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Modelling the Influence of Eutrophication on the Coldwater Habitat 
of Lake McConaughy, a "Two-Story" Reservoir 

ABSTRACT 

The lifespan of the existing coldwater habitat in Lake McConaughy 

;s unknown, To promulgate effective management and regulatory strategies, 

a method of predicting this lifespan was needed, Ideally, this procedure 

should also provide potential management philosophies that would retard 

eutrophication, The LAKSCI computerized simulation model of Systems 

Control, Inc, was modified to assist in solving this problem, Data for 

model input were collected from August 1976 to August 1978. When cali

brated the model proved satisfactory for predicting water level and 

temperatures, but unsatisfactory in prediction of water chemistry with-

out additional data and refinement, 
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INTRODUCTION 

To maximize productivity and recreational use state and federal 

agencies have attempted to establish IItwo-story li fisheries in many man

made reservoirs (Axon. 1974; Baker and Hulsey, 1967; Keith and Hulsey, 

1967; Kirkland and Bowling, 1966; Wilkens, et al., 1968; McCarraher, et 

al., 1971; Nichols, 1959; Schumacker, 1964). A IItwo-story li fishery is 

defined as one supporting both warm and coldwater species. Lake McConaughy 

is one reservoir where this strategy has been successful (McCarraher, et 

a1., 1971). In fact, Lake McConaughy has become the most important 

fishery resource in Nebraska, particularly for coldwater species. The 

lake provides 85% of the state's IItwo-story li fishery and 75% of the 

total coldwater fishery of the state. 

The estimated use of Lake McConaughy in 1975 was 532,000 visitor 

days, of which 343,000 were for the purpose of fishing (Morris, 1976). 

Based on the IIEconomic Survey of Wildlife Recreation ll conducted in 1974, 

the 1975 fishery at Lake McConaughy was worth $11 to $14 million. 

Another estimate based on Supplement No.1 to Senate Document Number 97, 

IIEvaluation Standards for Primary Recreation Benefitsll (1964) placed the 

value of the fishery in 1975 at $1 to $3 million. Regardless of which 

1 

estimate is more correct, it is obvious that Lake McConaughy supports a fishery 

worthy of conservation. A portion of this fishery is dependent upon the 

lake's continued ability to support coldwater species, particularly 

rainbow trout (Salmo gairdneri). 



Most trout fisheries in Iitwo-story'l lakes are maintained by stocking. 

However, some reservoirs have self-sustaining populations that migrate 

into tributaries to spawn. Lake McConaughy has a self-sustaining rainbow 

trout population (Van Velson, 1974) as does Watauga Lake in Tennessee 

(Wilkens, 1965) and Lake Kabekona in Minnesota (Schwmacker, 1964). In 

an effort to enhance the McConaughy trout fishery, considerable research 

funds have been spent developing methods for managing spawning and 

nursery streams in the watershed (Van Vel son, 1978). To protect this 

investment, it is imperative that the coldwater habitat of Lake McConaughy 

be maintained if possible, 

Reservoirs with "two-story" fisheries range from almost completely 

coldwater reservoirs in the north to almost completely warmwater reservoirs 

in the south-eastern u.s. (Wilkens, et al., 1968), To maintain the 

coldwater portion of the fishery, reservoirs must contain some water 

with suitable dissolved oxygen and temperature conditions to support 

trout throughout the year (Wilkens, et al" 1968). Kirkland and Bowling 

(1966) reported that 70°F or less and 3 ppm dissolved oxygen or more are 

necessary for trout habitat. 

In Lake McConaughy and many other reservoirs (Lake Lanier in Georgia; 

Dale Hollow, Center Hill, South Holston, Watauga and Old Hickory Lakes 

in Tennessee; Lake Cumberland in Kentucky; Lake Havasu in California; 

and Lakes Norfolk, Bull Shoals and Ouachita in Arkansas), the volume of 

trout habitat, based on the 70°F and 3 ppm dissolved oxygen criteria, 

becomes substantially reduced during summer stratification. This reduction 
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is the result of depletion of oxygen in the hypolimnion and of warming 

of the epilimnion above 70°F. 

Van Vel son (1978) documented the summer depletion of trout habitat 

in Lake McConaughy and also showed that depletion has become more severe 

in recent years. At the peak of stratification in August, 1969, a 10 m 

thick stratum of trout habitat was available. By 1973, only a 1 m thick 

layer of acceptable trout habitat which extended only 6 miles (9.6 km) 

up the reservoir was found. Thus in 4 years the oxygen depletion floor 

appeared to move nearly 9 m closer to the surface. Although the actual 

trend may be somewhat exaggerated over this 4-year period, it is an 

indication that eutrophication may be progressing rather rapidly in Lake 

McConaughy. 

