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 Sphingolipids are a structurally diverse group of lipids recognized as important 

components of cellular membranes and regulators of processes during development and 

in response to environmental stresses. Much progress has been made characterizing the 

enzymes of the biosynthetic pathway revealing that sphingolipids are essential molecules 

in plants and that their synthesis and degradation needs to be tightly regulated. Serine 

palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is a 

primary regulatory point for homeostasis. ORM proteins have been identified as negative 

regulators of SPT activity, however the mechanistic details of the regulation and other 

functional roles of these proteins are only beginning to be understood. In this work, we 

show that ORM1 and ORM2 are essential for life cycle completion in Arabidopsis 

thaliana. Through the characterization of ORM gene-edited mutants we described that 

unregulated sphingolipid biosynthesis resulted in ceramide hyperaccumulation, altered 

organellar structures and increased senescence- and pathogenesis-related gene 

expression. Furthermore, the study of a structural ORM1 variant provided information 

about a transmembrane domain involved in the interaction with SPT.  

In this thesis, we also provide insights into the physiological effects caused by 

mutations in SPT that induce the production of deoxysphingolipids. Our research 



 
 

demonstrates that plants expressing these mutations showed early senescence and 

reduced sensitivity to the cell death induced by Fumonisin B1. These findings suggest 

functional roles of deoxysphingolipids that have not been explored in plants.  

Finally, we describe a labeling approach to build a sphingolipid kinetic model to 

study the metabolic flux of sphingolipids during pathogen infection. This study considers 

a more comprehensive view of the sphingolipid metabolic network that changes 

dynamically when perturbed.  

Overall, this study encompasses several aspects of sphingolipid biology in plants. 

From a directed understanding of the regulatory mechanism and how enzyme variants 

can lead to the synthesis of atypical sphingolipids to a more comprehensive 

understanding of the metabolic network. The combination of these approaches will 

provide important information to understand the regulation of sphingolipids homeostasis.   
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1 Chapter 1 Introduction 

1. Sphingolipids 

Sphingolipids are a ubiquitously distributed and diverse class of lipids that can be 

found in eukaryotic organisms and in some bacteria genus. Their amphiphilic nature 

given by a polar head group and two hydrophobic acyl chains make sphingolipids, along 

with glycerophospholipids and sterols, structural components of cellular membranes 

including plasma membrane (PM), endoplasmic reticulum (ER), Golgi apparatus, 

mitochondria and vacuole membranes (Moreau et al., 1998). Crucial physiological 

processes that take place at the PM are mediated by glycosphingolipids that can form 

platforms for the organization and function of proteins involved in stimulus perception, 

signal transduction, protein translocation, endocytosis and cytoskeletal organization 

(Kraft et al, 2017; Laloi et al., 2007; Mongrand et al., 2004). Moreover, in plants, these 

glycosphingolipids enriched in the outer leaflet of the PM function as receptors of toxins 

produced by pathogens and are involved in sensing salt associated with environmental 

ionic stress (Jian et al., 2019; Lenarcic et al., 2017). Beyond their function as membrane 

components and receptors, other sphingolipid species play crucial roles as signaling 

molecules orchestrating environmental responses. Several reports have documented the 

roles of sphingolipids in response to drought, low temperatures, pathogenicity and as 

triggers of programed cell death and autophagy (Dutilleul et al., 2015; Huby et al., 2020; 

Magnin-Robert et al., 2015).  In the last decades, a huge progress has been done in the 

plant sphingolipid biology field understanding the biosynthetic pathway and the functions 

of sphingolipid species in development and response to the environment. This knowledge 
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has opened new routes to discover how the cells sense sphingolipids levels and regulate 

the biosynthetic pathway in response to specific needs.   

1.1.1 Sphingolipid Biosynthesis  

In general, there is broad conservation in the way in which sphingolipids are 

synthesized in animals, yeast and plants. These lipids can be formed via two pathways: 

the de novo pathway, starting with the condensation of a serine with an acyl-CoA, and the 

salvage pathway, where complex sphingolipids are catabolized followed by channeling of 

the metabolites formed into the synthetic pathway (Merrill, 2002; Hannun & Obeid, 

2008; Kitatani et al., 2008).   

The unique and defining structural feature of sphingolipids is an amino alcohol 

backbone called long-chain base (LCB) or sphingoid base. The simplest and most 

common LCB, sphinganine (d18:0), derives from the condensation of serine and 

palmitoyl-CoA catalyzed by serine palmitoyltransferase (SPT) and subsequent reduction 

of the 3-ketosphinganine product. LCBs can be further modified by hydroxylation, 

desaturation, and phosphorylation to yield a range of structural variants (Figure 1.1) 

(Markham et al., 2006; Chen, et al., 2009). In mammals, most sphingolipid structures 

contain sphingosine with Δ4 unsaturation (d18:1). In contrast, the most widely occurring 

LCBs in plants are sphinganine (d18:0), phytosphingosine (t18:0), 4-hydroxy-

∆8cis/trans-sphingenine (d18:1∆8trans/cis) and ∆4trans, ∆8cis/trans-sphingadiene 

(d18:2∆4,∆8) (Figure 1.1) (Lynch and Dunn, 2004; Pruett et al., 2008).  
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Figure 1.1 Chemical structures of long chain bases (LCBs).  

Shown are examples of dihydroxy and trihydroxy LCBs commonly found in plants. Dihydroxy LCBs 
contain hydroxyl groups at C-1 and C-3 positions. Trihydroxy LCBs contain an additional hydroxyl group 
at C-4. Dihydroxy and trihidroxy LCBs can contain double bonds at ∆8 position in cis or trans 
configuration or in ∆4 position in trans configuration. The nomenclature d18:0 indicates that the LCB has 
two hydroxyl groups (d) and 18 carbons with no double bonds. 
 

Free LCBs and their phosphorylated forms typically occur in low concentrations 

in eukaryotic cells. In mammals, free LCBs account for less than 1% of the total 

sphingolipids in tissues (Alecu et al., 2017), however, they exert signaling functions such 

as modulating cell proliferation and apoptosis. In plant cells, free LCBs also serve as a 

trigger of programmed cell death (PCD) and are associated pathogen defense responses 

(Alden et al., 2011; Zheng et al., 2018; Huby et al., 2019). The majority of LCBs occur 

in ceramides and more complex glycosylated sphingolipids.  

The condensation of an LCB and a fatty acyl-CoA to form ceramides is catalyzed 

by ceramide synthases. Ceramide synthases have defined substrate specificities that result 

in ceramides with distinct pairings of structurally diverse LCBs and fatty acids (Markham 

et al., 2011; Ternes et al., 2011; Luttgeharm, et al., 2015a, Chen, et al., 2015). In yeast, 

the two ceramide synthases, Lag1p and Lac1p, have specificity for C26-acyl CoAs to 

form ceramide (Guillas et al., 2001). In contrast, six isoforms of ceramide synthases 

(CerS1-6) are expressed in mammals. Each isoform distinctly prefers to incorporate fatty 

acids of different chain lengths (C14-C32) into ceramides, this depends on the expression 

of the isoforms in certain cell type and environmental conditions (Levy and Futerman, 
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2010). In Arabidopsis thaliana (Arabidopsis), two classes of ceramide synthases have 

been identified. Class I, encoded by Longevity Assurance Gene One Homolog2 (LOH2), 

mostly uses C16-acyl-CoAs to form ceramides and class II, encoded by LOH1 and 

LOH3, act on acyl-CoAs containing more than 22 carbons (Ternes et al., 2011; 

Luttgeharm et al., 2015). 

Ceramides provide the hydrophobic backbone to generate a variety of more 

complex sphingolipids. In yeast, ceramides can be further modified to yield abundant 

species including inositolphosphorylceramides (IPCs) and the glycosylated 

derivatives: mannose inositolphosphoceramide (MIPC) and mannose-(inositol-P)2-

ceramide M(IP)2C (Dickson, 2010).  

In plants, glucosylceramides (GlcCer) and glycosylinositolphosphoceramides 

(GIPCs) are the most abundant sphingolipids (Gronnier et al., 2016; Markham et al., 

2006). GlcCer is the simplest glycosphingolipid that occurs broadly in eukaryotes, but not 

in Saccharomyces cerevisiae. GlcCer synthase is the ER-localized enzyme that catalyzes 

the condensation of ceramide with UDP-glucose (Leipelt et al., 2001). GlcCer are 

enriched with C16-ceramides and dihydroxy-LCBs (Markham et al., 2006). According to 

this composition, it has been suggested that the ceramide synthase Class I (LOH2) has 

preference for channeling the substrates to the formation of GlcCer. In contrast, GIPCs 

are enriched in ceramides with VLCFA and trihydroxy LCBs formed by the Class II 

ceramide synthases LOH1/LOH3 (Markham et al., 2006). Similarly, in the case of 

mammalian cells, ceramides are the precursors of GlcCer, galactosylceramides (GalCer) 

and other numerous sphingolipids that are absent in plants and fungal cells including  
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Figure 1.2 Sphingolipid biosynthesis in Arabidopsis. 

 Sphingolipid classes are indicated in green. Enzymes and the corresponding genes are indicated in blue. 
Solid arrows indicate biosynthesis steps and dashed arrows indicate catabolic steps.  Abbreviations: LCB, 
Long chain base; SPT, serine palmitoyltransferase; KSR, 3-ketosphinganine reductase; C4-OHase, C4-LCB 
hydroxylase; CSI, ceramide synthase class I; CSII, ceramide synthase class II; VLCFA, very long chain 
fatty acid, ∆8 Des, D8 desaturase; GCS, glucosylceramide synthase; GlcCerase, glucosylceramidase; IPCS, 
inositol phosphoceramide synthase; PI, phosphatidylinositol; DAG, diacylglycerol; CERK, ceramide 
kinase.   

 

sphingomyelin, characterized by the presence of a phosphorylcholine headgroup and 

gangliosides containing sialic acid residues.  

Sphingolipid synthesis is compartmentalized between two organelles in the cell. 

The synthesis of LCBs, ceramides and GlcCer takes place in the ER, but further metabolic 

steps to generate GIPCs occurs in the Golgi apparatus. As noted earlier, GlcCer contain 

higher amounts of C16 fatty acids and dihydroxy LCBs, instead, GIPCs are enriched in 

ceramides containing VLCFA and trihydroxy LCBs. In this scenario a selective vesicular 

or non-vesicular transport would be needed to for the synthesis of GIPCs in the Golgi 

apparatus. In mammals, ceramide is transported from the ER, the site of synthesis, to Golgi 

by a non-vesicular mechanism mediated by CERT proteins (Kudo et al., 2008).      
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Ceramides can also be deacylated by ceramidases to generate fatty acids and 

LCBs which may then be phosphorylated by LCB kinases to produce LCB-P. In 

mammalian cells, the sphingosine generated by ceramidases can be then phosphorylated 

by an LCB kinase generating sphingosine-1 phosphate (d18:1-P), a potent intra- and 

extra-cellular signaling molecule (Mao and Obeid, 2008). While ceramide synthases are 

the main route to synthesize ceramides, reverse ceramidase activity also contributes to 

ceramide formation (Mao et al., 2000). This ceramide synthase activity involves the 

condensation of a fatty acid and an LCB through an acyl-CoA-independent mechanism, 

this activity was first described in Saccharomyces cerevisiae for the ceramidases Ypc1 

and Ydc1 (Mao et al., 2000). Arabidopsis has one alkaline ceramidase (ACER) and three 

neutral ceramidases (NCER1,2,3) that are involved in keeping sphingolipid homeostasis 

under environmental stresses (Li et al., 2015; Wu et al., 2015; Zheng et al., 2018), 

however, the ceramide synthesis activity has yet to be determined for these enzymes.  

