
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Engineering Mechanics Dissertations & Theses Mechanical & Materials Engineering, 
Department of 

Summer 7-2012 

Propagation of Ultrasound through Freshly Excised Human Propagation of Ultrasound through Freshly Excised Human 

Calvarium Calvarium 

Armando Garcia Noguera 
University of Nebraska – Lincoln, aagn17@gmail.com 

Follow this and additional works at: https://digitalcommons.unl.edu/engmechdiss 

 Part of the Biomaterials Commons, Engineering Mechanics Commons, Engineering Physics 

Commons, Mechanical Engineering Commons, and the Mechanics of Materials Commons 

Garcia Noguera, Armando, "Propagation of Ultrasound through Freshly Excised Human Calvarium" (2012). 
Engineering Mechanics Dissertations & Theses. 31. 
https://digitalcommons.unl.edu/engmechdiss/31 

This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Engineering Mechanics 
Dissertations & Theses by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/engmechdiss
https://digitalcommons.unl.edu/mechengineer
https://digitalcommons.unl.edu/mechengineer
https://digitalcommons.unl.edu/engmechdiss?utm_source=digitalcommons.unl.edu%2Fengmechdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/233?utm_source=digitalcommons.unl.edu%2Fengmechdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/280?utm_source=digitalcommons.unl.edu%2Fengmechdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=digitalcommons.unl.edu%2Fengmechdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=digitalcommons.unl.edu%2Fengmechdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.unl.edu%2Fengmechdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/283?utm_source=digitalcommons.unl.edu%2Fengmechdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/engmechdiss/31?utm_source=digitalcommons.unl.edu%2Fengmechdiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages


i 

 

Propagation of Ultrasound through Freshly Excised Human Calvarium 

By 

 

 

Armando Garcia Noguera 

 

 

A THESIS 

 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Master of Science 

 

 

Major: Engineering Mechanics 

Under the Supervision of Professor Joseph A. Turner 

 

 

 

Lincoln, Nebraska 

July, 2012 



ii 

 

Propagation of Ultrasound through Freshly Excised Human Calvarium 

Armando Garcia Noguera, M.S 

University of Nebraska, 2012 

 

Adviser: Joseph A. Turner 

  

The propagation of ultrasound through complex biological media, such as the 

human calvarium, poses a great challenge for modern medicine. Several ultrasonic 

techniques commonly used for treatment and diagnosis in most of the human body 

are still difficult to apply to the human brain, in part, because of the properties of the 

skull. Moreover, an understanding of the biomechanics of transcranial ultrasound may 

provide needed insight into the problem of blast wave induced traumatic brain injury 

(TBI). In the present study, the spatial variability of ultrasonic properties was 

evaluated for relevant frequencies of 0.5, 1, and 2.25 MHz. A total of eighteen 

specimens from four donors were tested using a through‐transmission configuration. 

With the aid of a two interface model, the ultrasonic attenuation coefficient was 

determined from the total energy loss at various locations on the specimens. With the 

same setup, speed of sound through the bone layer at the same locations was also 

determined. Mean volumetric densities at various locations on the samples were 

determined from computed tomography images. The results show good correlation 

between attenuation and volumetric density, particularly for the higher frequencies. In 

addition, the spatial variability of the attenuation, within a single person and with 
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respect to different people, was found to be much larger than expected. These results 

are anticipated to have a major impact on transcranial biomedical research. 
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Chapter 1  

 Introduction 
 

Ultrasound has proven to be an important medical tool for diagnosis and 

treatment of several physical disorders. Transcranial ultrasound in particular has 

become an emergent field of research in recent years. Attention has been drawn to the 

improvement of existing ultrasound techniques as well as to the development of novel 

procedures. Transcranial ultrasound presents several opportunities in modern 

medicine. However, its efficiency is currently far from ideal.  

Doppler ultrasound is a popular test that measures the velocity of blood flow 

through blood vessels. Used in the past for the tracing of blood clots in the principal 

blood vessels of the legs, it is beginning to be used for transcranial applications. It can 

help in the diagnosis of cerebral aneurysms and subsequently prevent 

hemorrhages that can cause severe brain damage or death. This technique is relatively 

quick and inexpensive, and the equipment used for these tests is becoming 

increasingly portable (Aaslid et al., 1982; White et al., 2000). The common procedure 

is to analyze the scattered signal reflected from the internal tissue using a Fast-Fourier 

transform. However, skull bone can be a highly attenuative medium, decreasing and 

distorting such reflected ultrasound signals, which poses technical difficulties to both 

register and interpret them (Ries, 1997).  
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In recent years, ultrasound contrast agents have been seen as a solution for this 

problem. Yet, very little is known about how these agents can be used regularly in a 

clinical environment. Moreover, there is still controversy about the effect of the 

contrast agents with respect to diagnostic accuracy and it is thought that they may 

increase the measured flow velocities (Zunker et al., 2002).  

Ultrasound aided blood brain barrier disruption is one of the newest 

techniques in medical ultrasound. The blood-brain barrier is a vascular system that 

prevents penetration of large molecules as well as almost all small molecules into the 

brain parenchyma. This barrier unfortunately, also blocks drugs, making very difficult 

to treat some neural disorders. Microbubble-enhanced-focused ultrasound is currently 

being investigated for transient and selective disruption of the blood-brain barrier. It 

has shown promising results in small mammals (Hernot and Klibanov, 2008; Wear 

2008), and one group recently reported success in non-human primates (Marquet et 

al., 2011). The microbubbles are manufactured from biocompatible materials. They 

are then inserted intravenously and later collapsed by ultrasound irradiation (a 

phenomenon known as cavitation) at the desired location in the brain. This ultrasound 

induced cavitation is the principle behind targeted drug delivery and enhancement of 

drug action (Hernot and Klibanov, 2008). 

Blood-brain barrier disruption appears to be a promising technique for drug 

delivery in the brain. However, ideal parameters and standards are yet to be 

established. Moreover, attenuative properties of bone present again a challenge for 

transcranial sonification, especially in humans for which in some cases attenuation 

can be nearly 100 % at high frequencies.  
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Now that the understanding of the causes and effects of traumatic brain injury 

(TBI) has increased, more attention has been drawn to this health problem. Millions 

of Americans, especially military members actively involved in the recent wars in and 

around Iraq and Afghanistan, suffer every year from health problems related to TBI. 

Impacts, sudden acceleration or deceleration of the head, and in particular explosive 

blasts, are the most common causes of TBI.  In fact, recent research indicates that 

blasts are the most frequent cause of TBI, predominantly mild TBI, among Iraq and 

Afghanistan combat troops (Centers for Disease Control and Prevention, 2003).  

Factors like the chemistry of the explosive, the amount of material detonated, 

the proximity of the subject to the explosion, the surrounding topography, and the 

protection used, determine the severity of the lesion (Centers for Disease Control and 

Prevention, 2003). Some researchers hypothesize that the so-called primary injuries 

are caused by shock waves propagating through the body, from dense solid and liquid 

sections to gas-filled organs, such as the lungs, gastrointestinal tract, and middle ear. 

The resulting physical effects in the brain are difficult to detect directly. However, 

recent findings suggest that the brain is extremely vulnerable to these primary blast 

injuries (Ling et al., 2009). 

Some medical treatments for blast TBI are beginning to be applied with 

certain success in the battle field including decompressive craniectomy, cerebral 

angiography, and transcranial Doppler, among others. Nevertheless, these first trials 

suggest that the phenomena that cause blast related TBI are much more complex than 

initially thought. Thus, a more thorough study has to be conducted in order to gain a 

better understanding of the biomechanics of this problem (Ling et al., 2009). On the 
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other hand, blast waves are composed of a very wide spectrum of frequencies, and 

there is no conclusive evidence that a particular range is the cause of TBI.  

From previous research, it is easy to conclude that further understanding of 

the interaction between ultrasound and cranial bone is essential for the success of 

these medical non-invasive procedures. Furthermore, comprehension of how sound 

waves are attenuated in the skull is a major area of interest. Such information will be 

essential to find effective solutions to TBI caused by blast waves.  

In the present work ultrasonic properties of bone will be measured at 

frequencies currently used in medical settings. It is hoped that these results can 

provide the insight needed to overcome the challenges of transcranial ultrasound and 

its applications.  Moreover, it will be possible to estimate the amount of energy that 

effectively reaches the brain as a function of frequency. These frequencies are part of 

the spectrum of blast waves and are, as already stated, relevant for medical purposes 

in both diagnoses and treatment of neural diseases. 

In the next chapters a thorough review of the procedures followed for the data 

collection, as well as the theory on which they are supported is provided. In chapter 2 

basic concepts are given as a guide to understand the procedures followed in the 

subsequent sections. Later in chapter 3, all the procedures and information concerning 

the calvarium samples are given. The steps taken to extract the volumetric density of 

the calvarium specimens from the computed tomographies are detailed in chapter 4. 

The experimental setups and the procedures followed for ultrasonic data collection 

are provided in chapter 5. Finally in chapter 6, the results are discussed and compared 

with those obtained by previous research groups.  
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Chapter 2  

 Background 
 

Acoustic waves, also known as pressure waves, travel through matter carrying 

mechanical energy. When these pressure waves vibrate at a frequency above the 

human hearing range (20 kHz) they are known as ultrasound. The presence of a 

medium is essential to the transmission of ultrasonic waves, i.e., sound waves cannot 

propagate in vacuum. The propagation takes the form of a displacement of successive 

elements of the medium. The elements of material will therefore execute different 

movements or orbits as the wave passes through them. It is the differences in these 

movements which characterize basic types of ultrasonic waves (Raj et al., 2004).  