Myers (1973) reported that chlorophyll concentrations in Lake 

McConaughy ranged from 6-32 mg/m3. Based on Vollenweider's (1970) 

criteria of lake condition, chlorophyll concentrations of this magnitude 

indicate that Lake McConaughy ;s already eutrophic. Furthermore, by 

plotting annual loading of nitrogen and phosphorus per unit area versus 

mean depth, Myers (1973) also found that Lake McConaughy should be 

classified as eutrophic. 

It has taken Lake McConaughy less than 40 years since its impoundment 

in 1941 to become eutrophic. Continued nutrient loading will result in 

more severe eutrophication. According to Myers (1973) the net nutrient 

loading is approximately 1400 tons of nitrate nitrogen and 65 tons of 

phosphates per year which results in an annual increase in concentration 

3 
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of 0.8 mg/l of nitrate nitrogren and 0.028 mg/l of phosphate. Since 80% 

of the flow entering Lake McConaughy is return flow from upstream irrigation, 

which varies little from year to year, it seems safe to predict that 

nutrient enrichment and subsequent eutrophication of the lake will 

continue. Eventually, trout habitat will be eliminated from the reservoir, 

but at what point in the future this will occur is uncertain. Precise 

predictions are needed for promulgation of management and regulatory 

policies and to provide guidelines for possible retardation of the 

process. These predictions should demonstrate the relationship between 

nutrient loading and the physical and chemical dynamics of the lake and 

help pinpoint the critical factors upon which to concentrate efforts for 

improvement and protection of the water resource. 

To provide precise predictions, a more sophisticated approach must 

be taken in the future than has been utilized in the past. Development 

of computerized, mathematical models of aquatic ecosystems has recently 

become a powerful tool for assisting in the solution of similar problems 

(Chen, 1970; Dale, 1969; Shepherd and Finnemore, 1974). However, none 

of the existing models have been applied to "two-story" lakes with the 

expressed purpose of predicting the future of the coldwater fishery of 

the lake. The objectives of this research were: 

(1) To modify, calibrate, and verify a mathematical model to 

predict physical/chemical changes in Lake McConaughy as a consequence of 

continuing eutrophication; and 

(2) To utilize the model to identify critical factors in the 

physical/chemical management of the lake as they would affect coldwater 

fish habitat. 



DESCRIPTION OF STUDY AREA 

Kingsley Dam impounds the North Platte River near Keystone, 

Nebraska to form McConaughy Reservoir. The dam was constructed by the 

Central Nebraska Public Power and Irrigation District in 1941 for 

storage of irrigation water. Electricity is also produced at the dam 

(Table 1). 

The reservoir is long and narrow with few embayments (Figure 1 and 

Table 2). The substrate is muck and silt in the deeper areas with sand 

predominating near shore. The shoreline ;s largely sand with occasional 

patches of rock and gravel. Water level fluctuates 6 to 8 m seasonally 

with highest levels from October to May. Strong westerly winds are 

common. 

The fishery of the lake is a combination warm and coldwater popu

lation. Major species include striped bass (Mo~one ~ax~l, walleye 

(S~zo~tedion v~eumJ, white bass (Mo4one ch4y~op~l, channel catfish 

(rct~~ punctatU6J, rainbow trout (Sa!mo gaindn~), and smallmouth 

bass (MiC4opt~U6 dolomieull, Gizzard shad (Vo~o~oma cepedianum) is 

the primary forage species. A complete discussion of the fishery can be 

found in (McCarraher, et al., 1971). Van Velson (1978) described in 

detail the life history of the self-sustaining rainbow trout population. 

Various aspects of the reservoir's limnology have been described by 

(EPA, 1976; McCarraher, et al., 1971; Morris, 1976; Myers, 1973; Rosowski, 

et al., 1976 and 1977; Van Ve1son, 1978). No comprehensive analysis of 

the 1ake ' s limnology has been reported. 
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The lake exhibits thermal stratification but not as distinctly as 

in many smaller or more protected lakeso In the open~ wind-swept environment, 

the thermal stratification is somewhat diffuse but definitely presento 

Table 1. Characteristics of Kingsley Dam 

Length, km 50 6 

Height above stream bed, m 

Base thickness, m 

Surface outlet elevation, m msl 

Surface outlet capacity, m3/sec 

Bottom outlet elevation, m msl 

Bottom outlet capacitYi m3/sec 

Table 20 Physical characteristics of Lake McConaughyo 

Surface Area, hectares 

Reservoir length~ km 

Reservoir width~ km 

Maximum depth, m 

Mean depth, m 

Volume at maximum pool~ m3 

Surface elevation t maximum pool~ m msl 

Shoreline length~ km 

Shoreline development 

Flushing time~ years 

49.4 

33504 

9920' 