Finally, to exit the sphingolipid metabolic network, the phosphorylated forms of 

LCBs are substrate for LCB phosphate lyase also known as sphingosine-1-phosphate 

lyase (S1P-lyase or DPL1) the enzyme that catabolizes the sphingolipid backbone to 

produce ethanolamine phosphate and hexadecenal, both of which can enter the 

glycerolipid metabolism (Mao, Saba and Obeid, 1999; Tsegaye et al., 2007). 

 The pool of different sphingolipid species is in constant dynamic flux and 

responds to the metabolic demands on the cell and the biotic and abiotic stresses from the 

environment. This balance not only considers the de novo biosynthesis but also the 

breakdown of more complex sphingolipid species to give rise to intermediates of the 

pathway with a functional role. How cells sense alterations in sphingolipids levels, in 
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response to developmental cues or environmental stimulus, and adjust the rates of the 

reactions to maintain homeostasis are vital mechanisms which are only recently 

beginning to be understood.  

1.1.2 Serine Palmitoyltransferase  

The de novo sphingolipid biosynthetic pathway begins with SPT, a CoA-

dependent acyltransferase, which typically catalyzes the condensation of L-serine with 

palmitoyl coenzyme-A (palmitoyl-CoA) to form 3-ketosphinganine. Besides using L-

serine as substrate to form the canonical LCBs, SPT also shows activity towards glycine 

and L-alanine to generate an atypical category designated 1-deoxysphigolipids (Chapter 

4) (Penno et al., 2010).  The reaction catalyzed by SPT is highly conserved across 

multiple species even though the downstream enzymes have diverged in such a way to 

give rise to some sphingolipid species that are only found in mammals, plants or fungi.  

 In prokaryotes, SPT is a soluble homodimer with two catalytic sites at the 

interphase  (Hanada, 2003; Ikushiro et al., 2007; Yard et al., 2007). In eukaryotes, SPT 

consists of a heterodimer with two major subunits (LCB1 and LCB2 in yeast; LCB1 and 

LCB2a or LCB2b in plants; SPTLC1 and SPTLC2 or SPTLC3 in mammals). A third 

subunit is a small protein required for optimal activity. In yeast there is a single isoform 

(Tscp3), not required for basal activity but it can increase it by 30 fold. In higher 

eukaryotes there are more subunits, in plants (ssSPTa and ssSPTb) or three in the case of 

mammals (Kimberlin et al., 2013; Han et al., 2009). These subunits confer acyl-CoA 

specificity and can increase the activity by 100 fold.  

In mammalian cells, the subunit composition of SPT determines fatty-acyl-CoA 

substrates. For example, the complex formed by SPTCL3 and/or ssSPTb allow the use of 
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other shorter or longer acyl-CoAs to generate atypical LCBs (Han et al., 2009). While 

palmitoyl-CoA is the preferred substrate for the complex SPTLC1/2 ssSPTa, other 

combinations with SPTLC3 ssSPTb can use myristoyl (14:0)-CoA and stearoyl (18:0)-

CoA.  

Interestingly, in Arabidopsis, it is only 33 amino acids of ssSPTa which are 

required for activation of the SPT heterodimer and for conferring the acyl-CoA 

specificity (Kimberlin et al., 2013). A single mutation in ssSPTa (Met25 to Gly) results 

in the change of substrate specificity from C16 acyl-CoA to longer substrates (C20). 

However, the exact molecular details of how these small proteins stimulate SPT activity 

are still unknown and what is the functional effect of the generation of atypical 

sphingolipids is also under investigation.  

1.1.3 Regulatory Mechanisms of SPT Activity  

Sphingolipid metabolism can be regulated at multiple levels, including enzyme 

expression, degradation and localization, post-translational modifications, protein-protein 

interactions and allosteric mechanisms. These regulatory mechanisms respond to 

intracellular sphingolipid levels and to extracellular stimuli. SPT, as the first enzyme of 

the pathway, controls the amounts of serine and palmitoyl-CoA that get channeled for 

sphingolipid biosynthesis, therefore this step is tightly regulated. The molecular 

mechanisms of governing the regulation of SPT are complex and constitute an active area 

of research. 

The formation of higher order oligomers has been proposed as a mechanism for 

regulating SPT activity. In the case of the mammalian SPT, it has been shown that the 

functional complex is an octamer of catalytic heterodimers with a molecular mass of 
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~480 kDa. This highly organized complex includes the three SPT subunits (SPTLC1, 

SPTLC2 and SPTLC3) with a stoichiometry that is in dynamic change (Hornemann, Wei 

and Von Eckardstein, 2007). In addition to oligomerization of the SPT complex, changes 

in subcellular localization might also be related to the regulation of its activity. Based on 

localization studies, the repressed SPT resides to the peripheral ER and the active form in 

the perinuclear (Breslow et al., 2010).  

1.1.4 ORM Proteins are Regulators of SPT activity 

Additional members of the SPT complex are the Orosomucoid or ORM proteins. 

There are two isoforms of ORM proteins in yeast (Orm1 and Orm2) and plants (ORM1 

and ORM2) and three isoforms of ORMDLs in mammalian cells. These non-catalytic 

proteins play a role as negative regulators of SPT activity. 

The first evidence of the role of Orm proteins in the regulation of sphingolipid 

synthesis revealed that the deletion of Orm1/2 resulted in an increase of sphingolipid 

levels compared to wild type cells in yeast (Breslow et al., 2010). Interestingly, the 

Δorm1Δorm2 mutant was more sensitive to DTT and tunicamycin, compounds known to 

induce unfolded protein response (UPR) and ER stress (Han et al., 2010). Similar results 

were obtained using mammalian cells, where downregulation of the three ORMDL 

isoforms by siRNAs led to 3-fold increase in ceramide levels (Breslow et al., 2010). 

In Saccharomyces cerevisiae, SPT activity is regulated by Orms through post-

transcriptional mechanisms in response to sphingolipids availability. This was established 

when the inhibition of SPT using myriocin triggered the phosphorylation of Orm proteins 

and caused a change in their subcellular localization from cortical to perinuclear ER 

(Breslow et al., 2010). When sphingolipid levels are reduced, by decreasing SPT activity, 



10 
 

Orm proteins get phosphorylated at N-terminal serine residues by the Ypk1 kinase, 

downstream of TORC2, releasing SPT from Orm inhibition (Roelants et al., 2011; Sun et 

al., 2012). Once sphingolipids have been replenished the ceramide responsive 

phosphatase (PP2A) (Sun et al., 2012) dephosphorylates Orms allowing the regulatory 

inhibition of SPT. A current model of sphingolipid synthesis regulation in yeast suggests 

the formation of  higher-order oligomers including Orms and the SPT subunits Lcb1/2 

that respond to specific requirements of sphingolipids by modulating SPT activity 

(Breslow et al., 2010). 

In addition, another layer of regulation is attributed to the phosphorylation at 

different serine residues by the kinase NPR1, downstream of TORC1, in response to 

limiting complex sphingolipids. In this case, the mechanisms activate complex 

sphingolipids synthesis and migration to the plasma membrane where they exert an effect 

on the permease to allow the internalization of nutrients (Shimobayashi et al., 2013).   

While multiple evidences show that plant and mammalian ORM proteins play a 

key role in regulating SPT activity, it is clear that the regulatory mechanisms differ from 

those in yeast due to the lack of the phosphorylation sites at the N-terminus of the plant 

ORM protein. In this context, recent studies using mammalian cell cultures suggested that 

the regulation of SPT by ORMDLs does not require cytosolic proteins or small molecules 

like ATP, ruling out the possibility of post-translational modifications like phosphorylation 

as a regulatory process (Davis et al., 2019). Instead, the ORM-SPT regulation seems to 

respond to ceramide levels. Gupta et al. (2015) described how the induction of SPT activity 

increased ORMDL protein levels and blocking ceramide synthases suppressed this 

regulation. Additionally, incubation of isolated membranes with soluble ceramides 
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strongly inhibited de novo sphingolipid biosynthesis (Davis et al., 2019). These results 

indicate that ORMDL proteins might be regulated by an allosteric effect of ceramide or by 

a ceramide sensitive protein-protein interaction involving ORMs. However, although some 

evidences point to ceramides containing trihydroxy LCBs and VLCFAs as the main 

candidates to orchestrate this regulation, the mechanism is still unclear (Davis et al., 2019). 

Moreover, another open question is whether each ORMDL isoform is responding to 

ceramide levels and regulating SPT in the same way.  

1.1.5 Localization and Topology of ORM proteins 

ORMs are primarily localized to the ER (Kimberlin et al., 2016). However, recent 

reports in plants showed ORMs can also localize in vesicles and in the PM to exert other 

functions related to protein degradation by autophagy playing a key role in plant 

immunity (Yang et al., 2019).  

The ORM proteins form stable complexes with SPT subunits to regulate its 

activity, direct binding of Orm1 and Orm2 with Lcb1, Lcb2, and Tsc3 has been reported 

in yeast, however the key regions involved in these interactions are not known. Different 

biochemical approaches have been used to determine the topology of ORM proteins with 

the final goal to predict regions involved in protein-protein interaction and to identify the 

allosteric ceramide binding domain.  The topology of mammalian ORMDL3 and 

ORMDL1 proteins was determined using fluorescence-based protease protection assay 

and substituted cysteine accessibility method (SCAM), respectively (Davis, Suemitsu and 

Wattenberg, 2019). While the topology of the yeast Orm2 and the Arabidopsis ORM1 

protein was studied using inserting glycosylation cassettes at specific sites of the protein 
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(Kimberlin et al., 2016). These different approaches confirmed the existence of four 

transmembrane domains with the amino- and carboxy- termini facing the cytosol. 

1.1.6 Degradation of ORM proteins  

An additional mechanism for the regulation of SPT activity is the increased 

turnover of ORM proteins. In mammalian cells, the imbalance of PM lipid composition 

generated by adding exogenous cholesterol induced degradation of ORMDL1 protein, 

through autophagy, and resulted in increased SPT activity without changes in the levels of 

SPT subunits (Wang et al., 2015).  In yeast, a selective degradation of Orm2 by a novel 

route was shown to contribute to sphingolipid homeostasis. The phosphorylation of Orm2 

via the TORC2-dependent Ypk1 kinase triggers its export from the ER to the Golgi. Once 

on Golgi and endosomes, Orm2 is poly-ubiquitinated by the ubiquitin ligase complex 

(Dsc). Then Cdc48/VCP extracts ubiquitinated Orm2 from membranes for proteasomal 

degradation (Schmidt et al., 2019). This novel degradation pathway by EGAD (endosome 

and Golgi-associated degradation pathway) prevents the accumulation of Orm2 at the ER 

and promotes the controlled de-repression of sphingolipid biosynthesis. Interestingly, 

although Orm1 shares 72% amino acid identity with Orm2, this protein was not target of 

the Dsc complex for degradation. 

