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Modelling the Influence of Eutrophication on the Coldwater Habitat
of Lake McConaughy, a "Two-Story" Reservoir

ABSTRACT

The lifespan of the existing coldwater habitat in Lake McConaughy

is unknown. To promulgate effective management and regulatory strategies,
a method of predicting this 1ifespan was needed. Ideally, this procedure
should also provide potential management philosophies that would retard
eutrophication. The LAKSCI computerized simulation model of Systems
Control, Inc. was modified to assist in solving this problem. Data for
model input were collected from August 1976 to August 1978. When cali-
brated the model proved satisfactory for predicting water level and
temperatures, but unsatisfactory in prediction of water chemistry with-

out additional data and refinement.
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INTRODUCTION

To maximize productivity and recreational use state and federal
agencies have attempted to establish "two-story" fisheries in many man-
made reservoirs (Axon, 1974; Baker and Hulsey, 1967; Keith and Hulsey,
19673 Kirkland and Bowling, 1966; Wilkens, et al., 1968; McCarraher, et
al., 1971; Nichols, 1959; Schumacker, 1964). A "two-story" fisnery is
defined as one supporting both warm and coldwater species. Lake McConaughy
is one reservoir where this strategy has been successful (McCarraher, et
al., 1971). 1In fact, Lake McConaughy has become the most important
fishery resource in Nebraska, particularly for coldwater species. The
1aké provides 85% of the state's "two-story" fishery and 75% of the

total coldwater fishery of the state.

The estimated use of Lake McConaughy in 1975 was 532,000 vi;itor
days, of which 343,000 were for the purpose of fishing (Morris, i976).
Based on the "Economic Survey of Wildlife Recreation" conducted in 1974,
the 1975 fishery at Lake McConaughy was worth $11 to $14 million.
Another estimate based on Supplement No. 1 to Senate Document Number 97,
"Evaluation Standards for Primary Recreation Benefits" (1964) placed the
value of the fishery in 1975 at $1 to $3 million. Regardless of which
estimate is more correct, it is obvious that Lake McConaughy supports a fishery
worthy of conservation. A portion of this fishery is dependent upon the
lake's continued ability to support coldwater species, particularly

rainbow trout (Salmo gairdneri).




Most trout fisheries in "two-story'" lakes are maintained by stocking.
However, some reservoirs have self-sustaining populations that migrate
into tributaries to spawn. Lake McConaughy has a self-sustaining rainbow
trout population (Van Velson, 1974) as does Watauga Lake in Tennessee
(Wilkens, 1965) and Lake Kabekona in Minnesota (Schwmacker, 1964). 1In
an effort to enhance the McConaughy trout fishery, considerable research
funds have been spent developing methods for managing spawning and
nursery streams in the watershed (Van Velson, 1978). To protect this
investment, it is imperative that the coldwater habitat of Lake McConaughy

be maintained if possible.

Reservoirs with "two-story" fisheries range from almost completely
coldwater reservoirs in the north to almost completely warmwater reservoirs
in the south-eastern U.S. (Wilkens, et al., 1968). To maintain the
coldwater portion of the fishery, reservoirs must contain some water
with suitable dissolved oxygen and temperature conditions to support
trout throughout the year (Wilkens, et al., 1968). Kirkland and Bowling
(1966) reported that 70°F or less and 3 ppm dissolved oxygen or more are

necessary for trout habitat.

In Lake McConaughy and many other reservoirs (Lake Lanier in Georgia;
Dale Hollow, Center Hill, South Holston, Watauga and 01d Hickory Lakes
in Tennessee; Lake Cumberland in Kentucky; Lake Havasu in California;
and Lakes Norfolk, Bull Shoals and Ouachita in Arkansas), the volume of
trout habitat, based on the 70°F and 3 ppm dissolved oxygen criteria,

becomes substantially reduced during summer stratification. This reduction



is the result of depletion of oxygen in the hypolimnion and of warming

of the epilimnion above 70°F.

Van Velson (1978) documented the summer depletion of trout habitat
in Lake McConaughy and also showed that depletion has become more severe
in recent years. At the peak of stratification in August, 1969, a 10 m
thick stratum of trout habitat was available. By 1973, only a 1 m thick
layer of acceptable trout habitat which extended only 6 miles (9.6 km)
up the reservoir was found. Thus in 4 years the oxygen depletion floor
appeared to move nearly 9 m closer to the surface. Although the actual
trend may be somewhat exaggerated over this 4-year period, it is an
indication that eutrophication may be progressing rather rapidly in Lake

McConaughy.

Myers (1973) reported that chlorophyll concentrations in Lake
McConaughy ranged from 6-32 mg/m3, Based on Vollenweider's (1970)
criteria of lake condition, chlorophyll concentrations of this magnitude
indicate that Lake McConaughy is already eutrophic. Furthermore, by
plotting annual Toading of nitrogen and phosphorus per unit area versus
mean depth, Myers (1973) also found that Lake McConaughy should be

classified as eutrophic.

