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Abstract

We use F. Ferrari’s methods relating matrix models to Calabi–Yau
spaces in order to explain much of Intriligator and Wecht’s ADE classifi-
cation of N = 1 superconformal theories which arise as RG fixed points
of N = 1 SQCD theories with adjoints. We find that ADE superpoten-
tials in the Intriligator–Wecht classification exactly match matrix model
superpotentials obtained from Calabi–Yau with corresponding ADE sin-
gularities. Moreover, in the additional ̂O, ̂A, ̂D and ̂E cases we find
new singular geometries. These “hat” geometries are closely related
to their ADE counterparts, but feature non-isolated singularities. As a
byproduct, we give simple descriptions for small resolutions of Gorenstein
threefold singularities in terms of transition functions between just two
co-ordinate charts. To obtain these results we develop an algorithm for
blowing down exceptional P

1, described in the appendix.
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1 Introduction

Duality has long played an important role in string theory. In addition,
by relating physical quantities (correlators, partition functions, spectra)
between different theories with geometric input, dualities have uncovered
many unexpected patterns in geometry. This has led to surprising conjec-
tures (such as mirror symmetry and T-duality) which not only have impor-
tant implications for physics, but are interesting and meaningful in a purely
geometric light.

Recently, there has been a tremendous amount of work surrounding dual-
ities which relate string theories to other classes of theories. Maldacena’s
1997 AdS/CFT correspondence is perhaps the most famous example of
such a duality [19]. The connection between Chern-Simons gauge theory
and string theory was first introduced by Witten in 1992 [21]. In 1999,
Gopakumar and Vafa initiated a program to study the relationship between
large N limits of Chern-Simons theory (gauge theory) and type IIA topo-
logical string theory (geometry) by using ideas originally proposed by ’t
Hooft in the 1970s [14]. The resulting gauge theory/geometry correspon-
dence led to a conjecture about extremal transitions, often referred to as
the “geometric transition conjecture.” In the case of conifold singularities,
this is more or less understood. The conifold singularity can be resolved in
two very different ways: (1) with a traditional blow up in algebraic geom-
etry, in which the singular point gets replaced by an exceptional P

1, or
(2) by a deformation of the algebraic equation which replaces the singu-
lar point with an S3 whose size is controlled by the deformation parameter
(see figure 1). The physical degrees of freedom associated to D5 branes
wrapping the P

1 correspond to a three-form flux through the S3. The
geometric statement is that one can interpolate between the two kinds of
resolutions.

In 2002, Dijkgraaf and Vafa expanded this program and proposed new
dualities between type IIB topological strings on Calabi–Yau threefolds and
matrix models [9, 10]. Due to the symmetry between type IIA and type
IIB string theories, this may be viewed as “mirror” to the Gopakumar–
Vafa conjecture. By studying the conifold case, they found strong evi-
dence for the matching of the string theory partition function with that
of a matrix model whose potential is closely related to the geometry in
question. In particular, a dual version of special geometry in Calabi–Yau
threefolds is seen in the eigenvalue dynamics of the associated matrix model
[9]. The proposed string theory/matrix model duality has led to an explo-
sion of research on matrix models, a topic which had been dormant since
the early 1990s, when it was studied in the context of two-dimensional (2D)
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Figure 1: The big picture.

gravity [8]. The connection between string theory and matrix models is
of very tangible practical importance, as many quantities which are diffi-
cult to compute in string theory are much easier to handle on the matrix
model side.

Inspired by these developments (summarized in figure 1), in 2003
F. Ferrari was led to propose a direct connection between matrix mod-
els and the Calabi–Yau spaces of their dual string theories [13]. It is well
known that the solution to a one-matrix model can be characterized geo-
metrically, in terms of a hyperelliptic curve. The potential for the matrix
model serves as direct input into the algebraic equation for the curve, and
the vacuum solutions (distributions of eigenvalues) can be obtained from the
geometry of the curve and correspond to branch cuts on the Riemann sur-
face. The work of Vafa and collaborators on the strongly coupled dynamics
of four-dimensional N = 1 supersymmetric gauge theories [14, 4, 5, 11] sug-
gests that for multi-matrix models, higher-dimensional Calabi–Yau spaces
might be useful. Ferrari pursues this idea in [13], finding evidence that cer-
tain multi-matrix models can, indeed, be directly characterized in terms of
higher-dimensional (non-compact) Calabi–Yau spaces.

By thinking of the matrix model potential W (x1, . . . , xM ) as providing
constraints on the deformation space of an exceptional P

1 within a smooth
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(resolved) Calabi–Yau ̂M, Ferrari outlines a precise prescription for con-
structing such smooth geometries directly from the potential. Specifically,
the resolved geometry ̂M is given by transition functions

β = 1/γ, v1 = γ−nw1, v2 = γ−mw2 + ∂w1E(γ, w1), (1.1)

between two coordinate patches (γ, w1, w2) and (β, v1, v2), where β and γ are
stereographic coordinates over an exceptional P

1. The perturbation comes
from the “geometric potential” E(γ, w), which is related to the matrix model
potential W via

W (x1, . . . , xM ) =
1

2πi

∮

C0

γ−M−1E

(

γ,

M
∑

i=1

xiγ
i−1

)

dγ, (1.2)

where M = n + 1 = − m − 1. We explain this construction in detail in
Section 2.4.

In the absence of the perturbation term ∂w1E(γ, w1), the transition func-
tions (1.1) simply describe an O(M − 1) ⊕ O(−M − 1) bundle over a P

1.
The matrix model superpotential W encodes the constraints on the sections
x1, . . . , xM of the bundle due to the presence of ∂w1E(γ, w1). Note that this
procedure is also invertible. In other words, given a matrix model super-
potential W (x1, . . . , xM ), one can find a corresponding geometric potential
E(γ, w1). However, not all perturbation terms γjwk

1 contribute to the super-
potential (1.2), so there may be many choices of geometric potential for a
given W . Nevertheless, the associated geometry ̂M is unique [13, p. 634].

In 2000, S. Katz had already shown how to codify constraints on versal
deformation spaces of curves in terms of a potential function,1 in cases such
as (1.1) where the constraints are integrable [16]. In 2001, F. Cachazo, S.
Katz and C. Vafa constructed N = 1 supersymmetric gauge theories cor-
responding to D5 branes wrapping two-cycles of ADE fibered threefolds
[5]. Ferrari studies the same kinds of geometries in a different context, by
interpreting the associated potential as belonging to a matrix model, and
proposing that the Calabi–Yau geometry encodes all relevant information
about the matrix theory.2 He is able to verify this in a few examples, and
computes known resolvents of matrix models in terms of periods in the asso-
ciated geometries. The matching results, as well as Ferrari’s solution of a
previously unsolved matrix model, suggest that not only can matrix mod-
els simplify computations in string theory, but associated geometries from
string theory can simplify computations in matrix models.

1For a rigorous derivation of the D-brane superpotential, see [3].
2Specifically, it is the triple of spaces ̂M, M0 and M that are conjectured to encode

the matrix model quantities; the blow-down map π : ̂M −→ M0 is the most difficult step
towards performing the matrix model computations [13].
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Many questions immediately arise from Ferrari’s construction. In parti-
cular, the matrix model resolvents are not directly encoded in the resolved
geometry ̂M, but require knowing the corresponding singular geometry M0
obtained by blowing down the exceptional P

1. It is not clear how to do this
blow-down in general. It is also not obvious that a geometry constructed
from a matrix model potential in this manner will indeed contain a P

1 which
can be blown down to become an isolated singularity.3 Just which matrix
models can be “geometrically engineered” in this fashion? What are the cor-
responding geometries? Can different matrix model potentials correspond
to the same geometry? If so, what common features of those models does
the geometry encode? Ferrari asks many such questions at the end of his
paper [13], and also wonders whether or not it might be possible to devise
an algorithm which will automatically construct the blow-down given the
initial resolved space.

Previously established results in algebraic geometry such as Laufer’s
theorem [18] and the classification of Gorenstein threefold singularities by
S. Katz and D. Morrison [17] provide a partial answer to these questions.

Theorem 1.1 (Laufer 1979). Let M0 be an analytic space of dimension
D ≥ 3 with an isolated singularity at p. Suppose there exists a non-zero
holomorphic D-form Ω on M0 − {p}.4 Let π : ̂M −→ M0 be a resolution
of M0. Suppose that the exceptional set A = π−1(p) is one-dimensional and
irreducible. Then A ∼= P

1 and D = 3. Moreover, the normal bundle of P
1 in

̂M must be either N = O(−1) ⊕ O(−1),O ⊕ O(−2) or O(1) ⊕ O(−3).

Laufer’s theorem immediately tells us that we can restrict our search
of possible geometries to dimension 3, and that there are only three candi-
dates for the normal bundle to our exceptional P

1. In Ferrari’s construction,
the bundles O(−1) ⊕ O(−1),O ⊕ O(−2) and O(1) ⊕ O(−3) correspond to
zero-, one- and two-matrix models, respectively.5 Following the Dijkgraaf–
Vafa correspondence, this puts a limit of two adjoint fields on the associated
gauge theory, which is precisely the requirement for asymptotic freedom in
N = 1 supersymmetric gauge theories. This happy coincidence is perhaps
our first indication that the Calabi–Yau geometry encodes information about
the RG flow of its corresponding matrix model or gauge theory.

3We will see later that the “hat” potentials from the Intriligator–Wecht classification
lead to geometries where an entire family of P

1s is blown down to reveal a space M0 with
non-isolated singularities. It is interesting to wonder what the corresponding “geometric
transition conjecture” should be for these cases.

4This is the Calabi–Yau condition.
5This is because these bundles have zero, one and two independent global sections,

respectively.
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The condition M ≤ 2 for the normal bundle O(M − 1) ⊕ O(−M − 1) in
Laufer’s theorem is equivalent to asymptotic freedom, and reflects the fact
that only for asymptotically free theories can we expect the P

1 to be excep-
tional. In considering matrix model potentials with M ≥ 3 fields, Ferrari
points out that the normal bundle to the P

1 changes with the addition
of the perturbation ∂w1E(γ, w1), and makes the following conjecture [13,
p. 636].

Conjecture 1.1 (RG flow, Ferrari 2003). Consider the perturbed geometry
for m = −n − 2 and associated superpotential W . Let N be the normal
bundle of a P

1 that sits at a given critical point of W . Let r be the corank
of the Hessian of W at the critical point. Then N = O(r − 1) ⊕ O(−r − 1).

Ferrari proves the conjecture for n = 1, and limits himself to two-matrix
models (M = n + 1 = 2) in the rest of his paper. Our first result gives evi-
dence in support of the RG flow conjecture in a more general setting.

Proposition 1.1. For −M ≤ r ≤M , the addition of the perturbation term
∂w1E(γ, w1) = γr+1w1 in the transition functions

β = γ−1, v1 = γ−M+1w1, v2 = γM+1w2 + γr+1w1,

changes the bundle from O(M − 1) ⊕ O(−M − 1) to O(r − 1) ⊕ O(−r − 1).
In particular, the M -matrix model potential

W (x1, . . . , xM ) =
1
2

M−r
∑

i=1

xixM−r+1−i, (r ≥ 0)

is geometrically equivalent6 to the r-matrix model potential

W (x1, . . . , xr) = 0.

