Seq. D 320 × 240 1118 Moving camera, one target
Seq. F 320 × 240 432 Moving camera, occlusion, similar object
Seq. I 320 × 240 998 Moving camera, occlusion, many similar objects

Table 4.1: Summary of testing video sequence

moving camera and the trajectory of the camera is not known beforehand.

4.1.1 PC Platform

We use Ubuntu 10.10 for the PC platform. The computer is equipped with a dual

core Intel E8600 CPU running at 3.33 GHz. The computer has 3G memory. The

implementation uses OpenCV 2.2. We compiled OpenCV 2.2 from source on our

computer. The platform also contains Qt4 and Boost library which are used in the

implementation.

4.2 Evaluation of PC Implementation

We first present the tracking results of the PC implementation. We use Seq. D, Seq.

F and Seq. I for the experiments and the video sequences are all of size 320 × 240.

Table 4.1 summarizes the information about the three testing video sequences.

4.2.1 Tracking without Correction

Fig. 4.1 shows the tracker performance with increasing number of particle filter re-

sampling on video Seq.D. We can observe from the figure that the performance of the

tracker is degrading. The degeneracy of the tracker is not quite severe since for this

part of the video, the person and the camera are not performing significant movement.

47

(a) Frame 0 (b) Frame 10 (c) Frame 20

(d) Frame 30 (e) Frame 40 (f) Frame 50

Figure 4.1: The performance of the tracker with increasing number of resampling.
The video is recorded by a moving camera. Figures (a) - (f) correspond the resam-
pling count of 0, 10, 20, 30, 40 and 50 where (a) shows the initial detection. The
performance degrades when resampling count increases.

Fig. 4.2 shows the performance of the tracker Seq. F. From (a) to (f), the number

of resampling increases from 0 to more than 170. In this video sequence, the person

is walking and the camera is following the person. The degeneracy of the tracker

becomes obvious under such significant movements.

4.2.2 Tracking with Detector

We ran the experiment on video Seq. F again, this time with the assistance of the

detector. The results are shown in Fig. 4.3. In all the experiments, the threshold

Nth is set to 30. This video sequence has 452 frames in total and the detector is

invoked only 81 times. It is also worth noting that the detector may be invoked more

48

(a) Frame 0 (b) Frame 10 (c) Frame 20

(d) Frame 30 (e) Frame 40 (f) Frame 50

Figure 4.2: The performance of the tracker with increasing number of resampling
on another video sequence. In this video sequence both the person and the camera
are moving significantly: the person is walking down a hallway and the camera is
following the person. From (a) - (f), the number of resampling increases from 0 to
more than 170. The bounding box output of the tracker is deviating from the target.

than once for one correction request. This is due the observation selection scheme

described in Section 3.3.1. If the tracker determines that no desired observation is

provided, then the tracker keeps on requesting new observation. From the figures we

can see that the tracking is much more accurate.

4.2.3 Handling Occlusion

We also tested the ability of handling occlusions and existence of similar targets using

Seq. F. Fig. 4.4 shows the scenario where occlusion occurs. The person is occluded

by the pillar in the middle of the video. The results show that our framework is able

49

(a) (b) (c)

(d) (e) (f)

Figure 4.3: These figures show the performance of the tracker with the assistance
of the detector. This is the same video sequence used in Fig. 4.2. Figures (a) - (f)
show the bounding box output of the tracker throughout the whole video sequence.
The threshold of the resampling count for correcting the tracker is set to 30. Better
localization of the target is achieved with the help of the detector.

to handle occlusions.

4.2.4 Handling Similar Objects

Fig. 4.5 shows a scenario where similar objects coexist in the scene. When the detector

is invoked, two objects are detected and both ROIs are sent to the tracker. The tracker

discarded the ROI of the disturbing object according to the selection scheme. These

results show that the proposed framework is able to handle situations where similar

objects exist.

50

(a) (b) (c)

Figure 4.4: A scenario with occlusion, where the detector correction is turned on. (a)
shows the instance when a new detection is performed.