It has taken Lake McConaughy less than 40 years since its impoundment
in 1941 to become eutrophic. Continued nutrient loading will result in
more severe eutrophication. According to Myers (1973) the net nutrient
loading is approximately 1400 tons of nitrate nitrogen and 65 tons of

phosphates per year which results in an annual increase in concentration



of 0.8 mg/1 of nitrate nitrogren and 0.028 mg/1 of phosphate. Since 80%
of the flow entering Lake McConaughy is return flow from upstream irrigation,
which varies little from year to year, it seems safe to predict that
nutrient enrichment and subsequent eutrophication of the lake will
continue. Eventually, trout habitat will be eliminated from the reservoir,
but at what point in the future this will occur is uncertain. Precise
predictions are needed for promulgation of management and regulatory
poilicies and to provide guidelines for possible retardation of the

process. These predictions should demonstrate the relationship between
nutrient loading and the physical and chemical dynamics of the lake and
help pinpoint the critical factors upon which to concentrate efforts for

improvement and protection of the water resource.

To provide precise predictions, a more sophisticated approach must
be taken in the future than has been utilized in the past. Development
of computerized, mathematical models of aquatic ecosystems has recently
become a powerful tool for assisting in the solution of similar problems
(Chen, 1970; Dale, 1969; Shepherd and Finnemore, 1974). However, none
of the existing models have been applied to "two-story" lakes with the
expressed purpose of predicting the future of the coldwater fishery of

the lake. The objectives of this research were:

(1) To modify, calibrate, and verify a mathematical model to
predict physical/chemical changes in Lake McConaughy as a consequence of
continuing eutrophication; and

(2) To utilize the model to identify critical factors in the
physical/chemical management of the lake as they would affect coldwater

fish habitat.



DESCRIPTION OF STUDY AREA

Kingsley Dam impounds the North Platte River near Keystone,
Nebraska to form McConaughy Reservoir. The dam was constructed by the
Central Nebraska Public Power and Irrigation District in 1941 for
storage of irrigation water. Electricity is also produced at the dam

(Table 1).

The reservoir is long and narrow with few embayments (Figure 1 and
Table 2). The substrate is muck and silt in the deeper areas with sand
predominating near shore. The shoreline is largely sand with occasional
patches of rock and gravel. Water level fluctuates 6 to 8 m seasonally
with highest levels from October to May. Strong westerly winds are

common.

The fishery of the lake is a combination warm and coldwater popu-
lation. Major species include striped bass (Morone saxatilis), walleye
(Stizostedion vitreum), white bass (Morone chiysops), channel catfish

(Tetalurus punctatus), rainbow trout (Salmo gairdneri), and smallmouth
bass (Micropterus dofomieui). Gizzard shad (Dorosoma cepedianum) is

the primary forage species. A complete discussion of the fishery can be
found in (McCarraher, et al., 1971). Van Velson (1978) described in

detail the tife history of the self-sustaining rainbow trout population.

Various aspects of the reservoir's limnology have been described by
(EPA, 1976; McCarraher, et al., 1971; Morris, 1976; Myers, 1973; Rosowski,
et al., 1976 and 1977; Van Velson, 1978). No comprehensive analysis of

the lake's limnology has been reported.
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The lake exhibits thermal stratification but not as distinctly as
in many smaller or more protected lakes. In the open, wind-swept environment,

the thermal stratification is somewhat diffuse but definitely present.

Table 1. Characteristics of Kingsley Dam

Length, km 5.6
Height above stream bed, m 49.4
Base thickness, m 335.4
Surface outlet elevation, m msl 992.1
Surface outlet capacity, m3/sec 1529.0
Bottom outlet elevation, m msl 953.8
Bottom outlet capacity, m3/sec 510.0

Table 2. Physical characteristics of Lake McConaughy.

Surface Area, hectares 14,164
Reservoir length, km 35.2
Reservoir width, km 6.4
Maximum depth, m 53
Mean depth, m 22
Volume at maximum pool, m3 2.4 x 109
Surface elevation, maximum pool, m msl 996.9
Shoreline length, km 169
Shoreline development 4.8

Flushing time, years 2.4




A graphical representation of a typical stratification pattern in Lake

McConaughy is shown in Appendix I.

During most of the year dissolved oxygen levels between 5 and 12
mg/1 are present at all depths in the reservoir. However, under con-
ditions of thermal stratification in summer, near 100 percent hypolimnetic
oxygen depletion occurs (Van Velson, 1978). The depletion is attributable
to decomposition of excessive amounts of organic material originating as
phytoplankton in the epilimnion as a consequence of increased inflow of

nutrients.