The proof is given in Section 3. The fact that the associated superpotential
is purely quadratic is satisfying since for quadratic potentials we can often
“integrate out” fields, giving a field-theoretic intuition for why the geometry
associated to an M -matrix model can be equivalent to that of an r-matrix
model, with r < M .

Laufer’s theorem constraints the dimension, the exceptional set and its
normal bundle, but what are the possible singularity types? In the sur-
face case (complex dimension two), the classification of simple singulari-
ties is a classic result.7 As hypersurfaces in C

3, the distinct geometries

6We will call two potentials geometrically equivalent if they yield the same geometry
under Ferrari’s construction.

7An excellent reference for this and other results in singularity theory is [2]. For a more
applications-oriented treatment (with many cute pictures!) see Arnold’s 1991 book [1].
For 15 characterizations of rational double points, see [12].
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Table 1: Gorenstein threefold singularities in preferred versal form
[17, p. 465].

S Preferred versal form

An−1(n ≥ 2) −XY + Zn +
∑n

i=2 αiZ
n−i

Dn(n ≥ 3) X2 + Y 2Z − Zn−1 −
∑n−1

i=1 δ2iZ
n−i−1 + 2γnY

E4 −XY + Z5 + ε2Z
3 + ε3Z

2 + ε4Z + ε5
E5 X2 + Y 2Z − Z4 − ε2Z

3 − ε4Z
2 + 2ε5Y − ε6Z − ε8

E6 −X2 − XZ2 + Y 3 + ε2Y Z2 + ε5Y Z + ε6Z
2 + ε8Y ε9Z + ε12

E7 −X2 − Y 3 + 16Y Z3 + ε2Y
2Z + ε6Y

2 + ε8Y Z + ε10Z
2

+ ε12Y + ε14Z + ε18
E8 −X2 + Y 3 − Z5 + ε2Y Z3 + ε8Y Z2 + ε12Z

3 + ε14Y Z
+ε18Z

2 + ε20Y + ε24Z + ε30

are given by:

Ak : x2 + y2 + zk+1 = 0
Dk+2 : x2 + y2z + zk+1 = 0
E6 : x2 + y3 + z4 = 0
E7 : x2 + y3 + yz3 = 0
E8 : x2 + y3 + z5 = 0

In 1992, Katz and Morrison answered this question in dimension 3 when
they characterized the full set of Gorenstein threefold singularities with irre-
ducible small resolutions using invariant theory [17]. In order to do the clas-
sification, Katz and Morrison find it useful to think of threefolds as deforma-
tions of surfaces, where the deformation parameter t takes on the role of the
extra dimension. The equations for the singularities can thus be written in
so-called preferred versal form, as given in table 1. The coefficients αi, δi, γi

and εi are given by invariant polynomials, and are implicity functions of
the deformation parameter t. We will also find this representation of the
singular threefolds useful in identifying what kinds of singular geometries
we get upon blowing down resolved geometries.

In contrast to what one might expect,8 there are only a finite number of
families of Gorenstein threefold singularities with irreducible small

8By taking hyperplane sections, one may get surface singularities corresponding to
any of the ADE Dynkin diagrams. A priori, this could indicate that there is an infinite
number of families of the threefold singularities with irreducible small resolutions. What
Katz and Morrison discovered is that only a finite number of Dynkin diagrams can arise
from “generic” hyperplane sections.
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Figure 2: The six types of Gorenstein threefold singularities.

resolutions. They are distinguished by the Kollár “length” invariant,9 and
are resolved via small resolution of the appropriate length node in the cor-
responding Dynkin diagram. The precise statement of Katz and Morrison’s
results are given by the following theorem and corollary [17, p. 456].

Theorem 1.2 (Katz & Morrison 1992). The generic hyperplane section of
an isolated Gorenstein threefold singularity which has an irreducible small
resolution defines one of the primitive partial resolution graphs in figure 2.
Conversely, given any such primitive partial resolution graph, there exists

an irreducible small resolution Y → X whose general hyperplane section is
described by that partial resolution graph.

Corollary 1.1. The general hyperplane section of X is uniquely determined
by the length of the singular point P .

We thus know that there are only a finite number of families of distinct
geometries with the desired properties for Ferrari’s construction, and they
correspond to isolated threefold singularities with small resolutions. While
much is known about the resolution of these singularities (they are obtained
by blowing up divisors associated to nodes of the appropriate length in the
corresponding Dynkin diagram), it is not easy to perform the small blow-up
explicitly.

9Definition. Let π : Y −→ X irreducible small resolution of an isolated threefold
singularity p ∈ X. Let C = π−1(p) be the exceptional set. The length of p is the length
at the generic point of the scheme supported on C, with structure sheaf OY /π−1(mp, x).
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Figure 3: Intriligator–Wecht classification of RG fixed points. The diagram
on the right shows the map of possible flows between fixed points. Dotted
lines indicate flow to a particular value of k. Note that k′ < k [15, pp. 3–4].

The major obstacle in identifying which matrix model corresponds to each
of the candidate singular geometries from [17] is the absence of a simple
description in the form of (1.1) for their small resolutions. This frustration
is also expressed in [5], where the same geometries are used to construct
N = 1 ADE quiver theories.10 In the case where the normal bundle to the
exceptional P

1 is O(1) ⊕ O(−3), only Laufer’s example [18] and its extension
by Pinkham and Morrison [20, p. 368] was known. For us, the resolution to
this problem came from a timely, albeit surprising, source.

In September 2003, Intriligator and Wecht posted their results on RG
fixed points of N = 1 SQCD with adjoints [15]. Using “a-maximization”
and doing a purely field theoretic analysis, they classified all relevant adjoint
superpotential deformations for 4d N = 1 SQCD with Nf fundamentals and
Na = 2 adjoint matter chiral superfields, X and Y . The possible RG fixed
points, together with the map of possible flows between fixed points, are
summarized in figure 3.

Due to the form of the polynomials, Intriligator and Wecht named the
relevant superpotential deformations according to the famous ADE classifi-
cation of singularities in dimensions 1 and 2 (see equation (1.3)). There is

10“... the gauge theory description suggests a rather simple global geometric description
of the blown up P

1 for all cases. However, such a mathematical construction is not
currently known in the full generality suggested by the gauge theory. Instead only some
explicit blown up geometries are known in detail ...”[5, p. 35].
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no geometry in their analysis, however, and they seem surprised to uncover
a connection to these singularity types.11

Naively, one may speculate that this is the answer.12 We make the
following conjecture.

Conjecture 1.2. The superpotentials in Intriligator and Wecht’s ADE classi-
fication for N = 1 gauge theories (equivalently, the polynomials defining sim-
ple curve singularities), are precisely the matrix model potentials which yield
small resolutions of Gorenstein threefold singularities using Ferrari’s con-
struction (1.1).

Armed with this new conjecture, we may now run the classification program
backwards. Starting from the resolved space ̂M given by transition func-
tions over the exceptional P

1, we can verify the correspondence by simply
performing the blow down and confirming that the resulting geometry has
the right singularity type. In particular, the matrix model superpotentials
(if correct) give us simple descriptions for the small resolutions of Gorenstein
threefold singularities in terms of transition functions as in (1.1). Like other
geometric insights stemming from dualities in string theory, such a result is
of independent mathematical interest.

This still leaves us with some major challenges. As Ferrari pointed out,
there was no known systematic way of performing the blow downs, and
our first task was to devise an algorithm to do so [7]. The algorithm can
be implemented by the computer,13 and searches for global holomorphic
functions which can be used to construct the blow down. Any global holo-
morphic function on the resolved geometry ̂M is necessarily constant on the
exceptional P

1, so these functions are natural candidates for coordinates on
the blown down geometry M0, since the P

1 must collapse to a point. The
algorithm finds all (independent) global holomorphic functions which can
be built from a specified list of monomials. Because such a list can never
be exhaustive, the resulting singular space M0, whose defining equations
are obtained by finding relations among the global holomorphic functions,
must be checked. We can verify that we do, in fact, recover the original
smooth space by inverting the blow down and performing the small resolu-
tion of the singular point. Once we have shown that the collection of global

11“On the face of it, this has no obvious connection to any of the other known ways in
which Arnold’s singularities have appeared in mathematics or physics”[15, p. 3].

12In particular, if the Dijkgraaf–Vafa conjecture holds, we should expect any classi-
fication of N = 1 gauge theories to have a matrix model counterpart. Verifying such
a correspondence thus provides a non-trivial consistency check on the proposed string
theory/matrix model duality.

13See [7] for Maple code.
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holomorphic functions gives us the right blow-down map, it does not really
matter how we found them. Because it may be used more generally for find-
ing blow-down maps (in particular, for resolved geometries corresponding
to potentials we have not considered here), we include a description of the
algorithm in the appendix.

We find that this program works perfectly in the Ak (length 1) and Dk+2
(length 2) cases, lending credence to the idea that the Intriligator–Wecht
classification is, indeed, the right answer. In the exceptional cases, however,
a few mysteries arise. We are only able to find the blow down for the
Intriligator–Wecht superpotential E7, and the resulting singular space has a
length 3 singularity. We summarize these results in the following theorem.

Theorem 1.3. Consider the two-matrix model potentials W (x, y) in table 2,
with corresponding resolved geometries ̂M,

β = 1/γ, v1 = γ−1w1, v2 = γ3w2 + ∂w1E(γ, w1),

given by perturbation terms ∂w1E(γ, w1). Blowing down the exceptional P
1

in each ̂M yields the singular geometries M0 given in table 2.

By comparing the above singular geometries with the equations in pre-
ferred versal form (table 1), we immediately identify the Ak and Dk+2
superpotentials as corresponding to lengths 1 and 2 threefold singulari-
ties, respectively. For the E7 potential, we first note that the polynomial
X2 − Y 3 + Z5 + 3TY Z2 + T 3Z is in the preferred versal form for E8 (with

Table 2: Superpotentials corresponding to length 1, length 2, and length 3
singularities.

Type W (x, y) ∂w1E(γ, w1) Singular geometry M0

Ak
1

k + 1
xk+1 +

1
2
y2 γ2wk

1 + w1 XY − T (Zk − T ) = 0

Dk+2
1

k + 1
xk+1 + xy2 γ2wk

1 + w2
1 X2 − Y 2Z

+ T (Zk/2 − T )2 = 0, k even
X2 − Y 2Z

− T (Zk − T 2) = 0, k odd

E7
1
3
y3 + yx3 γ−1w2

1 + γw3
1 X2 − Y 3 + Z5

+ 3TY Z2 + T 3Z = 0.
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ε8 = −3T and ε24 = −T 3).14 On the other hand, using Proposition 4 in
the proof of the Katz–Morrison classification [17, pp. 499–500], we see that
the presence of the monomial T 3Z constrains the threefold singularity type
to length 3. We thus have the following corollary.

Corollary 1.2. The resolved geometries ̂M given by the two-matrix model
potentials Ak, Dk+2 and E7 in table 2 are small resolutions for length 1,
length 2 and length 3 singularities, respectively.

Although simple descriptions of the form (1.1) were previously known for
small resolutions of length 1 and length 2 Gorenstein threefold singularities
(Laufer’s example [18] in the length 2 case), it is striking that in no other
case such a concrete representation for the blow-up was known. Theorem 1.3,
together with its corollary, show a length 3 example where the small
resolution also has an extremely simple form:

β = 1/γ, v1 = γ−1w1, v2 = γ3w2 + γ−1w2
1 + γw3

1.

