Concepts in

Animal Parasitology

Scott L. Gardner and Sue Ann Gardner Editors

Zea Books: Lincoln, Nebraska, United States

2024

ISBN 978-1-60962-305-0 paperback (set) ISBN 978-1-60962-306-7 ebook (set) doi:10.32873/unl.dc.ciap070 (set)

Zea Books, Lincoln, Nebraska, United States, 2024 Zea Books are published by the University of Nebraska-Lincoln Libraries.

Copyright 2024, the authors and editors. Open access material.

License and Permissions

(i)

S

3

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International.

This license allows re-users to distribute, remix, adapt, and build upon the material in any medium or format for non-commercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

CC BY-NC-SA includes the following elements:

BY – Credit must be given to the creator(s).

NC - Only non-commercial uses of the work are permitted.

SA – Adaptations must be shared under the same terms.

Suggestion Book Citation

Gardner, S. L., and S. A. Gardner, eds. 2024. Concepts in Animal Parasitology. Zea Books, Lincoln, Nebraska, United States. doi:10.32873/unl.dc.ciap070

Suggested Chapter Citation

Catalano, S. R. 2024. Mesozoans (Phylum Dicyemida and Phylum Orthonectida). *In* S. L. Gardner and S. A. Gardner, eds. Concepts in Animal Parasitology. Zea Books, Lincoln, Nebraska, United States. doi:10.32873/unl.dc.ciap014

The University of Nebraska does not discriminate based on race, color, ethnicity, national origin, sex, pregnancy, sexual orientation, gender identity, religion, disability, age, genetic information, veteran status, marital status, and/or political affiliation in its programs, activities, or employment.

Contents

Preface									. vii
List of Contributors									xiii

INTRODUCTORY CONCEPTS

Part I: INTRODUCTORY CONCEPTS

Chapter 1: Introduction to Animal Parasitology

Scott L. Gardner, Daniel R. Brooks, and Klaus Rohde 1	
Chapter 2: Phylogenetic Systematics in Parasitology Anindo Choudhury	
Chapter 3: Helminth Identification and Diagnostics:	
Basic Molecular Techniques Anindo Choudhury and Scott L. Gardner 33	

PARASITES IN RELATION TO OTHER ORGANISMS

Chapter 4: Hosts, Reservoirs, and Vectors	
Matthew G. Bolek, Kyle D. Gustafson, and	
Gabriel J. Langford	39
Chapter 5: Life Cycles	
Matthew G. Bolek, Kyle D. Gustafson, and	
Gabriel J. Langford 4	17
Chapter 6: Behavioral Parasitology	
Megan Wise de Valdez 6	52

PARASCRIPT APPROACHES

Chapter 7: Biostatistics for Parasitologists: A Painless
Introduction
Jenő Reiczigel, Marco Marozzi, Fábián Ibolya, and
<i>Lajos Rózsa</i>
Chapter 8: Distributional Ecology of Parasites
A. Townsend Peterson

ENDOPARASITES

Part II: PROTOZOA, MYXOZOA, MESOZOA

Protozoa

APICOMPLEXA	
Chapter 9: The Coccidia Proper: Important	
Apicomplexa Other than Haemoprotozoa	
Donald W. Duszynski	107
Chapter 10: Haemosporida (Order): The "Malaria	
Parasites"	
Susan L. Perkins and Spencer C. Galen	140

Trypanosomatidae

Chapter 11: Trypanosoma (Genus)	
Ana Maria Jansen, Samanta C. Chagas Xavier, a	nd
André Luiz Rodrigues Roque	156
Chapter 12: Leishmania (Genus) and Leishmaniasis	
Mary Ann McDowell and Jennifer Robichaud	182

Myxozoa

Chapter 13: Myxozoa (S	Su	b	pł	ıy	lu	m	I)					
Terrence L. Miller												207

Mesozoa

Chapter 14: Mesozoa (P	hy	lu	m	D	icy	en	nio	la	an	d	P	hy	ylu	m
Orthonecta)														
Sarah R. Catalano														217

Part III: ENDOPARASITIC PLATYHELMINTHS

PLATYHELMINTHES

Chapter 15: Introduction to Endoparasitic Platyhelminths (Phylum Platyhelminthes)

•	< •	e e		
Larry S. R	oberts, John J.	Janovy, Jr.,	Steve Nadle	r,
and Scott	L. Gardner			231

Cestoda

Chapter 16: Introduct	io	n	to) (Ce	est	0	de	S	((Cla	as	S	C	es	to	d۶	ı)
Scott L. Gardner																		241

Eucestoda

Chapter 17: Introduction to Cyclophyllidea Beneden in Braun, 1900 (Order)
Scott L. Gardner
Chapter 18: <i>Taenia</i> (Genus)
Sumiya Ganzorig and Scott. L. Gardner 251
Chapter 19: <i>Echinococcus</i> (Genus) <i>Akira Ito and Scott. L. Gardner</i>
Chapter 20: Proteocephalidae La Rue, 1911 (Family) Tomáš Scholz and Roman Kuchta
Chapter 21: Bothriocephalidea Kuchta et al., 2008
(Order)
Jorge Falcón-Ordaz and Luis García-Prieto 283
Chapter 22: Diphyllobothriidea Kuchta et al., 2008 (Order): The Broad Tapeworms
Tomáš Scholz and Roman Kuchta
Chapter 23: Trypanorhyncha Diesing, 1863 (Order)
Francisco Zaragoza-Tapia and Scott Monks 297
Chapter 24: Cathetocephalidea Schmidt and Beveridge,
1990 (Order)
Luis García-Prieto, Omar Lagunas-Calvo,
Brenda Atziri García-García, and Berenice Adán-
<i>Torres</i>
Chapter 25: Diphyllidea van Beneden in Carus, 1863 (Order)
Luis García-Prieto, Brenda Atziri
García-García, Omar Lagunas-Calvo,
and Berenice Adán-Torres
Chapter 26: Lecanicephalidea Hyman, 1951 (Order)
Luis García-Prieto, Berenice Adán-Torres, Omar Lagunas-Calvo, and Brenda Atziri García-
García