Table 3 shows typical values for various other chemical characteristics
(EPA, 19765 McCarraher, et al., 1971; Morris, 1976; Myers, 1973; Rosowski,
et al., 1976; Van Velson, 1978).

Secchi disc transparency ranges from a few ¢m near the iniet in the
summer to 10 m or more in winter and eariy spring near the dam. Most of
the turbidity in the lower reservoir is attributable tc piankton populations,

not suspended inorganic material.

The zooplankton populations include at lTeast 14 species of ciadocerans
and copepodes. Their typical seasonal distribution is shown in Figure 2
(McCarraher, et al., 1971). Phytoplankton assemblages include Spirogyra,

Diatoma, Synedra, Navicula, Fragilaria, Cymbella and Pedisastrum (Keiner,

1952; McCarraher, et al., 1971). An intensive study of the diatoms has
been reported by Rosowski, et al. (1976, 1977).



Table 3.
of Lake McConaughy.

Ranges in values of various chemical and physical characteristics

DEPTH
0-10 m composite 15m 45m
Ammonia nitrogen, mg/1 0.01 - 0.75 0.01 - 0.64 0.01 - 0.95
Nitrate nitrogen, mg/1 0.00 - 8.70 0.00 - 5.40 0.00 - 5.40
Kjeldahl nitrogen, mg/1 0.10 - 9.30 0.40 - 2.30 0.40 - 1.60
Total phosphate, mg/1 0.02 - 1.90 0.01 - 2.30 0.01 - 0.90
Orthophosphate, mg/1 0.01 - 0.9 0.01 - 0.58 0.02 - 0.72
Turbidity, NTU 1.00 - 108.00 1.00 - 26.00 1.80 - 11.00
Total alkalinity, mg/1 150.00 - 250.00 145.00 - 210.00 160.00 - 210.00
Conductivity, (umhos) 680.00 - 790.00 700.00 - 780.00 710.00 - 750.00
pH 7.70 - 8.70 7.70 - 8,40 7.50 - 8.40
Tota;/?issolved solids, 243.00 - 575.00 325.00 - 522.00 336.00 - 538.00
m
Total solids, mg/1 418.00 - 739.00 436.00 - 542.00 476.00 - 595,00
Chemical oxygen demand, 0.10 - 108.60 0.10 - 45,30 0.10 - 82.50
mg/1
Chlorophy1l A, ug/1 0.10 - 29.30 0.10 - 21.00 0.20 - 19.60
Chlorides, mg/1 18.00 - 19.50 17.00 - 20.00 18.00 - 20.00
Total hardness, mg/1 180.00 - 435.00 180.00 - 427.00 170.00 - 440.00
Calcium hardness, mg/1 88.00 - 265.00 100.00 - 258.00 96.00 - 280.00

Myers (1973) has estimated annual nutrient loadings

1400 tons of nitrate nitrogen and 65 tons of phosphate.

to be approximately
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MATERIALS AND METHODS

Field Sampling

Field samples were collected from August 1976 to August 1978. A bi-
weekly schedule was followed during reservoir stratification (April to
November) in 1976 and 1977. Monthly samples were collected only at the
inlet and outlet during the winter. In 1978 reservoir samples were
collected less frequently except during the height of stratification in
July and August. Samples were collected from 10 locations (Figure 1).

At each reservoir station (Stations 1, 2, 3, 4, 7, 8, 9, 10), temperature
(°C) and dissolved oxygen (mg/1) were measured at 1 m depth intervals
with a YSI Model 57 Dissolved Oxygen Meter. Water samples for laboratory
analysis were collected from five depths including a composite from the
upper 10 m, mid-thermocline, upper hypolimnion, mid-hypolimnion and near
the bottom. At the shallower stations (3 and 4) fewer than five samples
were collected because of the lack of a thermocline or a significant
hypolimnion. Two 2-1iter bottles were filled from each sample depth.

One was fixed with 5 ml1 of concentrated sulfuric acid to stop biological

activity. This sample was used for the determination of ammonia nitrogen,

Kjeldahl nitrogen, nitrate nitrogen, chemical oxygen demand, and orthophosphate.

The other sample was used for the analysis of total alkalinity, chlorides,
chlorophylls, specific conductance, calcium hardness, total hardness,
total phosphates, total dissolved solids, total solids and turbidity.
Hydrogen ion concentration (pH) was determined in the field with an

Horizon Ecology Model 5985-40 pH meter. Water transparency was measured

-

11



with a secchi disc. At the inlet and outlet (Stations 5 and 6) only one
depth was sampled. With the exception of secchi disc transparency
which was not measured, determinations were the same as those for the
lake samples. All samples were iced immediately and returned to the

laboratory for analysis.