The proof of Theorem 1.3 is given in Section 4. Missing are examples of
length 4, length 5 and length 6 singularity types. For the moment, we are
skeptical about whether or not these are describable using geometries that
are simple enough to fit into Ferrari’s framework.

In some sense the Intriligator–Wecht classification does not contain enough
superpotentials; only length 1, 2, and 3 singularities appear to be included.
On the other hand, there are too many: the additional superpotentials
̂O, ̂A, ̂D and ̂E have no candidate geometries corresponding to the Katz–
Morrison classification of Gorenstein threefold singularities! What kind of
geometries do these new cases correspond to? What (if any) is their rela-
tion to the original ADE classification? Using Ferrari’s framework and our
new algorithmic blow down methods we are able to identify the geometries
corresponding to these extra “hat” cases. We summarize the results in the
following theorem.

Theorem 1.4. The singular geometries corresponding to the ̂O, ̂A, ̂D and
̂E cases in the Intriligator–Wecht classification of superpotentials are given
in table 3.

The proof of Theorem 1.4 is the content of Section 5. We find that the
resolved geometries have full families of P

1s which are blown down, and
the resulting singular spaces have interesting relations to the ADE cases.
The ̂A geometry is a curve of A1 singularities, while the equation for ̂D

14T = 0 yields a hyperplane section with E8 surface singularity.
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Table 3: Geometries for the “hat” cases.

Type W (x, y) ∂w1E(γ, w1) Singular geometry M0

̂O 0 0 C
3/Z3

̂A
1
2
y2 γ2w1 C × C

2/Z2

̂D xy2 γw2
1 X2 + Y 2Z − T 3 = 0

̂E
1
3
y3 γ2w2

1 Spec(C[a, b, u, v]/Z2)/(b4 − u2 − av)

looks like the equations for Dk+2 where the k-dependent terms have been
dropped. The identification of new, related geometries obtained by combin-
ing Ferrari’s framework with the Intriligator–Wecht classification turns out
to be one of the most interesting parts of our story. The presence of these
extra geometries may have implications for the relevant string dualities; per-
haps the geometric transition conjecture can be expanded beyond isolated
singularities.

It is surprising that even in the ̂O case, with W (x, y) = 0 superpotential,
the geometry is highly non-trivial. In fact, we find that it is the A1, Ak and
̂A cases which are, in some sense, the “simplest.” Although the descriptions
for the resolved geometries ̂M in these cases make it appear as though the
normal bundles to the exceptional P

1s are all O(1) ⊕ O(−3) [as required by a
two-matrix model potential W (x, y)], these geometries can all be described
with fewer fields. A straightforward application of Proposition 1.1 shows
that the ̂A case is equivalent to a one-matrix model with W (x) = 0 super-
potential. Similarly, we will see in Section 4.2 that

W (x, y) =
1

k + 1
xk+1 +

1
2
y2 and W (x) =

1
k + 1

xk+1

are geometrically equivalent, so the Ak (length 1) cases are also seen to
correspond to one-matrix models, where the y field has been “integrated
out.” This is a relief because we know that the exceptional P

1 after blowing
up an Ak singularity should have normal bundle O ⊕ O(−2). When k = 1,
Proposition 1.1 further reduces the geometry to that of a zero-matrix model
(no superpotential possible!), showing that A1 is the most trivial case, with
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Table 4: Geometrically equivalent superpotentials.

Zero-matrix
Type Two-matrix model One-matrix model model

̂O W (x, y) = 0

̂A W (x, y) =
1
2
y2 W (x) = 0

Ak W (x, y) =
1

k + 1
xk+1 +

1
2
y2 W (x) =

1
k + 1

xk+1

A1 W (x, y) =
1
2
x2 +

1
2
y2 W (x) =

1
2
x2 W = 0

normal bundle O(−1) ⊕ O(−1).15 These results are summarized in table 4,
and can be understood as evidence for Ferrari’s RG conjecture. (Compare
with Intriligator and Wecht’s map of possible RG flows in figure 3.)

Our analysis also indicates that the names are well-chosen: the ̂A and
̂D geometries are closely related to their Ak and Dk+2 counterparts, and
the same might be true for the ̂E case. The relationship between the ̂A, ̂D

and ̂E geometries and the ADE singularities is worth exploring for purely
geometric reasons. To summarize, string dualities have told us to enlarge
the class of geometries considered in [17], and have pointed us to closely
related “limiting cases” of these geometries with non-isolated singularities.

2 The geometric framework

Here we review Ferrari’s construction of non-compact Calabi–Yau’s from
matrix model superpotentials, following section 3 of [13]. The main idea
behind the geometric setup is that deformations of the exceptional P

1 in
a resolved geometry ̂M correspond to adjoint fields in the gauge theory
[5]. Alternatively, the deformation space for a P

1 wrapped by D-branes
can be thought of in terms of matrix models. The number N of D-branes
wrapping the P

1 gives the size of the matrices (N × N), while the number

15In contrast, the normal bundle in the ̂O case is truly O(1) ⊕ O(−3), showing that
this geometry requires a two-matrix model description.
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M of independent sections of the P
1 normal bundle gives the number of

matrices (an M -matrix model).

Inspired by the string theory dualities, Ferrari develops a recipe to go
straight from the matrix model to a Calabi–Yau space. If the dualities hold,
all of the matrix model quantities should be computable from the corre-
sponding geometry. In this way, Ferrari’s prescription provides a non-trivial
consistency check on the Gopakumar–Vafa and Dijkgraaf–Vafa conjectures.
Moreover, such a Calabi–Yau space provides a natural higher-dimensional
analogue for the spectral (hyperelliptic) curve which encodes the solution to
the hermitian one-matrix model.

For each theory, there are three relevant Calabi–Yau spaces: the resolved
Calabi–Yau ̂M, the singular Calabi–Yau M0 and the smooth deformed
space M. In short, Ferrari’s game consists of the following steps:

1. Start with an M -matrix model matrix model superpotential W (x1, . . . ,

xM ) and construct a smooth Calabi–Yau ̂M. The details of this con-
struction are presented subsequently.

2. Identify the exceptional P
1 in the resolved space ̂M.

3. Blow down the exceptional P
1 to get the singular M0. The blow down

map is π : ̂M −→ M0.
4. Perturb the algebraic equation for M0 to get the smooth deformed

space M.
5. From the triple of geometries, compute matrix model quantities (resol-

vents).
6. Use standard matrix model techniques (loop equations) to check answers

in cases where the matrix model solution is known.

In this framework, the matrix model superpotential is encoded in the tran-
sition functions defining the resolved geometry ̂M. Ferrari shows that a
wide variety of matrix model superpotentials arise in this fashion, and that
matrix model resolvents can be computed directly from the geometry. In
other words, the solution to the matrix model is encoded in the correspond-
ing triple of Calabi–Yau’s.

The bottleneck to this program is Step 3, the construction of the blow-
down map. While Ferrari’s ad-hoc methods for constructing the blow-down
are successful in his particular examples, he does not know how to construct
the blow down in general. Moreover, it seems the calculation of the blow
down map π is essentially equivalent in solving the associated matrix model,
and hence it would be very useful to have an algorithm which computes π
[13, p. 655].
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In this paper, we are mainly concerned with Steps 1–3. Our goal is to show
how to compute the blow-down map in a large class of examples, and there-
fore to understand better which singular geometries M0 arise from matrix
models in Ferrari’s framework. In the future, it would be nice to implement
the deformation to M and also to compute matrix model quantities for our
examples (Steps 4–6). For the present, this is beyond our scope.

2.1 Step 1: Construction of resolved Calabi–Yau

We now turn to Step 1, the construction of the “upstairs” resolved space
̂M given the matrix model superpotential W (x1, . . . , xk). ̂M is given the
transition functions between just two coordinate charts over an exceptional
P

1: (β, v1, v2) in the first chart, and (γ, w1, w2) in the second chart. β and γ
should be thought of as stereographic coordinates for the P

1, with β = γ−1.
The other coordinates v1, v2 and w1, w2 span the normal directions to the
P

1, and have non-trivial transition functions.

We first discuss the case where W = 0, in which the Calabi–Yau is the
total space of a vector bundle over the exceptional P

1. We then show how
a simple deformation of the transition functions leads to constraints on the
sections of the bundle. The independent sections x1, . . . , xk correspond to
matrix degrees of freedom (k independent sections for a k-matrix model).
The constraints can be encoded in a potential W (x1, . . . , xk). When W is
non-zero, our geometry ̂M is no longer a vector bundle — if the total space
were a vector bundle, the sections x1, . . . , xk would be allowed to move freely
and therefore satisfy no constraints. We shall refer to geometries with W �= 0
as “deformed” or “constrained” bundles.

Pure O(n) ⊕ O(m) bundle. Consider the following ̂M geometry for n ≥ 0
and m < 0:

β = γ−1, v1 = γ−nw1, v2 = γ−mw2.

There is an (n + 1)-dimensional family of P
1s that sit at

w1(γ) =
n+1
∑

i=1

xiγ
i−1, w2(γ) = 0.

We have no freedom in the w2 coordinate because m < 0 precludes v2(β)
from being holomorphic whenever w2(γ) is. w1(γ) and w2(γ) define globally
holomorphic sections, and in the β coordinate patch become

v1(β) =
n+1
∑

i=1

xiβ
n−i+1, v2(β) = 0.
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The parameters xi are precisely the fields in the associated superpotential,
and they span the versal deformation space of the P

1s. In this case there
are no constraints on the xis, which correspond to the fact that the super-
potential is

W (x1, . . . , xn+1) = 0.

The geometry ̂M is the total space of a vector bundle, which we might refer
to as a “free” bundle because it is not constrained.

Deformed bundle; enter superpotential. Now consider the deformed geome-
try (with n ≥ 0 and m < 0):

β = γ−1, v1 = γ−nw1, v2 = γ−mw2 + ∂w1E(γ, w1),

where E(γ, w1) is a function of two complex variables which can be Laurent
expanded in terms of entire functions Ei,

E(γ, w1) =
∞

∑

i=−∞
Ei(w1)γi.

We call E the “geometric potential.” The most general holomorphic section
(w1(γ), w2(γ)) of the normal bundle N to the P

1s still has

w1(γ) =
n+1
∑

i=1

xiγ
i−1, v1(β) =

n+1
∑

i=1

xiβ
n−i+1,

but in order to ensure that v2(β) is holomorphic, the xis will have to
satisfy some constraints. Since a holomorphic w2(γ) can only cancel poles in
β−j for j ≥ |m|, the xis must satisfy |m| − 1 constraints in order to cancel
remaining lower-order poles introduced by the perturbation. Hence the ver-
sal deformation space of the P

1 is spanned by n + 1 parameters xi satisfying
|m| − 1 = −m − 1 constraints.

For the P
1 to be isolated we need n + 1 = −m − 1, and we denote this

quantity (the number of fields) by M . The constraints are integrable, and
equivalent to the extremization δW = 0 of the corresponding superpotential
W (x1, . . . , xM ). The P

1s then sit at the critical points of the superpotential,
in the sense that for critical values of the xis, the pair (w1(γ), w2(γ)) will
be a global holomorphic section defining a P

1.