152900 

953,8 

51000 

14~164 

3502 

604 

53 

22 

204 x 109 

99609 

169 

408 

204 



A graphical representation of a typical stratification pattern in Lake 

McConaughy is shown in Appendix I, 

During most of the year dissolved oxygen levels between 5 and 12 

mg/l are present at all depths in the reservo1r, However~ under con

ditions of thermal stratification in summer, near 100 percent hypolimnetic 

oxygen depletion occurs (Van Velson~ 1978), The depletion is attributab1e 

to decomposition of excessive amounts of organ,c material originating as 

phytoplankton in the epilimnion as a consequence of increased inflow of 

nutrients, 

8 

Table 3 shows typical values for various other chemical characteristics 

(EPA, 1976; McCarraher, et al" 1971, Morris, 1976; Myers, 1973; Rosowski, 

et al" 1916; Van Velson, 1978), 

Secchi disc transparency ranges from a few em near the iniet in the 
~ 

summer to 10 m or more 1n winter and early spring near the dam, Most of 

the turbidity in the lower reservoir is attributable to p~ankton popu1ations~ 

not suspended inorganic material, 

The zooplankton populations include at least 14 species of cladocerans 

and copepodeso Their typical seasonal distribut10n is shown in Figure 2 

(McCarraher~ et al" 1911), Phytop1ankton assemblages inc~ude Spirogyra~ 

Diatoma, Synedra~ Navicula, Fragilaria, Cymbel1a and Pedisastrum (Keiner i 

1952; McCarraher, et al., 1971), An intensive study of the diatoms has 

been reported by Rosowski j et al, (1976 i 1977), 



Table 3. Ranges in values of various chemical and physical characteristics 
of Lake McConaughy. 

DEPTH 

0-10 m composite 15m 45m 

Ammonia nitrogen, mg/1 0,01 - 0.75 0,01 - 0.64 0,01 - 0.95 

Nitrate nitrogen, mg/l 0.00 - 8.70 0,00 - 5.40 0.00 - 5.40 

Kjeldahl nitrogen, mg/l 0.'0 - 9.30 0.40 - 2,30 0.40 - 1.60 

Total phosphate, mg/l 0.02 - 1. 90 0.01 - 2,30 0.01 - 0.90 

Orthophosphate, mg/l 0.01 - 0.90 0.01 = 0.58 0.02 - 0.72 

Turbi di ty, NTU 1.00 - 108.00 '.00 - 26.00 1.80 - 11.00 

Total alkalinity, mg/1 150.00 - 250.00 145.00 - 210.00 160.00 - 210.00 

Conductivity, (~mhos) 680.00 - 790.00 700.00 - 780.00 710.00 - 750.00 

pH 7.70 = 8.70 7.70 - 8.40 7.50 - 8.40 

Total dissolved solids, 243.00 - 575.00 325.00 - 522.00 336.00 - 538.00 
mg/l 

Total solids, mg/l 418.00 - 739.00 436.00 - 542.00 476.00 - 595.00 

Chemical oxygen demand, O. 10 - 108.60 0.'0 - 45.30 0.10 - 82.50 
mg/l 

Chlorophyll A, ~g/l 0.10 = 29.30 0.10 = 21.00 0.20 - 19.60 

Ch lor; des, mg/l 18.00 = 19.50 17.00 - 20.00 18.00 - 20.00 

Total hardness, mg/l 180.00 - 435.00 180.00 - 427.00 170.00 - 440.00 

Calcium hardness, mg/l 88.00 - 265.00 100.00 - 258.00 96.00 - 280.00 

Myers (1973) has estimated annual nutrient loadings to be approximately 

1400 tons of nitrate nitrogen and 65 tons of phosphate. 

9 
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MATERIALS AND METHODS 

Field Sampling 

Field samples were collected from August 1976 to August 1978. A bi

weekly schedule was followed during reservoir stratification (April to 

November) in 1976 and 1977. Monthly samples were collected only at the 

inlet and outlet during the winter. In 1978 reservoir samples were 

collected less frequently except during the height of stratification in 

July and August. Samples were collected from 10 locations (Figure 1). 

At each reservoir station (Stations 1, 2, 3, 4, 7, 8, 9~ 10)~ temperature 

(OC) and dissolved oxygen (mg/l) were measured at 1 m depth intervals 

with a YSI Model 57 Dissolved Oxygen Meter. Water samples for laboratory 

analysis were collected from five depths including a composite from the 

upper 10 m, mid-thermocline, upper hypolimnion, mid-hypolimnion and near 

the bottom. At the shallower stations (3 and 4) fewer than five samples 

were collected because of the lack of a thermocline or a significant 

hypolimnion. Two 2-1iter bottles were filled from each sample depth. 