Laboratory Analysis

Total and calcium hardness (mg/1) were determined using the EDTA

titrimetric method described in Standard Methods (1971),

Total alkalinity (mg/1) was determined by procedures cutlined in

Standard Methods (1971),

Chloride concentration (mg/1) was found using the mercuric nitrate

method of Standard Methods (1971).

Chlorophyll a, b, and ¢ (ug/1) was determined using the trichromatic

method described in Standard Methods.

Specific conductance (umhos) was found using a Model 37, YSI conductivity

bridge.

Turbidity (NTU) was measured with a Hach 2700A turbidimeter.

Total solids (mg/1) was determined by evaporating 75 ml of water in

a weighed dish in a Thelco Model 26 drying oven. The increase in

12
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weight over the empty dish was considered to be the concentration of

total solids. Dissolved solids was determined in a similar manner

except the sample was first filtered through a No. 3 Whatman, 11 cm
diameter filter to remove particulate solids. The filtrate was evaporated

and the dish weighed to obtain the concentration of dissolved solids.

Total phosphate (mg/1) was measured using the ascorbic acid procedure

from Standard Methods (1971).

Orthophosphate (mg/1) was measured with a Technicon Auto-analyzer

using an automated ascorbic acid method.

Nitrate nitrogen (mg/1) and ammonia nitrogen (mg/1) were also

determined on the auto-analyzer.

Chemical oxygen demand (mg/1) was determined using the potassium

dichromate method of Standard Methods (1971).

Kieldahl nitrogen (mg/1) was determined by the procedure described

in Methods for Chemical Analysis of Water and Wastes (1976).

Data for all variables were transferred to computer media for

processing and analysis.

Model Development

A number of aquatic simulation models were reviewed in an effort to



locate a model or combination of models that could be modified for use
on Lake McConaughy (Abernathy and Bungay, 1972; Bella, 1970a; Bella,
1970b; Chen, 1970; Chen and Orlob, 1972; Dale, 1969; Delay and Seaders,
1966; DiGiano, 1971; DiToro, et al., 1971; Gearheart, 1973; Goodling and
Arnold, 1972; Green, 1972; Grenney, et al., 1973; Imboden, 1974; Johnson
and Straub, 1971; Jones and Bachmann, 1976; Markofsky and Harleman,
1973; Newbold and Liggett, 1974; 0'Melia, 1972; Orlob and Selna, 1970;
Park, et al., 1974; Prober, et al., 1971; Raphael, 1962; Scavia, 1974;
Shepherd and Finnemore, 1974; Slotta, et al., 1969; Symons, et al., 1967;
Varga, et al., 1972; Varga and Falls, 1972). Based on our evaluation
and a later independent evaluation by Grimsrud, Finnemore and Owen
(1976), the LAKSCI model developed by Systems Control, Inc. was judged
to have the most potential for meeting the project objectivesal Copies
of the FORTRAN coding and user's manhuals for the LAKSCI model were
obtained. The model was implemented on an IBM 370/158 computer system
utilizing the IBM product Conversational Monitor System (CMS) for access
to the central processor. This system proved to be quite efficient for

modeling as it provided easy file editing and rapid execution time.

Several modifications to the original program were made to make it
more useful and realistic for modeling Lake McConaughy. The model was

divided into two segments, PREPMAC and LAKEMAC. The initial program

(PREPMAC) computes daily lake level from inflow, outflow and meteorologic

data and also prepares the meteorological data for use in calculating

the thermal dynamics of the lake. The results of this analysis are

]Mention of trade names or commercial products does not constitute their

endorsement or recommendation for use by the U.S. Government.
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recorded on a file to be used by the second portion (LAKEMAC). PREPMAC
has to be run only when changes in hydrologic or weather parameters are
desired. Otherwise, information from the created file can be used to
make successive runs of LAKEMAC. Input for each program was simplified
for convenience but still remains basically consistent with the LAKSCI
format. The output format was radically changed to show only required
information in a more readable form. For each selected day of output
this included lake volume, lake depth, depth of thermocline, surface air
temperature, downstream (outflow) temperature and depth profiles for
temperature, dissolved oxygen, ammonia nitrogen, nitrate nitrogen and
total phosphate. A graphic display of the temperature profile was also

included.

Subroutine BAL, which calculates the hydrologic parameters for the
model, was modified to accomodate the effects of a large excavated hole
in front of the dam. This hole is essentially a stagnant parcel of
water during stratification since the outlet does not draw from that
depth. The outlet is located on the old riverbed, and the hole is
approximately 7-15 m deeper and to the side of the old channel, Due to
its inactivity this portion of the lake was essentially ignored during
stratification except for its role as a sink for nutrients and other

materials.

Subroutine SUBL, which models the thermal stratification of the
reservoir, was modified to more realistically modei the physics of
thermal diffusion. These changes had the effect of adding calibration
capabilities to the thermal portion of the model. Changes were necessary

in order to properly model the thermal dynamics of Lake McConaughy.