Summary: General transition functions for ̂M. The resolved geometry
̂M is described by two coordinate patches (γ, w1, w2) and (β, v1, v2), with
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transition functions

β = 1/γ, v1 = γ−nw1, v2 = γ−mw2 + ∂w1E(γ, w1).

In the absence of the ∂w1E(γ, w1) term, this would simply be an O(n) ⊕
O(m) bundle over the P

1 parametrized by the stereographic coordinates γ
and β. The perturbation comes from the “geometric potential” E(γ, w),
which can be expanded as

E(γ, w) =
+∞
∑

i=−∞
Ei(w)γi.

The superpotential. The matrix model superpotential encodes the con-
straints on the sections x1, . . . , xM due to the presence of the perturbation
term ∂w1E(γ, w1) in the defining transition functions for ̂M. It can be
obtained directly from the geometric potential via

W (x1, . . . , xM ) =
1

2πi

∮

C0

γ−M−1E

(

γ,

M
∑

i=1

xiγ
i−1

)

δγ,

where
M = n + 1 = −m − 1.

The contour integral is meant as a bookkeeping device; C0 should be taken
as a small loop encircling the origin. The integral is a compact notation used
by Ferrari to encode all of the constraints at once. The general method for
going from transition function perturbation (geometric potential) to super-
potential was first presented in [16].

This procedure is also invertible. In other words, given a matrix model
superpotential W (x1, . . . , xM ) one can find a corresponding geometric poten-
tial E(γ, w1), and therefore construct the associated geometry. E is not in
general unique; from the expression for W one can see that terms can always
be added to the geometric potential which will not contribute to the residue
of the integrand, and hence will not affect the superpotential. Such terms
have no effect on the geometry, however.

Going from W to E is essentially the implementation of Step 1 in Ferrari’s
game. We now turn to Step 2, which is to locate the exceptional P

1s.

2.2 Step 2: Locating the P
1s

The first task in constructing the blow-down maps is figuring out where the
P

1s that we want to blow down are located. We will mostly be interested in
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the M = 2 case,

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + ∂w1E(γ, w1),

where we always have

w1(γ) = x + γy, v1(β) = βx + y,

with x and y critical points of W (x, y) at the P
1s. Depending on the form of

the perturbation ∂w1E(γ, w1), w2(γ) will be chosen to cancel poles of order
≥ 3. The requirement that v2(β) be holomorphic will fix x and y values to
be the same as for the critical points of W (x, y).

2.3 Step 3: Finding the blow down map in Ferrari’s examples

As previously mentioned, Ferrari has no systematic way of constructing the
blow-down map

π : ̂M −→ M0.

He successfully finds the blow-down in several examples, however, through
clever but ad-hoc methods. To see how Ferrari finds the blow-down, see the
main examples from his paper [13].

2.4 Example: Ak

We now illustrate Steps 1–3 in a simple example. Consider the matrix model
potential

W (x) =
1

k + 1
xk+1.

Since there is only one field, the resolved geometry ̂M is given by transition
functions

β = γ−1, v1 = w1, v2 = γ2w2 + γwk
1 ,

for an O ⊕ O(−2) bundle over the exceptional P
1. To locate the P

1, we first
note that

w1(γ) = x = v1(β)
are the only holomorphic sections for the O line bundle. Substituting this
into the transition function for v2 yields

v2(β) = β−2w2(γ) + β−1xk,

which is only holomorphic if xk = w2(γ) = 0. Therefore, we have a single
P

1 located at

w1(γ) = w2(γ) = 0, v1(β) = v2(β) = 0.
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Note that the position of the P
1 corresponds exactly to the critical point of

the superpotential:

δW = xkdx = 0 =⇒ xk = 0.

The blow-down. To find the blow down map π, we must look for global
holomorphic functions (which will necessarily be constant on the P

1). We
can immediately write down

π1 = v1 = w1,

π2 = v2 = γ2w2 + γwk
1 ,

which are independent. Moreover, notice the combination βv2 − vk
1 = γw2.

This gives us

π3 = βv2 − vk
1 = γw2,

π4 = β2v2 − βvk
1 = w2.

Since β = π4/π3, we have immediately from the definition of π3 the relation

M0 : π2
3 = π4π2 − π3π

k
1 .

This corresponds to an Ak (length 1) singularity!

The blow-up. We check our computation by inverting the blow-down. If we
define

v3 = βv2 − vk
1 , and w3 = γw2 + wk

1 ,

we can write
π1 = v1 = w1,

π2 = v2 = γw3,

π3 = v3 = γw2,

π4 = βv3 = w2.

In particular

β =
π4

π3
= γ−1.

This suggests that to recover the small resolution ̂M we should blow up

π3 = π4 = 0 in M0 : π2
3 = π4π2 − π3π

k
1 .

Denoting the P
1 coordinates by [β : γ] and imposing the relation

βπ3 = γπ4
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in the blow-up, we find in each chart

(γ = 1) (β = 1)

π4 = βπ3 π3 = γπ4
π3 = βπ2 − πk

1 γ2π4 = π2 − γπk
1

(β, π1, π2) (γ, π1, π4)

The transition functions between the two charts are easily found to be

β = γ−1, π1 = π1, π2 = γ2π4 + γπk
1 .

Identifying with the original coordinates, we find

β = γ−1, v1 = w1, v2 = γ2w2 + γwk
1 .

This is exactly what we started with!

Note that for k = 1, we have a bundle-changing superpotential (see Sec-
tion 3), and the normal bundle to the exceptional P

1 is O(−1) ⊕ O(−1)
instead of O ⊕ O(−2).

3 Superpotentials which change bundle structure

In this section we describe a family of superpotentials which change the
underlying bundle structure, thus proving Proposition 1.1.

Proposition 1.1. For −M ≤ r ≤M , the addition of the perturbation term
∂w1E(γ, w1) = γr+1w1 in the transition functions

β = γ−1, v1 = γ−M+1w1, v2 = γM+1w2 + γr+1w1,

changes the bundle from O(M − 1) ⊕ O(−M − 1) to O(r − 1) ⊕ O(−r − 1).
In particular, the M -matrix model potential

W (x1, . . . , xM ) =
1
2

M−r
∑

i=1

xixM−r+1−i, (r ≥ 0)

is geometrically equivalent16 to the r-matrix model potential

W (x1, . . . , xr) = 0.

16We will call two potentials geometrically equivalent if they yield the same geometry
under Ferrari’s construction.
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Consider an O(n) ⊕ O(m) normal bundle over a P
1 with geometric

potential

E(γ, w1) =
1
2
γkw2

1, k ∈ Z.

The perturbed transition functions are

β = 1/γ, v1 = γ−nw1, v2 = γ−mw2 + γkw1.

If (n, m, k) satisfies
−n ≤ k ≤ −m,

we can perform the following change of coordinates:

w̃1 = w1 + γ−m−kw2, ṽ1 = v2,
w̃2 = w2, ṽ2 = −v1 + βn+kv2.

Notice that

ṽ1 = γ−mw2 + γkw1 = γkw̃1,

ṽ2 = −γ−nw1 + γ−n−k(γ−mw2 + γkw1) = γ−n−m−kw̃2,

and so the new transition functions are

β = 1/γ, ṽ1 = γkw̃1, ṽ2 = γ−n−m−kw̃2.

The geometric potential has changed our O(n) ⊕ O(m) bundle into an
O(−k) ⊕ O(n + m + k) bundle, with no superpotential. The correspond-
ing superpotential can be computed for n + m = −2, and depends on the
number of fields M = n + 1 = −m − 1:

W (x1, . . . , xM ) =
1

2πi

∮

C0

γ−M−1E

(

γ,

M
∑

i=1

xiγ
i−1

)

δγ

=
1
2

M
∑

i=1

xixM−k−i+2.

Note that all of these bundle-changing superpotentials are purely quadratic!
In the cases of interest, where n + m = −2, the condition for the change of
coordinates to be valid becomes

−n ≤ k ≤ n + 2.

For allowed pairs (n, k) we can thus get

O(n) ⊕ O(−n − 2) −→ O(−k) ⊕ O(k − 2)

by means of the perturbation. Alternatively, we can think of these examples
as “true” O(−k) ⊕ O(k − 2) bundles which can be rewritten to “look like”
O(n) ⊕ O(−n − 2) plus a superpotential term.
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RG conjecture. In order to make contact with Ferrari’s RG conjecture (see
Section 1), we change notation a bit from the previous discussion:

M = n + 1, r = k − 1.

The perturbation term in the following transition functions

β = γ−1, w′
1 = γ−M+1w1, w′

2 = γM+1w2 + γr+1w1,

changes the bundle

O(M − 1) ⊕ O(−M − 1) −→ O(r − 1) ⊕ O(−r − 1), for − M ≤ r ≤ M.

The change of coordinates:

v1 = w1 + γM−rw2, v′
1 = w′

2,
v2 = w2, v′

2 = −w′
1 + βM+rw′

2,

yields new transition functions

β = γ−1, v′
1 = γr+1v1, v′

2 = γ1−rv2.

The superpotential. The superpotential corresponding to the perturbation

∂w1E(γ, w1) = γr+1w1

is given by

Wr(x1, . . . , xM ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2

M−r
∑

i=1

xixM−r+1−i, for r ≥ 0,

1
2

M
∑

i=1−r

xixM−r+1−i, for r ≤ 0.

This completes the proof of Proposition 1.1.

Notice that the case r = M is not interesting, as the bundle remains
unchanged and the superpotential vanishes. Moreover, the symmetry r �→ −r
in the bundle expression interchanges two different superpotentials, but this
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amounts to a simple change of coordinates. To see this, first note that:

r ≥ 0 : Wr(x1, . . . , xM ) =
1
2

M−|r|
∑

i=1

xixM−|r|+1−i

r ≤ 0 : Wr(x1, . . . , xM ) =
1
2

M
∑

i=1+|r|
xixM+|r|+1−i

=
1
2

M−|r|
∑

i=1

xi+|r|xM+1−i

The direction of the coordinate shift depends on the sign of r:

r ≥ 0 : r �→ −r is equivalent to xi �→ xi+|r|
r ≤ 0 : r �→ −r is equivalent to xi �→ xi−|r|

i.e. r �→ −r on the bundle side is equivalent to a simple coordinate change
for the corresponding superpotential.

We summarize the first few examples in the following table.

r −3 −2 −1 0 1 2 3

M = 1
1
2
x2

1

M = 2
1
2
x2

2 x1x2
1
2
x2

1

M = 3
1
2
x2

3 x2x3 x1x3 +
1
2
x2

2 x1x2
1
2
x2

1

M = 4
1
2
x2

4 x3x4 x2x4 +
1
2
x2

3 x1x4 + x2x3 x1x3 +
1
2
x2

2 x1x2
1
2
x2

1

The Hessian. We compute the partial derivatives of our bundle-changing
superpotentials:

r ≥ 0 :
∂Wr

∂xj
= xM−r+1−j ,

∂2Wr

∂xk∂xj
= δk,M−r+1−j for 1 ≤ j ≤ M − r.

r ≤ 0 :
∂Wr

∂xj
= xM−r+1−j ,

∂2Wr

∂xk∂xj
= δk,M−r+1−j for 1 − r ≤ j ≤ M.