Chapter 27: Litobothriidea Dailey, 1969 (Order)
Luis García-Prieto, Berenice Adán-Torres, Brenda
Atziri García-García, and Omar Lagunas-Calvo 321
Chapter 28: Phyllobothriidea Caira et al., 2014 (Order)
Brenda Atziri García-García, Omar Lagunas-Calvo,
Berenice Adán-Torres, and Luis García-Prieto . 326
Chapter 29: Rhinebothriidea Healy et al., 2009 (Order)
Omar Lagunas-Calvo, Brenda Atziri García-García,
Berenice Adán-Torres, and Luis García-Prieto . 332
Chapter 30: Relics of "Tetraphyllidea" van Beneden,
1850 (Order)
Berenice Adán-Torres, Omar Lagunas-Calvo, Brenda
Atziri García-García, and Luis García-Prieto 340
Amphilinidea
Chapter 31: Amphilinidea Poche 1922 (Order)
<i>Klaus Rohde</i>
Gyrocotylidea
Chapter 32: Gyrocotylidea (Order): The Most Primitive
Group of Tapeworms
Willi E. R. Xylander and Klaus Rohde 354

Trematoda

ASPIDOGASTREA

Chapter 33: Aspidogastrea (Subclass)	
Klaus Rohde	 361

DIGENEA, DIPLOSTOMIDA

DIGENEA, PLAGIORCHIIDA
Chapter 36: Introduction to Plagiorchiida La Rue, 1957 (Order)
Rafael Toledo, Bernard Fried, and Lucrecia Acosta Soto
Chapter 37: Bivesiculata Olson et al., 2003 (Suborder): Small, Rare, but Important
Thomas H. Cribb and Scott C. Cutmore 405
Chapter 38: Echinostomata La Rue, 1926 (Suborder) Rafael Toledo, Bernard Fried, and Lucrecia Acosta Soto
Chapter 39: Haplosplanchnata Olson et al., 2003 (Suborder): Two Hosts with Half the Guts
<i>Daniel C. Huston</i>
Chapter 40: Hemiurata Skrjabin & Guschanskaja, 1954 (Suborder) Lucrecia Acosta Soto, Bernard Fried, and Rafael
<i>Toledo</i>
Chapter 41: Monorchiata Olson et al., 2003 (Suborder):
Two Families Separated by SalinityNicholas QX. Wee.436
Chapter 42: Opisthorchis (Genus)
Sue Ann Gardner, compiler

Xiphidiata

Chapter 43: Allocreadiidae Looss, 1902 (Family)	
Gerardo Pérez-Ponce de León,	
David Iván Hernández-Mena, and	
Brenda Solórzano-García	446
Chapter 44: Haematoloechidae Odening, 1964 (Fami	ily)
Virginia León-Règagnon	460
Chapter 45: Lecithodendriidae Lühe, 1901 (Family)	
Jeffrey M. Lotz	470
Chapter 46: Opecoelidae Ozaki, 1925 (Family): The	
Richest Trematode Family	
Storm B. Martin	480

DIGENEA

Chapter 47: Summary of the Digenea (Subclass):	
Insights and Lessons from a Prominent	
Parasitologist Robin M. Overstreet	490

Part IV: NEMATA, NEMATOMORPHA, ACANTHOCEPHALA, PENTASTOMIDA

Nemata

Chapter 48: Introduction to Endoparasitic Nematod	es
(Phylum Nemata)	
Scott L. Gardner	533
Chapter 49: Trichuroidea and Trichinelloidea	
(Superfamilies)	
María del Rosario Robles and Rocío Callejón	
Fernández	545
Chapter 50: Ascaridoidea (Superfamily): Large	
Intestinal Nematodes	
Larry S. Roberts, John J. Janovy, Jr., Steven Nad	ler,
and Scott L. Gardner	566
Chapter 51: Heterakoidea (Superfamily): Cosmopol	itan
Gut-Dwelling Parasites of Tetrapods	
F. Agustín Jiménez-Ruiz	582
Chapter 52: Oxyurida (Order): Pinworms	
Haylee J. Weaver	593
Chapter 53: Spirurida (Order)	
Valentin Radev	600
Chapter 54: Camallanina (Suborder): Guinea Worn	n and
Related Nematodes	
Anindo Choudhury	625
Chapter 55: Filarioidea (Superfamily)	
Juliana Notarnicola	633
Chapter 56: Strongyloidea and Trichostrongyloidea	
(Superfamilies): Bursate Nematodes	
Larry S. Roberts, John J. Janovy, Jr., Steven Nad	ler,
Valentin Radev, and Scott L. Gardner	656