Regulation of sphingolipids biosynthesis is crucial for growth and to respond to 

environmental stimuli. Several exciting discoveries have been made in this area of research 

in the last decade, however, many questions remain unanswered. For example, the 

mechanisms behind the SPT regulation by ORM proteins in multicellular eukaryotes 

remain unclear. While in the yeast model the post-translational modifications are essential 

for sensing and responding to sphingolipid availability, in plants and mammals the 
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allosteric regulation and protein-protein interactions appear to be the governing 

mechanisms. Although the yeast Orm double knockout has been characterized, the lack of 

a complete knockout in plants limits the study of the physiological implications of an 

unregulated sphingolipid biosynthesis in multicellular eukaryotes. In Chapter 2 of this 

thesis we show ORM1 and ORM2 are essential for life cycle completion in Arabidopsis.  

orm1−/− orm2−/− seeds were nonviable, accumulated ceramide levels, displayed aberrant 

embryo development, and had >80% reduced oil content versus wild-type seeds. This 

phenotype was mimicked in Arabidopsis seeds expressing the SPT subunit LCB1 lacking 

its first transmembrane domain, which is critical for ORM-mediated regulation of SPT. In 

Chapter 3, we provide some insights about the regulatory interaction of ORM proteins with 

the LCB1 subunit of SPT. This was possible by the characterization of the orm1∆met/∆met 

orm2−/− mutant, which expresses an ORM1 structural variant that is strongly compromised 

in the regulation of SPT activity. These plants that did not advance beyond the seedling 

stage and hyperaccumulated ceramides and other sphingolipids.  

In addition, despite the compelling evidence of the functional redundancy of ORM 

isoforms in yeast, mammals and plants; recent reports point to potential individual roles 

and distinct regulation of each ORM isoform (Dang et al., 2017; Schmidt et al., 2019). In 

Chapter 2 we also uncovered phenotypical growth differences of orm1+/− orm2−/− and 

orm1−/− orm2+/− mutants that provide insights into potential differential roles of ORM1 and 

ORM2 in plant development. This area of study remains unexplored in the context of 

sphingolipid biosynthesis and other physiological processes.  
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1.2 Deoxysphingolipids  

Sphingolipid metabolism has been extensively studied in humans due to the 

association of mutations in genes encoding enzymes of the sphingolipid pathway to 

diseases (Hannun and Obeid, 2018; Dunn et al., 2019). One example is the rare condition 

Hereditary Sensory and Autonomic Neuropathy type 1 (HSAN1) that has been associated 

the production of  deoxysphingolipids (Penno et al., 2010). Deoxysphingolipids are 

atypical sphingolipids that are generated when SPT utilizes alanine or glycine instead of 

serine. As mentioned before, in the sphingolipid biosynthesis pathway, the formation of 

the canonical LCB sphinganine (d18:0) requires the condensation of palmitoyl-CoA with 

L-serine. Instead, the use of L-alanine gives rise to 1-deoxysphinganine (1-deoxySA; 

m18:0) and glycine results in the formation of 1-deoxymethylsphinganine (1-

deoxymethylSA; m17:0) (Lone et al., 2019) (Figure 1.3).  

 

Figure 1.3 Chemical structures of deoxyLCBs. 

Shown are the LCB sphinganine (d18:0) and the deoxyLCBs 1-deoxysphinganine (1-deoxySA; m18:0) and 
1-deoxymethylsphinganine (1-deoxymethylSA; m17:0). The position of double bonds in plant deoxyLCBs 
is not known.    

These LCBs, and the compounds derived from them, are called 1-

deoxysphingolipids due to the lack of the hydroxyl group at C1 position which prevents 

the addition of a polar head group to the ceramide backbone to generate more complex 

sphingolipids which are the major forms in which LCBs occur in the cell. In addition, it is 
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important to note that the lack of the 1-hydroxyl group in these compounds precludes 

their canonical catabolism through the generation of LCB-1-phosphates.  

In the last decade, great progress has been made understanding the metabolism 

and effects of deoxysphingolipids in the context of the HSAN1 condition in humans. 

However, even though these lipids have been also found in fungal species and marine 

organisms such as Spisula polynyma (Cuadros et al., 2000),  they remain largely 

unexplored in plants. In this section we present some of the advances understanding the 

synthesis and cellular effects of deoxysphingolipids in mammalian cells and yeast.   

1.2.1 HSAN1 Mutations are Related to the Synthesis of Deoxysphingolipids  

Even though wild-type SPT can generate deoxyLCBs, missense mutations in the SPTLC1 

and SPTLC2 subunits have been linked to increased levels of deoxysphingolipids in the 

context of HSAN1 (Penno et al., 2010; Zitomer et al., 2009). Some of the most frequent 

mutations found in patients are SPTLC1 C133W, C133Y, S331F, S331F and SPTLC2 

A182P, G382V, S384F, I504F (Bode et al., 2015); the analysis of  structural models 

suggests these mutations induce a shift in the substrate specificity of SPT, from L-serine 

to L-alanine or glycine which leads to the formation of the two 1-deoxyLCBs (Penno et 

al., 2010; Bode et al., 2015). In contrast, other mutations localized to the surface of the 

protein (SPTLC1-S331Y and SPTLC2-I505F) are associated with a severe HSAN1 

phenotype and could be involved in protein-protein interactions favoring the production 

of these atypical sphingolipids (Rotthier et al., 2010). 

For ceramide formation, the N-acylation of LCBs and fatty acyl-CoAs of different 

chain length is defined by the ceramide synthase substrate preference. There is also a 

distinction in the N-acyl chain distribution of deoxyceramides. In mouse fibroblasts, 
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supplementation with m18:0 revealed this LCB was incorporated to a variety of acyl-

CoAs from C16 to C24:1; while m18:1 was preferentially acylated to VLCFA (Alecu et 

al., 2017). However, in contrast to the typical ceramides where the ∆4-desaturase 

(DEGS1) introduces a trans double bond at ∆4 position, in the deoxyceramides the 

double bond is at position ∆14, and the desaturase has not been identified (Steiner et al., 

2016).  

 

Figure 1.4 Chemical structures of ceramides. 

Ceramides are formed by the condensation of a LCB and a fatty acyl-CoA through ceramide synthase. (A) 
Hydroxyceramide composed of the LCB t18:1 ∆8 trans and the fatty acid 24:1ω9cis hydroxylated at C-2 
position. (B) Non-hydroxylated deoxyceramide composed of the LCB m18:0 and the fatty acid 16:0.    

 
1.3 Cellular Effects of Deoxysphingolipids  

Even though the underlying mechanisms behind the HSAN1 condition are not 

fully understood, the toxic effects on the neurons and other cells have been attributed to 

the accumulation of deoxysphingolipids. Some of the effects include altered Ca2+ levels 

related to changes in mitochondria and ER morphology (Alecu et al., 2017); disassembly 

of actin fibers and other changes in cytoskeletal structures and (Cuadros et al., 2000), 

changes in the physicochemical properties of membranes (Jiménez-Rojo et al., 2014).  

In mammalian cells, the accumulation of canonical ceramides, either by de novo 

synthesis or hydrolysis of complex sphingolipids, activates apoptosis (Bartke and 

Hannun, 2009). In addition to the activation of signaling pathways, another way the 

accumulation of ceramides may impact cell processes is by alterations in the biophysical 

properties of membranes. Saturated ceramides increase the order of the fluid membranes 
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and tend to form gel domains; while ceramides with VLCFA promote the formation of 

interdigitated phases (Pinto et al., 2011). In contrast to canonical sphingolipids, the lack 

of the hydroxyl group in position 1 make deoxyceramides more hydrophobic and limits 

their capacity to form hydrogen bonds with other membrane lipids. This results in poor 

miscibility with other membrane lipids, aggregation and a great influence in cellular 

membranes, especially the ER membrane in which these lipids are synthesized. Studies 

on giant unilamellar vesicles (GUVs) made with a mixture of sphingomyelin and 

deoxyceramides revealed that these lipids induce gel-fluid phase separation and are able 

to induce the vesiculation of these GUVs (Jimenez-Rojo et al., 2014). It is important to 

note that the impact on membrane integrity is also dependent on the abundance of these 

compounds. Interestingly, Jimenez-Rojo et al. (2014) found comparable amounts of 1-

deoxyDHCers and ceramides in a murine macrophage cell line under normal conditions.  

1.3.1 HSAN1-like Mutations Affect SPT Activity  

Analysis of HSAN1 patients revealed the two most frequent mutations correspond 

to SPTLC1 at Cys133 (C133W or C133Y) and Val144 (V144D), these residues are in a 

highly conserved region of LCB1 that is predicted to be a catalytic domain. Gable et al. 

(2001) found that the corresponding mutations (C180W, C180Y, and V191D) in the 

LCB1 gene of Saccharomyces cerevisiae reduced SPT activity by 50 % and increased the 

levels of 1-deoxySA. Similarly, HSAN1-associated mutations were shown to confer 

dominant negative effects on the SPT activity in lymphoblasts even though the protein 

levels of LCB1 and LCB2 subunits did not change (Bejaoui et al., 2002). Reduced SPT 

activity was also observed in transgenic mice expressing the LCB1C133W allele 

(McCampbell et al., 2005), however, even though the composition of the ceramide pool 
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was altered, the total ceramide levels in these mice were unaffected. This suggests the 

activation of alternative mechanism to regulate ceramide degradation or the conversion to 

glycosylated sphingolipids. Interestingly, using a metabolic labeling approach the 

mutations in SPTLC1S331F/Y and SPTLC2I504F resulted in increased SPT activity when 

expressed in HEK293 cells, and the rest of the seventeenth analyzed mutations did not 

induce any change in activity. However, under FB1 treatment eleven mutations induced a 

reduction in SPT activity (Bode et al., 2015). 

1.3.2 Degradation of Deoxysphingolipids  

1-deoxyspingolipids lack the hydroxyl group at C1 which prevents the addition of 

a polar head group to the ceramide backbone to generate more complex sphingolipids. In 

addition, the lack of this hydroxyl group also blocks the phosphorylation of LCBs 

affecting the canonical degradation pathway by the enzyme LCB lyase that uses 

phosphorylated LCBs to generate phosphoethanolamine and hexadecenal, the breakdown 

products of sphingolipid catabolism.  

The accumulation of 1-deoxysphingolipids has been used a strategy in yeast to 

indirectly measure the activity of SPT under the assumption that these structures 

accumulate and are not degraded. However, a recent report showed the reduction of 

intracellular concentration of 1-deoxysphingolipids over time suggesting alternative 

degradation/elimination pathways. 1-deoxysphingosine (m18:1) was metabolized to a 

variety of hydroxylated downstream metabolites that appeared to be formed by 

cytochrome P450 enzymes (Alecu et al., 2017). Compared to the catabolism of the 

canonical LCBs that takes place in minutes to hours, the conversion of the newly 

identified metabolites is slower and can take up to several days (Alecu et al., 2017).  
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In Chapter 4, we describe that the incorporation of HSNA1-like mutations into 

Arabidopsis resulted in early senescence and resistance to the cell death triggered by the 

mycotoxin Fumonisin B1.  

1.4 Metabolic Modeling  

Computational systems biology has emerged as a field to describe biological 

networks using mathematical models. Mathematical modeling allows to describe the 

behavior of complex biological systems characterized by a substantial larger number of 

parameters  for predicting cellular phenotypes (Kim, Rocha and Maia, 2018). Some 

applications include the design of microbial strains for overproduction of metabolites of 

industrial interest. The process of model building is iterative, combining experimental 

testing for validation and in silico analysis for optimization (Gadkar, Gunawan and 

Doyle, 2005). A model can accelerate the process of hypothesis generation and testing by 

predicting plausible regulatory mechanisms that satisfy the observed experimental 

behavior of the system under different growth conditions. It can also allow the simulation 

of acute perturbations that are normally not amenable to try with experimentation. 

 Depending on the specific applications, mathematical models vary in their 

formulation and complexity. The two main categories of mathematical modeling applied 

to metabolism are: steady state and kinetic (Islam and Saha, 2018).   

