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Abstract

Successful microbial-mediated remediation requires transformation pathways that maximize metabolism and
minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitions-
contaminated soil, degraded 100 mg TNT L−1 in culture medium within 10 h under aerobic conditions.
The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant) and 2,2′-
azoxytoluene (2,2′AZT, primarily in the cell fraction), which accumulated as major products via the intermediate
2-hydroxylamino-4,6-dinitrotoluene (2HADNT). The 2HADNT and 2,2′AZT were relatively less toxic to the strain
than TNT and 2ADNT. Aminodinitrotoluene (ADNT) production increased when yeast extract was added to the
medium. While TNT transformation rate was not affected by pH, more HADNTs accumulated at pH 5.0 than at
pH 8.0 and AZTs did not accumulate at the lower pH. The appearance of 2,6-diamino-4-nitrotoluene (2,6DANT)
and 2,4-diamino-6-nitrotoluene (2,4DANT); dinitrotoluene (DNT) and nitrotoluene (NT); and 3,5-dinitroaniline
(3,5DNA) indicated various routes of TNT metabolism and detoxification by P. aeruginosa strain MX.

Introduction

Contamination of soil and water from 2,4,6-
trinitrotoluene (TNT) has occurred during the disposal
of wastewater from munitions production, loading and
packing operations in many countries. The persistence
of TNT and its metabolites are of environmental
concern because they may be toxic to fish (Osmon &
Klausmeier 1972; Smock et al. 1976), algae (Smock
et al. 1976; Won et al. 1976; Bennett 1994), mi-
croorganisms (Klausmeier et al. 1973; Won et al.
1976; Rieger & Knackmuss 1995), higher plants
(Palazzo & Leggett, 1986) and humans (Yinon 1990).
Research has shown that the major products of aerobic
TNT biotransformation by bacteria are 4-amino-2,6-
dinitrotoluene (4ADNT), 2-amino-4,6-dinitrotoluene
(2ADNT), and various azoxytoluene (AZT) conden-
sation products from hydroxylaminodinitrotoluenes

(HADNTs) and nitrosodinitrotoluenes (NoDNTs)
(Kaplan & Kaplan 1982; Schackmann & Mueller
1991; Bumpus & Tatarko 1994; Alvarez et al.
1995; Bradley et al. 1995; Drzyzga et al. 1998;
Esteve-Núñez & Ramos 1998; Kim & Song 2000;
Esteve-Núñez et al. 2001). Diaminonitrotoluene
(DANT) also has been identified (Won et al. 1974;
Funk et al. 1993; Daniel et al. 1995; Fiorella &
Spain 1997; Drzyzga et al. 1998; Esteve-Núñez
& Ramos 1998), but complete reduction of TNT
to triaminotoluene (TAT) required strict anaerobic
conditions (Ederer et al. 1997; Drzyzga et al. 1998)
and has not been observed in aerobic soils. Haidour
& Ramos (1996) and Martin et al. (1997) revealed the
capacity of some Pseudomonas strains to aerobically
denitrate TNT, producing 2,4-dinitrotoluene (2,4DNT)
and 2,6-dinitrotoluene (2,6DNT).
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Although Hankenson & Schaeffer (1991) repor-
ted that TNT was 20- to 50-fold more toxic than
a mixture of DANT and ADNT, toxicity may limit
microbial degradation of TNT at highly contam-
inated sites. Research conducted in our labora-
tory indicated that Pseudomonas savastanoi rapidly
transformed TNT to 2ADNT, 4ADNT, and 2,4DNT
(Martin et al. 1997). While growth was sustained
from the mid-log to stationary phases, a decline in
cell population after 24 h may be due in part to
accumulation of toxic metabolites. Subsequent re-
search indicated 2-hydroxylamino-4,6-dinitrotoluene
(2HADNT), 2ADNT, and 4,4′,6,6′-tetranitro-2,2′-
azoxytoluene (2,2′AZT) were the major metabolites
of aerobic TNT transformation by P. aeruginosa strain
MX isolated from TNT-contaminated soil (Vasilyeva
et al. 2000). Our present objective was an in-depth
study of aerobic biotransformation and detoxification
of TNT by the P. aeruginosa strain.