 

2.1. Longitudinal Waves 

From all the types of waves, the longitudinal, L wave, or also called 

compression wave, has been the most widely used since it will travel in liquids, 

solids, or gases and is easily generated and detected. Longitudinal waves have been 

used for non-destructive testing (NDT) and materials characterization (Aggelis et al., 

2007; Ghoshal, 2008; Lionetto et al., 2005) and longitudinal ultrasound transmission 

through the human skull is used for imaging, doppler imaging, and therapeutic 
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purposes (Fry, 1977; Kinoshita et al., 2006; Pichardo et al., 2011). They exist when 

the motion of the particles in a medium is parallel to the direction of wave 

propagation, as shown in Figure 1. Alternating compression and rarefaction (low 

pressure) regions will alternate at the frequency of propagation as the sound travels 

through the material. Longitudinal waves have a high velocity of propagation in most 

media compared to other types of waves like shear waves. The wavelengths in 

common materials are usually very short in comparison with the cross-sectional area 

of the transducer. This property allows the energy to be focused into a sharp beam 

with very little lateral distortion. Furthermore, longitudinal waves are easy to convert 

into shear waves, making them versatile for specific applications (Raj et al., 2004). 

 

2.2. Shear Waves 

As shown in Figure 1, shear waves will cause a motion in the material 

perpendicular to the path of propagation of the wave. Therefore, shear waves can only 

occur in solid media and highly viscous fluids that can support and propagate shear 

deformation. Shear can be generated through the process of mode conversion from a 

pressure wave at oblique incidence to an interface. If the angle of incidence is chosen 

so that the first critical angle of the material tested is exceeded, then only shear waves 

propagate into the solid (Schmerr and Song, 2007). In general shear waves are mostly 

used to characterize the microstructure or to find flaws in a tested material. The speed 

of propagation of shear waves is proportional to the shear modulus of the material and 

is usually about half the speed of longitudinal waves.  

 



7 
 

  

 

Figure 1. When longitudinal waves propagate through a material, the particles execute an oscillating 

motion parallel to the direction of propagation. Shear waves will cause a motion in the material 

perpendicular to the path of propagation of the wave. 

 

2.3. Critical Angle 

When waves propagate from one material to another, from generalized Snell’s 

law (see Figure 2), the angles of propagation in both materials are related by 

��������	�� 
 ���	�����	�� 
 ���	����	�� ,                                  (2.1) 

 

where the sub-indices � and � denote longitudinal and shear modes, and sub-indices 1 

and 2 denote properties of material 1 and 2 respectively.  
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Figure 2. The behavior of incident plane waves at the interface of two media at an oblique angle 

can be modeled as shown following Snell’s generalized law. 

 

Furthermore when the longitudinal waves hit the interface between two different 

materials at an oblique angle, we have 

cos�� 
 �1 � 	���	��� sin��� ,                                                            (2.2) 

where �� is the angle of incidence of the wave at the interface, �� is the angle of 

transmission of the wave in the second material, and � ! and � � are the longitudinal 

wave speeds in materials 1 and 2 respectively. 

From this equation it can be seen that when sin�� < � �/� ! the cos�� term is 

real. This condition holds only for the case when the wave speed in the first medium 

is faster than the speed in the second medium. For the reverse case, the second 

medium has a faster wave speed, such as in the situation of sound propagating from 

water to bone. In this case the cosine term will be real for a range of incident angles 

0≤	� ≤ �	# , where the first critical angle �	# can be defined as 

 ��$ 
 sin�1��1/��2�.                                                                        (2.3) 
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As already stated, beyond the first critical angle, only shear waves propagate 

into the material. In bone, as it will be shown in chapter 5, the first critical angle from 

the theory will be close to 30 degrees. This theoretical value is in good agreement 

with the experimental results obtained in (Clement et al., 2004). 

Furthermore, there will be a second angle of incidence for which all of the 

wave energy incident on the interface of the two materials will be reflected or 

refracted into a surface as shear waves. This angle is known as the second critical 

angle (Schmerr and Song, 2007; Larson, NDT resource center). This case will not be 

detailed here since such large angles of incidence will not be encountered in the 

present study.  

 

2.4. Ultrasonic Transducers 

The ultrasonic transducer is the element used to generate and detect 

ultrasound. By analogy, one can think of a transducer in transmission mode as a 

stereo speaker and the transducer in reception mode as the human ear. There are 

different types of transducers depending on the application for which they are 

designed.  

Contact, immersion, and air-coupled transducers are the three most common 

types of ultrasonic transducers available in the market. The main difference in these 

three is the coupling media between the face of the transducer and the test sample.  

As its name indicates, air-coupled transducers use air as the medium for the waves to 

propagate. They are usually used at low frequencies due to the high impedance 

mismatch between air and the insonified surface, and for basic applications like 
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control systems where simple echo detection is needed. Contact transducers, on the 

contrary, are often used for more refined measurements (NDT, material 

characterization, etc) and the coupling medium is usually a highly viscous fluid like 

honey, glycerin, or other lubricant, such that the impedance mismatch between the 

tested material and the transducer is reduced. In the case of immersion transducers, 

water is typically used as the coupling medium. The tests are performed with both 

transducer and sample immersed in a water tank with the distance between them 

known as the water path (Chen, 2007; Papadakis, 1999; Raj et al., 2004; Ghoshal, 

2008).  

A schematic of a typical transducer is shown in Figure 3. In general all 

transducers have the same basic elements: a housing or case for protection of internal 

components, the circuitry to input and output electrical signals, a piezoelectric 

element or a composite material that translates the electrical input into vibration and 

vice versa, an impedance matching material between the vibrating element and the 

coupling media, and some insulator for noise control (Papadakis, 1999). 

The pressure generated from the transducer is transmitted to the coupling 

medium from most points on the transducer face. Cylindrical transducers are often 

referred to as piston transducers given that the beam in front of the transducer has a 

cylinder shaped profile, as shown in Figure 4. The shape and intensity of the beam 

vary at different distances from the face. Interference and diffraction effects between 

waves are the cause of fluctuations in intensity at positions close to the source. This 

section of the beam profile is known as the near field of the transducer. Because of 

these fluctuations, water paths are usually used outside of this region.  
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Figure 3.The basic elements of an ultrasound transducer are: housing for protection of internal 

components, circuitry to input and output electrical signals, piezoelectric element, an impedance 

matching material, and insulator for noise control. 

 

The region beyond the near field of the ultrasonic beam is known as the far 

field. Here, the sound beam spreads out in a more uniform fashion. There will be a 

transition area between near and far field where the beam necks down and the 

intensity reaches a maximum (for focused transducers). This distance is referred to as 

the focal length. Optimal detection results are obtained when flaws occur in this area 

(Larson, NDT resource center). However, in the far field, the beam becomes wider 

and more uniform (quasi-plane wave) which is ideal for attenuation coefficient 

measurements. 
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Figure 4. Shape and intensity of the beam vary at differet distances from the face. Near field: highly 

fluctuating intensity region. Far field: sound beam spreads out in a uniform patern. Focal length: 

transition area between near and far field where the beam necks down and intensity is higher (Cartz, 

1995). 

 

2.5. Ultrasound for NDT and Material Characterization 

Ultrasound is used for medical evaluations as well as non-destructive 

industrial inspection. It can be used for imaging for instance in echo-sonography of a 

fetus in the womb or in the search for cracks in a train wheel. Ultrasound is analogous 

to other methods of characterization and analysis based on wave-material interaction 

phenomena (optics, X-ray, infrared, raman spectroscopy, nuclear magnetic resonance, 

neutron, γ-ray, mass spectrometry, etc). Ultrasound offers some advantages over other 

wave-material interaction methods. The main benefits are its portability, cost, 

applicability to most states of matter, and wide range of properties that can be 

measured (Chen, 2007).   
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Different frequency ranges offer solutions to a variety of industrial 

applications: low ultrasound frequencies (40 kHz – 500 kHz) for sensing and 

communications;  medium–high frequencies (500 kHz-5MHz) are commonly 

employed for chemical treatment, cleaning, and medical therapy; and high 

frequencies (> 5MHz) for nondestructive testing in polycrystalline materials such as 

metals (Aggelis et al., 2007). 

In general, the interactions between the ultrasound waves and the tested 

material are measured and analyzed for NDT and material characterization. Wave 

speed, attenuation, absorption, and scattering, are the most common properties 

measured. After propagation of the sound waves through the medium under 

evaluation, the effect of such interactions on the ultrasound beam can be related to 

inherent properties of the material.  

 

2.6. Measurement Configurations 

Ultrasonic measurements are typically made using two measurement 

configurations as shown in Figure 5. In a pulse-echo measurement a single transducer 

is employed as both the source and the receiver. When the incident waves encounter 

an interface with different impedance (propagating from one medium to another), 

they reflect due to the acoustic impedance mismatch as shown in Figure 5A. 

Therefore, in a finite material it is possible to identify, most of the time, two 

reflections known as the frontwall and the backwall of the material. Reflections that 

are observed between the frontwall and the backwall correspond to scattering caused 
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by the microstructure (see scattering chapter 5, section 5.4). This principle governs 

ultrasound use for microstructure characterization and flaw detection.  

The other type of configuration generally used in ultrasonic NDT is the 

through-transmission configuration. In this case, two transducers are aligned as 

shown in Figure 5B, one acting as the source and the other as the receiver. Through-

transmission is often preferred over pulse-echo for highly attenuative materials given 

that the waves must propagate only one time through the medium. With this 

configuration it is possible to measure directly the drop in pressure caused by the 

material in the path of propagation.  

 

 
 

Figure 5. A: In pulse-echo configuration a single transducer is employed as both the source and the 

receiver. Reflections from the materials in the propagation path are used for evaluation. B: In through 

transmission, two transducers are aligned, one acting as the source and the other as the receiver. 

Through-transmission is often preferred over pulse-echo for highly attenuating materials. 

A 

B 
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These configurations are employed in the present work to assess the geometry 

of the calvarium samples and the ultrasonic properties of the bone. 

 

2.7. A and C Data Acquisition Modes 

The most common mode for ultrasound data collection is the A-mode (A 

stands for amplitude)(Christopher F. Njeh et al., 1999)
 
. It consists of a time-base 

display like the one shown at the top of Figure 6. The display shows the amplitude of 

the signal received by the input transducer as a function of time. In UTWin®, the 

software employed with the immersion system used in the present work, various 

parameters such as gain, time-window, sampling rate, and number of averages per 

second can be adjusted.  