Nematomorpha

Chapter 57: Nematomorpha (Phylum): Horsehair	
Worms	
Matthew G. Bolek and Ben Hanelt	681

ACANTHOCEPHALA

Chapter 58: Acanthocephala (Phylum)	
Scott Monks	700
Pentastomida	
Chapter 59: Pentastomida: Endoparasitic Arthopods	
Chris T. McAllister	716

ECTOPARASITES

Part V: ECTOPARASITES

PLATYHELMINTHES

Chapter 60: Monogenea (Class) Griselda Pulido-Flores	733
Chapter 61: Transversotremata (Suborder):	
Ectoparasitic Trematodes	
Scott C. Cutmore and Thomas H. Cribb	743

HIRUDINIA

Chapter 62: Hirudinia (Class): Parasitic Leeches	
Alejandro Oceguera-Figueroa and	
Sebastian Kvist	747

Arthropoda

Chapter 63: Siphonaptera (Order): Fleas	
Marcela Lareschi	756
Chapter 64: Phthiraptera (Order): Lice	
Lajos Rózsa and Haylee J. Weaver	771
Chapter 65: Triatominae (Subfamily): Kissing Bugs	
Sue Ann Gardner, compiler	790
Chapter 66: Acari (Order): Ticks	
Darci Moraes Barros-Battesti, Valeria Castilho	
Onofrio, and Filipe Dantas-Torres	798
Chapter 67: Acari (Order): Mites	
David Evans Walter, Gerald W. Krantz, and Evert	Е.
Lindquist	836

Preface

Sue Ann Gardner

University Libraries, University of Nebraska–Lincoln, Lincoln, Nebraska, United States sgardner2@unl.edu

IMPETUS FOR PREPARING THIS BOOK

The United Nations (UN) has declared education as a basic human right. One of the UN's sustainable development goals is a call to ensure "inclusive and equitable quality education and promotion of lifelong learning opportunities for all" (United Nations, 2023; see also WOERC, 2012). Depending on the specifics of their implementation, financing, and dissemination models, open educational resources (OERs) have the potential to help in the effort to achieve equitable learning across the globe (Orr et al., 2015; Lee and Lee, 2021; see also Bali et al., 2020).

Open educational resources are "teaching, learning, and research materials in any medium that reside in the public domain or have been released under an open license that permits their free use and re-purposing by others" (Creative Commons, 2014). Wiley (2020) cites the Creative Commons' framing of OERs as providing explicit permission to "retain, re-use, revise, remix, and redistribute" openly-accessible educational material.

Aside from the obvious benefit of saving students money, OERs have been shown to promote equity among students. Their use has been shown to contribute to maintenance or improvement of student success, especially with respect to retention in school, course completion, grade point average, and subsequent educational attainment (Colvard et al., 2018; Griffiths et al., 2022; Fischer et al., 2015).

HOW TO USE THIS BOOK

Scope

This is a textbook covering concepts in animal parasitology. It is meant to be used by students, teachers, professors, researchers, and members of the public who are interested in learning about animal parasite biology, systematics, taxonomy, zoogeography, and ecology. The primary intended audience is upper-level undergraduate or graduate university students who have knowledge of basic biology and, particularly, basic animal biology.

Organization of the Book

This textbook was conceived to fill a gap in educational materials about parasitology. One of the main goals in both teaching and learning about parasites and parasitology is to understand the diversity of parasites and of parasitism as a way of life on Earth. With this in mind, the editors made a decision to treat the organization of the book as though led by the organisms themselves—a sort of bottom-up approach—and present the parasitic organisms as a parasitologist will first find them in nature, as in: Where they tend to exist in relation to their host, and more specifically, whether inside or outside the host animal. Therefore, the book includes sections covering a few taxonomic groups representing just some of the millions of extant endoparasite (Greek: **endo** = inside; **para** = beside; **sitos** = food) and ectoparasite (Greek: **ektos** = outside) species.

Examples of endoparasites are parasitic trematodes or nematodes that live inside the respiratory systems or gastrointestinal tracts of their hosts. Ectoparasites include lice and ticks, almost all fleas, many mites, a few platyhelminths that live on echinoderms, and even some chordates like the lamprey and vampire bat. Some groups of animals, such as monogeneans and mites, are not neatly categorized and may live part of their lives as endoparasites and part of their lives as ectoparasites or as free-living animals. Despite these myriad variations, the editors believe that the basic division between endo- and ecto- serves well enough to organize the chapters.

In approaching the organization in this way, the focus of the book is primarily at the level of species and other lower level taxonomy as opposed to higher-level groupings which are notoriously constantly in flux. The classification of parasites based on phylogenies is useful and necessary to understand the diversity, diversification, and evolution of parasites, but classification does not dictate the book's primary organization. Instead, the concept of biodiversity of parasites and their animal hosts is the main factor that motivates the research and teaching in the Harold W. Manter Laboratory of Parasitology (University of Nebraska State Museum, Lincoln, Nebraska, United States) where editor Scott L. Gardner conducts his work. It is this push toward understanding biological diversity of parasites that overarchingly informs the organization of this book.

Note about Bibliographical References

The citations in the book are formatted to promote finding usable copies, they are not meant to serve as an archival resource. As such, and to save space, only the first four authors are listed for each resource. A digital object identifier (doi) is included whenever one could be found; but the dois are not hot linked since these links would often take readers to paywalled versions. Readers are encouraged instead to attempt to locate free, legal versions of the resources included in the references whenever possible. For example, free-to-read versions (and sometimes also open access versions) of the papers may be available in institutional repositories, on authors' personal websites, or from academic social media sites.