(a) (b) (c)

Figure 4.5: A scenario where similar objects coexist. The detector correction is
turned on. A person wearing similar clothes appears in the middle of the video. Our
framework is able to handel situations where similar objects coexist.

4.2.5 Handling Crowded Scenes

We also tested the proposed method on a more challenging (Seq. I) where both the

camera and the target are moving forward. There are multiple similar objects in

the scene and they sometimes occlude the tracked target of tracking. The tracker

correction stage is performed multiple times during the presence of the distracting

objects, and the tracker is able to choose the correct observations. This sequence has

1016 frames in total and the detector is invoked 26 times. The results are shown in

Fig. 4.6. We can see from the results that our proposed framework is able to handle

51

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: Results on a challenging scenario where both the target and the camera
are moving forward and multiple similar objects exist.

such complicated scenarios without performing the object detection at every frame.

52

4.3 Conclusion

In this chapter we demonstrated the implementation of the proposed framework on PC

platform. Unlike other detection based tracking framework, the proposed framework

uses detection as an assistant to the tracking algorithm. To handle the existence of

multiple object when the detector is activated, we also developed a scheme to help the

tracker select the correct observation. The results show that our proposed framework

is able to handle complicated scenarios such as occlusion and existence of multiple

similar objects.

53

Chapter 5

Experiments and Evaluation on

CITRIC Platform

In this chapter we present the performance of the HOG-based human detector running

on static and mobile embedded smart cameras. We show the outputs and report

the processing times on four different scenarios. One thing to note is that target

detection and tracking from videos captured by mobile cameras is a challenging and

computationally expensive task even for powerful computer platforms. Yet, it needs

to be performed on the embedded platforms, as the next step of having operational

mobile embedded smart cameras. The presented results are promising, and provide

insight on the capabilities and limitations.

5.1 Overview

For evaluating the implementation on CITRIC platform, we use realtime data, i.e.

we use CITRIC to capture video sequences and process them online, then the results

are kept in the camera. A CITRIC camera is mounted on a remote-controlled car so

54

Figure 5.1: The CITRIC camera is mounted on a remote-controlled car.

that we obtain a mobile platform; this is shown in Fig. 5.1.

5.1.1 CITRIC Platform

The CITRIC platform is a Linux-enabled embedded platform. The camera board is

composed of an image sensor, a fixed-point microprocessor, external memories and

other supporting circuits. The camera is capable of operating at 15 frames per second

(fps) in VGA and lower resolutions [41]. Fig. 5.2 shows the camera board.

The image sensor of the camera board is a Omni Vision OV9655, which is a

low voltage SXGA CMOS image sensor and designed to perform well in low-light

conditions. It supports image sizes SXGA (1280 × 1024), VGA (640 × 480), and any

size scaling down from VGA. The microprocessor PXA270 is a fixed-point processor

55

Figure 5.2: The CITRIC camera board.

with a maximum speed of 624MHz and 256KB of internal SRAM. It is capable of

working in low voltage and low frequency, as low as 0.85V and 13MHz, to achieve low

power consumption. Besides the internal memory of the microprocessor, the PXA270

is connected to a 64MB of SDRAM and 16MB of NOR FLASH. A USB-to-UART

bridge controller is connected between the PXA270 UART port and the USB port

on a personal computer. The camera board can be powered by the USB port from a

personal computer, or four AA batteries.

We have run all of our experiments in QVGA (320 × 240) resolution. The algo-

rithms run on the embedded Linux system imported onto the microprocessor. The

frames of interest can be saved in JPEG format on the SDRAM.

5.2 Evaluation of Embedded Implementation

As an intial attempt, to implement the framework on embedded smart cameras, we

have ported the core component, the detector, to the CITRIC camera. Since this is

56

the preliminary stage of our work, we still keep the floating point calculations in the

program to achieve the a performance as on PC. Thus, the processing speed of each

frame on the embedded camera is much slower than in a PC, as expected. One of our

future works is optimizing our program by implementing float point calculations by

fixed point, or making the program more memory efficient to save from both memory

accessing time and power.