Flux balance analysis (FBA) is in the category of steady-state modeling and relies 

on genome-scale metabolic models and the stoichiometry of the metabolic networks to 

predict the optimal flux distribution and the impact of perturbations (e.g. gene knock-

out/overexpression) (Varma and Palsson, 1994). This approach allows the quantitative 

interpretation of the metabolic physiology to provide a method for the design and 
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optimization of bioprocesses. However, steady-state/stoichiometric models do not capture 

essential information like metabolite concentration, enzyme kinetics and regulatory 

processes.    

Meanwhile, the use of dynamic models including metabolic and regulatory 

processes through kinetic expressions (rate equations of enzyme reactions), increases the 

accuracy of the phenotype predictions in terms of the temporal behavior of the metabolic 

network (Zielinski and Rohwer, 2012). However, practical applications of this approach 

are often not feasible due to the lack of defined enzyme kinetic parameters for all 

enzymes in the network.  

To overcome this limitation, ensemble kinetic modeling (EM) (Tran, Rizk and 

Liao, 2008) was developed to build accurate predictive models by sampling through the 

entire allowable kinetic solution space. A strategy to reduce the allowable solution space 

that needs to be spanned is enforcing thermodynamic feasibility constraints on the 

metabolic reactions (Henry, Broadbelt and Hatzimanikatis, 2007; Tran, Rizk and Liao, 

2008). The model is then filtered using measured parameters of the system’s response to 

different genetic perturbations (Rizk and Liao, 2009). In addition, EM can be used to 

predict regulatory interactions occurring in biochemical pathways (Khazaei, McGuigan 

and Mahadevan, 2012).  

Most of the metabolic modeling for biotechnological purposes has been done in 

prokaryotes. Some reasons for the scarcity of eukaryotic models are derived from the 

complexity of these organisms in terms of subcellular localization of 

proteins/metabolites, intra and extra cellular transporters, limited knowledge of gene 

annotation, interactions with different tissues/organs. 
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1.4.1 Modeling Sphingolipid Metabolism  

Currently, only few models of sphingolipid metabolism are available in the 

literature. In part, this is due to the challenges given by the diversity in sphingolipid 

composition and the complexity of the numerous interconnected reactions that happen in 

various subcellular compartments. A mathematic model of the sphingolipid biosynthesis 

was first reported in yeast. This model allowed simulations of metabolic fluxes, included 

the connection with phospholipid metabolism and was able to predict outcomes when 

enzyme where deleted (Alvarez-Vasquez et al., 2005). A second study in yeast developed 

a comprehensive kinetic model which can predict changes in enzyme activity based on 

changes in metabolic concentrations that result from genetic perturbations. This model 

included pathways for the synthesis of fatty acids to determine potential genes that 

impact the distribution of sphingolipid species (Savoglidis et al., 2016). Beyond yeast, 

(Gupta et al., 2011) proposed a model including data from lipidomic and transcriptomic 

analyses to describe the sphingolipid pathway in mammalian cells. In addition, a recent 

study described a model of sphingolipid metabolism in human tissue that simulates the 

molecular scenarios in the context of Alzheimer disease including different subcellular 

compartments (Wronowska et al., 2015).  

It is important to note how various regulatory processes, at the transcriptional and 

protein levels are important for the homeostasis of the sphingolipid synthesis.  The 

previously reported sphingolipid models did not consider regulatory parameters in the 

kinetic models or assumed a defined regulatory network. The inclusion of the regulation 

schemes by ORMs and other proteins in the models can have an impact on the analysis of 

the network response and thus can lead to different conclusions and hypotheses.  
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Previous efforts on modeling the sphingolipid pathway have used Saccharomyces 

cerevisiae and mammalian cells, however, there are no models based on data from plant 

sphingolipid metabolism. It is important to note that the sphingolipid levels typically 

reported in the literature correspond to steady state measurements, the result of the 

synthesis and turnover of metabolites that cannot be distinguished with the analytical 

tools. In Chapter 5, we provide some advances towards building a sphingolipid kinetic 

model with measurements derived from metabolic labeling. It is then intent of such 

model to provide a basis for understanding synthesis and turnover of sphingolipids in the 

context of cellular responses during pathogen infection.  
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2 Chapter 2 Unregulated Sphingolipid Biosynthesis in Gene-Edited Arabidopsis 
ORM Mutants Results in Nonviable Seeds. 

The content of this chapter has been published.  

Ariadna Gonzalez-Solis, Gongshe Han, Lu Gan, Yunfeng Li, Jonathan 
E. Markham, Rebecca E. Cahoon, Teresa M. Dunn, Edgar B. Cahoon. Unregulated 
Sphingolipid Biosynthesis in Gene-Edited Arabidopsis ORM Mutants Results in 
Nonviable Seeds with Strongly Reduced Oil Content. The Plant Cell Aug 
2020, 32 (8) 2474-2490; DOI: 10.1105/tpc.20.00015. 

2.1 Abstract 

Orosomucoid-like proteins (ORMs) interact with serine palmitoyltransferase (SPT) to 

negatively regulate sphingolipid biosynthesis, a reversible process critical for balancing 

the intracellular sphingolipid levels needed for growth and programmed cell death. Here, 

we show that ORM1 and ORM2 are essential for life cycle completion in Arabidopsis 

(Arabidopsis thaliana). Seeds from orm1−/− orm2−/− mutants, generated by crossing 

CRISPR/Cas9 knockout mutants for each gene, accumulated high levels of ceramides, 

indicative of unregulated sphingolipid biosynthesis. orm1−/− orm2−/− seeds were nonviable, 

displayed aberrant embryo development, and had >80% reduced oil content versus wild-

type seeds. This phenotype was mimicked in Arabidopsis seeds expressing the SPT 

subunit LCB1 lacking its first transmembrane domain, which is critical for ORM-

mediated regulation of SPT. In this study we also uncovered phenotypical growth 

differences of orm1+/− orm2−/− and orm1−/− orm2+/− mutants that provide insights into 

potential different roles of ORM1 and ORM2 in plant development.  

2.2  Introduction 

Sphingolipids are essential and abundant endomembrane and plasma membrane 

lipids that contribute to membrane function, vesicular trafficking, and mediation of 

cellular processes in eukaryotes (Coursol et al., 2003; Liang et al., 2003; Chen et al., 
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2006; Markham et al., 2011).  Serine palmitoyltransferase (SPT), the first step in 

sphingolipid biosynthesis, is highly regulated in eukaryotes to modulate the requirement 

of sphingolipids for growth and membrane function, while limiting accumulation of 

LCBs and ceramides until needed to trigger specific cellular functions, such as PCD-

mediated pathogen defense in plants (Peer et al., 2010).  SPT is comprised of LCB1 and 

LCB2 subunits and the accessory protein known as small subunit of SPT (ssSPT) or 

TSC3 in Saccharomyces cerevisiae (S. cerevisiae) (Gable et al., 2000; Kimberlin et al., 

2013). SPT is primarily regulated by post-translational mechanisms in order to rapidly 

respond to perturbations in intracellular sphingolipid concentrations. ORMs or 

orosomucoid-like proteins (or ORMDL in mammals) are now recognized as non-catalytic 

proteins that negatively regulate SPT (Breslow et al., 2010; Han et al., 2010). In S. 

cerevisiae, Orm1p and Orm2p suppress SPT activity in response to elevated sphingolipid 

levels through physical interaction that requires the first transmembrane domain of LCB1 

(Han et al., 2019). Sphingolipid-responsive regulation of the ORM-SPT interaction in S. 

cerevisiae is mediated by phosphorylation/dephosphorylation of the N-terminal domain 

of the ORMs (Breslow et al., 2010).  This domain is absent from ORM/ORMDL of 

higher eukaryotes suggesting alternative regulation of the ORM-SPT interaction, such as 

a recently demonstrated mechanism of direct binding of a ceramide molecule to 

mammalian ORMDL and yeast ORM to confer negative SPT regulation (Davis et al., 

2019). In addition, ORMDL expression levels vary with sphingolipid availability in 

mammalian cells (Gupta et al., 2015). 

S. cerevisiae cells are viable after knockout of the two ORM genes, but 

accumulate increased amounts of LCBs and ceramides and are sensitive to tunicamycin, 
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an inducer of ER stress (Breslow et al., 2010).  However, to date, a full understanding of 

the biochemical and physiological functions of ORM or ORMDL porteins in multi-

cellular eukaryotes is only beginning to emerge. A recent report showed that ORMDL 

proteins are critical for nerve myelination and for suppressing accumulation of toxic 

sphingolipid biosynthetic intermediates in mice (Clarke et al., 2019).  Studies in 

Arabidopsis have previously shown that downregulation of ORM2 using an artificial 

miRNA in an ORM1 T-DNA mutant yields fertile plants with increased accumulation of 

LCBs and ceramides and early senescence (Li et al., 2016). In addition, RNAi 

suppression of Arabidopsis ORM1 and ORM2 resulted in plants with normal appearance 

but with increased sensitivity to the ceramide synthase inhibitor fumonisin B1 and 

increased LOH2 ceramide synthase activity (Kimberlin et al., 2016).  Beyond 

Arabidopsis, RNAi of ORM genes in rice was linked to reduced pollen viability 

(Chueasiri et al., 2014).  

The lack of complete ORM knockout mutants in Arabidopsis or other plants has 

precluded assessment of SPT regulation in the absence of ORM proteins. To advance our 

understanding of ORM-mediation of sphingolipid biosynthesis we generated 

ORM1/ORM2 double mutants using CRISPR/Cas9. Our findings show that in full 

ORM1/ORM2 knockout mutants removing sphingolipid biosynthesis regulation results in 

nonviable seeds with impaired embryo development, ceramide accumulation and strongly 

reduced oil content. We obtained the same phenotypes by removing the first 

transmembrane domain of the LCB1 subunit of SPT which is known to be essential for 

ORM-SPT interaction.    
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2.3 Materials and Methods 

2.3.1 Plant Materials and Growth Conditions 

 Arabidopsis (Arabidopsis thaliana) Columbia-0 (Col-0) was used as the wild-type 

reference in this study. Arabidopsis seedlings were grown on Murashige and Skoog (MS) 

medium supplemented with 1% (w/v) Sucrose and 0.8% (w/v) agar, pH 5.7, with 16-h-

light (100 mmol/ m-2 s-1)/8-h-dark conditions at 22°C. The light source for growth 

chamber–grown seedlings was supplied by standard wide-spectrum fluorescent bulbs 

type F32/841/ ECO 32 W (maximum intensity, 480 to 570 nm). For Arabidopsis plants in 

soil, seeds were sown, and after 2 d of stratification at 4°C, plants were grown at 22°C 

with 16-h-light (100 mmol/ m-2 s-1)/8-h-dark conditions.  

2.3.2  Generation of CRISPR/Cas9 ORM Mutants 

 For CRISPR/Cas9-mediated gene editing of ORM1 and ORM2, designed target sites 

(Figure 2.1A) were fused with a single guide RNA and expressed under the control of the 

U6 promoter. The egg cell–specific EC1 promoter was used to drive Cas9 expression as 

previously reported by Wang et al. (2015). In short, BsaI sites were incorporated by PCR 

into the ORM target sequences (primers P1 to P4; Supplemental Table 1 in Appendix A). 