15



Lake McConaughy, due to its open, wind-swept nature, has unique
reaeration coefficients. The method of calculating these coefficients
in the program was altered to account for the uniqueness of the McConaughy

system.

The program was modified in two places to insure that negative
arguements did not appear in the calculation of square roots. Prior to
the implementation of this change, LAKSCI was incapable of accomodating
a negative net inflow for a given day. Negative net inflows occasionally

arise at Lake McConaughy due to low inflow, seepage and evaporation,

Biological oxygen demand (BOD) was not measured in field experiments,
hence modeling of this important variable was not attempted. BOD does, however,
significantly affect the other constituents which were to be modeled. A
procedure was developed to try and accomodate the affects of BOD on
the constituents which were modeled. In a sense, the effects of BOD were
"black boxed". This procedure has definite drawbacks but was the only

alternative available considering the lack of sufficient data.

After modifications were completed, parameters were selected for
Lake McConaughy and the model calibrated using data collected in 1977,

Verification of the calibrated model was attempted using data from 1978,



RESULTS AND DISCUSSION

The results of all physical and chemical analyses and determinations
are shown graphically in Appendix I. The objectives of this research do
not provide for a lengthy description of physical-chemical parameters.
This will be provided, however, in a secondary publication, "The Limnology
of Lake McConaughy" to be printed in the Nebraska Technical Series in
1981, A short summary is included here to provide background information

relative to model input.

Mean values for each variable measured for the entire sampling

period over all stations are shown in Table 4.

The LAKSCI model chosen for use in this research is not capable of
simulating horizontal variations in a lake. The model assumes horizontal
homogeneity and simulates only one station and the outlet given certain
inflow characteristics. Therefore, the primary data that could be used
in the model was from Stations 1, 5 (inlet) and 6 (outlet). To test the
potential for errors in assuming Station 1 similar to other lake staticns
a one-way analysis of variance was run on each variable using Stations
1, 2, 3, and 4 as treatments. The only significant differences found
showed Station 4 different from 1, 2 and 3. This was not surprising
since Station 4 is nearly riverine rather than lacustrine. All of the
coldwater fishery habitat lies in the vicinity of Stations 1 and 2.
Consequently, it was concluded that the differences found for Station 4
would not seriously affect the results of simulated phenomenon relative

to available coldwater habitat.

17



To test for horizontal differences perpendicular to the long axis
of the reservoir, t-tests were employed using each of the measured
variables. These were used to test Station 2 vs Station 7, Station 2 vs
Station 8, Station 3 vs Station 9 and Station 3 vs Station 10. No
significant differences were found with these tests, hence it was concluded
that there was 1ittle if any horizontal variation in the measured variables

perpendicular to the long axis of the lake,

18



Table 4. Mean, range, and standard deviation of measured variables over the
entire period for all reservoir stations,

STANDARD

SAMPLE SIZE RANGE MEAN DEVIATION
Ammonia nitrogen, mg/1 390 0.00 - 1.20 0.110 0.159
Nitrate nitrogen, mg/1 382 0.10 - 2.80 0.694 0.459
Kjeldahl nitrogen, mg/1 288 0.00 - 7.92 0.902 1.161
Total phosphate, mg/1 339 0.10 - 2.55 0.194 0.239
Orthophosphate, mg/1 386 0.00 - 0.66 0.070 0.074
Turbidity, NTU 372 1.00 - 315.00 14.645 30.234
Total alkalinity, mg/1 389 153.00 - 279.00 187.784 21.365
Conductivity, umhos 336 460.00 - 920.00 676.854 73.843
pH 354 7,50 - 9.05 8.451 0. 307
Dissolved oxygen, mg/! 388 0.00 - 16.10 7.392 3.758
Temperature, °C 390 .00 - 30.20 14,985 6.522

Total dissolved solids, 355 354.70 - 842.70 512.275 49,307
mg/!

Total solids, mg/1 369 356.00 - 999.80 567.649 90.885
Chemical coxygen demand, 352 1.20 = 93.00 12.974 8.650
mg/1
Chlorophyll A, ug/] 362 0.00 - 151,50 15,717 18.255
Chlorophyll B, ug/i 363 0.00 = 42.10 4.542 5.695
Ch]ordphy?? €, 19/l 362 0.00 - 103.80 17,153 18,249
Chlorides, mg/1 339 8,39 - 23.20 18,531 1.410
Total hardness, mg/1 390 164.00 - 315.00 216.562 22.900
Calcium hardness, mg/1 386 96.00 - 293,00 170.617 38.431

]

Secchi disc, m 171 0.10 6.00 1.339 0.987




As a result of these tests it was concluded that the reservoir is
fairly homogenous in the region of Stations 1, 2, 3, 7, 8, 9 and 10.
Since this area encompasses nearly all of the volume of the reservoir
and 100% of the coldwater habitat, it was concluded that errors encountered
in simulating this region as a single station would be small to non-
existent. Because it was located in the deepest portion of the Take,
Station 1 was used as a representative station for input to the model.
Mean values of variables collected at Stations 1, 5 and 6 are shown in

Tables 5, 6, and 7, respectively.