To improve the processing speed of the current algorithm, we explore adding some

reasonable assumptions based on our applications. For example, we may only need

to watch an ROI in the view, instead of searching the whole frame. If the ROI

is much smaller than the whole frame, the processing time of each frame decreases

significantly.

The specification of the CITRIC platform is described in Section 4.1.1 and is

repeated here: the microprocessor on the camera mote is PXA270, a fixed-point

processor from Marvell with a maximum speed of 624MHz and 256KB of internal

SRAM. In order to achieve good performance, we use the floating point operations

in the HOG detection algorithm. Since the processor of CITRIC camera mote does

not contain a floating point processor, the detector is expected to run slowly on the

mote. We can expect better performance on more recent embedded processors.

5.2.1 Running on Whole Frame

In the first scenario, we performed human detection on the whole frames captured by

the camera mote. The camera mote was held by a person who was moving around.

Fig. 5.3 shows the detection result. As can be seen, even though the background is

complex and continuously changing, the detector can successfully detect the person(s)

in the scene. In Fig. 5.3b, two people in the scene are close to each other, and the

57

(a) (b) (c)

Figure 5.3: The detection results when the camera was held by a person who was
moving around. The detector can handle cases where two people are close to each
other, and is robust to illumination changes.

detector is able to correctly detect both of them. In addition, in Fig. 5.3a through

Fig. 5.3c, we can observe certain changes in illumination. he HOG-based detector is

robust to these changes, and shadow effects. It takes 37 seconds to perform detection

on a frame of size 320 × 240. As mentioned above, having no hardware support for

floating point operations contributes to this.

5.2.2 Accelerating by Reducing Frame Size

In order to see the effect of the size of area that is processed, we implemented the

second scenario. In this experiment, the camera is static and observes the door

to detect when someone passes through the door. Since the door only occupies a

relatively small portion of the whole frame, we cropped a whole frame into a smaller

image. Fig. 5.4 shows the detection results for such a scenario. The size of the cropped

portion is 80 × 170. It takes around 4.5 seconds to perform the detection on the

microprocessor, which is much faster than processing the whole frame. Therefore, by

carefully choosing the region of interest (ROI), it is possible to decrease the processing

time. However, such an assumption will limit the application to static cameras since

58

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Detection results when the camera is fixed and only a portion of a frame
is sent to the detector. The detector can correctly handle such conditions and the
running time is reduced significantly.

the ROI will change as the camera moves.

5.2.3 Moving the CITRIC Camera

We have two different scenarios for mobile camera setting. In first scenario, the

CITRIC camera is mounted on a remote-controlled car, and the car is driven around

in a room. Fig. 5.1 shows the setup used in our experiments. In this case, the camera

is close to the ground since it was directly mounted on the car, resulting in an oblique

59

view of people. No assumption is made on how the car could move, i.e. the car can be

freely driven around the room. Such a scenario is of interest for robotic applications

where a camera-equipped robot or vehicle roam around a space to detect targets.

Since camera can move around in any direction, we did not crop the frames. Thus,

the frame size for processing is 320 × 240, and it takes around 37 seconds to process

a frame.

Fig. 5.5 shows the detection results. We can see that the detector performs well

in this scenario despite the cluttered background. Also note that even though the

image in Fig. 5.5f is blurred due to camera movement, we can still successfully detect

the person.

In this second scenario, we kept the camera mounted on the car but used a tripod

to lift the camera, and thus have a better field of view. The car is driven along a

hallway. To be able to perform cropping and see its effect, two assumptions are made:

(a) the car moves along the hallway along almost a straight line, (b) A person does

not get too close to the camera. Since the camera is moving, we do not crop the frame

in the horizontal direction, i.e. keep the full width of the frame. Under the above

assumptions, we can crop the frame vertically. We have cropped 60 rows from the top

of each frame. Thus, the size of the cropped image is 320×180. It takes 20 seconds to

process a frame. Since we are using the full width of the frame, the processing time is

longer than the second scenario. Fig. 5.6 shows the detection results for this scenario.