The purified PCR products were digested with BsaI and ligated to the BsaI-linearized 

binary vector pHEE401E. The final CRISPR/Cas9 binary vector was electroporated into 

Agrobacterium tumefaciens strain GV3101 and then transformed into the Arabidopsis 

Col-0 wild-type plants via the floral dip method (Clough and Bent, 1998). The seeds were 

screened for hygromycin resistance on MS plates containing 25 mg/L hygromycin. For 

genotyping, fragments including the target regions of ORM1 and ORM2 were amplified 

by PCR from the genomic DNA of transgenic plants (primers P5 to P8; Supplemental 



36 
 

Table 1 in Appendix A). Amplicons were digested with the restriction enzymes BslI 

(ORM1) and DraIII (ORM2). The specific indels were identified by DNA sequencing. To 

analyze for nontransgenic plants, progeny of hygromycin-selected and confirmed 

homozygous (CRISPR/Cas9 mutation) T1 plants were sown directly on soil without 

hygromycin selection. These plants were then screened by PCR (P9+P10; Supplemental 

Table 1 in Appendix A) for the lack of the Cas9 gene with the presence of the CRISPR 

mutation, in the T2 generation. The plants lacking Cas9 but containing the CRISPR 

mutation were kept and used for further studies as mutated but not transgenic lines.  

2.3.3  Generation of the LCB1∆TMD1 Mutant 

LCB1∆TMD1 was generated by deleting coding sequence for 17 amino acids 

corresponding to the first transmembrane domain of AtLCB1 (amino acids 35 to 51). 

LCB1∆TMD1 under the control of the LCB1 native promoter was cloned into the 

pBinGlyRed3 binary vector, which was transformed into A. tumefaciens GV3101 by 

electroporation. Heterozygous LCB1/lcb1- knockout mutants (SALK_077745) were 

transformed by the floral dip method (Clough and Bent, 1998).  

2.3.4 Pollen Staining  

Anthers of mature plants were isolated and smeared on a glass slide. The pollen was 

stained using Alexander staining method (Alexander, 1969) for 1 h at 25°C. Pollen 

imaging was performed using the EVOS FL Auto Cell Imaging System. 

2.3.5 Sphingolipid Extraction and Analysis  

Sphingolipids were extracted as described in Markham and Jaworski (2007). Briefly, 

leaves from 20- to 30-d-old Arabidopsis plants grown on soil were collected and 
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lyophilized.  Ten to 30 mg of tissue was homogenized and extracted with 

isopropanol:heptane:water (55:20:25, v/v/v). We used 1 to 4 mg of plant material for 

each biological replicate for sphingolipid analysis from seeds. Internal standards for the 

different sphingolipid classes were added. The supernatants were dried and deesterified 

with methylamine in ethanol:water (70:30, v/v). The lipid extract was re-suspended in 

tetrahydrofuran:methanol:water (5:2:5, v/v/v) containing 0.1% (v/v) formic acid. The 

sphingolipid species were analyzed using a Shimadzu Prominence ultra-performance 

liquid chromatography system and a 4000 QTRAP mass spectrometer (AB SCIEX). Data 

analysis and quantification were performed using the software Analyst 1.5 and 

MultiQuant 2.1 as described by Markham and Jaworski (2007), Kimberlin et al. (2013), 

and Davis et al. (2020). 

2.3.6 Lipid Extraction Analysis 

To quantify the TAG content, lipids were extracted from ~1 mg of seeds using a method 

based on that of Bligh and Dyer (1959). Seeds were ground using a glass rod in 13x100-

mm glass screw cap tubes with 3 mL of methanol:chloroform (2:1, v/v). 

Triheptadecanoin (17:0-TAG) was added to the seeds as an internal standard prior to 

extraction. After 1 h of incubation at 25°C, 1 mL of chloroform and 1.9 mL of water were 

added. The solution was mixed thoroughly and centrifuged at 400g for 10 min. The lower 

organic phase containing total lipids was transferred to a new glass tube and solvent 

evaporated under a N2 stream with heating at 40°C. The sample was redissolved in 1 mL 

of heptane and loaded onto a solid phase extraction column (Supelco Supelclean LC-Si 

SPE column; Sigma-Aldrich) pre-equilibrated with heptane. A purified TAG fraction was 

eluted from the column and converted to fatty acid methyl esters, which were analyzed 



38 
 

by gas chromatography as previously described (Zhu et al., 2016). TAG fatty acid content 

was quantified relative to 17:0 fatty acid methyl ester from the internal standard. 

2.3.7 Statistical Analyses 

Two-tailed Student’s t test was performed to evaluate statistically significant differences 

compared to the control (wild type). One-way ANOVA followed by Tukey’s test was 

used to determine the differences among the five genotypes for a given variable. Values 

of P < 0.05 were considered statistically significant. The statistical analyses were done 

using GraphPad Prism 8.3.0.  

2.4 Results 

2.4.1 ORMs Are Essential for Plant Development  

We designed two single guide RNAs to target regions in the coding sequence of each of 

the two Arabidopsis ORM genes (Figure 2.1A). We introduced these constructs into 

Arabidopsis via Agrobacterium tumefaciens–mediated transformation to generate 

CRISPR/Cas9-induced knockouts of the ORM1 and ORM2 genes. We screened T1 and 

T2 transformants by restriction enzyme digestion of the PCR amplicons encompassing 

the ORM1 and ORM2 target sites to obtain homozygous lines with mutations in each 

gene. These lines were also verified by PCR to lack Cas9 transgenes. These homozygous 

single mutants were visually indistinguishable from wild-type plants under optimal 

growth conditions (Figure 2.1B).  
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Figure 2.1 Gene-edited ORM Arabidopsis mutants. 

(A) Schematic representation of CRISPR/Cas9-induced mutations in ORM genes. Gene structures of ORM1 
and ORM2; black boxes represent exons. The CRISPR/Cas9 target site is indicated as well as the nucleotide 
deletions for each gene in the single mutants. (B) Representative images of 25-d-old wild-type Col-0, 
orm1−/−, and orm2−/−  plants. 

The population of mutants obtained contained nucleotide deletions resulting in 

frameshifts and premature stop codons, as determined by PCR–restriction enzyme 

digestion and sequencing (Supplemental Figure 1 in Appendix A). To obtain double 

knockout mutants, we crossed the orm1−/− and orm2−/− single mutants. No progeny with 

homozygous knockout mutations in both genes were obtained after analyzing 155 plants 

from the F2 generation and 60 plants from the F3 generation. To gain more insight into 

the basis for the apparent lethality associated with the double mutant, we performed 

viability staining on pollen from plants genotyped as orm1+/− orm2+/− (Supplemental 

Figure 2A in Appendix A). Nearly all of the pollen from these mutants was viable, 

similar to pollen from the wild-type plants (Figures 2.2A and 2.2C), rather than 25% 

nonviability that would be expected for pollen lethality in this mutant. Instead, a 

population of seeds from these plants had dark colored seed coats and were severely 

wrinkled. Strikingly, free ceramide concentrations in pooled abnormal seeds were; 40-

fold higher than those in wild-type seeds and; 8-fold higher than in the normal-appearing 

seed segregants from orm1+/− orm2+/−  plants (Figure 2.3C). 
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Figure 2.2 Pollen Viability and Seed Development from orm1+/− orm2+/− Plants. 

(A) Representative images of pollen and anthers (treated with Alexander stain) collected from wild-type 
Col-0 and orm1+/− orm2+/− plants. (B) Viability of pollen determined by counts of ~100 pollen grains from 
five randomly selected flowers from independent Col-0 and orm1+/− orm2+/− plants. Shown are the mean ± 
SD. (C) Developing seeds in siliques from wild-type Col-0 and orm1+/− orm2+/− plants. Shriveled, brown 
(abnormal) seeds are indicated by arrows. (D) Percentage of shriveled and brown (abnormal) seeds in 
siliques determined by counts of an average of 200 developing seeds from 10 randomly selected siliques of 
the independent wild-type Col-0 and orm1+/− orm2+/− plants. Shown are the mean ± SD. Asterisks denote 
significant differences as determined by two-tailed Student’s t test, with a significance of P ≤0.01. 

This phenotype was observed for 7% of seeds collected from the F2 orm1+/− orm2+/− 

plants of orm1−/− and orm2−/− crosses, which is consistent with the expected 6.25% 

Mendelian ratio for the occurrence of homozygous double mutants. The remaining seeds 

were visually indistinguishable from wild-type seeds (Figures 2.2B and 2.2D). Of the 

seeds in these two populations, dark, wrinkled seeds did not germinate, whereas seeds 

with normal appearance showed no impairment in germination on solid Sucrose-

containing medium (Figures 2.3A and 2.3B) and soil.  
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Figure 2.3 The ORM Double Knockout is Seed Lethal. 

(A) Seeds from wild-type Col-0; seeds from orm1+/− orm2+/− were separated and classified into normal and 
the darker, shriveled seeds as abnormal. Bars = 1 mm. (B) Phenotypes of 10-d-old seedlings from wild-type 
Col-0 seeds and normal and abnormal seeds from orm1+/− orm2+/−. Abnormal seeds did not germinate. (C) 
Ceramide content in seeds from wild-type Col-0 and normal and abnormal seeds from orm1+/− orm2+/−. 
Shown are the mean ± SD, n 5 3. Asterisks indicate significant differences based on one-way ANOVA 
followed by Tukey’s multiple comparisons test, with a significance of *, P ≤0.05 and ***, P ≤0.001. 

2.4.2 LCB1-∆TMD1 Mimics the Phenotype of the ORM-null Mutant  

We also observed a similar seed phenotype in Atlcb1+/− plants expressing a version of the 

LCB1 subunit of SPT lacking its first transmembrane domain (LCB1∆TMD1) that is 

required for SPT-ORM regulatory interactions (Han et al., 2019). In these experiments, 

the segregating seeds from Atlcb1+/− plants expressing LCB1∆TMD1 included a 

population of shrunken, nonviable seeds with a 14-fold increase in ceramide levels 

compared with wild-type seeds (Figure 2.4).  
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Figure 2.4 Atlcb1+/− Plants Expressing LCB1∆TMD1 Phenocopy the ORM Double Knockout Mutant. 

Figure 2.4. (A) Seeds from wild-type Col-0; seeds from Atlcb1+/− plants expressing LCB1∆TMD1 were 
separated and classified into normal and abnormal darker and shriveled seeds. Bars = 1 mm. (B) 
Phenotypes of 10-d-old seedlings from wild-type Col-0 seeds and normal and abnormal seeds from 
Atlcb1+/− expressing LCB1∆TMD1. Abnormal seeds did not germinate. (C) Ceramide content in seeds 
from wild-type Col-0 and normal and abnormal seeds from LCB1∆TMD1. Shown are the mean ± SD, n = 
3. Asterisks indicate significant difference based on one-way ANOVA followed by Tukey’s multiple 
comparisons test, with a significance of **, P ≤ 0.01. NS, not significant. 
 
We examined seeds from the orm1−/− and orm2−/− crosses and LCB1∆TMD1 in more 

detail to understand the basis for the loss of viability. The weight of mature nonviable, 

abnormal seeds was 80 to 90% lower than that of normal seed segregants from these lines 

(Figure 2.5E). Embryos dissected from the abnormal seeds had variable appearance 

ranging from cell clusters with undifferentiated appearance to embryo-like structures that 

were up to one-third the size of those from normal seeds (Figures 2.5A to 2.5D). 
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Underlying this phenotype, oil content of the abnormal seeds, as measured by the fatty 

acid content of purified triacylglycerols (TAG), was 85 to 90% lower than that of normal 

seed segregants (Figure 2.5F).  

 

Figure 2.5 Abnormal Seeds from ORM and LCB1∆TMD1 Mutant Plants Have Altered Embryo 
Morphology and Reduced TAG Concentrations. 