The modified model was calibrated using data collected in 1977.
Where data was lacking, default coefficients supplied in the model were
used. A special calibration procedure was used to determine coefficients
in subroutine BAL (Dauer, 1978). After a series of runs and considerable
adjustment of coefficients, reasonably good correspondence to actual
data was achieved for temperature profiles (Figure 3), hydrologic variables
(Figure 4), and dissolved oxygen. The fit obtained for ammonia nitrogen,
nitrate nitrogen and total phosphate was less than adequate due to lack
of proper data. The procedure developed to "black box" BOD simpiy did
not perform realistically. Considerable adjustment of coefficients did
not improve realism. To test model validity, a simulation was made for
1978 and compared to actual data collected. The fit for temperature
(Figure 5) and hydrologic data (Figure 6) was again reasonably good.

Had it not been for a very strong wind the day prior to sampling in
August 1978, the fit of the temperature profile would have been even

better. The remaining variables, however, showed a poor response.
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The model as modified does not mechanistically model chemical constituents
due to the lack of BOD data. Therefore, a realistic simulaticon with

good fit could not be expected, particularly over a period of more than

one year.



Table 5. Mean, range, and standard deviation of all variables measured at
Station 1 for the entire period.

SAMPLE STANDARD
SIZE RANGE MEAN DEVIATION
Ammonia nitrogen, mg/1 99 0.00 - 1.20 0.205 0.256
Nitrate nitrogen, mg/1 94 0.00 - 1.70 0.545 0.294
Kjeldahl nitrogen, mg/1 71 0.03 - 6.70 0.988 1.123
Total phosphate, mg/! 82 0.01 - 1,75 0.181 0.224
Orthophosphate, mg/1 96 0.00 - 0.34 0.083 0.067
Turbidity, NTU 94 1.00 = 26.00 4,298 4,137
Total alkalinity, mg/1 98 156.00 - 213.00 184,837 11,378
Conductivity, umhos 84 485,00 - 785.00 677.595 65.536
pH 88 7.65 = 8.95 8,278 0.316
Dissolved oxygen, mg/] 99 0.00 - 12.50 4,357 4.234
Temperature, °C 99 1.50 - 22.50 13.687 4,859
Total dissclved solids, 88 354.70 - 581.30 503,956 38.392
mg/1
Total solids, mg/1 93 461.00 - 706.70 544,276 39.0%¢9
Chemical oxygen demand, 87 1.20 - 27.10 10.526 39.079
mg/ 1
Chiorophyll A, ug/1 92 0.00 - 27.30 8.808 5.744
Chlorophyll B, ug/1 92 0.00 - 10.00 2.766 2.428
Chlorophyll C, ug/l 92 0.00 - 32.70 10,727 7.539
Chlorides, mg/1 84 15,70 - 22.50 18,462 1.093
Total hardness, mg/! 99 164.00 - 242.00 214,737 15,770
Calcium hardness, mg/1 98 106.00 - 220.00 166.061 33.853

Secchi disc, m 24 1.00 6.00 2.354 1.140




Table 6. Mean, range, and standard deviation of all variables measured at
Station 5 over the entire sampling period.

SAMPLE STANDARD
SIZE RANGE MEAN DEVIATION
Ammonia nitrogen; mg/1 36 0.00 - 0.18 0.043 0.054
Nitrate nitrogen, mg/1 37 0.00 - 2.80 1.632 0.683
Kjeldahl nitrogen, mg/1 31 0.00 - 6.06 1.354 1.469
Total phosphate, mg/1 34 0.04 - 2.55 0.464 0.485
Orthophosphate, mg/1 36 0.02 - 0.55 0.120 0.112
Turbidity, NTU 36 2.00 - 315,00 65.861 68.871
Total alkalinity, mg/1 37 166.00 - 279.00 233.243 24.049
Conductivity, umhos 34 520,00 - 920.00 732.765 100.415
pH 35 7,60 - 8,85 8.484 0.292
Dissolved oxygen, mg/1 36 4,20 - 13.80 8.831 1.788
Temperature, °C 37 0.00 - 30.20 15.276 9.922
Total dissolved solids, 34 397.30 - 842.70 584,335 76,062
mg/1
Total solids, mg/! 36 396,00 - 999.80 765.336 145.647
Chemical oxygen demand, 32 5.90 = 45,70 20.041 711.678
mg/1
Chlorophyll A, wug/} 33 0.00 - 114,90 26,382 28,765
Chiorophyll B, ug/1 34 0.00 - 21.00 6.247 5.901
Chiorophyli C, ug/1 34 0.00 - 77.80 27.306 22,885
Chlorides, mg/] 34 8,39 - 23.20 19,136 2,651
Total hardness, mg/1 37 186.00 - 315.00 255.297 35,266

Calcium hardness, mg/] 37 96.00 - 293.00 203.378 53.454




Table 7. Mean, range, and standard deviation of all variabies measured at
Station 6 over the entire sampling period.