Materials and methods

Microorganism and chemicals

The isolate, Pseudomonas aeruginosa strain MX, was
obtained from munitions-contaminated soil (Vasilyeva
et al. 2000). Technical grade TNT was obtained from
the Fort Detrick U.S. Biomedical Research and De-
velopment Laboratory (Frederick, MD). Carbon-14-
ring-labeled TNT (137 MBq mmol−1, radiochemical
purity 98%) was custom-synthesized by NEN Re-
search Products (Boston, MA). Analytical standards
of 2ADNT, 4ADNT, 2HADNT, 4HADNT, 2,2′AZT,
2′,4AZT, 4,4′AZT, and 2,6DA4NT, 2,4DA6NT and
2,4,6-trihydroxytoluene (THT) were provided by R.
Spanggord (SRI International, Palo Alto, CA). Cy-
clohexanol, 2,4DNT, 2-amino-4-nitrotoluene
(2A4NT), and 4-nitrotoluene (4NT) were obtained
from Aldrich (Milwaukee, WI). Cyclohexanone, 3,5-
dinitroaniline (3,5DNA), yeast extract (YE), and salts
for preparing culture media and Tryptic Soy Agar
(TSA) were purchased from Sigma Chemical Co. (St.
Louis, MO). TAT was obtained from Chem Service
(West Chester, PA). All organic solvents were HPLC
grade.

Culture conditions and growth measurements

P. aeruginosa strain MX was grown in culture me-
dium containing the following (g L−1 distilled water):
MgSO4 (0.1), K2HPO4 (3.5), KH2PO4 (1.5), TNT

(0.1) and yeast extract (1.0). An EDTA trace element
solution (1.0 mL) was added to the culture medium, as
described by Alef & Nannipieri (1995). Culture flasks
were incubated on an orbital shaker (150 strokes per
min) at 28 ◦C under aerobic conditions. Turbidity of
the cultures was monitored at 560 nm using a UV-VIS
scanning spectrophotometer (Model UV-2101PC, Shi-
madzu, Japan). Control cultures were grown without
TNT or with no inoculation under the same conditions.

TNT transformation

TNT transformation was determined in culture me-
dium containing 100 mg TNT L−1 and inoculated
with P. aeruginosa strain MX. During the incubation,
1 mL samples were withdrawn for analysis and the
cells were harvested by centrifuging for 10 min at
14, 000 × g. The cell pellets were extracted by vor-
texing three times for 1 min with 1 mL acetonitrile
and centrifuging again. TNT and its major metabol-
ites (ADNTs, HADNTs, and AZTs) were determined
by HPLC and changes in concentration were mon-
itored. To detect 2,6DANT and cyclohexanone, strain
MX was grown for 3 days as described above. After
centrifugation, 500 mL of supernatant was extracted
three times with 100 mL of methylene chloride. The
extract was concentrated by rotary evaporation, H2O
removed with sodium sulfate (Na2SO4), and 3 µL
samples were analyzed by GC/MS. Controls without
TNT were included in the analyses.

Culture medium components and their concentra-
tions were modified in the subcultures. TNT concen-
trations were 20, 40, 60, 80, and 100 mg L−1 and yeast
extract concentration varied from 0.2 to 1.0 g L−1. The
pH of the culture medium varied from 5.0 to 8.0.