The C-scan is a plane composition of multiple A-scans on a surface 

perpendicular to the incident sound beam. Usually in this mode, the output is a 

multicolored mesh like the one shown at the bottom of Figure 6. Each color 

represents the value of either maximum amplitude or time of flight of a preset time 

gate, shown in yellow in the same figure. However, UTWin® also allows all the 

waveforms at the locations of the C-scan mesh to be recorded. Furthermore, C-scans 

can be performed in pulse-echo or through-transmission. These features are exploited 

in the present work to collect information of the geometry and the ultrasonic 

properties of the specimens at multiple locations.  
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Figure 6. Typical UTWin® display showing both A-mode and C-mode. At the top of the image the 

received amplitude-modulated signal is presented in a time-base graph. At the bottom, the maximum 

amplitude at multiple locations of a 2D scan are presented in a multicolored picture. 
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Chapter 3  

 Calvarium Specimens 
 

The human skeleton, as any other endoskeleton of other vertebrates, is 

composed of rigid structures called bones. Bones are a type of connective tissue and 

their main purpose is to provide support to other organs in the body. The hierarchical 

structural composition of bone plays a major role in its mechanical and ultrasonic 

properties. For instance, the known compressive strength of bone can be attributed 

more to the microstructure than to the total bone mass. Furthermore, it has been 

discussed in various publications that its high ultrasound attenuation is the result of 

the complexity of its internal microstructure (Aubry et al., 2003; Pichardo et al., 

2011).  

 

3.1. Human Calvarium 

Since bone is a biological material, it is expected to have a large local 

variation in its properties. At both the micro and macro-scales the human calvarium 

and its composing bones exhibit this local variability in properties as well (Smith, 

2001). Major changes in curvature, thickness, and density can be encountered in even 
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small skull areas. This makes the human skull one of the most difficult materials for 

ultrasound propagation (Aubry et al., 2003). 

The human calvarium is composed of the bones that form the calvarium and 

those that shape the face and the lower jaw or mandible. Specifically the calvarium is 

formed by eight irregularly shaped bones, as shown in Figure 7: the frontal, two 

parietal, two temporal, the occipital, and two sphenoids. These bones are held 

together by means of the sutures. During childhood the sutures are strong, fibrous, 

elastic tissue that allows the brain to grow and develop inside the head. After full 

development of the brain, the sutures are no longer flexible and the bones that 

compose the calvarium fuse and grow together (Rice, 2008).   

The bones that compose the calvarium like other bones in the human body 

have a composed assembly; a sponge-like bone layer known as cancellous bone or 

diploe, sandwiched between two outer dense structures consisting of cortical bone 

(Smith, 2001). This composite structure and the complexity of the skull bone 

microstructure make the calvarium a challenge for ultrasonic transcranial treatment of 

brain tumors, targeted drug delivery, improved thrombolytic stroke treatment, blood 

flow imaging, detecting internal bleeding, and tomographic brain imaging (Clement 

et al., 2004). 
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Figure 7. The human skull is composed by several irregularly shaped bones including the 

lower mandible. The frontal, two parietal, two temporal, the occipital, and the sphenoid bones conform 

the calvarium.  

 

3.2. Excision of Calvarium Specimens 

Samples taken from the two laterals, front, posterior, and upper regions of the 

skull from different donors were used in the present study. It is important to mention 

that each fragment (depending on the location) may be comprised of material from 

two or three different bones, including their respective sutures. For instance a 

specimen excised from the lateral may include temporal, parietal, and sphenoid bone, 

and the squamous suture. However, multiple bones and sutures in a fragment will be 

accounted for in the results because properties at each location were recorded. 

The samples were excised and kept frozen fresh and sealed at a temperature of 

-20 °C to prevent degradation. Samples from a total of four donors were taken and the 

excisions were performed following the regulations and protocols set by the 

Occupational Safety and Health Administration (OSHA) Standard 1910-1030, 

“Bloodborne Pathogens”. A Rockwell RK5101K SoniCrafter oscillating saw was 
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used to perform the excisions. Unlike oscillating saws frequently used in medical 

settings, this more commercial version has non-sealed moving parts and it is 

electrically powered. For these reasons it is not recommended for in vivo applications. 

However, it is an ideal tool for the purposes intended in the present work.  

Given the irregular geometry of the heads and the variations in size and shape 

between subjects, the sizes and shapes of the calvarium fragments were not easy to 

control. Specimens were cut in approximately rectangular pieces with dimensions 

between 60 mm and 100 mm on each side. A fragment excised from the anterior 

region of one of the heads is shown in Figure 8. Each fragment was labeled with 

information about the region of the head from which it was excised, as well as an 

arrow pointing towards the direction of the face. Information on the age, weight, 

height, and cause of death of the four calvarium donors are given in Table 1. Donors 

were labeled from one to four in Roman numerals. Fragments are coded with the 

number of the head donor followed by a letter (A: anterior, P: posterior, L: left side, 

R: right side, S: superior) that denotes the region of the calvarium from which it was 

excised. Thus, for instance a fragment taken from the anterior region of donor I will 

be referred to as I-A.  
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Figure 8. Rectangular shaped fragments were excised from frontal, parietal, temporal, and occipital 

regions of the heads. Samples were kept frozen fresh and sealed to prevent degradation. 

 

Table 1. Relevant information about the calvarium donors. 

Donor 
Age 

(years) 

Weight    

(lbs) 
Height Cause of death 

I 67 102 6’0’’ Lung cancer 

II 53 150 5’7’’ 
Cardiomyopathy and                       

kidney disease 

III 72 149 5’9’’ 
Prostate cancer and                    

diabetes 

IV 60 148 5’10’’ 
Cardiac arrest, ventricular 

fibulation and HBP 

 

In order to quantify the correlation between ultrasonic properties of calvarium 

bone with location and density, it was necessary to determine each of these 
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parameters. Ultrasound echo-pulses and computed tomography images were 

employed to determine the dimensions and density at every point on the samples. 

Details of these procedures are given in chapters 4 and 5.  
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Chapter 4  

 Density from Computed 

Tomography  
 

The principle behind computed tomography (CT) was proposed prior to the 

development of the first automated processors. Perhaps the first fully functional CT 

scanner used for medical applications was designed by Godfrey N. Hounsfield in 

1967. Currently CT is one of the most popular techniques for biomedical non-

invasive evaluation. The image reconstruction that takes place in a CT scanner, and 

that was first enunciated in the 1940’s, follows the idea that by evaluating 2D 

projections of an object from multiple angles, the internal composition of such 3D 

object can be regenerated. As shown in Figure 9, imagine that a 3D image of the 

round objects behind the blocks is intended. When seen from different angles, and if 

all objects are translucent to the eye, it will be eventually possible to determine the 

fact that there are three oblong objects behind the blue blocks. In computed 

tomographers, these 2D projections are regular X-ray images and literally dozens and 

sometimes hundreds of these X-rays are collected in modern scanners for 3D 

reconstruction (Hsieh, 2003). 

 



24 
 

  

 
 

Figure 9. A 3D CT image is reconstructed from several 2D x-rays. These 2D x-rays are taken at 

slightly different angles around the 360 degrees. Then, a code following a simple algorithm first 

proposed in the 1940’s, makes sense of all the different projections and composes the 3D image.  

 

 

4.1. Computed Tomography in Biomaterials 

In biomaterials, internal structure reconstruction is possible because of the 

penetration of X-rays in the tissue. Thus, through-transmission X-ray measurements 

are performed and the material attenuation is measured. The amount that the X-ray 

beam is attenuated characterizes the material that lies in the propagation path. The 

variation in intensity (attenuation coefficient) used in current tomographers is 

measured in Hounsfield units. Hounsfield units are relative units that compare the 

attenuation coefficient of a medium with that of water (Feeman, 2010).  

The recent development of quantitative computed tomography (QCT) has 

allowed for bone mineral density (BMD) measurements to be made. The 

measurements have been widely performed in the axial spine and peripheral skeleton 

to determine in three dimensions the volumetric density of trabecular and cortical 

bone. QCT has also been used to estimate fracture risk, age-related bone loss, and as a 
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non-invasive evaluation tool for chronic and metabolic diseases, like osteoporosis 

(Brunader and Shelton, 2002).  

CT and QCT are beginning to receive more attention among researchers in the 

field of acoustics. CT and QCT are attractive given that they can provide with 

information on the density as well as the microarchitecture of bone, which allows for 

a more accurate modeling of the acoustic properties (Aubry et al., 2003).  

Further advances have been made in the field of computed tomography. 

Volumetric QCT (vQCT) has been explored recently for medical applications. It can 

provide a more direct relationship between the microstructure of bone and its 

mechanical properties (Laugier et al., 1993). High-resolution peripheral quantitative 

computed tomography (HR-pQCT) makes it possible to evaluate the microstructure 

of bone in the distal radius and tibia (Sekhon et al., 2009).  

For QCT, the use of reference phantoms for calibration of the CT images is a 

common practice. These phantom materials are materials for which the density is 

known by some other independent measurements. Then, X-ray intensity values 

(Hounsfield units) can be converted into actual bone density. Furthermore, the 

reference phantom helps to correct for errors caused by artifacts or poor resolution 

(Brunader and Shelton, 2002). Three polymers with known density were used in the 

present study for calibration purposes.  

 

4.2. Phantom Materials  

Measurement of bone density presents practical difficulties. Bone in the 

calvarium is composed of cortical bone, cancellous bone, and pores filled with bone 
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marrow. All three components appear in different proportion at every location of the 

skeleton. Furthermore, these three components have different densities. Thus, as any 

other biometric, bone density has been determined as a statistical approximation of 

densities from large sections, or from bone ashes (in an attempt to measure the 

density of bone mineral alone). As already stated, CT imaging has been used for 

quantitative bone densitometry. Scans are performed with reference materials and real 

density is then extracted from the CT images. 