One was fixed with 5 ml of concentrated sulfuric acid to stop biological 

activity. This sample was used for the determination of ammonia nitrogen~ 

Kjeldahl nitrogen, nitrate nitrogen, chemical oxygen demand~ and orthophosphate. 

The other sample was used for the analysis of total alkalinitY5 chlorides, 

chlorophylls, specific conductance, calcium hardness, total hardness, 

total phosphates, total dissolved solids, total solids and turbidityo 

Hydrogen ion concentration (pH) was determined in the field with an 

Horizon Ecology Model 5985-40 pH meter. Water transparency was measured 

11 



with a secchi disco At the inlet and outlet (Stations 5 and 6) only one 

depth was sampledo With the exception of secchi disc transparency 

which was not measured, determinations were the same as those for the 

lake samples. All samples were iced immediately and returned to the 

laboratory for analysiso 

laboratory Analysis 

Total and calcium hardness (mg/l) were determined using the EDTA 

titrimetric method described in Standard Methods (1971)0 

Total alkalinity (mg/l) was determined by procedures outlined in 

Standard Methods (1971)0 

Chloride concentration (mg/l) was found using the mercuric n~trate 

method of Standard Methods {197l}0 

Chlorophyll a, b~ and c (j.1g!1) was determined using the trichromatic: 

method described in Standard Methodso 

Specific conductance (j.1mhos) was found using a Model 31~ YSI conducti ty 

bridgeo 

Turbidity (NTU) was measured with a Hach 2100A turbidimetero 

Total solids (mg/l) was determined by evaporating 75 ml of water in 

a weighed dish in a Thelco Model 26 drying oveno The increase in 

12 



weight over the empty dish was considered to be the concentration of 

total solids. Dissolved solids was determined in a similar manner 

except the sample was first filtered through a No, 3 Whatman, 11 em 

diameter filter to remove particulate solids. The filtrate was evaporated 

and the dish weighed to obtain the concentration of dissolved solids. 

Total phosphate (mg/1) was measured using the ascorbic acid procedure 

from Standard Methods (1971). 

Orthophosphate (mg/1) was measured with a Technicon Auto-analyzer 

using an automated ascorbic acid method, 

Nitrate nitrogen (mg/1) and ammonia nitrogen (mg/l) were also 

determined on the auto-analyzer. 

Chemical oxygen demand (mg/l) was determined using the potassium 

dichromate method of Standard Methods (1971), 

Kieldahl nitrogen (mg/l) was determined by the procedure described 

in Methods for Chemical Analysis of Water and Wastes (1976), 

Data for all variables were transferred to computer media for 

processing and analysis, 

Model Development 

A number of aquatic simulation models were reviewed in an effort to 

13 



locate a model or combination of models that could be modified for use 

on Lake McConaughy (Abernathy and Bungay, 1972; Bella, 1970a; Bella, 

1970b; Chen, 1970; Chen and Or10b, 1972; Dale, 1969; Delay and Seaders, 

1966; DiGiano, 1971; DiToro, et al" 1971; Gearheart, 1973; Goodling and 

Arnold, 1972; Green, 1972; Grenney, et a1" 1973; Imboden, 1974; Johnson 

and Straub, 1971; Jones and Bachmann, 1976; Markofsky and Harleman, 

1973; Newbold and Liggett, 1974; O'Melia, 1972; Or10b and Selna, 1970; 

Park, et al" 1974; Prober, et al" 1971; Raphael, 1962; Scavia, 1974; 

Shepherd and Finnemore, 1974; Slotta, et al" 1969; Symons, et al" 1967; 

Varga, et al" 1972; Varga and Falls, 1972), Based on our evaluation 

and a later independent evaluation by Grimsrud, Finnemore and Owen 

(1976), the LAKSCI model developed by Systems Control, Inco was judged 

to have the most potential for meeting the project objectives,' Copies 

of the FORTRAN coding and userDs manuals for the LAKSCI model were 

obtained, The model was implemented on an IBM 370/158 computer system 

utilizing the IBM product Conversational Monitor System (eMS) for access 

to the central processor, This system proved to be quite efficient for 

modeling as it provided easy file editing and rapid execution time, 

Several modifications to the original program were made to make it 

more useful and realistic for modeling Lake McConaughy, The model was 

divided into two segments, PREPMAC and LAKEMAC, The initial program 

(PREPMAC) computes daily lake level from inflow, outflow and meteorologic 

data and also prepares the meteorological data for use in calculating 

the thermal dynamics of the lake, The results of this analysis are 

'Mention of trade names or commercial products does not constitute their 
endorsement or recommendation for use by the U,S, Government, 
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recorded on a file to be used by the second portion (LAKEMAC), PREPMAC 