(A) to (D) Morphology of embryos from the wild-type seeds (A) and abnormal seeds from orm1+/− 
orm2+/−. plants (see [B] to [D]) showing that the embryo is not fully developed. Embryos were dissected 
from mature seeds. (E) The 100 seed weight. Values are the mean ± SD of seeds harvested from four 
independent plants. Asterisks indicate significant difference based on oneway ANOVA followed by 
Tukey’s multiple comparisons test, with a significance of ****, P ≤ 0.0001. NS, not significant; TMD, 
transmembrane domain. (F) TAG content in seeds from wild-type Col-0 and normal and abnormal seeds 
from orm1+/− orm2+/−. and Atlcb1+/− expressing LCB1∆TMD1. Values are the mean ± SD of three 
independent lipid extractions. Asterisks indicate significant difference based on one-way ANOVA followed 
by Tukey’s multiple comparisons test, with a significance of ***, P ≤ 0.001 and ****, P ≤ 0.0001. NS, not 
significant; TMD, transmembrane domain. (G) Composition of TAG as weight percent of fatty acid in 
seeds from wild-type Col-0 and normal and abnormal seeds from orm1+/− orm2+/−. and Atlcb1+/− 
expressing LCB1∆TMD1. Values are the mean ± SD of three independent samples. TMD, transmembrane 
domain. 

The most striking difference in fatty acid composition of TAG from the abnormal seeds 

was a reduction in the overall content of C20 and C22 very long chain fatty acids derived 

from ER-localized elongation reactions. Notably, the fatty acids 20:2, 20:3, and 22:1 
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were not detectable in TAG from the abnormal seeds (Figure 2.5G). Overall, these results 

indicate that ORMs are essential for the completion of a full life cycle in Arabidopsis. 

Lethality due to the absence of ORM proteins is associated with the recovery of 

nonviable seeds with undeveloped embryos that accumulate excessive ceramide 

concentrations and have strongly reduced TAG levels. This was phenocopied in plants 

with deregulated SPT activity due to the loss of the transmembrane domain of LCB1 that 

abolishes ORM regulation of SPT (Han et al., 2019). The identification of nearly the 

same phenotype in ORM-null mutants and LCB1-∆TMD1 lines also indicated that the 

loss of seed viability is associated with the role of ORM proteins in sphingolipid 

metabolism, rather than other reported functions of ORM in Arabidopsis (Yang et al., 

2019).  

2.4.3 The orm1+/− orm2−/− and orm1−/− orm2+/− Mutants Have Distinct Growth 

Phenotypes  

The availability of progeny from orm1−/−  and orm2−/−  crosses also allowed us to assess 

the contributions of each ORM gene to the viability and growth of Arabidopsis plants. In 

addition to our inability to obtain homozygous double mutants for these genes, we 

observed that orm1−/−  orm2+/− mutants were strongly dwarfed and senesced prior to 

flowering (Figure 2.6A). By contrast, orm1+/− orm2−/− mutants had a distinct bushy 

phenotype with overproliferation of shoots and inflorescences, delayed flowering time 

compared to wild-type and an extended life span of 7 months (Figures 2.6B and 2.6C).  

The seeds from these plants were viable and rendered 82 % plants genotyped as orm1+/+ 

orm2−/−, 22 % orm1+/− orm2−/− and 0 % orm1−/− orm2−/−.  
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Figure 2.6 orm1+/− orm2−/−  and orm1−/− orm2+/− Plants Have Distinct Growth Phenotypes. 

(A) Representative image of 35-d-old orm1+/− orm2−/− and orm1−/− orm2+/−plants. The 
orm1−/−orm2+/−plants showed reduced size and yellow regions corresponding to cell death. (B) 
Representative image of 18-d-old wild-type Col-0 and orm1+/−orm2−/− plants. Mutants showed reduced 
size, abnormal leaf shape, and a bushy phenotype. (C) Representative image of 50-d-old orm1+/−orm2−/− 
and orm1+/−orm2+/−plants. The orm1+/− orm2−/−plants showed a bushy phonotype and delayed 
flowering. (D) Representative image of 80-d-old orm1+/−orm2−/− plant. (E) Representative image of 120-
d-old orm1+/−orm2−/− plant.  

Sphingolipidomic profiling revealed little differences in the concentrations of free LCBs, 

the LCB-phosphate (LCB-P) and ceramides among the wild-type, orm1+/− orm2+/−, 

orm1−/+ orm2−/− and one plant of the genotype orm1−/−orm2+/−. However, one plant 

genotyped orm1−/−orm2+/− (2) showed increased levels of LCBs and ceramides (Fig 

2.7A, 2.7B and 2.7C). The ceramide profile of this plant with increased sphingolipid 

levels showed accumulation of C16, C22, C24 and C26 ceramides compared to wild type.  
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Figure 2.7 LCB and Ceramide Profiles in orm1+/− orm2+/−, orm1+/− orm2−/− and orm1−/−  orm2+/− 
Plants. 

(A) Free LCB composition (d18:0, d18:1, t18:0, t18:1), (B) free LCB-phosphate (LCB-P) and (C) total 
ceramide content in two representative plants of each genotype: wild-type Col-0, orm1+/− orm2+/−, orm1+/− 
orm2−/−and orm1−/−  orm2+/−. (D) and (E) Ceramide molecular species compositions representing the exact 
pairings of LCB and fatty acid for the wild-type (D), orm1−/− orm2+/−(E) plants.  

2.5 Discussion  

Our findings identified the essential role of sphingolipid biosynthetic regulation at 

the level of SPT for seed viability, which was previously unclear due to the lack of 

complete knockout mutants for ORM genes in plants. We showed that orm1−/− orm2−/− 

seeds have impaired embryo development accompanied by hyperaccumulation of the 

cytotoxic sphingolipid biosynthetic intermediates ceramides. Strongly enhanced ceramide 

accumulation was also observed in the S. cerevisiae orm1∆/orm2∆ mutant (Breslow et 

al., 2010; Han et al., 2010) and recently in Ormdl1/3 mutant mice (Clarke et al., 2019). 

We also confirmed that impaired seed viability in the mutant is due solely to the function 
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of ORMs in SPT regulation, rather than other ascribed ORM functions (Yang et al., 

2019). This was achieved by mimicking this phenotype by removing the first 

transmembrane domain of LCB1, which is required for ORM binding to SPT (Han et al., 

2019).  

This study emphasizes that the full significance of ORMs to plant viability can 

only be assessed by complete knockout of the corresponding genes. By contrast, 

Arabidopsis ORM suppressed plants previously generated by RNAi or artificial 

microRNA methods were fully viable, although the response to bacterial pathogens was 

altered in these plants and early senescence was observed with the most extreme 

suppression of ORM expression (Kimberlin et al., 2016; Li et al., 2016). Similar to our 

findings, a recent report revealed the inability to recover mice lacking all three ORMDL 

genes (Clarke et al., 2019). However, we were able to more precisely determine that 

lethality occurs during seed development rather than during gametogenesis. This finding 

contrasts with those from previous studies of plants with strongly reduced sphingolipid 

biosynthetic capacity due to impaired SPT activity (Dietrich et al., 2008; Teng et al., 

2008; Kimberlin et al., 2013). In these mutants, pollen is defective in endomembrane 

formation and is unable to complete maturation. Sphingolipids accumulate to 

exceptionally high levels in Arabidopsis pollen relative to leaves (Luttgeharm et al., 

2015b; Ischebeck, 2016). As such, it is likely that pollen is able to tolerate unregulated 

sphingolipid synthesis that results from complete ORM knockout.  

The use of gene editing also allowed us to assess the redundancy of ORM1 and 

ORM2. Notably, single mutants and progeny from the crosses that genotype as orm1+/− 

orm2+/−  had an appearance similar to the wild-type plants under normal conditions. 
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However, orm1−/− orm2+/− seedlings displayed early senescence and did not flower. 

Sphingolipid analyses revealed increased ceramides and LCBs levels in one of the plants 

of this genotype (Figure 2.7). Consistent with previous reports and our findings (Chapter 

3), the accumulation of ceramides likely triggers enhanced expression of PCD-related 

genes. It is possible that the differences in sphingolipids content within the biological 

replicates was due to sample variation in terms of temporal PCD elicitation.  

By comparison, orm1+/− orm2−/− plants were fertile but had a highly bushed 

appearance, were strongly delayed in flowering (>80 d to flowering) and had a prolonged 

life span of ~7 months.  Despite the phenotypic differences no changes were seen in the 

levels of sphingolipids in the orm1+/− orm2−/− mutants compared to wild type. It is 

important to note that the sphingolipid measurements were performed using leaves, 

perhaps significant changes in sphingolipid concentrations can be detected in specific 

cells like axillary buds that are groups of meristematic cells located in the leaf axis.  

The normal appearance of mutants genotyped as ORM1/orm2−/− and orm1−/−/ORM2 

suggests that ORM1 and ORM2 are functionally redundant, despite the phenotypic 

differences observed in orm1−/− orm2+/− and orm1+/− orm2−/− seedlings. However, it is 

possible that ORM1 and ORM2 have specific roles allowing a fine tuning of SPT activity 

through different mechanisms under specific physiological demands. Our studies indicate 

that ORM1 may be a more potent inhibitor of SPT or perhaps the stronger phenotype 

associated with the complete ORM1 knockout in the ORM2 heterozygous background 

reflects the finding that ORM1 is more highly expressed than ORM2 throughout the plant 

except in pollen (Kimberlin et al., 2016). The phenotype of the orm1+/− orm2−/− mutant 

suggests that ORM2 could contribute to the prolonged life cycle of an Arabidopsis plant 
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perhaps by cell type-specific function to fine-tune sphingolipid levels or through a 

nonsphingolipid-related function. It has been shown that mutations that lead to prolonged 

shoot apical meristems (SAM) activity, continuous generation of new shoots and arrest 

senescence of tissues are associated with extended longevity of Arabidopsis (Gan, 2003; 

Nooden and Penney, 2001). Moreover, in future work we will determine changes in 

phytohormones levels in the mutants. The roles of the hormones auxin and cytokinins are 

essential for apical dominance and the suppression of axillary buds (Guo and Gan, 2011). 

In this context it is possible that ORM2 has a functional role at the meristematic cells 

related to the transport of phytohormones.  
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3 Chapter 3. Compromised regulation of SPT activity leads to hyperaccumulation 
of selected sphingolipids, altered organellar structures and transcriptional 

regulation. 

The content included in this chapter has been published. 

Ariadna Gonzalez-Solis, Gongshe Han, Lu Gan, Yunfeng Li, Jonathan 
E. Markham, Rebecca E. Cahoon, Teresa M. Dunn, Edgar B. Cahoon. Unregulated 
Sphingolipid Biosynthesis in Gene-Edited Arabidopsis ORM Mutants Results in 
Nonviable Seeds with Strongly Reduced Oil Content. The Plant Cell Aug 
2020, 32 (8) 2474-2490; DOI: 10.1105/tpc.20.00015. 

3.1 Abstract  

Serine palmitoyltransferase, the first enzyme of sphingolipid biosynthesis, is negatively 

regulated by ORM proteins. However, in multicellular eukaryotes the mechanisms of this 

regulation are not fully understood, especially the details of the SPT-ORMs interaction 

are not known. In this study, through gene editing, we recovered the orm1∆met/∆met 

orm2−/− mutant, which expresses an ORM1 structural variant lacking one amino acid 

(Met-51). This mutant did not advance beyond the seedling stage, hyperaccumulated 

ceramides, and showed altered organellar structures and increased senescence- and 

pathogenesis-related gene expression. These seedlings also showed upregulated 

expression of genes for sphingolipid catabolic enzymes, pointing to additional 

mechanisms for maintaining sphingolipid homeostasis. Moreover, ORM1 lacking Met-51 

had strongly impaired interactions with LCB1 in a yeast (Saccharomyces cerevisiae) model, 

providing structural clues about regulatory interactions between ORM and SPT. 