In the present work, mean values of skull bone density from previous works 

(see Table 2) were considered in the selection of the reference materials. Three 

polymers with standard densities similar to the mean densities of cortical bone, 

cancellous bone, and bone marrow, were selected as phantoms. Polymers have the 

advantage of being very homogeneous, i.e., their properties do not vary significantly 

with location. Therefore, the measured densities represent the density at every point 

in the reference, which is desirable in order for the density results to be corrected at 

every slice of the CT scans. Finally, after evaluation of these factors, 

polytetrafluoroethylene, polycarbonate, and low density polyethylene were selected 

as phantom materials.   

 

Table 2. Density of bone mineral and compact bone ashing previously reported 

(Rustgi et al., 1980). 

 Bone Mineral Density (g/cm
3
) Compact Bone Density (g/cm

3
) 

Mean 1.346 ± 0.067 2.140 ± 0.085 
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In order to determine the density of the reference materials, a Toledo Mettler 

AT201 Electronic Analytical SemiMicro Balance, shown in Figure 10, was 

employed. 

 

 

Figure 10. Density measurements were performed with a Toledo Mettler AT201 electronic analytical 

semimicro balance. Making use of a reference fluid for which the density is known, the Archimedes 

buoyance principle was applied. 

 

Following the Archimedes principle, when an object is immersed in a fluid, 

the fluid applies a force to the object equivalent in magnitude to the weight of the 

volume displaced and in opposite direction to the acceleration of gravity. Assuming 

that the object is in equilibrium, the net force is zero so that 

 

%& ' ( �% 
 0,                                    (4.1) 

 

where %& is the tension in the holder (the apparent weight of the object) and % is the 

weight of the object. The buoyant force ( is given by 
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( 
 *+,-�./0,                                   (4.2) 

 

where / is the volume of the object, *+,-�.	is the density of the fluid, and 0 is the 

acceleration of gravity. Combining these to equations it can be shown that 

 

* 
 1
1213 *+,-�.,                                   (4.3) 

 

where 4 is the total mass of the object (determined from the weight in air, 4 
 %/
0), and 4& is the apparent mass (determined from the weight in the fluid, 4& 

%&/0). Note that further simplification can be made so that the masses can be 

replaced by the weights directly measured with the instrument.  

Water was the fluid used to measure the density of polytetrafluoroethylene 

and polycarbonate, because both are denser than water. In the case of low density 

polyethylene, which is less dense than water, it was necessary to utilize ethanol. The 

results of these measurements are given in Table 3. 

 

Table 3. Density of phantom materials used as density references  

Material Density (g/cm
3
) 

Polytetrafluoroethylene 2.16 

Polycarbonate 1.19 

Low density polyethylene 0.93 

 

4.3. Conversion of Hounsfield Units to Real Density  

All studied samples were scanned using a Light Speed Plus 16-Slice CT 

scanner at the BryanLGH Medical Center-West, Radiologic Services, Lincoln,  



29 
 

  

Nebraska. A picture of the actual CT scanner employed for the density data collection 

is shown in Figure 11. The three phantoms were scanned along with the bone samples 

every time. Scanning the references with the samples every time prevents errors due 

to variations in calibration and test conditions.  

 

 
 

Figure 11. Calvarium specimens were CT scanned using a Light Speed Plus 16-Slice CT scanner at the 

BryanLGH Medical Center-West, Radiologic Services, Lincoln, Nebraska.  

 

The images (in DICOM format) were analyzed with the CT image processing 

and editing software Mimics®. The Digital Imaging and Communications in 

Medicine (DICOM) standard was created by the American College of Radiology 

(ACR) and the National Electrical Manufacturers Association (NEMA) to standardize 

medical images, such as CT scans, MRIs, and ultrasound (Digital imaging and 

communications in medicine (DICOM) part 10: Media storage and file format for 

media interchange 2007).   

When the sets of these DICOM files are imported into Mimics®, the software 

reconstructs the independent slices into a 3D model. The images are depicted in a 

grey scale in Hounsfield units. Making use of the tool for density determination, 
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densities of the phantom areas of the images at different depths were determined, as 

shown in Figure 12. Correlation curves were constructed with these data for each CT 

session. These correlation curves are presented in Figure 13.  

Even though commercial codes like Mimics® allow for density measurements 

on adjustable areas of the image, this procedure has to be done on individual locations 

one at a time and on each 2D slice. Thus, in order to determine the volumetric density 

at multiple locations on the fragments in a more efficient manner, it was necessary to 

manipulate the raw data from the DICOM files. Consequently, it was essential to 

understand first the nature of these images and how they are preprocessed and 

reconstructed.  
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Figure 12. With the tool for density determination, densities on the phantom areas of the images at 

different depths were determined. A correlation curve was constructed with these data for each CT 

session.  

 

A single DICOM file contains file meta-information header and an image 

information object. The file meta-information header is composed of a 128-byte file 

preamble, a 4-byte DICOM prefix, and the file meta-elements. DICOM image data 

can be compressed (encapsulated) to reduce the image size. Files are often 



32 
 

  

compressed using lossy or lossless variants of the JPEG format, and sometimes 

private information about the patient is encoded within the files (Bankman, 2003). 

 

 
 

Figure 13. Correlation curves were determined for each session from pixel data in Hounsfield units of 

the reference materials in the CT images and their respective measured density. A: correlation curve 

for first CT scanning session. B: correlation curve for second CT scanning session 

 

Another transformation that is commonly performed on the images is the pixel 

padding correction. Pixel padding is generally intended to convert circular images 

(most CT images are circular) into rectangular images for better presentation. Pixel 

padding values are always out of the range of possible values in the image, (usually 
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large negative numbers) which make them easy to identify. In commercial DICOM 

images analysis software, these padding pixels are reassigned a value that 

corresponds to that of air. As it can be seen in Figure 14, the original circular CT 

image has been transformed in Mimics® into a rectangular image. The pixels 

corresponding to the padded area out of the circle have been assigned the same grey 

scale value of air so they appear black on the image. 

 

 
 

Figure 14. The CT images used in the present work were circular images padded with values of     -

2000 before slope and intercept correction. Padded values in Mimics® are assigned a value of zero 

before correction for which they appear black (air) on the image.  

 

Finally, from the values of rescale slope and rescale intercept, included in the 

header by the manufacturer, the pixel values are corrected and converted to 

Hounsfield units. This correction is performed assuming a linear relation 

5678�9:;<=	>8:?� 
 �@ ∗ B ' C,                        (4.4) 

 

where B is the rescale slope, C is the rescale intercept, and �@ is the pixel value from 

DICOM pixel raw data. 

Bone sample 

Polymer reference 

CT scanner bed 
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Following the aforementioned corrections, the steps to convert raw DICOM 

files to density were as follows: 

1. Pixels with the padding value (-2000) were reassigned air values (0) 

2. Rescale slope and rescale intercept values were extracted from the file header. 

3. Pixel values were rescaled to Hounsfield units. 

This data conversion was done using a Matlab code that follows the logic presented in 

Figure 15. The Matlab code is provided in Appendix A. 

 

4.4. Mean volumetric Density Determination 

In order to correlate density and the measured ultrasonic properties of skull 

bone, mean density values were calculated on areas with a size that matches the step 

size in the C-scans performed for determination of wave speed and attenuation 

coefficient. A code in Matlab® was written to identify those areas within the skull 

fragment based on the Hounsfield units corresponding to all pixels in the sub-matrix. 

Later, mean values on each area were averaged throughout a normal projection across 

the bone thickness, giving as a result, a matrix of volumetric mean density values at 

the same locations where ultrasonic properties were determined. In Figure 15 a 

schematic of the approach followed in the algorithm is shown for determining the 

mean volumetric density at different locations on the fragments. Note that following 

the same idea thickness and curvature at the same locations can be determined. In 

Figure 16 the results of the mean volumetric density matrix for fragment IV-A are 

shown. In the present work ultrasound pulse-echoes were used also to determine 

thickness and angle of incidence.  
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Figure 15.Ps: pixel size. Ss: step size. Mean density values were volumetrically determined from CT 

images. An algorithm written in Matlab® would identify the areas within the skull fragments based on 

the Hounsfield units of each pixel. Mean density values on each area were averaged in normal 

projection across the specimen thickness.  
 

 
Figure 16. Volumetric average densities were determined at various locations on the CT images. From 

this matrix the densities of a region corresponding to that were the ultrasonic properties were 

measured, was later extracted.  
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Chapter 5  

 Propagation of Ultrasound through 

Human Calvarium 
 

In this chapter all aspects of ultrasound data collection are presented. 

Ultrasonic techniques are employed to measure geometric properties of the calvarium 

bone specimens. Later, geometric data combined with densities extracted from CT 

files are used for determination of energy loss and attenuation coefficients. In the 

following sections of chapter 5, a brief summary of the equipment used in the 

experimental setup is provided. Then, the steps taken to collect the ultrasonic data are 

detailed. First a description is given about how the geometry of the specimens was 

assessed by the means of pulse-echo configuration. Then the procedure to determine 

total energy loss and attenuation coefficients from through-transmission data is 

described.  

 

5.1. Equipment 

Transducers 

Four ultrasound transducers with central frequencies of 0.5, 1, 2.25, and 5 

MHz, respectively, were used in the present investigation. These frequencies are 
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found in the frequency profile of blast waves and are also relevant for medical 

purposes in both diagnoses and treatment of neural diseases. The transducer 

manufacturer specifications are presented in the Table 4. 

Note that the V (videoscan) Olympus Panametrics series is designed to 

provide heavily damped broadband performance. They are, as suggested by the 

manufacturer, the best choice in applications where there is high attenuation or 

scattering (Olympus. Inspection and Measurement Systems). 

 

Table 4. Specifications of transducer used for experimental data collection. 