has to be run only when changes in hydrologic or weather parameters are 

desired, Otherwise, information from the created file can be used to 

make successive runs of LAKEMAC, Input for each program was simplified 

for convenience but still remains basically consistent with the LAKSCI 

format, The output format was radically changed to show only required 

information in a more readable form, For each selected day of output 

this included lake volume, lake depth, depth of thermocline i surface air 

temperature, downstream (outflow) temperature and depth profiles for 

temperature, dissolved oxygen, ammonia nitrogen, nitrate nitrogen and 

total phosphate, A graphic display of the temperature profile was also 

included, 

Subroutine BAL, which calculates the hydrologic parameters for the 

model, was modified to accomodate the effects of a large excavated hole 

in front of the damo This hole is essentially a stagnant parcel of 

water during stratification since the outlet does not draw from that 

deptho The outlet is located on the old riverbed, and the hole is 

approximate1y 7-15 m deeper and to the side of the old channel, Due to 

its inactivity this portion of the lake was essentially ignored during 

stratification except for its role as a sink for nutrients and other 

materials, 

Subroutine SUBL, which models the thermal stratification of the 

reservoir, was modified to more realistically model the physics of 

thermal diffusiono These changes had the effect of adding calibration 

capabilities to the thermal portion of the model, Changes were necessary 

in order to properly model the thermal dynamics of Lake McConaughy, 

15 



Lake McConaughy, due to its open, wind-swept nature, has unique 

reaeration coefficients, The method of calculating these coefficients 

in the program was altered to account for the uniqueness of the McConaughy 

system, 

The program was modified in two pla:es to insure that negative 

arguements did not appear in the calculation of square roots, Prior to 

the implementation of this change i LAKSCI was incapable of accomodating 

a negative net inflow for a given day, Negative net inflows occasionally 

arise at Lake McConaughy due to low inflow, seepage and evaporation, 

Biological oxygen demand (BOD) was not measured in field experiments, 

hence modeling of this important variable was not attempted, BOD does~ however~ 

significantly affect the other constituents which were to be modeled, A 

procedure was developed to try and accomodate the affects of BOD on 

the constituents which were modeled, In a sense~ the effects of BOD were 

IIblack boxed u
, This procedure has definite drawbacks but was the only 

alternative available cons~dering the lack of sufficient data, 

After modifications were completed, parameters were selected for 

Lake McConaughy and the model calibrated using data collected in 1977, 

Verification of the calibrated model was attempted using data from 19780 

16 



RESULTS AND DISCUSSION 

The results of all physical and chemical analyses and determinations 

are shown graphically in Appendix I. The objectives of this research do 

not provide for a lengthy description of physical-chemical parameters. 

This will be provided, however~ in a secondary publication, liThe Limnology 

of Lake McConaughy" to be printed in the Nebraska Technical Series in 

1981. A short summary is included here to provide background information 

relative to model input. 

Mean values for each variable measured for the entire sampling 

period over all stations are shown in Table 4. 

The LAKSCI model chosen for use in this research is not capable of 

simulating horizontal variations in a lake, The model assumes horizontal 

homogeneity and simulates only one station and the outlet given certain 

inflow characteristics. Therefore, the primary data that could be used 

in the model was from Stations ls 5 (inlet) and 6 (outlet). To test the 

potential for errors in assuming Station 1 similar to other lake stations 

a one-way analysis of variance was run on each variable using Stations 

1,2,3, and 4 as treatments, The only significant differences found 

showed Station 4 different from 1, 2 and 3. This was not surprising 

since Station 4 is nearly riverine rather than lacustrine. All of the 

coldwater fishery habitat lies in the vicinity of Stations 1 and 2, 

Consequently~ it was concluded that the differences found for Station 4 

would not seriously affect the results of simulated phenomenon relative 

to available coldwater habitat. 

17 



To test for horizontal differences perpendicular to the long axis 

of the reservoir, t-tests were employed using each of the measured 

variables, These were used to test Station 2 vs Station 7, Station 2 vs 

Station 8, Station 3 vs Station 9 and Station 3 vs Station 10, No 

significant differences were found with these tests, hence it was concluded 

that there was little if any horizontal variation in the measured variables 

perpendicular to the long axis of the lake, 

18 
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Table 40 Mean, range, and standard deviation of measured variables over the 
entire period for all reservoir stations, 