Mass balance of 14C-TNT

Carbon utilization was tracked by adding 14C-TNT to
30 mL of culture medium (50,000 dpm mL−1). After
incubating for 3 d, the culture medium was centri-
fuged and the supernatant was extracted three times
with 30 mL of methylene chloride. After acidifying
to pH 1.0 with HCl, the aqueous phase was extracted
with ethyl acetate as described above. The centrifuged
cell fraction (pellet) was extracted by vortexing and
centrifuging three times with 10 mL acetonitrile. Total
14C in the extracts and in the remaining aqueous solu-
tion was determined by mixing 0.5 mL of sample
with 6 mL Ultima Gold Cocktail (Packard Instru-
ment Company, Meriden, CT) and liquid scintillation
counting (LSC, Packard 1900TR liquid scintillation
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counter, Packard Instrument Co., Downers Grove, IL).
Unextractable 14C remaining in the pellet was determ-
ined by combusting to 14CO2 in a biological oxidizer
(Packard, Tri-Carb B306, Packard Instrument Co.,
Downers Grove, IL). The 14CO2 was trapped in a mix-
ture (3 : 2, v/v) of Carbosorb and Permaflour (Packard
Instrument Company, Meriden, CT) and quantified
by LSC. The 14C-TNT and its 14C-metabolites were
quantified by HPLC using a radioactivity detector
(Radiomatic, Series A-200, Packard Instrument Co.,
Downers Grove, IL).

Toxicity of TNT and major metabolites to P.
aeruginosa strain MX

To determine the toxicity of TNT to strain MX, culture
medium was incubated with various TNT degradation
intermediates and products as previously described.
During incubation, the bacteria were periodically enu-
merated by plating on TSA and counting the number
of colony forming units (CFU) per mL. Solutions
of TNT, 2HADNT, 2ADNT, 4ADNT, 2,4DANT, or
2,2′AZT in acetone (50 mg L−1) were added to 250-
mL Erlenmeyer flasks and the acetone was allowed
to evaporate. Acetone was used to obtain a uniform
distribution of fine particles in the flask after evapor-
ation and thus promote maximum dissolution in the
medium. One-day-old cultures were transferred to the
flasks and incubated as previously described.

After 12, 24, and 36 h, the medium was centri-
fuged. The supernatant was analyzed for TNT and its
metabolites by HPLC and the pellet was used for elec-
tron microscopy. Bacteria growing with cyclohexanol,
cyclohexanone, 2,6DANT; 4NT; THT; 2A4NT; TAT;
2,4DNT; 3,5DNA; TNT; 2HADNT; 2ADNT; 4ADNT;
2,4DANT; and 2,2′AZT at 50 mg L−1 were enumer-
ated by plating on TSA and counting CFUs per mL.
Although not unequivocally confirmed as products in
our experiments, cyclohexanol, THT, and TAT were
included for toxicity comparison because they are po-
tential additional products of TNT degradation. Con-
trol cultures were grown in the absence of TNT or its
metabolites.

Electron microscopy

Samples were prepared for electron microscopy by
creating a bacteria pellet through centrifugation.
Samples were fixed in 3% (w/v) glutaraldehyde in
0.1 M phosphate buffer (pH 6.8) at room temperature
for 1 h. After rinsing with the buffer, the samples were
post-fixed in 1% (w/v) osmium tetroxide in phosphate

buffer for 1 h before dehydration in an ethanol series
(50, 75, 90, and 100% for 20 min in each step) and
propylene oxide. Samples were left in 1 : 1 ratio of
propylene oxide and Epon 812 (Electron Microscopy
Sciences, Fort Washington, PA) mixture overnight
at room temperature before embedding in pure Epon
812. Polymerization of Epon 812 blocks was per-
formed at 60 ◦C for 1 d. After trimming the sample
blocks, sections were cut with a LKB Ultrotome III
equipped with a diamond knife. Sections mounted on
200-mesh copper grids were stained with lead citrate
and uranyl acetate, and photographed with a trans-
mission electron microscope (Philips 201, FEI Co.,
Hillsboro, OR) operated at 60 KeV.

Analytical methods

The cell culture supernatant was assayed for nitrite
using a modified colorimetric method (Clesceri et al.
1989) and analyzed by HPLC. The centrifuged cell
pellet was extracted with acetonitrile and analyzed by
HPLC. Chromatographic analysis was conducted us-
ing a 250 × 4.6 mm Keystone Betasil NU column
(Keystone Scientific Inc., Bellefonte, PA) with an iso-
cratic mobile phase of acetonitrile and deionized water
acidified with H3PO4 to pH 2.5 (55 : 45, v/v) at a
flow rate of 1.0 mL min−1. TNT and its metabol-
ites were detected spectrophotometrically at 254 nm
and quantified by comparison with pure analytical
standards.