Image Frequency Case Size Series Focal Depth 

 

0.5 MHz 0.75” Olympus 

Panametrics 

V318-SU 

Unfocused 

 

1 MHz 1” Olympus 

Panametrics 

V302-SU 

4” 

 

2.25 MHz 0.5” NDT 

Automation 

IU2G2 

3” 

 

5 MHz 0.5” Olympus 

Panametrics 

V309-SU 

Unfocused 
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Sound Absorbing Foam 

When the sound beam propagates through the water in the test tank, it hits the 

target (calvarium fragment) and scatters in different directions (see scattering in 

chapter 5, section 5.4). These scattered waves can then reflect on other objects in the 

tank and the walls of the tank itself. Part of these reflections may be received by the 

transducer creating a noisy signal. To prevent this artifact it is often recommended to 

pad the tank internally with sound absorbers. In this work it was decided to place a 

dividing wall between the sample and the source transducer. The absorber prevents 

noise from reflections on the sample holder and tank walls. Different commercial 

sound absorbing foams were evaluated. The desired properties were adequate sound-

absorbing properties, water degradation resistance, and good performance after 

complete immersion in water. Acoustical Polypropylene Foam Absorber, .40 NRC, 

was found to have all desired properties. This foam is made of small foam beads 

clustered together in one block. These non-connected beads provide porosity to the 

foam but prevent water from permeating into it. Thus, the sound absorbing properties 

(nominal 40% noise reduction) are preserved and the foam does not degrade.     
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Figure 17. Multi-transducer fixture made with t-slotted framing allowed the placement of transducer 

holders and sound absorbing foam wall. The distance between transducers can be adjusted.  

 

Multi-transducer holder 

In order to place transducer pairs in good alignment for through-transmission 

measurements, a multi-transducer holder was designed and built. A simple design 

constructed with t-slotted framing offered great versatility. T-slotted framing can be 

easily assembled, it is made in corrosion resistant aluminum, and a variety of 

available prefabricated accessories make the fixture inexpensive and easy to modify. 

The fixture shown in Figure 17 consists of four rails along which the distance 

between transducer pairs can be adjusted. The eight holders allow the transducers to 

be quickly attached and replaced. Finally the sound absorbing foam wall was fixed to 

the fixture by the means of 90° single-hole brackets.      

 

5.2. Experimental Procedure 

The experimental setup and equipment used in the present work for the 

determination of ultrasonic properties of human calvarium are shown in Figure 18. 
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Ultrasound measurements were performed in a Mistras inmersion system designed for 

standard ultrasonic transducer characterization and testing. The system is integrated 

with a water tank and an automated motion system. The system can be moved 

manually or automatically. Automatic motion is provided by a stepper motor power 

supply and driver. Besides the motion, every parameter of a test can be modified from 

the software interface UTWin E 2.00. Wave forms are generated by a built-in 

function generator (Agilent 33250A). Data can be recorded and analyzed with a built-

in oscilloscope, Tektronix TD3032 Interface board SMC-4-PCI, UT Bridge System 

1600-8000, and Digital Multimeter DVM Fluke 179 with AD-1210-PCI (12 Bit 

Analog to Digital Converter Board). 
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Figure 18. Ultrasound evaluation was performed in a Mistras inmersion system: Motion control 

system, water purification system, inmersion water tank, data adquisition system controlled with 

UTWin sotware. Transducers were placed in a trough-transmission set up with the aid of the multi-

transducer fixture.  

 

The surface of the specimens was scanned making use of the automated 

motion control system. Parameters such as step size and scanning speed can be 
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tailored to the study. Both parameters were defined taking into account the size of the 

ultrasound beam of the four transducers used and the total area of the samples.The 

temperature of water in the tank was monitored during the experiments. Temperature 

data are needed to determine the sound speed in water.  

Through-transmission and pulse-echo signals were recorded at each location 

of the C-scan mesh. Transducers were placed in the custom made multi-transducer 

holder and checked for good alignment between transducer pairs.  Alignment was 

ensured first by adjusting carefully the transducer holders and then by looking at the 

reference transmitted pulse in through-transmission configuration. The transducers 

were moved back and forth and the highest amplitude in the transmitted pulse when 

moving the transducer was an indication of the location of good alignment. 

 

5.3. Ultrasound for Thickness and Curvature Measurements 

Ultrasonic techniques were used to estimate the thickness and curvature of the 

specimens. Pulse-echo signals were recorded and used for both calculations.  

 

Thickness Measurement 

The thickness at the same points at which the through-transmissions were 

performed was determined using a cross-correlation function. The reference consisted 

of a perfectly flat target for which the thickness ? was known. 

In Figure 19 the approach followed to determine the thickness is shown 

schematically. Pulses collected from a C-scan performed from both sides of the 

sample were cross-correlated with those from the reference.  



43 
 

  

 

 
 

Figure 19. Thickness at different locations on the specimens were determined using a cross-correlation 

function between reference echo pulses from a perfectly flat target and echo pulses from both sides of 

the fragment.  

 

For the thickness calculation  

D 
 E! � F! ' G ' E� � F� ,                                      (5.1) 

 

where Ri is the distance from the transducer face to the reference and Si is the distance 

from the face of the transducer to the calvarium fragment from sides 1 and 2 

respectively. 

From the Eq. (5.1) one can see that E! � F! and E� � F� correspond to the 

spatial difference between the pulses from the sample and the reference. Such 

differences were determined by cross-correlating the signals. Finally, the thickness is 

given by 

D 
 G ' ?		! � ?		�� 	H�  ,                            (5.2) 
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where �I is the speed of sound in water at the measured temperature and ?		 is the 

cross-correlation time delay from each side of the fragment. The signals from each 

side of both the reference and one location of a calvarium fragment are depicted in 

Figure 20.  

 

 
 

Figure 20. Values  ?		! and ?		� are the time of flight differences between reference and specimen echo 

pulses. Echo1: reflection from the concave side of the specimen, Echo2: reflection from the convex 

side of the specimen, Reference 1: reflection from side 1 of flat target, Reference 2: reflection from 

side 2 of flat target.  

 

Angle of Incidence  

The behavior of incident plane waves at the interface of two media at an 

oblique angle differs from the same phenomena at normal incidence. At very shallow 

angles part of the longitudinal incident L-wave energy will propagate through the 

material in shear mode. Because the calvaria fragments are curved, there will be 
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many locations in the C-scan mesh for which the angle of incidence was not normal. 

It is then necessary to quantify those angles of incidence and to understand the effect 

of such angles on the transmission. 

The change in transmission coefficient as a function of the angle of incidence 

can be expressed as (Schmerr and Song, 2007), 

J 
 �KL�	���H�M!2�������N�O
KL����N�P QNR�NQHR�HKL����H�∆

 ,                                   (5.3) 

 

where 

∆
 T	�N	�NU
� sin�VW� cos�VW�sin�� W�cos�� W� ' 1 � 4sin�VW� cos�VW���.     (5.4) 

 

Transmission coefficient as a function of angle of incidence is shown in 

Figure 21 using properties of a bone water interface. It can be seen that transmission 

is small at normal incidence and remains almost constant until incidence at nearly the 

first critical angle. Furthermore, note that from the Eq. (2.3) it can be shown that at 

angles of incidence below the critical angle, the transmission coefficient will be a real 

number independent of the frequency. Moreover, it has been demonstrated that below 

the first critical angle a transmitted wave pulse will have different amplitude from the 

incident wave but will have exactly the same shape as that of the incident wave 

(Schmerr and Song, 2007). In conclusion, at angles of incidence safely below the first 

critical angle, normal incidence can be assumed without incurring large errors from 

transmission or pulse distortion.  

In order to estimate the angles of incidence in the calvarium fragments the 

same data used for thickness calculation were utilized. The surface profile was 
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reconstructed using the echo data on the convex side of the fragment. This initial 

surface was smoothed by fitting a polynomial surface to it. Finally, the surface 

gradients, and subsequently the angle of incidence, were computed at the same 

locations where the properties were measured. The angles of incidence at various 

locations of fragment I-S are shown in Figure 22 as an example. 

 

 
 

Figure 21. Transmission coefficient is small at normal incidence and remains almost constant until 

incidence at nearly the first critical angle. Experimental values of shear and longitudinal wave speed 

through bone and water, and densities for bone and water taken from the literature are shown in Table 

5.   

 

Table 5. Properties of water and skull bone used for calculation of first critical angle 

of skull bone. 

 Cp (m/s) Cs (m/s) Density (g/cm3) 

Water 1467  1 

Skull 

bone 

2053-2504 1360-1640 2-2.4 
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Figure 22. Surface profile of fragment I-S was reconstructed using the echo data on the convex side of 

the fragment. A polynomial surface was fit and the surface gradients were computed at the same 

locations where ultrasound properties were measured.   

 

 

5.4. Measurement of ultrasound properties 

Wave speed 

The calculation of the ultrasonic energy propagation speed through a given 

material is a useful tool for the determination of mechanical and ultrasonic properties 

as well as information about the condition and dimensions of an element.    
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There are a number of different types of speeds or velocities that can be 

discussed. The most significant are referred to as phase velocity, group velocity, and 

signal velocity (generally equal to group velocity under conditions of normal 

dispersion). Each of these terms covers a complex phenomenon and they should not 

be confused with each other. Group speed is a term used to indicate the speed with 

which the energy is propagated when the wave is amplitude-modulated. It is the speed 

of propagation of a set of harmonic waves and this is the speed referred to when the 

terms wave speed or wave velocity are loosely used (Chen, 2007). The group speed is 

usually the most frequently measured in solid materials, including bone. However, 

sometimes assessing phase speed is desirable for a direct measurement of dispersion 

(frequency dependence of phase speed) (Azhari, 2010; Fry and Barger, 1978). 

Here, the wave speed in skull is measured relative to the wave speed in water. 

The method followed is that already used in many previous works (Bauer et al 2008, 

Wear 2000, White et al. 2006, Pichardo et al 2010). Cross-correlation is done using 

signals from measurements performed with and without the calvarium fragment. The 

wave speed can be expressed as 

�W 
 YZRH2|�RR|
,                                          (5.5) 

 

where �W  is the speed of sound in bone, D is the thickness of the fragment at the 

tested location, �I is the speed of sound in water at the measured temperature, and ?		 
is the cross-correlation time delay. This time delay and the subsequent alignment 

through a cross-correlation function between the signals are shown in Figure 23-A 

and Figure 23-B respectively. 
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Figure 23. A: Reference waveform is delayed with respect to sample waveform. The delay is the result 

of a higher speed of propagation of sound in the skull bone than in water. B: When both pulses are in 

perfect alignment, the cross-correlation function reaches a maximum value. From this time delay  ?		 
can be determined.  