Note about Images

When selecting images, the editors relied on the guidelines included in Egloff et al. (2017) regarding copyrightability of images that serve as biodiversity data. Beyond this broad framework to guide selection, the images in the book were chosen ultimately based on the following criteria: Conceptual applicability, quality, allowable copyright and permissions, and (for human subject images) an acceptable declaration of informed consent (see Roguljić and Wager, 2020). Due to the constraints of these criteria, there are several sections in the book that are lightly illustrated. Where images are sparse or lacking, instructors are encouraged to insert their own images or select images from other sources, including those used under applicable fair use/fair dealing or educational use guidelines.

Accompanying Glossary

A supplemental glossary is in the process of preparation. Until the glossary is completed, a work that may be used in its stead for many of the terms found in the book is the Dictionary of Invertebrate Zoology (Maggenti et al., 2017) available online for free: https://digitalcommons.unl.edu/zeabook/61/

Licensing and Permissions

This is an open educational resource. The license chosen for this textbook (Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International, abbreviated CC BY-NC-SA 4.0), allows **non-commercial uses** and requires that **re-uses be likewise non-commercial in nature** as long as the **authors are attributed**. The editors encourage readers to use just parts of the book or all of it, whatever suits their needs as long as they cite the authors and ensure that downstream uses are likewise non-commercial and open access. The materials in the book may be used as-is or adapted for use in any classroom setting, in any product of research, or employed in any other non-commercial use without asking express permission of the respective authors or editors as long as the used portions are properly cited.

Every image has a license or public domain statement attached to it. Some of the licenses for the images are more permissible than the license used for the text, such as CC BY or CC0, and some of the images used are in the public domain. In summary, the book and its supplementary materials are free of cost (also with no registration necessary to use them and no advertisements). Readers are permitted to:

- Retain (can keep the book forever)
- Reuse (can use the book for your own purpose, such as teaching)
- Revise (with attribution, can adapt, modify, or translate the book)
- Remix (with attribution, can combine it with other resources to make a new work)
- Redistribute (can share the book with others as long as the redistribution is non-commercial).

Disclaimers

Although students of pre-medical studies, medical studies, or veterinary studies may use this text to learn foundational concepts in animal parasitology, it is not a medical or veterinary text. Further, it is not meant for any medicalor veterinary-related purposes whatsoever. When medical or veterinary topics are touched upon in the text, this is for educational purposes for those studying or interested in the biological sciences generally. *No medical or veterinary advice of any kind is offered or implied anywhere in this textbook. No* medical or veterinary diagnoses, treatments, or conclusions of any kind may be construed using the knowledge offered herein.

For studies specifically related to medical parasitology, readers may consult any of a number of qualified texts in the subject, including Medical Parasitology: A Textbook (Mahmud et al., 2017), Medical Parasitology (Satoskar, 2009), and Modern Parasitology: A Textbook of Parasitology, 2nd edition, (Cox et al., 2009), among others. Numerous medical periodicals are also appropriate sources of knowledge about medical parasitology. For medical diagnoses, qualified practitioners of medicine may be consulted directly.

For studies specifically related to veterinary parasitology, readers may consult any of a number of qualified texts in the subject, including Veterinary Parasitology, 4th edition, (Taylor et al., 2015) and Georgis' Parasitology for Veterinarians, 11th edition, (Bowman, 2020), among others. Numerous veterinary parasitology periodicals are also appropriate sources of knowledge about veterinary parasitology. For veterinary diagnoses, qualified practitioners of veterinary medicine may be consulted directly.

Use of material from United States federal agencies *does not constitute its endorsement or recommendation* by the US Government, Department of Health and Human Services, or Centers for Disease Control and Prevention (CDC). The material from the CDC is otherwise available on the agency website for no charge.

Invitation to Review and Give Feedback

If any qualified readers would like to serve as a reviewer for any of the sections, you are invited to please contact one of the editors to discuss the possibility of being assigned the task of reviewing. You will be credited in revisions if you ultimately serve as a selected reviewer. In addition, if readers discover factual or typographical errors in the content, please contact one of the editors.

HOW THE BOOK WAS DEVELOPED

Origin of the Book

The concept for this book arose in 2018 around the time there was a concerted push to create open educational resources in universities (Austin, 2018; Sennott et al., 2015). This push seemed well-timed to the editors. In fact, the rising costs of textbooks has become a major problem for students to the point where it is basically untenable to expect students to pay for them anymore. The editors reasoned that it would be a good time to call on their esteemed and accomplished colleagues in academia to help create a new textbook in a massively collaborative endeavor, if they were willing to participate.

Also driving the idea of a new textbook, the seminal English-language parasitology textbook of our time, Gerald R. Schmidt and Larry S. Roberts' Foundations of Parasitology, 9th edition (Roberts et al., 2012), has recently gone out of print and there are no plans to update it. John J. Janovy, Jr., the lead author of the last several editions of the Schmidt and Roberts book, agreed that the creation of a new textbook was a good and timely idea.

Contributing to the decision to attempt the creation of a large-scale textbook project was the public access/open access platform available to the editors, namely, the Zea Books imprint of the University of Nebraska–Lincoln Libraries. In line with the OER ethos driving the creation of the content, this publishing imprint operates under a diamond open access model, such that neither the authors nor the readers have to pay to publish nor to read any work published as a Zea Book.