3.2 Introduction 

Sphingolipids have been recognized as abundant membrane components that play several 

roles in plant cells. Besides their importance in endomembrane trafficking and formation 

of plasma membrane domains, sphingolipids are also bioactive molecules that participate 
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in signaling pathways during the pathogen-induced hypersensitive response, abiotic stress 

and ABA-dependent guard cell closure (Coursol et al., 2003; Magnin-Robert et al., 

2015). Therefore, the study of sphingolipid metabolism has become an active are of 

research in the last decades, especially the emphasis on the regulatory processes that 

ensure homeostasis during cell development and responses to the environment. As the 

first step in the pathway, serine palmitoyltransferase (SPT) is considered a target for 

regulation. Small subunits of SPT (ssSPT) interact with the core subunits of SPT, LCB1 

and LCB2, and have an activating effect on the activity (Kimberlin et al., 2013). 

Whereas, ORM proteins are negative regulators. Studies of yeast mutants have shown 

ORMs are downstream of a Torc2/Ypk1 kinase signaling pathway that senses 

sphingolipid availability and regulates SPT activity accordingly (Roelants et al., 2011). In 

the yeast regulatory scenario, under sphingolipid depletion ORMs get phosphorylated 

relieving SPT inhibition. However, in multicellular eukaryotes, the lack of the N-terminal 

domain containing the phosphorylation sites suggests the regulation of SPT by ORMs 

occurs through different mechanisms that have not been fully elucidated. Here, we 

describe an Arabidopsis mutant expressing an ORM1 structural variant that is strongly 

compromised in the regulation of SPT activity. This mutant provided valuable insights 

into changes in sphingolipid levels and the effects in the cell. These effects included 

compromised organellar structures, the induction of catabolic genes to maintain 

sphingolipid homeostasis and pathogenesis-related genes. In addition, this mutant 

provided clues about the structural requirements of ORMs for interaction with LCB1 for 

the regulation of SPT activity. 
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3.3 Materials and Methods  

3.3.1 Plant Materials and Growth Conditions  

Arabidopsis (Arabidopsis thaliana) Columbia-0 (Col-0) was used as the wild-type 

reference in this study. Arabidopsis seedlings were grown on Murashige and Skoog (MS) 

medium supplemented with 1% (w/v) Sucrose and 0.8% (w/v) agar, pH 5.7, with 16-h-

light (100 mmol/ m-2 s-1)/8-h-dark conditions at 22°C. The light source for growth 

chamber–grown seedlings was supplied by standard wide-spectrum fluorescent bulbs 

type F32/841/ ECO 32 W (maximum intensity, 480 to 570 nm). For Arabidopsis plants in 

soil, seeds were sown, and after 2 d of stratification at 4°C, plants were grown at 22°C 

with 16-h-light (100 mmol/ m-2 s-1)/8-h-dark conditions.  

3.3.2 Generation of CRISPR/Cas9 ORM Mutants  

For CRISPR/Cas9-mediated gene editing of ORM1 and ORM2, designed target sites (Fig 

2.1A) were fused with a single guide RNA and expressed under the control of the U6 

promoter. The egg cell–specific EC1 promoter was used to drive Cas9 expression as 

previously reported by Wang et al. (2015). In short, BsaI sites were incorporated by PCR 

into the ORM target sequences (primers P1 to P4; Supplemental Table 1 in Appendix A). 

The purified PCR products were digested with BsaI and ligated to the BsaI-linearized 

binary vector pHEE401E. The final CRISPR/Cas9 binary vector was electroporated into 

Agrobacterium tumefaciens strain GV3101 and then transformed into the Arabidopsis 

Col-0 wild-type plants via the floral dip method (Clough and Bent, 1998). The seeds were 

screened for hygromycin resistance on MS plates containing 25 mg/L hygromycin. For 

genotyping, fragments including the target regions of ORM1 and ORM2 were amplified 

by PCR from the genomic DNA of transgenic plants (primers P5 to P8; Supplemental 
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Table 1 in Appendix A). Amplicons were digested with the restriction enzymes BslI 

(ORM1) and DraIII (ORM2). The specific indels were identified by DNA sequencing. To 

analyze for nontransgenic plants, progeny of hygromycin-selected and confirmed 

homozygous (CRISPR/Cas9 mutation) T1 plants were sown directly on soil without 

hygromycin selection. These plants were then screened by PCR (P9+P10; Supplemental 

Table 1 in Appendix A) for the lack of the Cas9 gene with the presence of the CRISPR 

mutation, in the T2 generation. The plants lacking Cas9 but containing the CRISPR 

mutation were kept and used for further studies as mutated but not transgenic lines.  

3.3.3 Genetic Complementation of orm1∆met/∆met orm2−/− 

For genetic complementation of the mutant orm1∆met/∆met orm2−/−, ORM1 cDNA was 

synthesized with included silent mutations of the ORM1 gRNA target sequence to 

mitigate possible editing of the transgene. The cDNA was amplified by overlapping PCR 

and cloned into the EcoRI and XbaI sites of binary vector pBinGlyRed3 under the control 

of the native ORM1 promoter 600-bp region upstream of the ORM1 start codon (primers 

P11 to P16; Supplemental Table 1 in Appendix 1). orm1∆met/∆met orm2−/−  plants were 

transformed with the pBinGlyRed3-ORM1 construct by the floral dip method (Clough 

and Bent, 1998). Transformants were selected based on Discosoma red fluorescent 

protein fluorescence and genotyped. Mutation was confirmed by sequencing. 

3.3.4 RNA Isolation and Quantitative RT-PCR 

RNA was extracted from 12- to 15-d-old Arabidopsis seedlings grown on solid MS 

medium. Each replicate corresponds to pooled seedlings from independent plates. RNA 

extraction was performed using an RNeasy Kit (Qiagen) according to the manufacturer’s 

protocol. The isolated RNA (1mg) was treated with DNase I (Invitrogen). cDNA 
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conversion was performed with a RevertAid cDNA synthesis kit (Thermo Fisher 

Scientific). SYBR Green was used as the fluorophore in a qPCR supermix (Qiagen). 

PP2AA3 and UBIQUITIN (UBQ) were used as internal reference genes. qPCR was 

performed using a Bio-Rad MyiQ iCycler qPCR instrument. The thermal cycling 

conditions were an initial step of 95°C for 10 min followed by 45 cycles at 95°C for 15 s, 

60°C for 30 s, and 72°C for 30 s. Primers used in this study are listed in Supplemental 

Table 1 in Appendix 1. 

3.3.5 Electron Microscopy 

Ten-day-old wild-type and orm1∆met/∆met orm2−/−  seedlings were used for TEM. The 

samples were cut and fixed with 2.5% (v/v) glutaraldehyde and 2.0% (v/v) 

paraformaldehyde in 0.1 M cacodylate buffer. The samples were subjected to postfixation 

with 1% (w/v) osmium tetroxide in 0.1 M cacodylate buffer, dehydrated with ethanol and 

acetone, and embedded with a Spurr’s Embedding Kit. Ultrathin sections (100 nm) were 

cut and stained with uranyl acetate and lead citrate. Samples were imaged on a Hitachi 

H7500 transmission electron microscope at an accelerating voltage of 80 kV. 

3.3.6 Sphingolipid Extraction and Analysis 

Sphingolipids were extracted as described in Markham and Jaworski (2007). Briefly, 12- 

to 15-d-old Arabidopsis seedlings grown on solid medium were collected from 

independent plates for each biological replicate. The seedlings were lyophilized, and 10 

to 30 mg of tissue was homogenized and extracted with isopropanol:heptane:water 

(55:20:25, v/v/v). We used 1 to 4 mg of plant material for each biological replicate for 

sphingolipid analysis from seeds. Internal standards for the different sphingolipid classes 

were added. The supernatants were dried and deesterified with methylamine in 
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ethanol:water (70:30, v/v). The lipid extract was re-suspended in 

tetrahydrofuran:methanol:water (5:2:5, v/v/v) containing 0.1% (v/v) formic acid. The 

sphingolipid species were analyzed using a Shimadzu Prominence ultra-performance 

liquid chromatography system and a 4000 QTRAP mass spectrometer (AB SCIEX). Data 

analysis and quantification were performed using the software Analyst 1.5 and 

MultiQuant 2.1 as described by Markham and Jaworski (2007), Kimberlin et al. (2013), 

and Davis et al. (2020). 

3.3.7 Saccharomyces cerevisiae Cell Growth and Expression Plasmids  

Saccharomyces cerevisiae strain TDY9113 (Mata tsc3D:NATlcb1D:KAN ura3 leu2 lys2 

trp1D) lacking endogenous SPT was used for the expression of Arabidopsis SPT subunits 

and ORM proteins as described by Kimberlin et al. (2016). For DoxSA quantification, S. 

cerevisiae strain TDY9113 expressing AtLCB1C144W was grown in 1.5% (w/v) Gal and 

0.5% (w/v) Glc supplemented with 40 mM Ala. Plasmids for the expression of AtLCB1- 

FLAG, Myc-AtLCB2a, and HA-AtssSPTa in S. cerevisiae were as described by 

Kimberlin et al. (2013) and for HA-AtORM1 as described by Kimberlin et al. (2016). 

AtLCB1C144W was generated by QuikChange mutagenesis (Agilent Technologies) and 

confirmed by sequencing. The open reading frame of AtORM1∆Met51 was amplified by 

PCR and inserted into pPR3-N (Dualsystems Biotech) for expression with an N-terminal 

HA tag. LCB and DoxSA quantifications were performed as previously described by 

Kimberlin et al. (2016). 

3.3.8 Immunoprecipitation 

Microsomal membrane proteins were prepared from S. cerevisiae cells expressing 

FLAG-tagged AtLCB1, Myc-tagged AtLCB2a, HA-tagged AtssSPTa, and HA-tagged 
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AtORM1 or AtORM1∆Met51. Microsomal membrane proteins were solubilized in 1.5% 

digitonin at 4°C for 2.5 h and incubated with FLAG-beads (Sigma-Aldrich) overnight. 

The bound proteins were eluted in immunoprecipitation buffer (50 mM Hepes-KOH, pH 

6.8, 150 mM potassium acetate, 2 mM magnesium acetate, 1 mM calcium chloride, and 

15% [v/v] glycerol) containing 0.25% (w/v) digitonin and 200 mg/mL FLAG peptide, 

resolved on a 4 to 12% (w/v) Bis-Tris NuPAGE gel (Invitrogen), and detected by 

immunoblotting with anti-HA (1:5000 dilution; Covance), anti-Myc (1:3000 dilution; 

Sigma-Aldrich), and antiFLAG (1:5000 dilution; GenScript) antibodies. 

3.3.9 Membrane Topology Mapping of AtORM1∆Met51  

AtORM1 or AtORM1∆Met51-encoding synthetic cDNAs with an in-frame glycosylation 

cassette (GC) inserted after codon 46, 82 or 121 were synthesized by GenScript and 

ligated into pPR3-N for expression with an N-terminal HA tag. The HA-ORM1-GC–

tagged proteins were expressed (along with AtLCB1-FLAG, MYC-AtLCB2a, and HA-

AtssSPTa) in S. cerevisiae strain TDY9113. Isolation of microsomal proteins, digestion 

with endoglycosidase H, and immunodetection of the AtORM1 proteins were performed 

as previously described (Kimberlin et al., 2016).  