 

Attenuation, scattering, and absorption  

Attenuation, scattering, and absorption are usually concepts that can be 

confused and often misused when talking about the energy loss caused by a material 

on the ultrasonic beam. When a pressure wave travels through a real material, the 

energy is diminished by two phenomena: one portion of the energy is lost by viscous 

friction or relaxation processes. These processes account for what is known as 

absorption. Another portion is scattered by the internal microstructure of the material. 

The combined effect of scattering and absorption is normally called attenuation.  

Attenuation in a material is usually determined by evaluating the decay in 

amplitude (pressure that reflects into voltage) of successive back wall reflections in a 
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pulse-echo configuration (Larson, NDT resource center). Attenuation in bone can be 

described in more detail as follows. As a wave is transmitted from a fluid into bone, 

reflections occur at the interface. In the bone, mode conversion occurs between 

longitudinal and shear modes, and the mechanical wave is scattered by its complex 

internal microstructure (osteon and trabeculae) (Wang et al., 2010).  Finally, part of 

the wave energy is absorbed by the bone and converted into heat.  

Scattering, as defined by Nicholson, et al., (1999), refers to the change in the 

amplitude, frequency, velocity or direction of a wave as a result of a spatial or 

temporal non-uniformity of the medium. It is dependent on the number of scatterers 

per unit volume, their spatial distribution, size and shape, and the acoustic impedance 

(diference between the scatterers and the surrounding medium), (Nicholson et al., 

1999). 

Scattering occurs because the interfaces are smaller than the diameter of the 

sound beam. Then, the waves hit the boundaries of these features and scatter in 

directions other than its original direction of propagation. In polycrystalline materials 

like metals, attenuation losses result due to reflection and scattering at the grain 

boundaries. (Stanke and Kino, 1984; Ghoshal, 2008; Turner, 1999) 

Some research can be found on the absorption of wave energy in solids, 

liquids and gases. When it comes to bone, it turns out to be much more difficult to 

model the wave propagation. Furthermore, it is a challenge to describe separately the 

attenuation mechanisms within the bony structures. However, it has been found that 

the amount of absorption in solids is not a major problem when ultrasound is used for 

NDT or material characterization (Carlin, 1960). 
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Our knowledge of absorption in biological tissue is very limited, given that 

the effect of absorption especially in complex non-homogeneous media is hard to 

separate from the scattering effect (Cobbold, 2007). 

 

Total Energy Loss and Attenuation Coefficients  

During the last three decades, there has been a considerable interest in 

estimation of ultrasound attenuation parameters. Ultrasound attenuation can be related 

to intrinsic properties of the evaluated material and used for its characterization (Jirik 

et al., 2004). Ultrasound attenuation is particularly useful in ultrasonic imaging. 

Estimation of ultrasound attenuation as a function of frequency is of special 

importance because the energy loss can be predicted and corrected for a wide 

spectrum (Wilson et al., 1984).  

Attenuation, as previously stated, includes the effect of absorption and 

scattering. It is ideally measured with a close to perfect plane wave and a coupling 

medium perfectly matching the impedance of the sample material. In practice, it is 

common to use a broadband transducer from which the attenuation for a wide 

frequency range is determined.  

The attenuation coefficient and its dependence on frequency for biological 

tissues have received important attention in recent years. Although the feasibility of 

in vivo studies has been demonstrated with commercial medical evaluation devices, 

the majority of the data have been collected from excised specimens. The general 

model for attenuation coefficient indicates power law dependence with frequency 

such as  
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\ 
 \]9^,                                         (5.6) 

 

where n for soft tissues varies between 1 and 2 (Cobbold, 2007).  

The attenuation coefficient has more recently been measured in both cortical and 

cancellous bone, in an attempt to relate it to bone mineral density, bone mineral 

content, and physical density. In most studies n has been found to be close to 3. The 

usual approach has been to compare the results obtained in different bone samples 

(these having different densities), (Heaney et al., 1989; Laugier et al., 1993). 

Attenuation coefficient vs. frequency curves for some biological tissues and water 

from data collected in the literature are presented in Figure 24. Note that the amount 

of information for skull bone at different frequencies is limited due to the fact the 

propagation through human skull is very difficult above ~3 MHz.  

In the present investigation, total energy loss and attenuation coefficients are 

determined by comparing the relative pressure drop when a piece of freshly excised 

skull sample is placed in a through-transmission configuration as previously detailed.  
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Figure 24. Attenuation coefficient in dB/cm and its frequency dependence has been determined in 

previous research for some biological tissues (Cobbold, 2007).
 
 

 

The total energy loss is defined here as the total drop in pressure caused by 

attenuation in the material and the loss due to reflection at the bone-water interface 

(see Figure 25). It will be experimentally calculated using  

 

\′ 
 � log Tbc+�b�+�U !Y ,                                        (5.7) 

 

where	d]9� is the amplitude of the reference signal in the frequency domain, 

d!9� is the amplitude of the signal propagated through the material in the frequency 

domain, and D is the thickness of the fragment at the tested location. 
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The attenuation coefficient is understood as the drop in pressure caused only 

by the material. To account for the drop due to reflection at the bone-water interface, 

a transmission coefficient correction factor is introduced.  

The transmission coefficient represents the fraction of energy that effectively 

propagates beyond the interface of two media (from material 1 into material 2). It is 

proportional to the speeds of propagation of sound and the density mismatch of the 

two materials and at normal incidence is given by 

 J!� 
 ef�f�Pf��  ,                                        (5.8) 

 

where g is the impedance of the material defined as g 
 �*, being � and * the 

propagation sound speed and density respectively. Eq. (5.8) can be derived from Eq. 

(5.3) for the case of normal incidence. The transmission coefficient for angles of 

incidence below the first critical angle will not be frequency dependent. Therefore the 

same correction factor will be applied to all measurements in the experiments that 

satisfied the angle of incidence condition. Then, attenuation coefficient will be 

calculated from experimental data using 

 

\ 
 � hlog Tb�+�bc+�U ' log	1/J�i !Y ,                  (5.9) 

 

 

where 

J 
 JIWJWI 
 efNfHfHPfN��,                       (5.10) 
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is the transmission coefficient for a double boundary problem like the one shown in 

Figure 25. 

 
 

Figure 25. When the ultrasound beam encounters the water-bone interface part of the energy is 

reflected back to the transducer. Then, part of the energy that propagates through the material is 

scattered by the internal microstructure. When the wave encounters the second interface, again part of 

the energy is reflected. Finally, the remaining energy is effectively transmitted through the material.  
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Chapter 6  

 Results and Discussion 
 

6.1. Wave speed 

In the present study, the average group velocity for each calvarium fragment 

has been calculated at 0.5, 1 and 2.25 MHz. It is important to note that neither the 

setup used in this work, nor the ultrasonic transducers selected were optimized for 

wave speed measurements. The broadband transducers employed produce very short 

pulses (approximately 3 cycles). In this case, cross-correlation between distorted or 

highly attenuated pulses can lead to large errors in the measurements. The wave speed 

data presented are those corresponding to thick areas in the specimens where the 

attenuation was not too high. Despite the aforementioned limitations, it was possible 

to measure wave speeds for all specimens except one. The speeds of sound measured 

are in the range of values expected for skull bone as reported by previous groups, 

(Bauer et al. 2008, Wear 2000, White et al. 2006, Pichardo et al. 2010). 

From the data shown in Table 6, it can be seen that from 0.5 MHz to 1 MHz, 

the average speed at which sound propagates through the bone layer increases for 

almost all the specimens. These results are in agreement with results reported by 

others (Bauer et al. 2008, Wear 2000, White et al. 2006, Pichardo et al. 2010). This 
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first increment has been described to be caused by positive dispersion in bone at low 

frequencies. Positive dispersion is expected for solid materials based on the casualty-

induced Kramers-Kronig relations (O’Donell and Miller, 1981). However, for 2.25 

MHz it seems that the speed of sound decreases, a result that implies negative 

dispersion. Such phenomenon of apparent negative dispersion in highly complex 

materials like bone has been widely studied in previous research. As already 

described, unlike homogeneous media, bone is a material composed of a dense solid 

porous matrix filled with bone marrow (fluid). In this scenario, when both slow and 

fast waves propagate through the material, they may cause an apparent negative 

dispersion, for frequencies that have wavelengths on the order of the scatterers in the 

bone matrix. Bauer et al., (2008), explored the possibility that this apparent negative 

dispersion may be the result of interference between two propagating modes, both 

exhibiting positive dispersion, which would be consistent with the casualty-induced 

Kramers-Kronig relations. Then, this decrement in group velocity after 1 MHz may 

be explained by this apparent negative dispersion.  

No clear correlation was found between density and wave speed. The 

correlation coefficients between density and wave speed in all specimens were small. 

This small correlation differs from what it has been previously reported (Wear et al. 

2009, White et al. 2006, Pichardo et al. 2010). This lack of correlation may be due to 

the already established difficulty to determine precisely the speed of sound with the 

setup used in this study. Moreover, the density was determined as a volumetric 

average across the entire thickness of the specimens. Thus, what these results suggest 
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is that the speed of propagation of sound through the bone layer is not strongly 

correlated with the average volumetric density in the fragments. 

Table 6. Average speed of sound through the calvarium bone layer. Estimated error 

for the attenuation coefficient values are shown in parenthesis (±). See Appendix D 

for error estimation procedure. 