SAMPLE STANDARD
SIZE RANGE MEAN DEVIATION
Ammonia nitrogen, mg/1 35 0.00 - 1.00 0.028 0.167
Nitrate nitrogen, mg/1 35 0.10 - 1.20 0.677 0.239
Kieldahl nitrogen, mg/1 29 0.00 - 7.92 1.561 2,012
Total phosphate, mg/1 33 0.01 - 0.65 0.142 0.110
Orthophosphate, mg/1 36 0.01 = 0.35 0.081 0.06"
Turbidity, NTU 35 1.00 - 9.00 4,086 1.805
Total alkalinity, mg/7 36 157.00 - 223.00 185.889 12.879
Conductivity, umhos 33 525,00 - 758.00 676.606 61.196
pH 34 7.50 - 8.95 8.347 0.384
Dissolved oxygen, mg/1 35 6.80 - 16.00 11.143 2.050
Temperature, °C 36 0.00 - 19.80 10,028 6.258
Total disscived solids, 34 84.00 - 614.70 504.432 47,216
mg/1
Total solids, mg/l 33 470.70 - 677.30 545,373 38.753
Chemical oxygen demand; 34 2.10 = 17.60 10,165 3.592
mg/1
Chiorophyll A, ug/1l 33 0.00 - 28.70 7.618 6.604
Chlorophyil B, ug/] 33 0.00 - 24.40 3,103 4,727
Chlorophyll C, ug/1 33 0.00 - 85.80 11,394 15,792
Chlorides, mg/1 33 13.40 - 21.67 18,028 1.834
Tota! hardness, mg/1 36 168.00 - 260.00 216.056 18,801

Calcium hardness, mg/1 36 117.00 - 247.00 172.278 37.257




25

‘[apow ay} jo Ayjiqeded uoneiqifeo ayl Buimoys /761 104 (sauj p1jos) sajijosd
peanseaw ylm (sauy usyoiq) sajijoid ainjesadws) pajeinwis jo uosiedwoo vy ¢ 8inbiy

(9.) A4NLYYIdWAL (2.) I”NLYHIdWEL (9.) 3HNLVYHIINIL
(174 Sl oL S [174 118 ol ) [174 Sl ot s
T T T T Y T T Y Y ¥ T T 0s

b
2
(w) H1d3a

1161 Bnv g2 161 Ainr 21 1161 RezL




26

‘fepow 8y} Jo Aujiqedeo uoneiqires ay) Buimoys /461 ui (auyj pyjos)
48] J91eM PBINSBBLU Y)IM (U1l UBXOIQ) [8AS] 101BM PBAJRINWIS 8y} JO UOSIIRdWO0D VY " 8inbi4

100 1d3s onv Ane anne AVIN °
¥ 1 v L AIH—-

-

& »
© X
m
wn
S

o n
2 »
0
m
m
-~

% m
g8 §
4
o
2
©w -
e 3
[-\]
o

o

<

(]

8 3
8 @2

€96




27

(9.) IHNLYHAdNIL

114

‘lapouws 8y} JO UOISI98.1d 8y} AJ1idA 0) pasn g/6 | 104 (Saulj pijos) sajiyoid

1+ [+13

S

0c

Si [1]}

(9.) UNLYY3dWaL

S

(114

(9.) IHNLYHIdNIL

Si ol ]

- — - — — - - <

T

861 Bny G

t 1

8.6} AInr g1

¥ k1

861 ey g2

-

0S

414

oY

13

0€

14

114

St

13

painseaw yum (seuyj uaxyoiq) sajijoid aimeiadiuia) pareinuis Jo uosLedwos v ¢ ainbiy

(w) HL43aQ



28

120

ld3as

‘Japow 8y} Jo uois1oesd syl Aj1iaA O} pasn /6L Ul (8ulf pijos) (o]
18]eM painseow YUMm (aul] UYOIqQ) [9A8] 181em pajeinwis ay} jo uosuedwod v 9 ainbid

onvy Alnr annr AVHN

186

856

656

096

196

296
(isw aroqe w) NOILYAIT3 3OVHUHNS ANV

€96



From these modeling runs it was concluded that the model was quite
precise in predicting hydrologic characteristics and temperature profiles
given basic inflow-outflow data and meteorological information. Use of
the model for predicting the concentration of chemical constituents,

however, appeared to be quite limited.