TNT transformation products were also confirmed
by GC/MS (HP 6890 gas chromatograph equipped
with a mass selective detector, EI mode) without
derivatization. Separations were obtained using 5%
cross-linked phenyl methyl siloxane capillary column
(HP-5MS, 0.25 mm id by 30 m with a 0.25 µm
film). The carrier gas was helium at 1 mL min−1,
the detector temperature was 280 ◦C, and the inlet
temperature was 190 ◦C. The initial column oven tem-
perature was held at 40 ◦C for 5 min, then increased
10 ◦C min−1 to 150 ◦C, held for 1 min, then increased
5 ◦C min−1 to 300 ◦C and held for 5 min.

Results

TNT biotransformation

Within 10 h of incubation with Pseudomonas aeru-
ginosa strain MX, 100% of the TNT (100 mg L−1) had
disappeared from the culture medium and 2HADNT,
4HADNT, 2ADNT and 2,2′AZT were identified in the



312

Figure 1. Metabolites of TNT degradation by P. aeruginosa strain
MX found in the supernatant (A) and centrifuged cell fraction (B)
from the culture medium.

supernatant (Figure 1A). The centrifuged cell fraction
from the culture medium contained primarily 2,2′AZT,
2′,4AZT, 4,4′AZT and 2ADNT (Figure 1B). Cyclo-
hexanone and 2,6DANT were also detected in methyl-
ene chloride extract by GC/MS. These metabolites
were not detected in extracts of the control supernatant
in the absence of TNT. Mass spectra from GC/MS
analyses of cyclohexanone and 2,6DANT matched
reference spectra. GC/MS analysis of the super-
natant also revealed the presence of small amounts of
2,4DNT, 4NT, and 3,5DNA.

A mass balance for TNT transformation was ob-
tained by growing P. aeruginosa strain MX in the
presence of 14C-TNT. After centrifuging the culture
medium, 21.4% of the 14C was found in the super-
natant and 71.5% was in the cell pellet (Table 1).
The greatest 14C fraction (17%) in the supernatant
was extracted by methylene chloride, which primarily
contained 2ADNT (6.7%) and 2,2’AZT (7.7%). After
acidification to pH < 1, approximately 3.3% of the

14C was extracted by ethyl acetate and 1.1% remained
in the aqueous fraction. Most of the 14C associated
with the centrifuged pellet was extracted by acetoni-
trile (70.3%). Metabolites identified in this solvent
included 2,2′AZT (59.4%) and 2ADNT (1.3%), while
9.6% consisted of unidentified products. Approxi-
mately 0.9% of the 14C in the pellet was extracted by
0.5 N NaOH and 0.3% of the 14C was unextractable.
Mineralization of 14C-TNT to 14CO2 was negligible
(less than 2%). It is also possible that 14C fractions
comprising less than 2% of the total 14C activity may
be associated with impurities in the 14C-TNT (98%
radiochemical purity).

Growth of P. aeruginosa strain MX with TNT and
nitrite release

TNT disappearance coincided with increased turbidity
and nitrite concentration. Maximal microbial growth
was observed at about 10 h of incubation with or
without TNT (Figure 2A). Nitrite concentration in the
culture medium increased after incubating for 3 h with
P. aeruginosa strain MX and reached a maximum of
about 18 µM NO−

2 after 12 h, which was sustained
for more than 48 h (Figure 2B). Some nitrite was
found in the uninoculated control containing TNT, but
the concentration did not change with time. Increas-
ing TNT concentration resulted in increasing nitrite
(NO−

2 ) in the culture fluid (data not shown), indicat-
ing that the strain was capable of eliminating —NO2
from the TNT ring. Some nitrite was found in the un-
inoculated control containing 100 mg TNT L−1, but
the concentration remained nearly constant with time.