STANDARD 
SAMPLE SIZE RANGE MEAN DEVIATION 

Ammonia nitrogen, mg/l 390 0,00 - 1,20 0,110 0,159 

Nitrate nitrogen, mg/l 382 0,10 - 2,80 0,694 0,459 

Kjeldahl nitrogen~ mg/l 288 0,00 - 7092 0,902 L 161 

Total phosphate, mg/l 339 00 10 ~ 2,55 00194 0,239 

Orthophosphate, mg/l 386 0,00 - 0066 00070 00074 

Turbi dity, NTU 372 L 00 - 315,00 14,645 300234 

Total alkalinity, mg/l 389 153,00 - 279,00 1870784 21,365 

Conductivity, jlmhos 336 460,00 = 920000 6760854 730843 

pH 354 7,50 = 9005 80451 00307 

Dissolved oxygen, mg/l 388 0,00 - 160 , 0 70392 30758 

Temperature, °C 390 0000 - 30020 14,985 60522 

Total dissolved ids, 355 354070 - 842,70 5120275 49,307 
mg/l 

Total so ids, mgjl 369 356000 - 999080 5670649 900885 

Chemical oxygen demand~ 352 1,20 - 93000 120974 80650 
mg!1 

Chlorophyll A, iig/1 362 0000 - 151, 50 1507n 180255 

Chlorophyll B~ ~gn 363 0000 = 42010 40542 50695 

Chlorophyll C, ~g/l 362 0000 - 103080 170153 180249 

Ch 1 od des, mg/l 339 8039 - 23020 180531 10410 

Total hardness, mg/l 390 164000 - 315000 2160562 220900 

Calcium hardness, mg/1 386 96,00 - 293000 1700617 380431 

Secchi disc, m 171 0,10 - 6000 1,339 0,987 



As a result of these tests it was concluded that the reservoir is 

fairly homogenous in the region of Stations 1~ 2, 3~ 7i 8~ 9 and 10, 

Since this area encompasses nearly all of the volume of the reservoir 

and 100% of the coldwater habitat, it was concluded that errors encounterea 

in simulating this region as a single station would be small to non

existent. Because it was located in the deepest portion of the lake~ 

Station 1 was used as a representative station for input to the mode', 

Mean values of variables collected at Stations 1, 5 and 6 are shown in 

Tables 5, 6, and 7s respectively, 

The modified model was calibrated using data collected in 1977, 

Where data was lacking, default coefficients supplied in the model were 

used, A special calibration procedure was used to determine coefficients 

in subroutine BAL (Dauer, 1978), After a series of runs and considerable 

adjustment of coefficients, reasonably good correspondence to actual 

data was achieved for temperature profiles (Figure 3)~ hydrologic variables 

(Figure 4), and dissolved oxygen. The fit obtained for ammonia nitrogen~ 

nitrate nitrogen and total phosphate was less than adequate due to lack 

of proper data, The procedure developed to "black box i' BOD simply did 

not perform realistically. Considerable adjustment of coefficients did 

not improve realism, To test model validity, a simulation was made for 

1978 and compared to actual data collected. The fit for temperature 

(Figure 5) and hydrologic data (Figure 6) was again reasonably good, 

Had it not been for a very strong wind the day prior to sampling in 

August 1978, the fit of the temperature profile would have been even 

better. The remaining variables, however, showed a poor response, 

20 



The model as modified does not mechanistically model chemical constituents 

due to the lack of BOD data, Therefore~ a realistic simulation with 

good fit could not be expected, particularly over a period of more than 

one year, 

21 
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Table 50 Mean, range, and standard deviation of all variables measured at 
Station 1 for the entire periodo 

SAMPLE STANDARD 
SIZE RANGE MEAN DEVIATION 

Ammonia nitrogen, mg/l 99 0,00 - 1.20 00205 00256 

Nitrate nitrogen, mg/l 94 0000 - 1,70 00545 00294 

Kjeldahl nitrogen i mg/l 71 0003 - 6070 00988 10123 

Total phosphate, mg/l 82 0001 - 1.75 00 181 00224 

Orthophosphate, mg/l 96 0000 - 0,34 00083 00067 

Turbidity, NTU 94 1000 - 26000 40298 40137 

Total alkalinity, mg/1 98 156000 - 213000 1840837 110378 

Conductivity, ].lmhos 84 485000 - 785000 677 0595 65,536 

pH 88 7065 - 8095 80278 00316 

Dissolved oxygen, mg/l 99 0000 - 12050 40357 40234 

Temperature, °C 99 1050 - 22050 130687 40859 

Total dissolved solids, 88 354070 - 581030 5030956 380392 
mg/l 

Total solids, mg/l 93 461000 = 706070 5440276 390019 

Chemical oxygen demand, 87 1020 ~ 27010 100526 390019 
mg/l 

Ch 1 orophyl1 A, ].lgil 92 0000 - 27030 80808 50744 

Chlorophyll B, ].lg/l 92 0000 - 10,00 20766 20428 

Chlorophyn C~ ].lg/l 92 0000 - 32070 100727 70539 

Ch 1 ori des, mg/l 84 15070 - 22050 18.462 10093 

Total hardness, mg/l 99 164 000 - 242,00 2140737 15,770 

Calcium hardness, mgil 98 106000 = 220000 1660061 330853 

Secchi disc, m 24 1000 - 6000 20354 10140 
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Table 6. Mean, range, and standard deviation of all variables measured at 
Station 5 over the entire sampling period. 