Fragment 0.5 MHz 

(±705) 

1 MHz 

(±388) 

2.25 MHz 

(±240) 

I-A 2443 2405 2243 

I-L    

I-R 2351 2823 2604 

I-S 2633 2627 2246 

II-A 2244 2266 1882 

II-L 2367 2526 2032 

II-P 2206 2513 2162 

II-R 2457 2776 2401 

II-S 2394 2547 2019 

III-A 2470 2506 2064 

III-L    

III-P 2660 2694 2089 

III-R 2763 2822 2489 

III-S 2553 2197 2273 

IV-A 1987 2028 2154 

IV-L 2493 2520 2404 

IV-P 2295  2404 

IV-R 2756 2911 2636 

IV-S 2463 2555 2291 

 

6.2. Attenuation coefficient 

The attenuation coefficients have been determined at various locations on the 

specimens for 0.5, 1 and 2.25 MHz. For 5 MHz no propagated energy was effectively 

recorded with sufficient signal to noise. The attenuation coefficient value at the three 

other transducers’ central frequencies was calculated for each position with the 

assumption of a water-bone-water propagation model, Eq. (5.9). In Figures 26-28, the 

steps taken for the calculation of the attenuation coefficient caused by the bone layer 
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are shown. First the pulses with and without the calvarium samples in the path of 

propagation were corrected for gain. Then, in order to obtain the frequency spectrum 

from the signals, a fast Fourier transform (FFT) was performed on both sample and 

reference pulses. Finally attenuation coefficient as a function of frequency was 

computed from the FFT pulses using Eq. (5.9). 

 

 
Figure 26. Procedure for calculating attenuation coefficient using 0.5 MHz signal through the 

calvarium samples. A: Reference pulse without calvarium sample and sample attenuated signal. B: 

FFT of the reference and sample signals. C: Attenuation coefficient as a function of frequency. 

 

A B 

C 
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Figure 27. Procedure for calculating attenuation coefficient using 1 MHz signal through the calvarium 

samples. A: Reference pulse without calvarium sample and sample attenuated signal. B: FFT of the 

reference and sample signals. C: Attenuation coefficient as a function of frequency. 

 

Figure 28. Procedure for calculating attenuation coefficient using 2.25 MHz signal through the 

calvarium samples. A: Reference pulse without calvarium sample and sample attenuated signal. B: 

FFT of the reference and sample signals. C: Attenuation coefficient as a function of frequency. 

A B 

C 

A B 

C 
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 In the present study, rather than presenting average values of attenuation 

coefficient as it has been approached by previous researchers, the spatial variability of 

this property is fully presented. Color pictures depicting the attenuation coefficient at 

various locations on the specimens show well differentiated regions of high and low 

attenuation. These color scaled pictures shown in Fig. 29, 31, 33 and in Appendix B 

are shown for the rated central frequencies of the transducers (0.5, 1 and 2.25 MHz). 

Histograms for the same data are presented along with the color pictures. From the 

histograms it is easy to get a notion of the average attenuation coefficient for each 

specimen and frequency. Moreover, it can be seen how much the data are scattered 

over a wide range of values. The spatial data for the most curved specimens are 

limited due to the fact that fewer points satisfy the curvature condition (angle of 

incidence of the beam under 20°). However, for all specimens but one, an important 

number of measurements were effectively extracted.  

The first trend that can be noticed in the attenuation coefficient results, in both 

the color pictures and the histograms immediately below, is the increment in 

attenuation coefficient with increments in frequency. This dependence has been 

widely reported for several biological tissues in previous works (see Figure 24). Fry 

and Barger 1978, measured average attenuation coefficients of around 2 Np/cm at 1 

MHz and between 6 and 14 Np/cm at 2.25 MHz for two heads. These values as well 

as the variability between donors (as it will be seen later) are in agreement with those 

obtained in the present work.  White et al. 2006, reported lower attenuation values. 

This group measured attenuation coefficients ranging between 0.14 to 0.7 Np/cm for 

a frequency range of 0.2 to 0.9 MHz respectively. In that study, attenuation 
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coefficients were calculated for 10 points on 3 heads. Eight points were located in the 

parietal bones of the donors while two were measured from the occipital bone on one 

of the heads. Pichardo et al 2010, reported slightly higher values of attenuation 

coefficient for a similar range of frequencies. In Pichardo et al 2010, attenuation 

coefficents of 0.33(±0.09), 2.40(±0.09) and 3.07(±0.3) Np/cm were found for 

frequencies of 0.27, 0.836 and 1.402 MHz respectively.  

Figs. 29-34 show the attenuation coefficients at locations on a 2D matrix for 

the fragments of Head II extracted from the C-scans and the histograms for these 

data. The rest of the matrices and histograms for all fragments studied can be found in 

Appendix B. The measurements in the images are separated spatially in 3 mm 

increments and cover a calvarium area of 1764 mm
2
. The data distributions of the 

attenuation coefficient values are presented for fragments in Head II in Figs. 30, 32 

and 34. From these histograms it is possible to notice the variability of the attenuation 

as well as the approximate mean value for each specimen and frequency. The 

variability in the attenuation coefficient data is believed to be the result of changes in 

the ultrasonic properties at different locations on the samples. Proof of the spatial 

variability hypothesis is the relatively small estimated error in the attenuation 

coefficient measurements (see Appendix D). Moreover, in the histograms it is clear 

that not only the attenuation increases with frequency but also the spatial variability is 

greater for higher frequencies. This dependence of both attenuation and its spatial 

variability with frequency can be also seen in Table 7. Although the spatial variance 

is so high such that the same range of attenuation coefficient values can be found for 

the three frequencies, a statistical analysis has demonstrated that with a confidence of 
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99%, all distributions are statistically different for 0.5, 1 and 2.25 MHz in the same 

fragment.  Such increased variability at higher frequencies is likely related to 

variations in the specific properties of the material at the microscale as well as 

changes in the microstructure. As already stated, the mean volumetric density, at 

different locations of the specimens, varies greatly along the surface of the samples 

(see Figure 16). It is also expected that the microstructure shows the same level of 

variability across the volume of the samples. 

 

Table 7. Mean and spatial variation of attenuation coefficient values for all fragments 

studied at 0.5, 1 and 2.25 MHz. Estimated error for the attenuation coefficient values 

are shown in parenthesis (±). See Appendix D for error estimation procedure. 

 
0.5 (MHz) 1 (MHz) 2.25 (MHz) 

Sample 

Mean 

(Np/cm) 

(±0.30) 

Variance 

(Np/cm) 

Mean 

(Np/cm) 

(±0.33) 

Variance 

(Np/cm) 

Mean 

(Np/cm) 

(±0.37) 

Variance 

(Np/cm) 

I-A 2.8 1.8 6.2 3.6 13.9 13.204 

I-L       

I-P 
      

I-R 2.6 4.8 6.2 5.7 10.9 9.8 

I-S 2.6 3.4 5.6 6.2 10.0 13.9 

II-A 3.8 3.9 6.8 9.2 9.8 15.6 

II-L 3.6 2.2 7.4 7.8 11.6 16.3 

II-P 2.9 1.6 7.4 8.6 11.1 13.3 

II-R 4.5 2.6 8.6 5.7 12.3 9.9 

II-S 2.3 1.1 5.4 4.0 9.2 7.2 

III-A 3.2 1.5 5.9 3.6 8.6 4.2 

III-L 
      

III-P 3.2 1.4 5.0 2.2 8.0 4.2 

III-R 2.4 1.3 4.2 1.9 7.3 5.1 

III-S 2.6 0.6 4.6 3.0 6.3 6.7 

IV-A 1.0 0.4 3.7 2.1 7.2 6.5 

IV-L 1.8 0.8 4.3 4.5 7.5 9.6 

IV-P 1.9 1.6 
  

6.0 7.2 

IV-R 0.9 0.8 4.1 2.4 7.1 5.2 

IV-S 1.7 1.3 4.2 3.0 7.5 7.8 
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A student’s t-test was performed on the mean values of attenuation coefficient 

in all fragments and frequencies. The results suggest a higher variability of 

attenuation between donors and even between fragments in the same head. Two of the 

four heads (head I and head IV) showed lower variability and presented mean 

attenuation values statistically comparable between some fragments at the three 

frequencies. The conclusions obtained from the t-test for these two more attenuation-

homogenous heads are presented in Appendix C. Higher variability of attenuation 

coefficient values was encountered in fragments of heads II and III. Furthermore, 

even higher variability was found between the same regions in different heads. These 

results confirm that variations in attenuation coefficient can be expected for different 

locations in the same head and much more in calvaria from different donors.  
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Figure 29. 2-D color images show regions of high and low attenuation for the five fragments excised 

from head I at 0.5 MHz.   

 

 
Figure 30. Histograms computed from attenuation coefficient data show the spatial variability 

of attenuation values for the five fragments excised from head I at 0.5 MHz. 
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Figure 31. 2-D color images show regions of high and low attenuation for the five fragments excised 

from head I at 1 MHz.   

 

Figure 32. Histograms computed from attenuation coefficient data show the spatial variability of 

attenuation values for the five fragments excised from head I at 1 MHz. 
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Figure 33. 2-D color images show regions of high and low attenuation for the five fragments excised 

from head I at 2.25 MHz.   

 

 
Figure 34. Histograms computed from attenuation coefficient data show the spatial variability of 

attenuation values for the five fragments excised from head I at 2.25 MHz. 
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The correlation between mean volumetric density and mean attenuation coefficient 

for all fragments is shown in Fig. 35. The data in the plot have been fit assuming a 

linear correlation. From the R
2
 it is possible to see a greater correlation between mean 

volumetric density and attenuation coefficient at higher frequencies. In Pichardo et al 

2010, through a multilayer model, curves were generated that represented the 

behavior of the attenuation well as a function of density in the data collected in the 

study. However, the authors did not find on average a significant difference between 

low density and high density bone for low frequencies. On the contrary, for higher 

frequencies (frequencies closer to 1.4 MHz) the attenuation for both cortical (high 

density) and trabecular (low density) bone showed some correlation with density. 