Development of the Book

At the time of the conception of the book idea, the edi-tors capitalized on the availability of visiting scholars in the Harold W. Manter Laboratory of Parasitology (Lincoln, Ne-braska, United States)—Griselda Pulido-Flores, Scott Monks, and Donald Gettinger, as well as local colleagues John J. Janovy, Jr. and Gabor Rácz, and student-colleagues Auggie Tsogtsaikhan Dursahinhan and Guin Drabik—and called to-gether a couple of meetings to discuss their idea with the group. They asked them to envision what they would like to see in a new textbook, one that would be available online for anyone with a computer connection to access for free. Among many other good ideas they shared, they suggested that the book could possibly include numerous links to other sources and

interactive modules, and pointed out that the information may be kept more current than was possible with a printed volume. Colleagues Paul Royster, Linnea Fredrickson, Catherine Fraser Riehle, and Mary Bolin in the University of Nebraska–Lincoln Libraries (Lincoln, Nebraska, United States) also provided encouragement and expertise that helped the project on its way.

When preparing to solicit manuscripts for this project, based on the preliminary conversations with colleagues, the editors first prepared an outline of the concepts desired to have covered and then created streamlined style requirements (the instructions for authors and references style guide are available online here: https://digitalcommons.unl.edu/parasittext/). They then asked numerous colleagues—all experts in their subareas of parasitology—to contribute one or more sections based on the outline. So many of them agreed to write sections that it seemed that it really might be possible to create a high-quality work with the input of so many fine experts. Every one of them submitted manuscripts quickly.

The editors gave the authors quite a bit of latitude regarding how to approach their assignment to write sections. They provided an optional template to work from (available here), but use of this format was optional. They wanted the authors to be able to express themselves in the way they each felt was best to demonstrate knowledge of their respective areas of interest within the larger subject of animal parasitology. This liberal approach naturally resulted in some variation in presentation styles, which is perhaps a plus for the reader. It breaks up the tone and emphases from section to section, and the reader gets a sense of each author's different voice and approach. The editors have worked to retain much of each author's preferred style of presentation, but with normalizing of typography and other style elements to help the manuscript finally cohere as a unified whole.

Some of the sections were sent out for review. This review process was open, so the authors knew who was reviewing their work and the reviewers were aware that the authors knew they were reviewing. Reviewed sections are marked as such with the reviewer's name and affiliation. Whether reviewed or not, all of the sections were editor-reviewed by both editors: Sue Ann Gardner edited primarily for bibliographic details and style elements, and Scott L. Gardner edited primarily for content.

Delayed Publication

With best-laid plans, the editors started to review and edit the sections as soon as they were submitted. Then a great number of both quite-dire and less-dire issues arose that interfered with the ability to complete the editing and production in as timely a manner as intended (selected challenges include: The SARS-CoV-2 pandemic requiring remote teaching, a computer crash, a death in the family that then required weeks away from work and home, radical changes in administrations at the university, and other issues). With those issues finally receding in impact, five years after the project began, the book will be published at long last.

Demographic Data About the Authors

With editor Scott L. Gardner's large network of expert parasitologist colleagues, it was possible to seek out scholars who are experts in their field. While the first consideration when deciding who to invite to participate was expertise, the editors further worked toward the desired goal of equity and inclusion in the selection of authors. One result was a 1:2 ratio of women to men. While this does not represent parity, it is an improvement over days past when the majority of authors would likely have been men. Another result of efforts at equity and inclusion was the participation of many au-thors from outside the United States. Approximately 40% of authors are US-American and the remaining 60% are from one of 14 other countries (Argentina, Brazil, Australia, Japan, Mongolia, Bulgaria, Czechia, Germany, Hungary, Norway, Russia, Spain, Mexico, or Canada). Almost half of the authors (44%) do not have English as their first language.

Spanish-Language Version

In late 2018, the Office of the President at the University of Nebraska–Lincoln (Lincoln, Nebraska, United States) issued a call for proposals for Inclusive Excellence Development at the university. The editors were awarded funds to go toward translation of the textbook. With this, the editors partnered with a local professor of Spanish-language translation, Yoanna Esquivel Greenwood, who has created Spanish-language versions for numerous chapters in the book. Thanks to her work, and perhaps with the added input of some of the Spanish speakers among the authors, a comprehensive Spanish-language translation is forthcoming.

Acknowledgement of Authors' Contributions

From the Editors, Scott L. Gardner and Sue Ann Gardner

We sincerely thank all of the authors of this collaborative work. Your excellent contributions and dedication to the ad-vancement of knowledge of animal parasitology have the po-tential to positively change the lives of countless students and teachers worldwide.

While we were grappling with challenges and distractions that delayed the editing of the manuscript of this book, we lost a few of our esteemed author colleagues. We wish to posthumously acknowledge Bernie Fried, Akira Ito, and Robin M. Overstreet for what turned out to be some of their truly late-career contributions. We miss them, and we feel so fortunate to have benefitted from their long-acquired knowledge and their willingness to join in on this project.

Dedication

From the Editors, Scott L. Gardner and Sue Ann Gardner

This book is dedicated to **all** of our academic forebears and mentors who made this effort possible—some of whom are authors* of sections of the book! We can't list everyone, but we can provide a truncated list to commemorate some people especially.