SAMPLE STANDARD 
SIZE RANGE: MEAN DEVIATION 

Ammonia nitrogen~ mg/l 36 0.00 - 0.18 0.043 0.054 

Nitrate nitrogen~ mg/l 37 0.00 - 2080 10632 0.683 

Kjeldahl nitrogen, mg/l 31 0.00 - 6.06 '.354 10469 

Total phosphate, mg/l 34 0.04 - 2.55 00464 00485 

Orthophosphate, mg/l 36 0.02 - 0.55 00120 0.112 

Turbi dity ~ NTU 36 2.00 - 315.00 65.861 68.871 

Total alkalinity~ mg/l 37 166.00 - 279.00 2330243 240049 

Conductivity~ ~mhos 34 520.00 - 920000 732.765 100.415 

pH 35 7.60 - 8085 8.484 00292 

Dissolved oxygen. mg/l 36 4.20 - 13.80 8.831 1.788 

Temperature, °C 37 0.00 - 30.20 15.276 90922 

Total dissolved solids, 34 397.30 - 842.70 584.335 760062 
mg/l 

Total solids~ mg/l 36 396.00 = 999.80 7650336 145.641 

Chemical oxygen demand~ 32 5.90 = 45.70 20.041 11 0678 
mg/l 

Ch 1 orophy~ 1 A~ ~g/l 33 0000 = 114090 260382 280765 

Ch 1 orophyll B, Jlg/l 34 0000 - 21000 60247 50901 

Ch 1 orophyll C. llg/l 34 0.00 - 77 .80 27.306 220885 

Chlorides, mg/l 34 8039 - 23.20 19. 136 2.651 

Total hardness, mg/l 37 186000 - 315.00 255.297 35.266 

Calcium hardness. mg/l 37 96000 - 293.00 2030378 530454 



Table 70 Mean, range, and standard deviation of all variables measured at 
Station 6 over the entire sampling periodo 

SAMPLE 
SIZE 

Ammonia nitrogen, mg/l 35 

Nitrate nitrogen~ mg/l 35 

Kieldahl nitrogen~ mg/l 29 

Total phosphate, mg/l 

Orthophosphate, mg/l 

Turbidity, NTU 

33 

36 

35 

Total alkalinity, mg/l 36 

Conductivity, ~mhos 33 

pH 34 

Dissolved oxygen~ mg/l 35 

Temperature, DC 36 

Total dissolved solids~ 34 
mg/l 

Total sO~lds, mg!l 33 

Chemical oxygen demand. 34 
mg/1 

Chlorophyll A, pg/l 

Ch1orophy11 B~ ug/l 

Chlorophyll C~ ~g/l 

Ch 1 des, mg/l 

33 

33 

33 

33 

Total hardness, mg/l 36 

Calcium hardness, mg/l 36 

RANGE 

00 00 ~ 10 00 

0010- L20 

0000 - 7092 

0001 - 0065 

0001 - 0035 

1000 - 9000 

157000 - 223000 

525000 - 758000 

7050 - 8095 

6080 - 16000 

0000 - 19080 

84000 = 614070 

470070 - 677030 

0000 - 28010 

0000 = 24040 

0000 = 85080 

13040 = 21,67 

168000 = 260000 

117000 = 247000 

MEAN 

00028 

00677 

1,561 

00142 

40086 

1850889 

6760606 

80347 

1 L 143 

100028 

5040432 

70618 

30103 

11,394 

180028 

2160056 

1720278 

STANDARD 
DEVIATION 

00167 

00239 

20012 

00110 

1 G 805 

120879 

610196 

00384 

20050 

6,258 

4~o216 

60604 

40727 

150792 

10834 

180801 

370257 

24 
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From these modeling runs it was concluded that the model was quite 

precise in predicting hydrologic characteristics and temperature profiles 

given basic inflow-outflow data and meteorological information. Use of 

the model for predicting the concentration of chemical constituents, 

however, appeared to be quite limited. 

To further substantiate these conclusions a number of runs were 

made to ascertain the model's usefulness in predicting the future 

availability of coldwater fish habitat in Lake McConaughy given certain 

conditions. These runs were made in an attempt to isolate practices 

which could aid in maximizing the life of the coldwater fish habitat. 