TNT transformation was limited at low yeast ex-
tract concentrations (Figure 3A). Cultures contain-
ing greater than 0.4 g yeast extract L−1 transformed
greater than 99% of the TNT within 12 h of incubation.
An increase in yeast extract concentration increased
2ADNT in the culture medium (Figure 3B), suggest-
ing that the yeast extract was a major energy source
for TNT transformation by P. aeruginosa strain MX.

Toxicity of TNT and its major metabolites

To determine the potential toxicity of TNT and its
major metabolites, cultures of strain MX were grown
in the presence of TNT. Plating on TSA indicated
bacterial viability in the presence of TNT was not sig-
nificantly different from the control for the first 12 h
of incubation. However, viability decreased by about
70% after incubating with TNT for 32 h (Figure 4A).
When added at the stationary growth phase (after
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Table 1. Transformation of TNT after incubating P. aeruginosa strain MX in liquid culture medium with
14C-TNT (0.1 g L−1) and yeast extract (1 g L−1) for 3 days

Metabolites Supernatant Centrifuged precipitate Total

CH2Cl2 E.A.a Water CH3CN NaOH Combustion

(%)

Azoxy toluenes 7.7 0.9 – 59.4 – – 68.0

ADNTs 6.7 0.1 – 1.3 – – 8.1

Other compounds 2.6 2.3 1.1 9.6 0.9 0.3 16.8

Unaccountable – – – – – – 7.1

Total 17.0 3.3 1.1 70.3 0.9 0.3 100.0

a Ethyl acetate.

Figure 2. Change of turbidity of culture medium containing yeast
extract (1.0 g L−1) with TNT (60 mg L−1) and without TNT inocu-
lated by P. aeruginosa strain MX (A). Y axis is log10 scale. Nitrite
concentration in the culture medium containing yeast extract (1.0
g L−1) with TNT (60 mg L−1) and without TNT after inoculation
with P. aeruginosa strain MX (B).

24 h of incubation), TNT, 2,4DNT and 3,5DNA were
most toxic among the evaluated compounds, while
cell viability in the presence of cyclohexanol was not
different from the control. Although 2,6DANT, 4NT,
2,4DANT, 2,2′AZT and 2HADNT were relatively less
toxic than TNT and 3,5DNA, these compounds signi-

Figure 3. Influence of yeast extract concentration on TNT degrada-
tion rate (A) and 2ADNT production (B).

ficantly decreased cell viability compared to the con-
trol (Figure 4B). Interestingly, 3,5DNA and 2,4DNT
were more toxic than the parent compound (TNT).

Separate experiments indicated the relative bio-
degradability of TNT compared to its transformation
products (Table 2). After 36 h, about 37% of the TNT
was transformed in the culture medium to ADNTs,



314

Figure 4. Bacterial counts (CFU, colony forming units) in the
cultural medium containing yeast extract (1.0 g L−1) with TNT
(100 mg L−1) and without TNT inoculated by P. aeruginosa strain
MX after plating on tryptic soy agar (A). Bacterial counts (CFU,
colony forming units) of P. aeruginosa strain MX in liquid culture
medium containing yeast extract (1.0 g L−1) with major TNT meta-
bolites and without metabolites (control) after incubating for 36 h
with stationary phase of growth (B).

DANTs, 2,2′AZT and an unidentified product (HPLC
RT = 5.0 min). By comparison, 2ADNT was less read-
ily degraded, with 7.2% transformed to 2,6DANT. The
2HADNT was completely transformed to 2ADNT,
2,6DANT, 2,2′AZT and the unidentified product at RT
= 5.0 min.

Examining the bacteria cells with an electron mi-
croscope at stationary phase (12 h) in the absence of
TNT or its metabolites showed the presence of healthy
cells, containing well-defined cell walls, membranes,
and cell contents (Figure 5A). In contrast, cultures in-
cubated in the presence of TNT contained many cells
exhibiting condensation of material in the cell centers.
There also appeared to be some loss in the density
of the bacterial cytoplasm (Figure 5B). Prolonged in-
cubation of P. aeruginosa strain MX in culture media
containing 50 mg of 2ADNT or 4ADNT L−1 result-

ed in markedly altered cell contents. Pseudomonas
aeruginosa strain MX showed condensation of the
DNA component and ultimately resulted in necrosis
(Figure 5C and D).