> Sydney Anderson Odile Bain Mary Bolin Alain Chabaud Patricia Coty Lee Couch Donald W. Duszynski* William F. Font, Jr. Bernard Fried* Donald Heyneman Akira Ito* John J. Janovy, Jr.* Armand Maggenti Harold W. Manter Brent B. Nickol Robert M. Overstreet* Mary Lou Pritchard Robert L. Rausch Virginia R. Rausch Peter Raven Constance Rinaldo Larry S. Roberts* Klaus Rohde* Gerald R. Schmidt Franklin Sogandares-Bernal Robert M. Storm Annegret Stubbe Michael Stubbe Sam Telford Terry L. Yates

Literature Cited

- Austin, A. E. 2018. Vision and change in undergraduate biology education: Unpacking a movement and sharing lessons learned. Planning Meeting Report, July 9, 2017. American Association for the Advancement of Science, Washington, DC, United States, 27 p.
- Bali, M., C. Cronin, and R. S. Jhangiani. 2020. Framing open educational practices from a social justice perspective. Journal of Interactive Media in Education 1: Article 10. doi: 10.5334/jime.565
- Bowman, D. D. 2020. Georgis' Parasitology for Veterinarians, 11th edition. Elsevier, Cham, Switzerland.
- Colvard, N. B., C. E. Watson, and H. Park. 2018. The impact of open educational resources on various student success metrics. International Journal of Teaching and Learning in Higher Education 30: 262–276.
- Cox, F. E. G., ed. 2009. Modern Parasitology: A Textbook of Parasitology, 2nd edition. Wiley-Blackwell, Hoboken, New Jersey, United States, 294 p.
- Creative Commons. 2014. OER case studies, United States. https://wiki.creativecommons.org/wiki/OER_Case_Studies/ United_States
- Egloff, W., D. Agosti, P. Kishor, D. Patterson, et al. 2017. Copyright and the use of images as biodiversity data. Research Ideas and Outcomes 3: e12502. doi: 10.3897/ rio.3.e12502
- Fischer, L., J. Hilton, III, T. J. Robinson, and D. A. Wiley. 2015. A multi-institutional study of the impact of open textbook adoption on the learning outcomes of post-secondary students. Journal of Computing in Higher Education 27: 159–172. doi: 10.1007/s12528-015-9101-x (with erratum, doi: 10.1007/s12528-015-9105-6)
- Griffiths, R., J. Mislevy, and S. Wang. 2022. Encouraging impacts of an Open Education Resource Degree Initiative on college students' progress to degree. Higher Education 84: 1,089– 1,106. doi: 10.1007/s10734-022-00817-9
- Havemann, L. 2016. Open educational resources. In M. A. Peters, ed. Encyclopedia of Educational Philosophy and Theory. Springer, Singapore, Singapore. doi: 10.1007/978-981-287-532-7 218-1
- Lee, D., and E. Lee. 2021. International perspectives on using OER for online learning. Educational Technology Research and Development 69: 383–387. doi: 10.1007/ s11423-020-09871-5
- Maggenti, M. A. B., A. R. Maggenti, and S. L. Gardner. 2008. Dictionary of Invertebrate Zoology. Zea Books, Lincoln, Nebraska, United States. doi: 10.13014/K2DR2SN5
- Mahmud, R., Y. Lim, and A. Amir. 2017. Medical Parasitology: A Textbook. Springer, Cham, Switzerland.
- Orr, D., M. Rimini, and D. Van Damme. 2015. Open Educational Resources: A Catalyst for Innovation, revised version [English]. Centre for Educational Research and Innovation,

Organisation for Economic Co-Operation and Development, Paris, France, 143 p. doi: 10.1787/9789264247543-en

- Richter, T., and M. McPherson. 2012. Open educational resources: Education for the world? Distance Education 33: 201–219. doi: 10.1080/01587919.2012.692068
- Roberts, L. S., J. J. Janovy, Jr., and S. Nadler. 2012. Gerald R. Schmidt and Larry S. Roberts' Foundations of Parasitology, 9th edition. McGraw-Hill, New York, New York, United States, 670 p.
- Robinson, T. J., L. Fischer, D. Wiley, and J. Hilton, III. 2014. The impact of open textbooks on secondary science learning outcomes. Educational Researcher 43: 341–351. doi: 10.3102/0013189X14550275
- Roguljić, M., and E. Wager. 2020. Consent for publishing patient photographs. Case Reports in Women's Health 26: e00194. doi: 10.1016/j.crwh.2020.e00194
- Satoskar, A. R. 2009. Medical Parasitology. CRC Press, Boca Raton, Florida, United States.
- Sennott, S., S. Loman, K. L. Park, L. F. Pérez, et al. 2015. PDXOpen: Open Access Textbooks, Comprehensive Individualized Curriculum and Instructional design. Portland State University Library, Portland, Oregon, United States. doi: 10.15760/pdxopen-6
- Taylor, M. A., R. L. Coop, and R. Wall. 2015. Veterinary Parasitology, 4th edition. Wiley, Chichester, United Kingdom.
- United Nations. 2023. The 17 sustainable development goals, 4: Quality education. https://sdgs.un.org/goals/goal4
- Wiley, D. A. 2020. Open educational resources: Undertheorized research and untapped potential. Educational Technology Research and Development 69: 411–414. doi: 10.1007/ s11423-020-09907-w
- WOERC (World Open Educational Resources Congress). 2012. 2012 Paris OER Declaration. UNESCO, Paris, France, 2 p. https://unesdoc.unesco.org/ark:/48223/pf0000246687