The first run consisted of lowering the lake inflow by 15%. This 

is a realistic possibility due to potential upstream water demands. The 

results of this inflow reduction are shown in Figures 7 and 8 as compared 

to the 1977 simulation. The water level dropped about 0.6 m with a resultant 

movement of the thermocline 1.6 m closer to the surface. The effects on 

water level seemed rather small, but if one considers the cumulative 

effects over a period of years, the drop in water level could be rather 

large. The significance of this to the coldwater fishery was difficult 

to ascertain since the simulated epilimnetic temperature never exceeded 

21.1° C, a tolerable temperature for coldwater species. During warm 

periods however, this epilimnetic temperature may climb to 25°C or 

higher. The question left unanswered is, "How much dissolved oxygen 

remains in waters cool enough for trout?1I As the water level drops, it 

would seem reasonable to assume that the volume of the hypolimnion would 

29 
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decrease, therefore, reducing its capacity to assimilate organic materials. 

This would at first appear to most certainly increase the depletion of 

oxygen in the hypolimnion. However, production of organic matter would 

be smaller with a reduced surface area. Also, the depth of the thermocline 

evidently moves closer to the surface with less warm inflows. This 

would expand the volume of the hypolimnion. All of these factors and 

more are impossible to evaluate simultaneously without the use of a 

comprehensive model. Since the model developed proved to be in error in 

predicting dissolved oxygen levels, its usefulness for solving this 

problem is limited. 

A second experimental run was made to determine the effect of using 

only the surface discharge instead of the bottom discharge which was 

used in the 1977 simulation (Figure 9). Theoretically, such a management 

practice would affect both the depth to the thermocline and the nutrient 

loading of the reservoir. Nutrients, particularly phosphates~ are 

present in higher concentrations in anoxic hypolimnetic waters than in 

oxygenated water (Monkmeyer, et al., 1974). A bottom discharge should 

contain a higher concentration of phosphate than the surface discharge. 

Hence~ phosphate loading and therefore overall concentration should be 

reduced with a bottom rather than a surface discharge, particularly 

during summer stratification. The simulated response to such a management 

practice does show that the thermocline moved considerably closer to the 

surface with a surface discharge (Figure 9). No change was evident in 

the nitrate or phosphate concentrations due to the inability of this 

portion of the model to simulate this information. From a coldwater 
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fishery standpoint, based on the thermal characteristics alone, it would 

seem more appropriate to release water from the hypolimnion rather than the 

epilimnion. Bottom releases have also been suggested as a eutrophication 

control procedure as it should reduce the overall concentration of nutrients 

in the lake water. From a practical standpoint, this management practice 

will almost certainly be followed because the water level is always below 

the surface outlet structure in Lake McConaughy during summer stratification. 

Additional runs were made simulating the effects of increased levels of 

nitrates and phosphates in the lake. These runs simply substantiated the 

earlier conclusion that additional data must be obtained to properly calibrate 

the chemical constituent portion of the model. 

The model as it is presently ca1ibrated will provide a valuable tool 

for simulating changes in hydrologic conditions given changes in inflow, 

outflow or some unusual weather factor. The thermal dynamics of the res

ervoir can also be predicted with good precision. This portion of the model 

alone will be extremely valuable in evaluating the effect of reduced inflows 

as a result of upstream diversion of water or increased outf1ows as a result 

of downstream requests for more irrigation water. 
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RECOMMENDATIONS AND CONCLUSIONS 

1. The hydrologic and thermal dynamics portions of the model 

appear to be quite precise. They should be utilized to model the effects 

of any perturbations which could affect this portion of the reservoirns 

dynamics. For example, it could be used to model the effect on water 

level and the thermal dynamics of a reduced inflow due to upstream 

diversion. Effects of drought, extremely hot weather and various outflow 

regimes are other potential changes that can be modeled. 

2. The chemical constituent portion of the model is presently 

inaccurate and should not be used without modification. In order to 

make this model more useful, a considerable amount of work on the model 

would be needed followed by collection of needed field data. Some 

highly skilled and specialized personnel would be required for this 

approach to be successful. At this point in time, such a project would 

not seem cost justified for the Nebraska Game and Parks Commission, 

3, The field data collected plus previously collected data provide 

an excellent basis for preparing a description of the physical and 

chemical limnology of Lake McConaughy. This analysis could be used as a 

planning guide instead of the model. A technical paper to accomplish 

this task is being planned. It will include an in depth analysis of 

each varible which has been measured plus recommended management procedures 

for protecting and enhancing water quality, water quantity and fishery 

values. 
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