Effect of pH

While the optimal pH range for TNT transformation
was between 7.0 and 8.0, more 2HADNT (Figure 6A)
and 2ADNT (Figure 6B) accumulated at pH 5.0 than
at pH 8.0. The accumulation of 4HADNT was sim-
ilarly affected by pH (data not shown). At lower pH,
2,2′AZT accumulated much more slowly in the cell
fraction (centrifuged pellet) (Figure 6C).

Discussion

Pseudomonas aeruginosa strain MX, isolated from
TNT-contaminated soil, completely transformed 100
mg TNT L−1 in the medium within 10 h. The ma-
jor TNT transformation products were 2ADNT, which
was present in the supernatant, and 2,2′AZT, primarily
found in the centrifuged cell fraction. Other research-
ers have reported bacteria-mediated reduction of at
least one TNT nitro group (Channon et al. 1944;
Boopathy et al. 1993, 1994; Bradley et al. 1994;
Haidour & Ramos 1996). The reduction intermediate,
2HADNT, was transiently found in the medium, prior
to detecting 2ADNT. Detection of cyclohexanone
was consistent with TNT transformation described by
Chung who suggested that TNT may be transformed to
2ADNT and 4ADNT, and subsequently to 2,4DANT
(e.g., by TNT reductase of Desulfovibrio spp.), which
is then converted acetate via 2-nitrobenzoic acid, with
cyclohexanone, 2-methylpentanoate, and butyrate as
intermediates (Chung, Darling Marine Center, Univer-
sity of Maine, pers. comm.) (Figure 7).

In our experiments with 14C-TNT, AZTs accoun-
ted for approximately 71.5% of the 14C after complete
transformation of the TNT, which is similar to previ-
ous investigations (Carpenter et al. 1978). While the
condensation of HADNTs with NoDNTs forms AZTs
(Won et al. 1974; McCormick et al. 1976; Kaplan &
Kaplan 1982; Esteve-Núñez et al. 2001), AZT pro-
duction decreases at lower pH (Funk et al. 1993).
Khan et al. (1997) reported rapid transformation of hy-
droxylamines to undetermined end products without
detecting AZTs at low pH (4.1–4.5), and similar re-
sults were obtained in our experiments. After 24 h, as
much as ten times more 2,2′AZT was produced at pH
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Table 2. Transformation of TNT, 2HADNT, 2ADNT, 2,4DA6NT or 2,2′AZT (50 mg L−1)
in liquid culture medium containing yeast extract (1.0 g L−1) after 36 h incubation with P.
aeruginosa strain MX of stationary phase

Time (h) Initial compound

TNT 2HADNT 2ADNT 2,4DA6NT 2,2′AZT

(%)

0 100 100 100 100 100

36 63.1 (36.9)a 0 (100) 92.8 (7.2) 82.1 (17.9) 74.9 (25.1)

aParaenthetic values indicate transformation (%).

Figure 6. Influence of pH on the production of 2HADNT (A), 2ADNT (B), and 2,2′AZT (recovered from the cell fraction) (C).

8.0 than at pH 5.0 (data not shown). Nonsignificant
mineralization of 14C-TNT to 14CO2 is consistent with
prior research on TNT biodegradation by Pseudomo-
nas spp. (Boopathy et al. 1994; Martin et al. 1997;
Esteve-Núñez & Ramos 1998; Vasilyeva et al. 2000).
The slightly increased turbidity of the culture medium
containing TNT may have resulted from the forma-
tion of metabolites, such as ADNTs and AZTs. Nitrite
concentration increased in the media during the in-

cubation and was maximum when microbial growth
reached the stationary phase. At this point, TNT in
the medium was completely transformed. Small static
background concentrations of nitrite were present in
the control without strain MX, indicating that crys-
tallized preparations of TNT contain nitrite. Previous
research has shown nitrite is released from TNT (Mc-
Cormick et al. 1976; Boopathy et al. 1994; Martin
et al. 1997; Kalafut et al. 1998, Esteve-Núñez &
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Figure 7. TNT degradation pathway proposed by Chung (Darling
Marine Center, University of Maine, personal communication).