As can be seen, the detector can handle the changes in both color and illumination.

5.2.4 Adaptive Frame Cropping

From previous experiments, we can see that the performance can be significantly

improved by reducing the frame size. Inspired by this, we designed this scenario.

60

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Detection results when the camera is mounted on a remote-controlled car,
which was driven around in the room.

61

(a) (b)

(c) (d)

(e) (f)

Figure 5.6: The camera is mounted on a remote-controlled car and is driven along a
hallway. The image is cropped vertically to reduce the processing time.

62

In this case, we dynamically determine the frame size. Frames are only cropped

vertically, i.e. we keep the full width of frames. We assume that a person always

walks on the ground. This yields the fact that a person only appears in a certain

portion of a frame. Therefore, the idea is to estimate the region where a person

may appear. We start by detecting people in the whole frame. If we have successful

detections in following frames, then we record the boundary of each detected person

as shown in Fig. 5.7a. Within each frame i, the minimum value of Upper, U
(i)
min and

the maximum value of Lower, L(i)
max, are evaluated across all the detected persons.

Each U
(i)
min and L(i)

max are compared across frames to get the global minimum and

maximum, Umin and Lmax, which define the region where targets may appear. This

is expressed in the following equations:

U
(i)
min = mink(y(i)

k) (5.1)

L(i)
max = maxk(y(i)

k + hk) (5.2)

Umin = mini(U (i)
min) (5.3)

Lmax = maxi(L(i)
max) (5.4)

To handle boundary conditions, we pad 10 pixels to Uppermin and Lowermax for

the cropping. However, it is possible that the target moves outside the boundary

but is still inside the field of view of the camera. To handle such a condition, it

is necessary to revert to processing the whole frame. We use a simple criterion for

this experiment: if we detect nothing within 10 successive frames, then we revert to

processing the whole frame on 11th frame. Once we revert to the default operation, the

above procedure restarts. The procedure for adaptive cropping is shown in Fig. 5.7b.

The camera is again mounted on the top of the remote-controlled car. The de-

63

Upper

Lower

(a)

Start with the

whole frame

Detect

Find region where

people appear

Crop next frame
No detection

in successive

10 frames

(b)

Figure 5.7: The boundary of a detected object and flow for automatic cropping.
The boundary of a detected object is defined as Fig. 5.7a; note that in the image
coordinate, the values of Upper is smaller than that of Lower. Fig. 5.7b shows the
procedure for automatically crop a frame.

tection results are shown in Fig. 5.8. The camera starts with processing the whole

frame. Fig. 5.8b, Fig. 5.8c and Fig. 5.8d shows that the camera has detected a person

and started estimating the boundaries. Fig. 5.8e shows the first frame when the cam-

era reverts to the default mode due to the lost of target. In this frame, the camera

is working in default mode and detects a person. Then, the camera estimates the

boundaries and crops the next frame, as shown in Fig. 5.8f. The average processing

time for each frame is around 6 seconds.

Table 5.1 summarizes the performance as well as camera settings of the different

processing methods used on CITRIC platform.

64

(a) Frame 0 (b) Frame 6

(c) Frame 14 (d) Frame 15

(e) Frame 62 (f) Frame 70

Figure 5.8: The camera is automatically cropping the frame. In Fig. 5.8a the camera
starts with processing the whole frame. In Fig. 5.8b, the boundaries are estimated
using the detected target and following frames are cropped. In Fig. 5.8c and Fig. 5.8d
estimated boundaries are updated using the detection results. In Fig. 5.8e the camera
reverts to the default mode due to lost of target. When the camera detects a person
again, it restarts the adaptive cropping flow, as shown in Fig. 5.8f.