In each case, there is only one k for every j which yields a non-zero second-
partial. This means the Hessian matrix has at most one non-zero entry in
each row and in each column. The co-rank of the Hessian is thus easy to
compute, and is equal to the number of rows (or columns) comprised entirely
of zeroes. In both the r ≥ 0 and r ≤ 0 cases, the co-rank of the Hessian is r
(see the ranges for j values). This is consistent with what we expect from
Ferrari’s RG conjecture.
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4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by: (1) computing the resolved
geometry ̂M corresponding to the Intriligator–Wecht superpotentials, (2)
finding global holomorphic functions (ghf ’s) to define a blow down map
π : ̂M → M0, (3) determining the geometry of the blow down M0 by find-
ing relations among the ghf ’s and (4) blowing up the singular point in M0 in
order to check that we do, indeed, recover the original resolved space. The
global holomorphic functions are found using the algorithm described in the
Appendix (see [7] for a detailed implementation). Techniques for performing
the blow ups can be found in [6, 7].

4.1 The case Ak

In this section we prove the first part of Theorem 1.3: The resolved geometry
corresponding to the Intriligator–Wecht superpotential

W (x, y) =
1

k + 1
xk+1 +

1
2
y2,

corresponds to the singular geometry

XY − T (Zk − T ) = 0.

In the next section, we will also discover that this potential is geometrically
equivalent to

W (x) =
1

k + 1
xk+1.

The resolved geometry ̂M. From the Intriligator–Wecht superpotential

W (x, y) =
1

k + 1
xk+1 +

1
2
y2,

we compute the resolved geometry ̂M in terms of transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2wk
1 + w1.

To find the P
1s, we substitute w1(γ) = x + γy into the v2 transition function

v2(β) = β−3w2 + β−2(x + β−1y)k + x + β−1y.

If we choose

w2(γ) =
xk − (x + γy)k

γ
,
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in the β chart the section is

v1(β) = βx + y, v2(β) = β−2xk + β−1y + x.

This is only holomorphic if

xk = y = 0,

and so we have a single P
1 located at

w1(γ) = w2(γ) = 0, v1(β) = v2(β) = 0.

This is exactly what we expect from computing critical points of the super-
potential

δW = xkdx + ydy = 0.

Global holomorphic functions. The transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2wk
1 + w1,

are quasi-homogeneous if we assign the weights

β v1 v2 γ w1 w2
k − 1 k + 1 2 1 − k 2 3k − 1 .

The global holomorphic functions will thus necessarily be quasi-homogeneous
in these weights. We find the following global holomorphic functions:

2 y1 = v2 = γ3w2 + γ2wk
1 + w1

k + 1 y2 = βv2 − v1 = γ2w2 + γwk
1

2k y3 = β2v2 − βv1 = γw2 + wk
1

3k − 1 y4 = vk−1
2 v1 − β3v2 + β2v1 =

These are the first four “distinct” functions produced by our algorithm, in
the sense that none is contained in the ring generated by the other three.

The singular geometry M0. We conjecture that the ring of global holomor-
phic functions is generated by y1, y2, y3 and y4, subject to the degree 4k
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relation

M0 : y2y4 + y2
3 + y2

2y
k−1
1 − y3y

k
1 = 0.

The functions yi give us a blow-down map whose image M0 has an isolated
Ak singularity. To see this, consider the change of variables

ỹ4 = y4 + y2y
k−1
1 = βvk

2 − β3v2 + β2v1.

Note that like y4, ỹ4 is also quasi-homogeneous of degree 3k − 1. The func-
tions y1, y2, y3 and ỹ4 now satisfy the simpler relation

M0 : y2ỹ4 + y3(y3 − yk
1 ) = 0.

The blow-up. We now verify that we have identified the right singular space
M0 by inverting the blow-down. In the β and γ charts we find

β = y3/y2 γ = y2/y3
v1 = βy1 − y2 = (y3y1 − y2

2)/y2 w1 = y1 − γy2 = (y1y3 − y2
2)/y3

v2 = y1 w2 = β(y3 − wk
1)

= −ỹ4 +
yk
1 − (y1 − γy2)k

γ
.

This suggests that we should blow up

y2 = y3 = 0,

for the small resolution of M0. We introduce P
1 coordinates [β : γ] such

that βy2 = γy3. The blow up in each chart is then

(γ = 1) (β = 1)

y3 = βy2 y2 = γy3
ỹ4 = β(yk

1 − βy2) y3 = yk
1 − γỹ4

co-ords : (y1, y2, β) co-ords : (y1, ỹ4, γ)

Transition functions. The transition functions between the β and γ charts
are

β = γ−1, y1 = y1, y2 = γ(yk
1 − γỹ4) = −γ2ỹ4 + γyk

1 .

Note that for k > 1, this is an O ⊕ O(−2) bundle over the exceptional P
1,

and corresponds to a superpotential with a single field (M = 1):

W (x) =
1

k + 1
xk+1.

(For k = 1 the bundle is actually O(−1) ⊕ O(−1) and W = 0.)
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In terms of the original coordinates, the transition functions become

β = γ−1, v2 = γ3w2 + γ2wk
1 + w1, βv2 − v1 = γ2w2 + γwk

1 .

Substituting the second transition function into the third reveals v1 = γ−1w1,
and so we recover our original transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2wk
1 + w1,

which define an O(1) ⊕ O(−3) bundle deformed by the two field (M = 2)
superpotential

W (x, y) =
1

k + 1
xk+1 +

1
2
y2.

4.2 A puzzle

The problem. We saw the Ak case in Section 2.4, with geometry ̂M given
by the superpotential

W (x) =
1

k + 1
xk+1,

and hence corresponding to a deformed O ⊕ O(−2) bundle over the P
1, with

one field. However, Intriligator and Wecht identify

W (x, y) =
1

k + 1
xk+1 +

1
2
y2,

as corresponding to an Ak-type singularity, with an extra field y which
requires that the transition functions look like

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2wk
1 + w1.

In particular, the geometry ̂M looks like that of an O(1) ⊕ O(−3) bundle
over the exceptional P

1! What’s going on here?

Resolution of the problem. For n = 1 and k = 0, Proposition 1.1 tells us that
the superpotential

W (x, y) =
1
2
y2

changes the bundle

O(1) ⊕ O(−3) −→ O ⊕ O(−2).

Hence the extra field y from the Intriligator–Wecht potential (with purely
quadratic contribution to the superpotential) can be “integrated out.” Its
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effect is to change the bundle for Ak from O(1) ⊕ O(−3), which is neces-
sary for a two-field description, to reveal the true underlying O ⊕ O(−2)
structure. In other words,

W (x, y) =
1

k + 1
xk+1 +

1
2
y2 and W (x) =

1
k + 1

xk+1

are geometrically equivalent.

Beyond Proposition 1.1. Note that this is not just a straightforward appli-

cation of Proposition 1.1, which implies that W (x, y) =
1
2
y2 and W (x) = 0

are geometrically equivalent. Beginning with transition functions for the

Intriligator–Wecht Ak superpotential W (x, y) =
1

k + 1
xk+1 +

1
2
y2,

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2wk
1 + w1,

the change of coordinates suggested in the proof of Proposition 1.1

ṽ1 = v2, w̃1 = w1 + γ3w2,

ṽ2 = −v1 + βv2, w̃2 = w2,

does not yield the appropriate new transition functions. Instead, the more
complicated change of coordinates

ṽ1 = v2, w̃1 = w1 + γ3w2 + γ2wk
1 ,

ṽ2 = −v1 + βv2, w̃2 = w2 − γ−1
[

(γ3w2 + γ2wk
1 + w1)k − wk

1

]

,

is needed to give new transition functions

β = γ−1, ṽ1 = w̃1, ṽ2 = γ2w̃2 + γw̃1
k,

corresponding to the superpotential W (x) =
1

k + 1
xk+1.

It would be interesting to try to generalize Proposition 1.1 to include
examples such as this, where there are additional terms in the superpotential
besides the quadratic pieces which suggest a change in bundle structure.
Trying to understand what makes the change of coordinates possible in this
case may give hints as to how the geometric picture for RG flow might be
extended. The ultimate goal would be to understand how “integrating out”
the y coordinate in a potential of the form W (x, y) = f(x, y) + y2 affects
other terms involving y.
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4.3 The case Dk+2

In this section we prove the second part of Theorem 1.3: The resolved
geometry corresponding to the Intriligator–Wecht superpotential

W (x, y) =
1

k + 1
xk+1 + xy2

corresponds to the singular geometry

X2 − Y 2Z + T (Zk/2 − T )2 = 0 (k even),

X2 − Y 2Z − T (Zk − T 2) = 0 (k odd).

The resolved geometry ̂M. From the Intriligator–Wecht superpotential

W (x, y) =
1

k + 1
xk+1 + xy2,

we compute the resolved geometry ̂M in terms of transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2wk
1 + w2

1.

To find the P
1s, we substitute w1(γ) = x + γy into the v2 transition function

v2(β) = β−3w2 + β−2(x + β−1y)k + (x + β−1y)2.

If we choose

w2(γ) =
xk − (x + γy)k

γ
,

in the β chart the section is

v1(β) = βx + y, v2(β) = β−2(xk + y2) + β−1(2xy) + x2.

This is only holomorphic if

xk + y2 = 2xy = 0,

and so we have a single P
1 located at

w1(γ) = w2(γ) = 0, v1(β) = v2(β) = 0.

This is exactly what we expect from computing critical points of the super-
potential

δW = (xk + y2)dx + 2xy dy = 0.

Global holomorphic functions. The transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2wk
1 + w2

1,
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are quasi-homogeneous if we assign the weights

β v1 v2 γ w1 w2
k − 2 k 4 2 − k 2 3k − 2 .

The global holomorphic functions will thus necessarily be quasi-homogeneous
in these weights. We find the following global holomorphic functions for k
even:

4 Z = v2 = γ3w2 + γ2wk
1 + w2

1

2k T = β2v2 − v2
1 = γw2 + wk

1

3k − 2 Y = β(Zk/2 − T ) = γ−1(Zk/2 − T )
3k X = v1(Zk/2 − T ) = γ−1w1(Zk/2 − T ),

and a similar set of global holomorphic functions for k odd:

4 Z = v2 = γ3w2 + γ2wk
1 + w2

1

2k T = β2v2 − v2
1 = γw2 + wk

1

3k − 2 Y = v1Z
(k−1)/2 − βT = γ−1(w1Z

(k−1)/2 − T )
3k X = βZ(k+1)/2 − v1Y = γ−1(Z(k+1)/2 − w1T ).

The singular geometry M0. We conjecture that the ring of global holo-
morphic functions is generated by X, Y, Z and T , subject to the degree 6k
relation

M0 : X2 − ZY 2 + T (Zk/2 − T )2 = 0, k even,

M0 : X2 − ZY 2 − T (Zk − T 2) = 0, k odd.

The functions X, Y, Z and T give us a blow-down map whose image M0 has
an isolated Dk+2 singularity.

Review of length 2 blow-up. Before doing the blow-up to show that we have
the right blow down, we review some results from [7, Chap. 4]. There we
found small resolutions of length 2 singularities by using deformations of
matrix factorizations for Dn+2 surface singularities.