Ramos 1998; Esteve-Núñez et al. 2001); nitrophen-
ols (Simpson & Evans 1953), and nitrobenzoic acids
(Cartwright & Cain 1959; Esteve-Núñez et al. 2001),
but the mechanism of denitration is uncertain.

The decrease in CFU after incubating Pseudomo-
nas aeruginosa strain MX with TNT for 12 h may be
attributed to toxicity from some of the accumulating

TNT transformation products. The apparent decrease
in toxicity of the substituted aromatics with increasing
polarity may be due in part to strong binding to sur-
face polysaccharides and reduced entry into the cell.
Pure AZT did not significantly affect the growth of
P. aeruginosa strain MX, which was consistent with
comparatively low AZT toxicity (Collie et al. 1995),
and may be attributed in part to low bioavailability
(Vasilyeva et al. 2000). TNT metabolism to 3,5DNA,
however, appears to increase toxicity in the culture
medium, as previously reported for aquatic organ-
isms (Talmage et al. 1999). In the soil environment,
however, strong binding can significantly decrease the
toxicity of hydroxylamino, amino, and AZT deriva-
tives of TNT (Funk et al. 1993; Daun et al. 1998;
Hughes et al. 1998; Achtnich et al. 1999). Wang et al.
(2002) further suggested the incorporation of nitroaro-
matics into humic substances could be a possible tool
for their removal.

Electron micrographs indicated that TNT and its
metabolites affected the nuclear material of P. aer-
uginosa strain MX and inhibited cell division. This
feature was similar to other reports of condensation,
compacting, and margination of nuclear chromation
in the presence of toxic compounds (Shneyvays et
al. 1998; Shimojo et al. 1999). The decrease in cell
counts of P. aeruginosa strain MX may have resulted
from DNA component damage; however, the specific
mechanism of toxicity has not been determined.

The rate of TNT transformation by P. aeruginosa
strain MX decreased as it entered and remained in the
stationary phase, which may be due to nutrient deple-
tion and a reduction in the microbial population. A
decrease in 2,2′AZT of about 25% in culture medium
was not due to further transformation but to adhesion
of 2,2′AZT to bacterial cells which was poorly extract-
ed with buffer. Transformation of 2HADNT occurred
abiotically as well as biotically; however, the main
product of abiotic transformation was AZTs while bi-
otic transformation produced mainly ADNTs. TNT
reduction to HADNTs in the presence of P. aeruginosa
strain MX appears enzymatic; however, AZT produc-
tion from nitroso-DNTs and HADNTs may be due to
an abiotic condensation reaction. The pH-dependency
of AZT production is consistent with previous re-
search (Funk et al. 1993; Khan et al. 1997). Strong
binding of HADNTs (Nishino & Spain 1997; Daun
et al. 1998; Achtnich et al. 1999), and the low avail-
ability of AZTs (Vasilyeva et al. 2000) would promote
detoxification in soil.
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Aside from reduction to ADNTs, metabolism of
HADNTs to dihydroxylamino nitrotoluenes, DANTs,
3,5-dinitroaniline, aminonitrotoluene (ANT), cresols,
or other products has been reported (Duque et al. 1993;
Fiorella & Spain 1997; Esteve-Núñez & Ramos 1998;
Hughes et al. 1998; Kalafut et al. 1998; Esteve-Núñez
et al. 2001). In our experiments, detection of cyclohex-
anone further indicated the potential for TNT meta-
bolism to less toxic and more biodegradable products.
The transient appearance of 2,6DANT and 2,4DANT;
dinitro- and nitrotoluene; and 3,5-dinitroaniline, along
with nitrite release, indicated various routes of mi-
crobial metabolism and detoxification of TNT. Our
observations suggest that successful bioremediation
can be achieved by promoting the activity of mi-
croorganisms that are indigenous to the contaminated
site.
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