Processing Method Performance (sec/frame) Camera Setting
Whole frame 37 Static

Frame cropped to 80 × 170 4.5 Static
Frame cropped to 320 × 180 20 Moving

Adaptive frame cropping 6 Moving

Table 5.1: Summary of performance on CITRIC platform

65

5.3 Conclusion

Towards the goal of performing object detection and tracking with mobile embedded

smart cameras, we have ported the HOG-based human detector onto the CITRIC

camera mote that combines a camera sensor with a microprocessor. HOG-based

detectors allow us to detect foreground objects with moving cameras, and are much

more robust towards illumination changes, shadows and image blur. Ability to detect

objects with moving cameras has application in different areas including robotics,

surveillance and smart driving systems. We have provided output images and reported

processing times when using static and mobile cameras for different scenarios. The

presented results are very promising, and provide insight on the capabilities and

limitations of these embedded platforms.

66

Chapter 6

Conclusion and Future Work

In this thesis we presented the detection-assisted tracking framework and its perfor-

mance. Unlike other detection based tracking framework, the proposed framework

uses detection as an assistant to the tracking algorithm. To handle the existence of

multiple object when the detector is activated, we also developed a scheme to help the

tracker select the correct observation. The results show that our proposed framework

is able to handle complicated scenarios such as occlusion and existence of multiple

similar objects.

The framework can be easily extended by plugging in components. Current results

show that our framework is capable of handling complex scenes. We can employ even

more sophisticated tracking algorithms and further process the detector output to

handle more challenging scenarios.

Towards the goal of performing object detection and tracking with mobile em-

bedded smart cameras, we have ported the HOG-based human detector onto the em-

bedded smart camera platform — CITRIC. HOG-based detectors allow us to detect

foreground objects with moving cameras, and are much more robust towards illumina-

tion changes, shadows and image blur. Ability to detect objects with moving cameras

67

has application in different areas including robotics, surveillance and smart driving

systems. Due to the nature of the HOG-based algorithm, the speed of the micro-

processor, and not having hardware support for floating point operations, processing

a 320 image takes around 37 seconds. Depending on the application, we can crop

input images in different ways, and thus decrease the processing time significantly.

The presented results are very promising, and provide insight on the capabilities and

limitations of these embedded platforms.

The proposed framework can be improved on embedded platforms in two direc-

tions. The first direction is to use more powerful embedded processors. Driven by

the development of VLSI technologies, more and more processors are equipped with

hardware floating point support; some of them are even equipped with GPUs. We

can use these processors to build a new hardware platform. The second direction is to

tailor the detector according to specific applications. In this thesis, we keep floating

point operations and use the full algorithm for accuracy. In fact, the algorithm can

be simplified according to the application and fixed point operation can be used.

68

Bibliography

[1] W. Niu, J. Long, D. Han, and Y.-F. Wang, “Human activity detection and

recognition for video surveillance,” in Proc. of IEEE International Conference

on Multimedia and Expo, 2004. 1.1.1

[2] C. Rougier, J. Meunier, S.-A. A, and J. Rousseau, “Robust video surveillance

for fall detection based on human shape deformation,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 21(5), pp. 611 – 622, 2011. 1.1.1

[3] S. Denman, C. Fookes, J. Cook, C. Davoren, A. Mamic, G. Farquharson,

D. Chen, B. Chen, and S. Sridharan, “Multi-view intelligent vehicle surveillance

system,” in Proc. of IEEE International Conference on Video and Signal Based

Surveillance, 2006. 1.1.1

[4] S. Park and C. S. G. Lee, “A global and local robot tracking and control strat-

egy using multisensory inputs,” in Proc. of IEEE International Conference on

Robotics and Automation, 1994. 1.1.1

[5] H. Lang, Y. Wang, and W. de Silva Clarence, “Vision based object identification

and tracking for mobile robot visual servo control,” in Proc. of IEEE Interna-

tional Conference on Control and Automation, 2010. 1.1.1

69

[6] G. Shin and J. Chun, “Vision-based multimodal human computer interface based

on parallel tracking of eye and hand motion,” in Proc. of International Conference