Supplemental Reading

- Attwell, G., S. D'Antoni, K. E. Hilding-Hamann, F. Muguet, et al. 2007. Giving Knowledge for Free: The Emergence of Open Educational Resources. Centre for Educational Research and Innovation, Organisation for Economic Co-operation and Development, Paris, France, 147 p. https://www.oecd.org/ education/ceri/38654317.pdf
- Hilton, III, J. 2016. Open educational resources and college textbook choices: A review of research on efficacy and perceptions. Educational Technology Research and Development 64: 573590. doi: 10.1007/s11423-016-9434-9
- Hilton, III, J. 2020. Open educational resources, student efficacy, and user perceptions: A synthesis of research published between 2015 and 2018. Educational Technology Research and Development 68: 853–876. doi: 10.1007/ s11423-019-09700-4

- Kotsiou, A., and T. Shores. 2021. OER and the future of digital textbooks. *In* A. Marcus-Quinn and T. Hourigan, eds. Handbook for Online Learning Contexts: Digital. Mobile and Open. Springer, Cham, Switzerland. doi: 10.1007/978-3-030-67349-9 2
- Lafon, V. 2007. Giving knowledge for free: The emergence of open educational resources. IMHE Info (July): 1–2. https://www.oecd.org/education/imhe/38947231.pdf
- Miao, F., S. Mishra, and R. McGreal, eds. 2016. Open Educational Resources: Policy, Costs and Transformation. [Perspectives om Open and Distance Learning.] United Nations Educational, Scientific and Cultural Organization, Paris, France, 231 p.
- Smith, M. S. 2009. Opening education. Science 323: 89–93. doi: 10.1126/science.1168018
- Van Damme, D. 2014. Open educational resources: Sharing content and knowledge differently is a driver of innovation in education. Organisation for Economic Co-Operation and Development, Paris, France, 32 slides. https://www. slideshare.net/OECDEDU/open-educational-resourcessharing-content-and-knowledge-differently-is-a-driver-ofinnovation-in-education
- Woelfle, M., P. Olliaro, and M. H. Todd. 2011. Open science is a research accelerator. Nature Chemistry 3: 745–748. doi: 10.1038/nchem.1149

Contributors

Editors

Scott L. Gardner

Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, Lincoln, Nebraska, United States; and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, United States

Sue Ann Gardner

University Libraries, University of Nebraska–Lincoln, Lincoln, Nebraska, United States

Publisher

Paul Royster

University Libraries, University of Nebraska–Lincoln, Lincoln, Nebraska, United States

Authors of Original Material

Lucrecia Acosta Soto

Área de Parasitología, Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández de Elche, Sant Joan, Alicante, Spain

Berenice Adán-Torres

Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico

Brenda Atziri García-García

Laboratorio de Vertebrados, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico

Darci Moraes Barros-Battesti

Department of Veterinary Pathology, Faculty of Agricultural and Veterinary Sciences, State University Julio de Mesquita Filho (UNESP), Jaboticabal, Brazil; and Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine and Zootechny, University of São Paulo, São Paulo, São Paulo, Brazil

Matthew G. Bolek

Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, United States

Daniel R. Brooks

Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, Lincoln, Nebraska, United States

Rocío Callejón Fernández

Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain

Sarah R. Catalano

Molecular Sciences, Aquaculture, South Australian Research and Development Institute, West Beach, South Australia, Australia

Anindo Choudhury

Department of Biology and Environmental Science, Division of Natural Sciences, Saint Norbert College, De Pere, Wisconsin, United States

Thomas H. Cribb

School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia

Scott C. Cutmore

School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia

Filipe Dantas-Torres

Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Fundação Oswaldo Cruz (Fiocruz), Recife, Pernambuco, Brazil

Donald W. Duszynski

Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States; and Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, Lincoln, Nebraska, United States

Jorge Falcón-Ordaz

Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico

Bernard Fried†

Department of Biology, Lafayette College, Easton, Pennsylvania, United States

Spencer C. Galen

Richard Gilder Graduate School, American Museum of Natural History, New York, New York, United States

Sumiya Ganzorig

Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia

Luis García-Prieto

Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico

Scott L. Gardner

Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, Lincoln, Nebraska, United States; and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, United States

Sue Ann Gardner

University Libraries, University of Nebraska–Lincoln, Lincoln, Nebraska, United States

Kyle D. Gustafson

Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, United States

Ben Hanelt

Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States

David Iván Hernández-Mena

Centro de Investigación y de Estudios Avanzados Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico

Daniel C. Huston

School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia

Fábián Ibolya

Department of Biomathematics and Informatics, University of Veterinary Medicine, Budapest, Hungary

Akira Ito†

Department of Parasitology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan

John J. Janovy, Jr.