The deformed Dn+2 equation was given by

0 = X2 + Y 2Z − h′(ZP ′′2 + Q′′2) + 2δ′(Y Q′′ + (−1)m+1XP ′′),

where for t = 0 we have δ′ = 0 and

m even h′(Z) = Zn−m, P ′′(Z) = imZm/2, Q′′(Z) = 0.

m odd h′(Z) = Zn−m, P ′′(Z) = 0, Q′′(Z) = im+1Z(m+1)/2.



386 CARINA CURTO

The blow-up was given by the equation for the Grassmannian G(2, 4) ⊆ P
5

α2 − ϕ2Z + (−1)m+1h′ε2 + 2im+1δ′εϕ = 0,

in terms of Plücker coordinates

α = iXY − i2m+1h′P ′′Q′′

ε = im+3XP ′′ + i−m+1Y Q′′

ϕ = Y 2 − h′P ′′2.

The interesting charts were ϕ = 1 and ε = 1, with transition functions

ϕ2 = ε−1
1 , (4.1)

α2 = ε−1
1 α1, (4.2)

Z = (−1)m+1ε2
1h

′(Z, t) + α2
1 + 2im+1δ′ε1, (4.3)

t = t. (4.4)

The blow-up. For k even, the equation for M0 corresponds to

δ′ = 0, h′ = T, P ′′ = 0, Q′′ = ik(Zk/2 − T ), n = m = k − 1,

and Plücker coordinates

α = iXY, ε = −Y (Zk/2 − T ), ϕ = Y 2.

The connection with the original transition function coordinates is

4 Z = v2 = γ3w2 + γ2wk
1 + w2

1
2k T = β2v2 − v2

1 = γw2 + wk
1

3k − 2 Y = β(Zk/2 − T ) = γ−1(Zk/2 − T )
3k iX = v1(Zk/2 − T ) = γ−1w1(Zk/2 − T ).

Note that

β =
Y

Zk/2 − T
= −ϕ

ε
= −ϕ2,

v1 =
iX

Zk/2 − T
= −α

ε
= −α2,

v2 = Z,

γ =
Zk/2 − T

Y
= − ε

ϕ
= −ε1,
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w1 =
iX

Y
=

α

ϕ
= α1,

w2 = β(T − wk
1) = −ε−1

2 (T − αk
2).

In particular, the transition functions (4.1) become

β = γ−1,

v1 = γ−1w1,

v2 = γ2T + w2
1 = γ3w2 + γ2wk

1 + w2
1.

The blow-up for k odd is similar. For more details about the Grassmann
blow up for singularities of type Dn see [6, pp. 21–23].

4.4 The case E7

In this section we prove the third part of Theorem 1.3: The resolved geometry
corresponding to the Intriligator–Wecht superpotential

W (x, y) =
1
3
y3 + yx3

corresponds to the singular geometry

X2 − Y 3 + Z5 + 3TY Z2 + T 3Z = 0.

The resolved geometry ̂M. From the Intriligator–Wecht superpotential

W (x, y) =
1
3
y3 + yx3,

we compute the resolved geometry ̂M in terms of transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γw3
1 + γ−1w2

1.

To find the P
1s, we substitute w1(γ) = x + γy into the v2 transition

function

v2(β) = β−3w2 + β−1(x + β−1y)3 + β(x + β−1y)2.

If we choose

w2(γ) =
x3 + 3γx2y − (x + γy)3

γ2 ,

in the β chart the section is

v1(β) = βx + y, v2(β) = β−2(3x2y) + β−1(x3 + y2) + 2xy + βx2.
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This is only holomorphic if

3x2y = x3 + y2 = 0,

and so we have a single P
1 located at

w1(γ) = w2(γ) = 0, v1(β) = v2(β) = 0.

This is exactly what we expect from computing critical points of the super-
potential

δW = 3x2y dx + (y2 + x3)dy = 0.

Global holomorphic functions. The transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γw3
1 + γ−1w2

1,

are quasi-homogeneous if we assign the weights

β v1 v2 γ w1 w2

1 3 5 −1 2 8.

The global holomorphic functions will thus necessarily be quasi-homogeneous
in these weights. We find the following global holomorphic functions:

6 X = βv2 − v2
1

8 Y = v1v2 − β2X

10 Z = v2
2 − βv1X

15 F = v3
2 − 2v3

1X + (β3 − 3v1)X2.

The singular geometry M0. We conjecture that the ring of global holo-
morphic functions is generated by X, Y, Z and F , subject to the degree 30
relation

M0 : F 2 − Z3 + X5 + 3X2Y Z + XY 3 = 0.

Do the functions X, Y, Z and F give us a blow-down map whose image M0
has an isolated E7 singularity?
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The blow up. We now verify that we have identified the right singular space
M0 by inverting the blow-down. In the β and γ charts we find

β =
Y 2 + XZ

F
γ =

F

Y 2 + XZ

v1 =
X3 + Y Z

F
w1 =

X3 + Y Z

Y 2 + XZ

v2 =
Z2 − X2Y

F
w2 =

X4 − Y 3

Y 2 + XZ
= w1X − Y.

This suggests that we should rewrite the equation for M0 as

M0 : F 2 + XY (Y 2 + XZ) + X2(X3 + Y Z) − Z(Z2 − X2Y ) = 0,

and that we can obtain ̂M by blowing up

F = Y 2 + XZ = X3 + Y Z = Z2 − X2Y = 0.

The locus C. Let S denote the surface

S : F = Y 2 + XZ = 0.

Our ̂M coordinate patches (β, v1, v2) and (γ, w1, w2) cover everything except
the locus

C = S ∩ M0.

The intersection of S with the threefold M0 yields the new equation

X5 + 2X2Y Z − Z3 = 0.

(This was obtained by finding the Groebner basis for the ideal generated by
F , Y 2 + XZ, and the equation for M0.)

For X �= 0 we can write

Z = −Y 2

X
,

and so the equations for C become

C : F = Y 2 + XZ = (X4 − Y 3)2 = 0 (X �= 0).

We can parametrize this curve by

X = t3,

Y = t4,

Z = −t5,

F = 0.
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From this we see that blowing up C ⊂ M0 is equivalent to blowing up

F = Y 2 + XZ = X3 + Y Z = Z2 − X2Y = X4 − Y 3 = 0.

In this case we would have additional coordinates v3, w3 for the blow-up:

β =
Y 2 + XZ

F
γ =

F

Y 2 + XZ

v1 =
X3 + Y Z

F
w1 =

X3 + Y Z

Y 2 + XZ

v2 =
Z2 − X2Y

F
w2 =

X4 − Y 3

Y 2 + XZ

v3 =
X4 − Y 3

F
w3 =

Z2 − X2Y

Y 2 + XZ
.

Note that both v3 and w3 add nothing new, as we can solve for them in
terms of the other coordinates:

v3 = γ−1w2 = β4v2 − β3v2
1 − v3

1,

w3 = β−1v2 = γ4w2 + γ2w3
1 + w2

1.

These are precisely the additional coordinates we introduced in our resolu-
tion of the ideal sheaf (see Section 3.5). Finally, with these identifications
we find transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γw3
1 + γ−1w2

1,

which are exactly the ones we started with.

5 Proof of Theorem 1.4

In this section we analyze the extra ‘hat’ cases in the Intriligator–Wecht clas-
sification of superpotentials. In particular, we prove Theorem 1.4 by finding
singular geometries corresponding to each of the ̂O, ̂A, ̂D and ̂E cases. As in
the case of Theorem 1.3, we first find global holomorphic functions using the
algorithm described in the Appendix, and then verify the resulting singular
space by blowing back up to recover our original transition functions.

5.1 The case ̂O

The resolved geometry ̂M. From the Intriligator–Wecht superpotential

W (x, y) = 0,
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we compute the resolved geometry ̂M in terms of transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2.

To find the P
1s, we substitute w1(γ) = x + γy into the v2 transition function

v2(β) = β−3w2.

If we choose

w2(γ) = 0,

in the β chart the section is

v1(β) = βx + y, v2(β) = 0.

This is holomorphic for all x and y, and so we have a two-parameter family
of P

1s located at

w1(γ) = x + γy, w2(γ) = 0, v1(β) = βx + y, v2(β) = 0.

This is exactly what we expect from computing critical points of the super-
potential

δW = 0.

Global holomorphic functions. The transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2

are quasi-homogeneous if we assign the weights

β v1 v2 γ w1 w2
1 d + 1 e − 3 −1 d e.

Notice the freedom in choosing d and e: there is a two-dimensional lattice of
possible weight assignments. The global holomorphic functions will neces-
sarily be quasi-homogeneous in these weights. We find global holomorphic
functions:

Xij = βivj
1v2 = γ3−i−jwj

1w2, i, j ≥ 0, i + j ≤ 3.

The singular geometry M0. If we rewrite our functions in a homogeneous
manner as

˜Xij = a3−i−jbic j , i, j ≥ 0, i + j ≤ 3,

we can now identify the ring of global holomorphic functions as homoge-
neous polynomials of degree 3 in three variables. In other words, the ring is
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isomorphic to
C[a, b, c]Z3 ,

and our singular variety is simply

M0 : C
3/Z3.

The blow-up. We now verify that we have identified the right singular space
M0 by inverting the blow-down. In the β and γ charts we find

β = X10/X00 = ˜X10/ ˜X00 = b/a γ = a/b

v1 = X01/X00 = ˜X01/ ˜X00 = c/a w1 = c/b

v2 = X00 = ˜X00 = a3 w2 = b3

which gives transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2.

These are precisely what we started with!

Remark 5.1. In the resolved ̂M geometry, what we have is a P
1 inside a

P
2 (or any other del Pezzo surface). If you have a P

2 inside a Calabi–Yau
and blow it down, you get C

3/Z
3 as the singular point.

5.2 The case ̂A

The resolved geometry ̂M. From the Intriligator–Wecht superpotential

W (x, y) =
1
2
x2,

we compute the resolved geometry ̂M in terms of transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2w1.

To find the P
1s, we substitute w1(γ) = x + γy into the v2 transition function

v2(β) = β−3(w2 + y) + β−2x.

If we choose

w2(γ) = −y,

in the β chart the section is

v1(β) = βx + y, v2(β) = β−2x.
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This is only holomorphic x = 0. Since y is free, we have a one-parameter
family of P

1s located at

w1(γ) = γy, w2(γ) = −y, v1(β) = y, v2(β) = 0.

This is exactly what we expect from computing critical points of the super-
potential

δW = xδx = 0.

Global holomorphic functions. The transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2w1

are quasi-homogeneous if we assign the weights

β v1 v2 γ w1 w2

1 d + 1 d − 2 −1 d d + 1.

Notice the freedom in choosing d: there is a one-dimensional lattice of pos-
sible weight assignments. The global holomorphic functions will necessar-
ily be quasi-homogeneous in these weights. We find global holomorphic
functions:

d − 2 y1 = v2 = γ3w2 + γ2w1

d − 1 y2 = βv2 = γ2w2 + γw1

d y3 = β2v2 = γw2 + w1

d + 1 y4 = β3v2 − v1 = w2

The singular geometry M0. The functions yi satisfy the single degree 2d − 2
relation

y2
2 − y1y3 = 0,

with y4 free. In other words, our singular geometry M0 is a curve of A1
singularities, parametrized by y4.