on Convergence Information Technology, 2007. 1.1.1

[7] V. I. Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation of hand ges-

tures for human-computer interaction: a review,” IEEE Transactions on Pattern

Analysis and Machine Intelligence,, vol. 19(7), 1997. 1.1.1

[8] H. Aghajan and A. Cavallaro, Eds., Multi-Camera Networks Principles and Ap-

plications. Academic Press, 2009. 1.1.3

[9] Y. Wang, L. He, and S. Velipasalar, “Realtime distributed tracking with non-

overlapping cameras,” in Proc. of IEEE International Conference on Image Pro-

cessing, 2010. 1.2

[10] Y. Wang, S. Velipasalar, and M. Casares, “Cooperative object tracking and com-

posite event detection with wireless embedded smart cameras,” IEEE Transac-

tions on Image Processing, vol. 19, pp. 2614 – 2633, 2010. 1.2

[11] S. Velipasalar and et al., “A scalable clustered camera system for multiple object

tracking,” EURASIP Journal on Image and Video Processing, 2008. 1.2

[12] M. Casares and S. Velipasalar, “Light-weight salient foreground detection for

embedded smart cameras,” in Proc. of the ACM/IEEE Intl Conf. on Distributed

Smart Cameras, 2008. 1.2

[13] B. Leibe, K. Schindler, and L. V. Gool, “Coupled detection and trajectory es-

timation for multi-object tracking,” in IEEE 11th International Conference on

Computer Vision, 2007. 1.2

70

[14] C. Huang, B. Wu, and R. Nevatia, “Robust object tracking by hierarchical as-

sociation of detection responses,” in Proc. of the 10th European Conference on

Computer Vision: Part II, 2008. 1.2

[15] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-object track-

ing using network flows,” in Proc. of IEEE Conference on Computer Vision and

Pattern Recognition, 2008. 1.2

[16] M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. V. Gool, “Ro-

bust tracking-by-detection using a detector confidence particle filter,” in Proc.

of IEEE 12th International Conference on Computer Vision, 2009. 1.2

[17] Y. Li, C. Huang, and R. Nevatia, “Learning to associate: Hybridboosted multi-

target tracker for crowded scene,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2009. 1.2

[18] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in Proc. of IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2005. 1.2, 2, 2.4, 3.2

[19] L. He, Y. Wang, S. Velipasalar, and M. C. Gursoy, “Human detection using

mobile embedded smart cameras,” in Proc. of International Conference on Dis-

tributed Smart Cameras (to appear), 2011. 1.2

[20] J. Wen, H. Gong, X. Zhang, and W. Hu, “Generative model for abandoned ob-

ject detection,” in Proc. of IEEE International Conference on Image Processing

(ICIP), 2009. 2

71

[21] I. Fasel, B. Fortenberry, and J. Movellan, “A generative framework for real time

object detection and classification,” Computer Vision and Image Understanding,

vol. 98(1), 2005. 2

[22] T. Mita, T. Kaneko, B. Stenger, and O. Hori, “Discriminative feature co-

occurrence selection for object detection,” IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, vol. 30(7), 2008. 2

[23] J. O. Berger, Statistical Decision Theory and Bayesian Analysis. Springer-

Verlag, 1985. 2.1

[24] T. Michaeli and Y. C. Eldar, “Hidden relationships: Bayesian estimation with

partial knowledge,” IEEE Transactions on Signal Processing, vol. 59(5), 2011.

2.1

[25] Y. C. Ho and R. C. K. Lee, “A bayesian approach to problems in stochastic

estimation and control,” IEEE Transactions on Automatic Control, vol. 9, pp.

333–339, 1964. 2.1

[26] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle

filters for online nonlinear-non-gaussian bayesian tracking,” IEEE Transactions

on Signal Processing, 2003. 2.1, 2.1.1, 2.3.2

[27] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-

proaches. Wiley-Interscience, 2006. 2.1.1

[28] M. O. Rabin, “Probabilistic algorithm for testing primality,” Journal of Number

Theory, vol. 12(1), 1980. 2.2

[29] J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation,

Simulation, and Control. Wiley-Interscience, 2003. 2.2

72

[30] D. J. C. MacKay, Learning in Graphical Models. The MIT Press, 1998, ch.