Such increased correlation between density and attenuation for higher frequencies is 

in agreement with the results obtained in the present study. These results suggest that 

attenuation at higher frequencies is more strongly influenced by changes in the 

microstructure of the bone, which is closely related to density. 
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Figure 35. Correlation between mean volumetric density and mean attenuation coefficient for all 

fragments at frequencies of 0.5, 1 and 2.25 MHz. The estimated error for the attenuation coefficient 

values were, ±0.30 at 0.5 MHz, ±0.33 at 1 MHz, and ±0.37 at 2.25 MHz. See Appendix D for the error 

estimation procedure. 
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Chapter 7 

Conclusions and Future Work 

 

In this thesis, experimental equipment and protocols have been established for 

measurement of speed of sound and attenuation coefficient on human calvarium 

fragments under ex-vivo conditions.  

A pulse-echo propagation configuration has been effectively employed to 

obtain thickness and curvature of excised human calvarium fragments. These 

thickness and curvature data have been later used to calculate ultrasonic properties of 

skull bone. From thickness data, great variability of the thickness in even small 

regions in the calvarium fragments can be seen.  

From through-transmission pulses propagated through human calvaria, along 

with thickness data from pulse-echoes, the speed of sound has been determined at 

multiple locations on the samples. Some limitations of thickness and angle of 

incidence have been encountered such that calculations of sound speed from through-

transmission pulses in human calvaria were difficult. However, average speeds of 

sound for the eighteen fragments were obtained and the values were in agreement 

with those reported by previous authors.   
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Attenuation of ultrasound in human calvaria has been assessed at frequencies 

of 0.5, 1 and 2.25 MHz at various locations on the samples. The attenuation 

coefficients have been obtained from the measurements of pressure drop in multiple 

locations on the total of eighteen samples from four head donors. Moreover, the 

spatial variation of the attenuation coefficient has been explored from the numerous 

data extracted from the experiments. The attenuation coefficient data distributions for 

the eighteen fragments at the same frequencies were obtained. These histograms 

along with the results of a t-test performed on the data suggest that the attenuation 

coefficient varies spatially much more than expected. Additionally, a high variation 

of attenuation coefficients can be expected in calvaria from different donors. 

Furthermore, such spatial variation seems to increase with frequency for the three 

frequencies studied, indicating an increased sensitivity of attenuation with changes in 

the microstructure of bone. 

Quantitative densitometry has also been performed on the human calvarium 

samples. Polymer phantoms have been used as density references during the 

computed tomography sessions. Bone density information has been obtained from 

computed tomography images through an adapted Matlab code. Average volumetric 

densities have been correlated with the ultrasonic properties. No strong correlation 

between mean volumetric density and speed of propagation of sound through 

calvarium bone has been found. On the contrary, attenuation coefficient, especially 

for higher frequencies, shows some correlation with mean volumetric density. This 

result again suggests a stronger sensitivity of attenuation in calvarium with changes in 

the microstructure that are related to density.  
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From the results obtained in the present work, it can be concluded that the 

statistics of the variation of the ultrasonic properties of calvarium for different 

frequencies, locations and donors, have to be considered in computational and 

analytical models of this phenomenon. A realistic model of the propagation of 

ultrasound through calvarium should replicate the behavior described here. Moreover, 

future research should explore practical experiments that can be performed in-vivo 

and provide information to predict the speed of sound, attenuation coefficient and its 

variability at different locations of the calvarium. Thus, diffuse ultrasonic backscatter 

may be used to obtain scattering information that can be related to speed of sound and 

attenuation coefficient. 
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Appendix A 

Matlab code for mean volumetric density determination at different locations on the 

calvarium fragments from raw DICOM images data 

 

I=2370; %I: identity number of initial slice  
F=2568; %F: identity number of final slice 
q=F-I; 
%Loading 3D array with 2D slices 
for i=1:q  
    l=I;  
    l=l+i; 
    if l<=9 
    sample(:,:,i)=int16(dicomread(['IN00000' int2str(l)]));  
    end 
    if l<=99 && l>9 
    sample(:,:,i)=int16(dicomread(['IN0000' int2str(l)]));  
    end 
    if l>99 && l<=999 
    sample(:,:,i)=int16(dicomread(['IN000' int2str(l)]));  
    end 
    if l>999 && l<=9999 
    sample(:,:,i)=int16(dicomread(['IN00' int2str(l)]));  
    end 
end 
sample=sample-1024; %Intercept correction 
%Normalization of low density pixels 
A=(sample<=-700); 
sample(A)=-1024; 
[~,~,n]=size(sample); 
%Defining step sizes (3 mm x 3 mm areas) 
%Slices spaced at 0.625 mm 
%Pixsize: Pixel size that varies for each calvarium fragment  
r1=round(3/pixsize);  
r2=round(3/0.625); 
t=zeros((512/r1),(n/r2)); 
s=zeros((512/r1),(n/r2)); 
%Loading thickness and density matrices 
for j=1:r1:(512-r1) 
    for k=1:r2:(n-r2) 
b=0; 
c=0; 
        for i=1:508 
            if mean(mean(mean(sample(i:i+3,j:j+r1-1,k:k+r2-1))))~=-1024 && b==0 && i<=508 
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                while mean(mean(mean(sample(i:i+3,j:j+r1-1,k:k+r2-1))))~=-1024 && b==0 && i<=508 
                    t((j+r1-1)/r1,(k+r2-1)/r2)=t((j+r1-1)/r1,(k+r2-1)/r2)+1; 
                    s((j+r1-1)/r1,(k+r2-1)/r2)=s((j+r1-1)/r1,(k+r2-1)/r2)+mean(mean(sample(i,j:j+r1-1,k:k+r2-

1))); 
                    i=i+1; 
                end 
                b=1; 
            end 
        end 
    end 
end 
%Volumetric mean Density and Thickness matrices 
%Matrices flipped to match order of ultrasonic data acquisition 
d=fliplr((s./t)); 
t=fliplr(t*pixsize); 
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Appendix B 

Spatial variability of the ultrasonic attenuation coefficient at 0.5, 1 and 2.25 MHz for 

the freshly-excised human calvarium samples taken from Heads I, III and IV are 

presented in the following figures.  
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Appendix C 

Results from the t-test performed on the attenuation coefficient mean values for fragments in heads I and IV show higher spatial 

homogeneity that those obtained for heads II and III. D denotes statistically different and E denotes statistically equal.  
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Appendix D 

Estimation of propagated error for the ultrasonic measurements of thickness, speed of 

sound, and attenuation coefficient. 

For a given calculated property R, determined from independent measurements such 

that 
 Ej!, j�, … , j^� , and having those measurements uncertainties ∆j�, the total 

uncertainty for R can be expressed as, 

∆E 
 m n∑ Tpqprs ∆j�U
�

!̂ t!/�. 

Thickness 

Thickness was calculated using D 
 G ' ?		! � ?		�� 	H� . The uncertainty of this 

measurement was estimated as follows: 

∆D 
 mnTpYp& ∆GU� ' T pY
p�RR� ∆?		!U

� ' T pY
p�RR� ∆?		�U

� ' T pYp	H ∆�IU
�t!/�, 

pY
p& 
 1, 

pY
p�RR� 
 	H� , 

pY
p�RR� 
 � 	H� , 

pY
p	H 
 �RR�2�RR�� , 

Temperature varied from 15°C to 18°C, therefore �I 
 1467 m 21	B/� and ∆�I 

21	B/�. 

From multiple independent measurements of the reference thickness G 
 25.09	BB, 

a variation of ∆G 
 0.12BB was recorded. 
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For an average time delay?		! � ?		�� 
 32{�, it was assumed an error in the cross-

correlation function for echo-pulse signals of half a period. For a 5 MHz wave we 

have that ∆?		� 
 1 ∗ 102|�. 

Finally the error for the thickness measurements was estimated to be ∆D 
 m3.716 ∗
102e	B. 

 

Speed of sound 

Speed of sound was calculated using �W 
 YZRH2|�RR|
. Similarly, the uncertainty of this 

measurement was estimated as follows: 

∆�W 
 m}Tp	NpY ∆DU� ' Tp	Np	H ∆�IU
� ' Tp	Np�RR ∆?		U

�~!/�, 

p	NpY 
 �� !ZRH2|�RR|
' Y

	HT|�RR|2 ZRHU
��, 

p	Np	H 
 } Y
	HT|�RR|2 ZRHU

~�, 

p	Np�RR 
 Y
T|�RR|2 ZRHU

�. 

In this case for the cross-correlation between through-transmitted pulses, the error 

was estimated to be a quarter of a period from which it was obtained: 

∆?		@0.545�� 
 5 ∗ 102|�, ∆?		@145�� 
 2.5 ∗ 102|�, and 

∆?		@2.2545�� 
 1.11 ∗ 102|�. 

Finally, the estimated errors for the speed of propagated sound at the three 

frequencies used were: ∆�W@0.545�� 
 m705	B/�, ∆�W@145�� 
 m388	B/�, 

and ∆�W@2.2545�� 
 m240	B/�. 
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Attenuation Coefficient 

Attenuation coefficient was determined using \ 
 � hlog Tb�+�bc+�U ' log	1/J�i !Y. The 

uncertainty of this measurement was estimated as follows: 

∆\ 
 m nT p�pb� ∆d!U
� ' T p�pbc ∆d]U

� ' Tp�p� ∆JU� ' Tp�pY∆DU�t
!/�

, 

p�
pb� 
 � !

b�Y, 

p�
pbc 
 !

bcY, 

p�
p� 
 !

�Y, 

p�
pY 
 h<60 Tb�bcU ' <60 T!�Ui !

Y�. 

With the aid of a calibration target, the error in the measurement of the transmitted 

pulse through the skull bone was estimated to be: ∆d!@0.545�� 

m0.4	��J	dB�, ∆d!@145�� 
 m1	��J	dB�, and ∆d!@2.2545�� 

m1.6	��J	dB� 

The error in the reference pulse is assumed to be zero. 

From the theoretical transmission coefficient curve (see Fig. #), an variation of 

∆J 
 0.1 was estimated. 

Finally the error in the attenuation coefficients measured at the three frequencies 

were: ∆∝ @0.545�� 
 m0.30	��/�B, ∆∝ @145�� 
 m0.33	��/�B, and 

∆∝ @2.2545�� 
 m0.37	��/�B. 
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