The blow-up. We now verify that we have identified the right singular space
M0 by inverting the blow-down. In the β and γ charts we find

β = y2/y1 γ = y1/y2
v1 = (y2y3 − y1y4)/y1 w1 = (y2y3 − y1y4)/y2
v2 = y1 w2 = y4.

This gives transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2w1,

as expected.
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5.3 The case ̂D

The resolved geometry ̂M. From the Intriligator–Wecht superpotential

W (x, y) = x2y,

we compute the resolved geometry ̂M in terms of transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γw2
1.

To find the P
1s, we substitute w1(γ) = x + γy into the v2 transition function

v2(β) = β−3(w2 + y2) + β−2(2xy) + β−1x2.

If we choose

w2(γ) = −y2,

in the β chart the section is

v1(β) = βx + y, v2(β) = β−2(2xy) + β−1x2.

This is only holomorphic if x = 0. Since y is free, we have a one-parameter
family of P

1s located at

w1(γ) = γy, w2(γ) = −y2, v1(β) = y, v2(β) = 0.

This is exactly what we expect from computing critical points of the super-
potential

δW = 2xy δx + x2δy = 0.

Global holomorphic functions. The transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γw2
1

are quasi-homogeneous if we assign the weights

β v1 v2 γ w1 w2
1 d + 1 2d − 1 −1 d 2d + 2 .

Notice the freedom in choosing d: there is a one-dimensional lattice of possi-
ble weight assignments. The global holomorphic functions will necessarily be
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quasi-homogeneous in these weights. We find global holomorphic functions:

2d − 1 y1 = v2 = γ3w2 + γw2
1

2d y2 = βv2 = γ2w2 + w2
1

3d y3 = v1v2 = γ2w1w2 + w3
1

2d + 2 y4 = β3v2 − v2
1 = w2

The singular geometry M0. The functions yi satisfy the single-degree 6d
relation

y2
3 − y3

2 + y2
1y4 = 0.

The blow up. We now verify that we have identified the right singular space
M0 by inverting the blow-down. In the β and γ charts we find

β = y2/y1 γ = y1/y2
v1 = y3/y1 w1 = y3/y2
v2 = y1 w2 = y4,

with transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γw2
1.

5.4 The case ̂E

The resolved geometry ̂M. From the Intriligator–Wecht superpotential

W (x, y) =
1
3
x3,

we compute the resolved geometry ̂M in terms of transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2w2
1.

To find the P
1s, we substitute w1(γ) = x + γy into the v2 transition function

v2(β) = β−3(w2 + 2xy + γy2) + β−2x2.

If we choose
w2(γ) = −2xy − γy2,

in the β chart the section is

v1(β) = βx + y, v2(β) = β−2x2.

This is only holomorphic if x = 0. Since y is free, we have a one-parameter
family of P

1s located at

w1(γ) = γy, w2(γ) = −γy2, v1(β) = y, v2(β) = 0.

This is exactly what we expect from computing critical points of the super-
potential

δW = x2 δx = 0.
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Global holomorphic functions. The transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2w2
1

are quasi-homogeneous if we assign the weights

β v1 v2 γ w1 w2
1 d + 1 2d − 2 −1 d 2d + 1 .

Notice the freedom in choosing d: there is a one-dimensional lattice of possi-
ble weight assignments. The global holomorphic functions will necessarily be
quasi-homogeneous in these weights. We find global holomorphic functions:

2d − 2 y1 = v2

2d − 1 y2 = βv2

2d y3 = β2v2

3d − 1 y4 = v1v2

3d y5 = βv1v2

4d y6 = v2
1v2

4d + 1 y7 = β(β4v2 − v2
1)v2 = βv3v2

5d + 1 y8 = v1(β4v2 − v2
1)v2 = v1v3v2

6d + 2 y9 = (β4v2 − v2
1)

2v2 = v2
3v2

where we have defined

v3 = β4v2 − v2
1 = γ−1w2.

The singular geometry M0. The functions yi satisfy a total of 20 distinct
relations, most of which are obvious. To simplify things, consider the mono-
mial mapping

βivj
1v

k
3v2 �−→ a2−i−j−kbic jfk.

Our functions now become

2d − 2 y1 = a2

2d − 1 y2 = ab

2d y3 = b2

3d − 1 y4 = ac

3d y5 = bc

4d y6 = c2

4d + 1 y7 = bf

5d + 1 y8 = cf

6d + 2 y9 = f2.
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Note that

β = y2/y1 = b/a

v1 = y4/y1 = c/a

v2 = y1 = a2

v3 = y7/y2 = f/a,

so the relation defining v3 becomes

af = b4 − c2.

This means we can add the function af to our list, together with the relation:

y10 = af = b4 − c2.

Now the functions y1, . . . , y10 are exactly the 10 monomials of degree 2
in four variables, together with the previous relation. The ring of global
holomorphic functions is thus

(C[a, b, c, f ]/Z2)/(af − b4 + c2),

where the Z2 acts diagonally as −1. In other words, we have a hypersurface
in a Z2 quotient space:

(b2 + c)(b2 − c) = af in C
4/Z2.

We can immediately see from this equation that a small resolution, where
we blow up an ideal of the form

b2 + c = a = 0,

would not work, since the Z2 action interchanges b2 + c and b2 − c. We will
need to do a big blow up of the origin instead.

The blow up. We now verify that we have identified the right singular space
M0 by inverting the blow-down. In the β and γ charts we find

β = b/a γ = a/b
v1 = c/a w1 = c/b
v2 = a2 w2 = f/b
v3 = f/a w3 = b2.

We will perform the big blow-up of the origin, with corresponding P
3

co-ordinates:
a = b = c = f = 0.
α δ ρ ν
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Note that all eight co-ordinates switch sign under the Z2 action. The blow-
up has four co-ordinate charts:

α = 1 δ = 1 ρ = 1 ν = 1

a = a a = α2b a = α3c a = α4f
b = δ1a b = b b = δ3c b = δ4f
c = ρ1a c = ρ2b c = c c = ρ4f
f = ν1a f = ν2b f = ν3c f = f

ν1 = δ4
1a

2 − ρ2
1 b2 = α2ν2 + ρ2

2 α3ν3 = δ4
3c

2 − 1 α4 = δ4
4f

2 − ρ2
4

(a2, δ1, ρ1) (α2, ρ2, ν2) (α3, δ3, c
2, ν3) (δ4, ρ4, f

2).

Remark 5.2. The functions αi, δi, ρi, and νi are all invariant under the Z2
action, since they are all ratios of functions which change sign:

δ1 = δ/α, ρ2 = ρ/δ, ... etc.

Because a, b, c and f all change sign under the Z2 action, we must take their
invariant counterparts a2, b2, c2 and f2 when we list the final co-ordinates
for each chart. In the δ = 1 chart, we solve for b2 instead of b, because b is
not an invariant function. The blow up is non-singular. In the α = 1, δ = 1
and ν = 1 charts we see this because we are left with three co-ordinates and
no relations, so these charts are all isomorphic to C

3. In the ρ = 1 chart, we
have a hypersurface in C

4 defined by the non-singular equation

α3ν3 = δ4
3c

2 − 1.

Transition functions. Between the first two charts α = 1 and δ = 1, we have
transition functions

δ1 = δ/α = α−1
2

ρ1 = ρ/α = (δ/α)(ρ/δ) = α−1
2 ρ2

a2 = α2
2b

2 = α2
2(α2ν2 + ρ2

2)

= α3
2ν2 + α2

2ρ
2
2.

Notice that
δ1 = b/a = β α2 = a/b = γ
ρ1 = c/a= v1 ρ2 = c/b = w1
a2 = a2 = v2 ν2 = f/b = w2,

and so our transition functions are really

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γ2w2
1.

These are exactly the ̂E transition functions we started with!
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5.5 Comparison with ADE cases

We have seen that the singular geometries corresponding to Intriligator and
Wecht’s “hat” cases are given by

̂O W (x, y) = 0 C
3/Z3

̂A W (x, y) =
1
2
y2

C[X, Y, Z, T ]/(XY − Z2) ∼= C × C
2/Z2

geometry has curve of A1 singularities

̂D W (x, y) = xy2 y2
1 − y3

2 + y2
3y4 = 0

recall geometry for Dk+2 :
y2
1 + y3

2 + y2
3y4 + yk

4y2 = 0

̂E W (x, y) =
1
3
y3 (C[a, b, u, v]/Z2)/(b4 − u2 − av)

this is a hypersurface in C
4/Z2.

Note that in both the ̂A and ̂D cases, the resulting equations can be
obtained from the Ak and Dk+2 equations by dropping the k-dependent
terms. In other words, we are tempted to think of ̂A and ̂D as the k → ∞
limit. Perhaps in trying to come up with an analogous statement for ̂E we
can learn something about the “missing” E6 and E8 cases. In particular,
it will be interesting to understand the role of these spaces in a geometric
model for RG flow.

6 Conclusions

We end by posing a series of questions for the future which are beyond the
scope of this work.

From the Intriligator–Wecht classification, we still need to understand the
E6 and E8 cases. Using our algorithm we have found many global holomor-
phic functions, but not enough to give us the blow-down [7]. There are also
questions which arise from the extra “hat” cases. What is the interpretation
of the ̂O, ̂A, ̂D and ̂E geometries from the string theory perspective? The P

1s
are no longer isolated; do they correspond to D-branes wrapping families of
P

1s? Moreover, what is the role of higher order terms in the superpotential?

Do we have a geometric model for RG flow? Proposition 1.1 suggests
that the geometry might encode something about the RG fixed points of
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the corresponding matrix models or gauge theories. Can Proposition 1.1
be extended? Finding more general co-ordinate changes which can show
how the rest of the terms in the superpotential are affected when a bundle-
changing co-ordinate is “integrated out” is a necessary step in developing
this kind of geometric picture.

Furthermore, Intriligator and Wecht have a chart of all possible flows
between the RG fixed points. We can make a similar chart based on our
geometric framework. Do they match? Finally, what is the role of funda-
mentals? Our entire analysis involves only adjoint fields, which correspond
geometrically to parameters of the P

1 deformation space. Intriligator and
Wecht only find the ADE classification for superpotentials involving two
adjoint fields, but their paper also analyzes many cases with fundamentals.
Is it possible to have a geometric interpretation for these fields?

As far as Ferrari’s construction is concerned, there are many open ends to
be explored. Can we generalize Ferrari’s framework to include perturbation
terms for both v1 and v2 transition functions? Can we generalize for cases
where the geometry is specified by more than two charts? This would enable
more flexibility in identifying superpotentials in a “bottom–up” approach.
On the other hand, the techniques developed in [3] in principle allow com-
putation of the superpotential in general. In cases where the superpotential
cannot be easily identified in the transition functions, perhaps this approach
should be used instead.

Moreover, in all of our new cases there is still work to be done to com-
plete the remaining steps in Ferrari’s program. For example, what is the
solution to the matrix model corresponding to the length 3 singularity?
What can we learn about the matrix models corresponding to the “hat”
cases? Although the singularities are no longer isolated, is it still possi-
ble to compute resolvents from the geometry? If Ferrari’s conjecture about
the Calabi–Yau geometry encoding the solution to the matrix model is cor-
rect, we should now be able to solve the matrix models corresponding to
the length 3 and “hat” cases. If solutions are already known (or can be
computed using traditional matrix model techniques), these examples will
provide new tests to the conjecture.