Introduction to Monte Carlo Methods. 2.2.1

[31] ——, Information Theory, Inference and Learning Algorithms. Cambridge Uni-

versity Press, 2003. 2.2.3

[32] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2007. 2.2.3

[33] A. C. Davison and D. V. Hinkley, Bootstrap Methods and their Application.

Cambridge University Press, 1997. 2.2.4

[34] A. Doucet, “On sequential monte carlo methods for bayesian filtering,” Depart-

ment of Engineering, Univ. Cambridge, UK, Tech. Rep., 1998. 2.3.2

[35] J. S. Liu and R. Chen, “Sequential monte carlo methods for dynamical systems,”

Journal of the American Statistical Association, vol. vol. 93, pp. 1032 – 1044,

1998. 2.3.2, 3.3

[36] G. Kitagawa, “Monte carlo filter and smoother for non-gaussian non-linear state

space models,” Journal of Computational and Graphical Statistics, vol. 5, pp. 1–

25, 1996. 2.3.2

[37] M. Isard and A. Blake, “Condensation — conditional density propagation for

visual tracking,” International Journal of Computer Vision, vol. 29(1), pp. 5–28,

1998. 2.3.2, 3.3

[38] D. G. Lowe, “Object recognition from local scale-invariant features,” in IEEE

International Conference on Computer Vision, 1999. 2.4

[39] N. Dalal, “Finding people in images and videos,” Ph.D. dissertation, LInstitue

National Polytechnique de Grenoble, 2006. 2.4.1, 2.4.3, 2.4.4

73

[40] T. Joachims, Advances in Kernel Methods - Support Vector Learning. The MIT

Press, 2009, ch. Making large-scale svm learning practical. 2.4.4

[41] P. Chen and et al., “Citric: A low-bandwidth wireless camera network platform,”

in Proc. of the ACM/IEEE International Conference on Distributed Smart Cam-

eras, 2008. 3.4.2, 5.1.1

[42] D. A. Klein, D. Schulz, S. Frintrop, and A. B. Cremers, “Adaptive real-time

video-tracking for arbitrary objects,” in International Conference on Intelligent

Robots and Systems (IROS), 2010. 4.1

	Detection-assisted Object Tracking by Mobile Cameras
	

	Contents
	List of Figures
	List of Tables
	Introduction
	Visual Tracking
	Applications
	Challenges
	Visual Tracking on Embedded Smart Cameras

	Related Work
	Overview of the Thesis

	Probabilistic Visual Tracking and Object Detection
	Overview of Bayesian Filtering
	Formulation of Bayesian Tracking

	Monte Carlo Sampling
	Problems to Solve
	Basics of Sampling Methods
	Importance Sampling
	Sampling-Importance Resampling

	Particle Filters
	Sequential Importance Sampling (SIS) Filter
	Sampling-importance Resampling (SIR) Filter

	Histogram of Oriented Gradients
	Rectangular HOG Descriptor
	Overall Processing Flow
	Feature Extraction
	The Classifier
	Multi-scale Localization

	Conclusion

	Detection-assisted Tracking by Mobile Cameras
	System Architecture
	Detector
	The Tracker
	The Observation Model
	The Dynamic Model
	Correcting Trackers
	The Timing of Correction

	Implementation
	PC Platform
	Implementation Overview
	TrackerManager and Trackers

	CITRIC Platform

	Conclusion

	Experiments and Evaluation on PC Platform
	Overview
	PC Platform

	Evaluation of PC Implementation
	Tracking without Correction
	Tracking with Detector
	Handling Occlusion
	Handling Similar Objects
	Handling Crowded Scenes

	Conclusion

	Experiments and Evaluation on CITRIC Platform
	Overview
	CITRIC Platform

	Evaluation of Embedded Implementation
	Running on Whole Frame
	Accelerating by Reducing Frame Size
	Moving the CITRIC Camera
	Adaptive Frame Cropping

	Conclusion

	Conclusion and Future Work
	Bibliography