School of Biological Sciences, University of Nebraska– Lincoln, Lincoln, Nebraska, United States; and Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, Lincoln, Nebraska, United States

Ana Maria Jansen

Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil

F. Agustín Jiménez-Ruiz

Department of Zoology, Southern Illinois University Carbondale, Carbondale, Illinois, United States; and Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, Lincoln, Nebraska, United States

Roman Kuchta

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic

Sebastian Kvist

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada

Omar Lagunas-Calvo

Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico

Gabriel J. Langford

Biology Department, Florida Southern College, Lakeland, Florida, United States

Marcela Lareschi

Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina

Virginia León-Règagnon

Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico

Jeffrey M. Lotz

Gulf Coast Research Laboratory, University of Southern Mississippi, Hattiesburg, Mississippi, United States

Marco Marozzi

Department of Environmental Sciences, Informatics and Statistics, University of Venice, Venice, Italy

Storm B. Martin

School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia

xiv

Chris T. McAllister

Division of Natural Sciences, Northeast Texas Community College, Mt. Pleasant, Texas, United States

Mary Ann McDowell

Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States

Terrence L. Miller

Aquatic Diagnostics Laboratory, Department of Primary Industries and Regional Development–Western Australia, Perth, Western Australia, Australia; and School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia

Scott Monks

Laboratorio de Morfología Animal, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico; and Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, Lincoln, Nebraska, United States

Juliana Notarnicola

Instituto de Biología Subtropical, CCT Nordeste, CONICET, Universidad Nacional de Misiones, Misiones, Argentina

Alejandro Oceguera-Figueroa

Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico

Valeria Castilho Onofrio

Special Laboratory of Zoological Collections, Butantan Institute, São Paulo, Brazil; and Master's Program in Veterinary Medicine and Animal Welfare, Santo Amaro University, São Paulo, Brazil

Robin M. Overstreet[†]

Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, Mississippi, United States

Gerardo Pérez-Ponce de León

Escuela Nacional de Estudios Superiores Unidad Mérida, Mérida, Yucatán, Mexico; and Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico

Susan L. Perkins

Biology Program, Division of Science, City College of New York, New York, New York, United States

A. Townsend Peterson

Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States

Griselda Pulido-Flores

Laboratorio de Morfología Animal, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico; and Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, Lincoln, Nebraska, United States

Valentin Radev

National Diagnostic Science and Research Veterinary Medical Institute, Bulgarian Food Safety Agency, Sofia, Bulgaria

Jenő Reiczigel

Department of Biomathematics and Informatics, University of Veterinary Medicine, Budapest, Hungary

Jennifer Robichaud

Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States

María del Rosario Robles

Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina

Klaus Rohde

Department of Zoology, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia

André Luiz Rodrigues Roque

Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil

Lajos Rózsa

Evolutionary Systems Research Group, MTA Centre for Ecological Research, Tihany, Hungary; and MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary

Tomáš Scholz

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic

Brenda Solórzano-García

Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico; and Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico

Rafael Toledo

Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain

Haylee J. Weaver

Biological Resources Study, Department of the Environment and Energy, Canberra, Australia

Nicholas Q.-X. Wee

School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia

Megan Wise de Valdez

Program of Biology, Texas A&M University, San Antonio, Texas, United States

Samanta C. Chagas Xavier

Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil

Willi E. R. Xylander

Senckenberg Museum für Naturkunde Görlitz, Görlitz, Germany; and TU Dresden, Internationales Hochschulinstitut Zittau, Zittau, Germany

Russell Q.-Y. Yong

School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia

Francisco Zaragoza-Tapia

Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México

Authors from Open Access Sources

Carla Nunes Araújo

Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil

Izabela Marques Dourado Bastos

Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil

Kaio Luís da Silva Bentes

Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil

Morgan A. Byron

Department of Entomology and Nematology, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, United States

John L. Capinera

Department of Entomology and Nematology, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, United States

Carlos Roberto Ceron

Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil

John J. Janovy, Jr.

School of Biological Sciences, University of Nebraska– Lincoln, Lincoln, Nebraska, United States; and Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, Lincoln, Nebraska, United States

Gerald W. Krantz

Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States

Evert E. Lindquist

Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada

Jaime Martins de Santana

Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil

Flávia Nader Motta

Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil

Steven A. Nadler

Department of Entomology and Nematology, University of California, Davis, Davis, California, United States

xvi

Yanna Reis Praça

Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil

Larry S. Roberts†

Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States

Paula Beatriz Santiago

Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil

Christopher J. Schofield

London School of Hygiene and Tropical Medicine, London, United Kingdom

Gabriel dos Santos Silva

Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil

Sofia Marcelino Martins Silva

Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil

Ester Tartarotti

Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, IBILCE/UNESP, São José do Rio Preto, State of São Paulo, Brazil

Caroline Barreto Vieira

Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil

Maria Tercília Vilela de Azeredo-Oliveira

Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, IBILCE/UNESP, São José do Rio Preto, State of São Paulo, Brazil

David Evans Walter

Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada

Content Reviewers

Michael A. Barger

Department of Biology, Health Science, and Integrative Human Biology, School of Health Sciences, Stephens College, Columbia, Missouri, United States

Lance A. Durden

Department of Biology, Georgia Southern University, Savannah, Georgia, United States

Agustín Estrada-Peña

Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain

Scott L. Gardner

Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, Lincoln, Nebraska, United States; and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, United States

Alberto A. Guglielmone

Instituto Nacional de Tecnologia Agropecuaria, Estacion Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina

Sherman S. Hendrix

Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, United States

Jana Kvičerová

Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic

Janice Moore

Department of Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, United States

Ana Rivero

Maladies infectieuses et vecteurs: Écologie, génétique, evolution et contrôle, Institut de Recherche pour le Développement, Montpellier, France

Christopher M. Whipps

Center for Applied Microbiology, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, United States