To further substantiate these conclusions a number of runs were
made to ascertain the model's usefulness in predicting the future
availability of coldwater fish habitat in Lake McConaughy given certain
conditions. These runs were made in an attempt to isolate practices

which could aid in maximizing the 1ife of the coldwater fish habitat.

The first run consisted of lowering the lake inflow by 15%. This
is a realistic possibility due to potential upstream water demands. The
results of this inflow reduction are shown in Figures 7 and 8 as compared
to the 1977 simulation. The water level dropped about 0.6 m with a resultant
movement of the thermocliine 1.6 m closer to the surface. The effects on
water level seemed rather small, but if one considers the cumulative
effects over a period of years, the drop in water level could be rather
large. The significance of this to the coldwater fishery was difficult
to ascertain since the simulated epilimnetic temperature never exceeded
21.1° C, a tolerable temperature for coldwater species. During warm
periods however, this epilimnetic temperature may climb to 25°C or
higher. The question left unanswered is, "How much dissoived oxygen
remains in waters cool enough for trout?" As the water level drops, it

would seem reasonable to assume that the volume of the hypolimnion wouild

29
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decrease, therefore, reducing its capacity to assimilate organic materials.
This would at first appear to most certainly increase the depletion of
oxygen in the hypolimnion. However, production of organic matter would

be smaller with a reduced surface area. Also, the depth of the thermocline
evidently moves closer to the surface with less warm inflows. This

would expand the volume of the hypolimnion. A1l of these factors and

more are impossible to evaluate simultaneously without the use of a
comprehensive model. Since the model developed proved to be in error in
predicting dissolved oxygen levels, its usefulness for solving this

problem is limited.

A second experimental run was made to determine the effect of using
only the surface discharge instead of the bottom discharge which was
used in the 1977 simulation (Figure 9). Theoretically, such a management
practice would affect both the depth to the thermocline and the nutrient
1oading of the reservoir. Nutrients, particularly phosphates, are
pre§ent in higher concentrations in anoxic hypolimnetic waters than in
oxygenated water (Monkmeyer, et al., 1974). A bottom discharge should
contain a higher concentration of phosphate than the surface discharge.
Hence, phosphate loading and therefore overail concentration should be
reduced with a bottom rather than a surface discharge, particularly
during summer stratification. The simulated response to such a management
practice does show that the thermocline moved considerably closer to the
surface with a surface discharge (Figure 9). No change was evident in
the nitrate or phosphate concentrations due to the inability of this

portion of the model to simulate this information. From a coldwater
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fishery standpoint, based on the thermal characteristics alone, it would
seem more appropriate to release water from the hypolimnion rather than the
epilimnion. Bottom releases have also been suggested as a eutrophication
control procedure as it should reduce the overall concentration of nutrients
in the lake water. From a practical standpoint, this management practice
will almost certainly be followed because the water level is always below

the surface outlet structure in Lake McConaughy during summer stratification.

Additional runs were made simulating the effects of increased levels of
nitrates and phosphates in the lake. These runs simply substantiated the
earlier conclusion that additional data must be obtained to properiy calibrate

the chemical constituent portion of the model.

The model as it is presently calibrated will provide a valuable tool
for simulating changes in hydrologic conditions given changes in inflow,
outflow or some unusual weather factor. The thermal dynamics of the res-
ervoir can also be predicted with good precision. This portion of the mode’l
alone will be extremely valuable in evaluating the effect of rediced inflows
as a result of upstream diversion of water or increased outflows as a result

of downstream requests for more irrigation water.



RECOMMENDATIONS AND CONCLUSIONS

1. The hydrologic and thermal dynamics portions of the model
appear to be quite precise. They should be utilized to model the effects
of any perturbations which could affect this portion of the reservoir's
dynamics. For example, it could be used to model the effect on water
level and the thermal dynamics of a reduced inflow due to upstream
diversion. Effects of drought, extremely hot weather and various outflow

regimes are other potential changes that can be modeled.

2. The chemical constituent portion of the model is presently
inaccurate and should not be used without modification. In order to
make this model more useful, a considerable amount of work on the model
would be needed followed by collection of needed field data. Some
highly skilled and specialized personnel would be required for this
approach to be successful. At this point in time, such a project would

not seem cost justified for the Nebraska Game and Parks Commission.

3. The field data collected plus previously collected data provide
an excellent basis for preparing a description of the physical and
chemical Timnology of Lake McConaughy. This analysis could be used as a
planning guide instead of the model. A technical paper to accomplish
this task is being planned. It will include an in depth analysis of
each varible which has been measured plus recommended management procedures
for protecting and enhancing water quality, water quantity and fishery

values,

35
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