Appendix

We reformulate our problem of finding global holomorphic functions as an
ideal membership problem. We begin by illustrating the reformulation in
an example. Consider the resolved geometry for the E7 Intriligator–Wecht
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potential:

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γw3
1 + γ−1w2

1.

We can think of this as describing a variety in C
6, defined by the following

ideal I ⊂ C[γ, w1, w2, β, v1, v2]:

I = 〈βγ − 1, v1 − βw1, v2 − γ3w2 − γw3
1 − βw2

1〉.

In order to blow down the exceptional P
1, we must find functions which are

holomorphic in each coordinate chart, and will therefore be constant on the
P

1. Such global holomorphic functions correspond to elements of the ideal
I that can be written in the form17

f − g ∈ I, where f ∈ C[β, v1, v2], g ∈ C[γ, w1, w2].

For each such element, the global holomorphic function is f = g.

In general, we begin with transition functions

β = γ−1, v1 = γ−nw1, v2 = γ−mw2 + ∂w1E(γ, w1),

and form the ideal

I = 〈βγ − 1, v1 − βnw1, v2 − βmw2 − ∂w1
˜E(γ, w1)〉,

where ˜E(γ, w1) is obtained from E(γ, w1) by replacing all instances of γ−1

with β.

A.1 The algorithm

Consider a monomial βivj
1v

k
2 ∈ C[β, v1, v2]. Using Groebner basis techniques,

we can easily reduce this modulo the ideal

I = 〈βγ − 1, v1 − βnw1, v2 − βmw2 − ∂w1
˜E(γ, w1)〉,

which is determined by our particular geometry. In general, we will find

βivj
1v

k
2

mod I≡ pure(β, v1, v2) + pure(γ, w1, w2) + mixed,

where “pure” and “mixed” stand for pure and mixed terms18 in the appro-
priate variables. We can then bring the pure(β, v1, v2) terms to the left-hand

17Note that in our example, none of the defining generators for I are of this form!
18We will refer to any monomial in C[γ, w1, w2, β, v1, v2] which does not belong to either

C[β, v1, v2] or C[γ, w1, w2] as a mixed term.
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side, “updating” our initial monomial to the polynomial

βivj
1v

k
2 − pure(β, v1, v2)

mod I≡ pure(γ, w1, w2) + mixed.

Now the challenge is to find a linear combination f of such polynomials in
C[β, v1, v2] such that the mixed terms cancel, and we are left with

f
mod I≡ g, where f ∈ C[β, v1, v2], g ∈ C[γ, w1, w2].

The central idea (as in the Euclidean division algorithm) is to put a
term order on the mixed terms we are trying to cancel. In this way, we
can make sure we are cancelling mixed terms in an efficient manner, and
the cancellation procedure terminates. Because mixed terms (such as βw1)
correspond to “poles” in the γ coordinate chart (such as γ−1w1), we use the
weighted degree term order

>TP := wdeg([1, 1, 1,−1, 0, 0], [b, v[1], v[2], g, w[1], w[2]]):

which keeps track of the degree of the poles in γ.

Beginning with the superpotential, our algorithm thus consists of the
following steps:

1. Compute transition functions following Ferrari’s framework. This gives
an ideal

I = 〈βγ − 1, v1 − βnw1, v2 − βmw2 − ∂w1
˜E(γ, w1)〉 ⊂ C[γ, w1, w2, β, v1, v2].

2. Find a Groebner basis G for the ideal I, with respect to a term
order T .

3. Generate a list L of monomials in β, v1 and v2 (up to some degree).
4. Reduce monomial L[j] mod I, using G. What you have is

L[j] = βivj
1v

k
2

mod I≡ pure(β, v1, v2) + pure(γ, w1, w2) + mixed,

where “pure” and “mixed” stand for pure and mixed terms in the
appropriate variables. Bring the pure(β, v1, v2) terms over to the left-
hand side to make a polynomial

βivj
1v

k
2 − pure(β, v1, v2) ∈ C[β, v1, v2].

(i) Record this polynomial in the array F as F [j, 1].
(ii) Record the leading term (with respect to the term order TP)

of the “mixed” part as F [j, 2], and store the leading coefficient
as F [j, 3].
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5. Reduction routine
(i) Cycle through the list of previous polynomials F [1..j − 1, ∗] and

cancel leading mixed terms as much as possible.
(ii) The result is a new “updated” polynomial F [j, 1] which is reduced

in the sense that its leading mixed term is as low as possible (with
respect to the term order TP ) due to cancellation with leading
mixed terms from previous polynomials.

(iii) Reduce the “updated” F [j, 1] modulo the ideal I to update F [j, 2]
and F [j, 3].

(iv) If the new leading mixed term F [j, 2] is 0, we have a global holo-
morphic function!

6. Determine which global holomorphic functions are “new,” so that the
final list is not redundant.
(i) Check that the new global holomorphic function Xl is not in the

ring C[X1, . . . , Xl−1] generated by the previous functions.
(ii) To do this we find a Groebner basis for the ideal 〈X1, . . . , Xl〉

and compute partials to make sure we cannot solve for the new
function in terms of the previous ones.

7. Find relations among the global holomorphic functions. These will
determine the (singular) geometry of the blow down.

A.2 A shortcut

Of particular interest to us are the Intriligator–Wecht superpotentials [15].
As can be seen from Table A.1, each potential W (x, y) has two possible
expressions for ∂w1E(γ, w1), which corresponds to exchanging x ↔ y in the
matrix model potential.

In all of the Intriligator–Wecht cases, we can find weights for the variables
β, v1, v2 and γ, w1, w2 such that the transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + ∂w1E(γ, w1),

are quasi-homogeneous. For instance, in our previous example (the E7 case),
the transition functions

β = γ−1, v1 = γ−1w1, v2 = γ3w2 + γw3
1 + γ−1w2

1,

are quasi-homogeneous if we assign the weights

β v1 v2 γ w1 w2

1 3 5 −1 2 8
.
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Table 5: Intriligator–Wecht superpotentials, and identification of corre-
sponding resolved geometries.

Type W (x, y) ∂w1E(γ, w1) P
1 : (w1, w2), (v1, v2)

̂O 0 0 (x + γy, 0), (βx + y, 0)

̂A
1
2
y2 w1 ↔ γ2w1 (x, 0), (βx, x)

̂D xy2 w2
1 ↔ γw2

1 (x, 0), (βx, x2)

̂E
1
3
y3 γ−1w2

1 ↔ γ2w2
1 (x, 0), (βx, βx2)

Ak
1

k + 1
xk+1 +

1
2
y2 γ2wk

1 + w1 (0, 0), (0, 0)

↔ γ1−kwk
1 + γ2w1

Dk+2
1

k + 1
xk+1 + xy2 γ2wk

1 + w2
1 (0, 0), (0, 0)

↔ γ1−kwk
1 + γw2

1

E6
1
3
y3 +

1
4
x4 γ−1w2

1 + γ2w3
1 (0, 0), (0, 0)

↔ γ2w2
1 + γ−2w3

1

E7
1
3
y3 + yx3 γ−1w2

1 + γw3
1 (0, 0), (0, 0)

↔ γ2w2
1 + γ−1w3

1

E8
1
3
y3 +

1
5
x5 γ−1w2

1 + γ2w4
1 (0, 0), (0, 0)

↔ γ2w2
1 + γ−3w4

1

In particular, this means all elements of the ideal

I = 〈βγ − 1, v1 − βw1, v2 − γ3w2 − γw3
1 − βw2

1〉

are quasi-homogeneous in these weights, and all terms in the expression

βivj
1v

k
2

mod I≡ pure(β, v1, v2) + pure(γ, w1, w2) + mixed,

will have the same weight.

This immediately tells us that only combinations of monomials of the
same weight can be used to cancel mixed terms — i.e. the global holomorphic
functions we build will themselves be quasi-homogeneous. This observation
cuts computational time immensely, since it means that in the reduction
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routine we need only cycle through lists of polynomials of the same weight
in order to reduce the order of the mixed terms. In particular, we can run
the algorithm in parallel for different weights, restricting ourselves to lists
of monomials in C[β, v1, v2] which are all in the same weighted degree.

For a detailed implementation (including actual Maple code) of the algo-
rithm using this shortcut, see [7].
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MA, 1985.

[3] P. Aspinwall, and S. Katz, Computation of superpotentials for
D-Branes, 2004, hep-th/0412209.

[4] F. Cachazo, K. Intriligator and C. Vafa, A large N duality via a geo-
metric transition, Nucl. Phys. B 603 (2001), 3–41.

[5] F. Cachazo, S. Katz and C. Vafa, Geometric transitions and N = 1
quiver theories, 2001, hep-th/0108120.

[6] C. Curto and D.R. Morrison, Threefold flops via matrix factorization,
Preprint, 2006, arxiv:math.AG/0611014.

[7] C. Curto, Matrix model superpotentials and Calabi-Yau spaces: an ADE
classification, Preprint, 2005, arXiv:math.AG/0505111.

[8] P. Di Francesco, P. Ginsparg and J. Zinn-Justin, 2D gravity and random
matrices, Phys. Rep., 254 (1995).

[9] R. Dijkgraaf and C. Vafa, Matrix models, topological strings, and super-
symmetric gauge theories, Nucl. Phys. B 644 (2002), 3–20.

[10] R. Dijkgraaf and C. Vafa, On geometry and matrix models, Nucl. Phys.
B 644 (2002), 21–39.



406 CARINA CURTO

[11] R. Dijkgraaf and C. Vafa, A perturbative window into non-perturbative
physics, 2002, hep-th/0208048.

[12] Alanh Durfee, Fifteen characterizations of rational double points and
simple critical points, Enseign. Math. (2), 25 (1979), 131–163.

[13] F. Ferrari, Planar diagrams and Calabi-Yau spaces, Adv. Theor. Math.
Phys. 7 (2003), 619–665.

[14] R. Gopakumar and C. Vafa, On the gauge theory/geometry correspon-
dence, Adv. Theor. Math. Phys. 3 (1999), 1415–1443.

[15] K. Intriligator and B. Wecht, RG fixed points and flows in SQCD with
adjoints, Nucl. Phys. B 677 (2004), 223–272.

[16] S. Katz, Versal deformations and superpotentials for rational curves in
smooth threefolds, Preprint, 2000, arxiv:math.AG/0010289.

[17] S. Katz and R. David Morrison, Gorenstein threefold singularities with
small resolutions via invariant theory for Weyl groups, J. Algebraic
Geom. 1 (1992), 449–530.

[18] B. Henry Laufer, On CP 1 as an exceptional set, recent developments
in several complex variables, Proc. Conf. Princeton University, Prince-
ton, NJ, 1979), Ann. of Math. Stud. 100, Princeton University Press,
Princeton, NJ 1981, 261–275.

[19] M. Juan Maldacena, The large N limit of superconformal field theories
and supergravity, Adv. Theor. Math. Phys. 2 (1998), 231–252.

[20] C. Henry Pinkham, Factorization of birational maps in dimension 3,
Singularities, Part 2 (Arcata, CA), Proc. Sympos. Pure Math. 40
(1981), 343–371.

[21] E. Witten, Chern-Simons gauge theory as a string theory, the Floer
memorial volume, Progr. Math. 133 (1995), 637–678.


	Matrix model superpotentials and ADE singularities
	

	ATMP085