3.3.10  Statistical Analyses 

Two-tailed Student’s t test was performed to evaluate statistically significant differences 

compared to the control (wild type). One-way ANOVA followed by Tukey’s test was 

used to determine the differences among the five genotypes for a given variable. Values 

of P ≤ 0.05 were considered statistically significant. The statistical analyses were done 

using GraphPad Prism 8.3.0.  
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3.4 Results  

3.4.1 orm1∆met/∆met orm2−/− Mutant Does Not Survive Beyond the Seedling Stage 

Screening of gene-edited lines revealed a mutant with an in frame deletion of a single 

codon that resulted in a deletion of the Met residue at amino acid 51 relative to the wild-

type ORM1 (Figure 3.1B). This line also carried nucleotide deletions in ORM2 that led to 

a frameshift and premature stop codon (Supplemental Figures 1 and 2B in Appendix 1). 

Seedlings with the genotype orm1∆met/∆met orm2+/− showed a phenotype like the wild type 

and the single mutants under normal growth conditions (Figure 3.1A). However, we 

could only recover plants of the genotype orm1∆met/∆met orm2−/− in solid medium 

supplemented with Sucrose. The resulting seedlings were severely dwarfed and had a 

proliferation of small, deformed chlorotic leaves. These plants persisted in a visually 

viable state for 20 to 25 d after planting, but did not progress beyond the seedling stage, 

indicating that the orm1∆met/∆met orm2−/− mutation is seedling lethal (Figures 3.1A and 

3.1C to 3.1F). Complementation of this mutant with the Arabidopsis ORM1 cDNA under 

the control of its native promoter was sufficient to rescue the seedling lethality and 

recover fertile plants, although many of the independent complemented mutant lines were 

smaller than wild-type plants, which is similar to the phenotype of orm1+/− orm2−/− 

plants, as described above (Supplemental Figure 3 in Appendix 1).  
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Figure 3.1  orm1∆met/∆met orm2−/− Plants Exhibit Developmental Defects and Do Not Progress beyond 
the Seedling Stage. 

(A) and (C) to (E) Representative images (A) of the 12-d-old wild-type Col-0, orm1−/−, orm2−/−, 
orm1∆met/∆met orm2+/−, and orm1∆met/∆met orm2−/−seedlings. Seedlings with the same phenotype as the wild 
type correspond to orm1∆met/∆met orm2+/−; small seedlings showing developmental defects correspond to 
orm1∆met/∆met orm2−/−; enlarged images are shown in (C) to (E). Bars = 1 mm. (B) CRISPR/Cas9-induced 
mutations in ORM1 and ORM2. Structures of the ORM genes; black boxes represent exons. The position of 
the CRISPR target site is marked as well as the nucleotide deletions in each mutant. (F) Phenotypes of 18-
d-old seedlings; arrows indicate orm1∆met/∆met orm2−/−and asterisk indicates orm1∆met/∆met orm2+/−. Bar = 1 
mm. 

3.4.2 orm1∆met/∆met orm2−/− Mutant Hyperaccumulates Selected Sphingolipids 

 Based on the finding that downregulating ORM expression triggers sphingolipid 

accumulation (Breslow et al., 2010; Kimberlin et al., 2016; Li et al., 2016), we conducted 

extensive sphingolipidomic profiling of our gene-edited mutants from seedlings grown on 

Suc medium at 12 to 15 d after planting. 
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Figure 3.2  Selected Sphingolipid Classes Highly Accumulate in the orm1∆met/∆met orm2−/− Mutant. 

 (A) to (G) Total sphingolipid content (A) in wild-type, orm1−/−, orm2−/−, orm1∆met/∆met orm2+/−, and 
orm1∆met/∆met orm2−/−. Content of the following sphingolipid classes in the mutants: free LCBs (B), Cer 
(Ceramides; see [C]), hCer (hCeramides; see [D]), GlcCer (E), and GIPCs (F). Content of atypical 
sphingolipids nh-GlcCer (G) and IPCs (H). (I) Content of atypical deoxyLCB m18:0 in ceramides. 
Normally, SPT condenses Ser with palmitoyl-CoA to form d18:0. However, the unusual condensation of 
Ala gives rise to a deoxyLCB, DoxSA m18:0. Measurements are the average of four to six replicates 
consisting of pooled 12- to 15-d-old seedlings grown on different plates. Bars represent SE of the mean. 
Different letters indicate significant difference based on one-way ANOVA followed by Tukey’s multiple 
comparisons test (P ≤ 0.05). 
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The orm1∆met/∆met orm2−/− mutant accumulated 3.7-fold more sphingolipids than 

wild-type seedlings (Figure 3.2A). No significant differences in the levels of free LCBs, 

ceramides with nonhydroxylated fatty acids (Cer), or other sphingolipid classes were 

detected in the orm1−/−, orm2−/−, or orm1∆met/∆met orm2+/− mutants compared to wild-type 

plants (Figures 3.2B to 3.2E and 3.G to 3.2I). In strong contrast, orm1∆met/∆met orm2−/− 

seedlings showed heightened accumulation of LCB (5-fold), Cer (90-fold), and ceramides 

with hydroxylated fatty acids (hCer; 12-fold) compared to wild-type seedlings of similar 

age (Figures 3.2B and 3.2D; Supplemental Figure 4 in Appendix 1). Although no changes 

were detected in GlcCer concentrations, the levels of GlcCer containing nonhydroxylated 

fatty acids (nhGlcCer), not typically found in abundance in Arabidopsis, were 13-fold 

higher in orm1∆met/∆met orm2−/− seedlings than in wildtype seedlings (Figures 6E and 6G; 

Supplemental Figures 5 and 6). GIPC levels increased by 48% in the orm1∆met/∆met 

orm2−/− mutant compared to wild-type seedlings (Figure 3.2F; Supplemental Figure 7 in 

Appendix 1). The LCB composition of the single mutants and orm1∆met/∆met orm2+/− did 

not change significantly compared to wild type (Figures 3.3A and 3.3B). However, in 

orm1∆met/∆met orm2−/−, the levels of free and phosphorylated forms of d18:0 were the most 

strongly increased, with lesser increases in the amounts of t18:0 and t18:1 free and 

phosphorylated species (Figures 3.3A and 3.3B). Cer profiles of the single mutants were 

similar to those of the wild type (Figures 3.3C to 3.3E). By contrast, the orm1∆met/∆met 

orm2+/− mutant had increased amounts of Cer with C16 fatty acids relative to wild-type 

and single mutant plants (Figure 3.3F). This phenotype was more accentuated in 

orm1∆met/∆met orm2−/− seedlings, which primarily accumulated Cer species with C16 fatty 

acids linked to the dihydroxy LCB d18:0 and d18:1 (Figure 3.3G). Increased amounts of 



64 
 

Cer with C22, C24, and C26 fatty acids as well as atypical C18 and C20 fatty acid– 

containing species were also detected in orm1∆met/∆met orm2−/− seedlings relative to wild-

type plants and mutants of either ORM gene (Figure 3.3G). 

 

Figure 3.3 Free LCB and Ceramide Compositions and Concentrations Are Strongly Affected in the 
orm1∆met/∆met orm2−/− Mutant. 

(A) to (G) Free LCB composition (d18:0, d18:1, t18:0, t18:1, [A]) and free LCB-phosphate (LCB-P) 
composition in the wild-type, orm1−/−, orm2−/−, orm1∆met/∆met orm2+/−, and orm1∆met/∆met orm2−/−. (B). Bars 
show averages of four to six replicates consisting of 12- to 15-d-old pooled seedlings grown on different 
plates. Error bars represent the SE of the mean. Different letters indicate significant difference, for each 
LCB, based on one-way ANOVA followed by Tukey’s multiple comparisons test (P ≤0.05). Ceramide 
molecular species compositions representing the exact pairings of LCB and fatty acid for the wild-type (C), 
orm1−/−, (D), orm2−/−, (E), orm1∆met/∆met orm2+/−, (F), and orm1∆met/∆met orm2−/− (G) plants. Measurements 
for all panels are the average of four to six replicates consisting of 12- to 15-d-old pooled seedlings grown 
on different plates. Bars represent SE of the mean. 

Overall, the primary change in the composition of all sphingolipid classes, especially Cer, 

hCer, and nhGlcCer, in the orm1∆met/∆met orm2−/− seedlings was the change in the total 

and/or relative amounts of those containing C16 fatty acids bound to dihydroxy LCB, 

which are derived from the LOH2 ceramide synthase (Figure 3.3G; Supplemental Figures 

4 and 6; Markham et al., 2011; Ternes et al., 2011; Luttgeharm et al., 2015a). The 
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orm1∆met/∆met orm2−/− plants also contained aberrant forms of hCer and GIPCs with 

currently undefined structures based on liquid chromatography–mass spectrometry 

ionization as well as Cer with the LCB deoxysphinganine (DoxSA), which is derived 

from the condensation of Ala, rather than Ser, to palmitoylCoA by SPT (Figure 6I). In 

addition, the concentration of inositolphosphorylceramides (IPCs), the precursors of 

GIPCs, increased nearly 12-fold in small orm1∆met/∆met orm2−/− seedlings versus the wild 

type (Figure 6H). Overall, these findings are consistent with the notion that SPT 

regulation by the ORM1∆met-encoded polypeptide is deficient and that the flux of excess 

LCB occurs through the LOH2 ceramide synthase to produce Cer backbones with C16 

fatty acids and dihydroxy LCB, a portion of which are channeled to GIPCs but 

accumulate as IPC intermediates.  

3.4.3 Integrity of Cellular Component Is Compromised in the orm1∆met/∆met orm2−/− 

Mutant  

Given that sphingolipids are abundant endomembrane and plasma membrane components 

that contribute to vesicular trafficking, we used transmission electron microscopy (TEM) 

to evaluate the subcellular phenotypes associated with enhanced sphingolipid 

accumulation in 10-d-old orm1∆met/∆met orm2−/− seedlings relative to the wild-type 

seedlings of the same age. Mesophyll cells from the wild-type seedlings showed large 

vacuoles with turgor pressure pushing organelles to the periphery (Figure 3.4A). 

Chloroplasts of the wild-type cells had the typical oval shape and well-defined thylakoid 

membranes (Figures 3.4A and 3.4B). By contrast, the orm1∆met/∆met orm2−/− mutant cells  



66 
 

 

Figure 3.4 Subcellular Features are Strongly Altered in the orm1∆met/∆met orm2−/− Mutant. 

(A) to (H) Representative TEM images of the wild-type seedlings (see [A] and [B]) and orm1∆met/∆met 
orm2−/−. (see [C] to [I]). Longitudinal sections of leaves from 10-d-old seedlings were prepared for TEM 
analysis. Boxes represent sections enlarged in (E) and (H). Asterisks indicate vesicles and arrows 
autophagosomes. Bar = 200 nm in (I); bars = 800 nm in (E) and (F); bar = 1mm in (B); bars = 2mm in (A) 
and(C); and bars = 4mm in (D) and (G). Ch, Chloroplast; CW, cell wall; GA, Golgi apparatus; M, 
mitochondrion; V, vacuole. 

displayed a lack of vacuolar turgor (Figure 3.4D). In addition, chloroplasts of 

orm1∆met/∆met orm2−/− cells were round and showed marked disintegration of thylakoids 

and highly abundant osmiophilic structures that resemble plastoglobuli (Figures 3.4C to 

3.4F). Notably, increased vesicle numbers were observed around the ER network in 

orm1∆met/∆met orm2−/− cells (Figure 3.4F). Furthermore, electrodense material and double 

membrane vesicles consistent with autophagosomes were detected inside the vacuoles of 

these cells. Moreover, entire chloroplasts were engulfed and appeared to be in the process 
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of degradation (Figures 3.4G and 3.4H). Despite these large defects, Golgi stacks were 

detectable in orm1∆met/∆met orm2−/− cells (Figure 3.4I). 

3.4.4 Genes for Ceramide Synthases, LCB Kinase, and LCB-Phosphate Lyase Are 

Upregulated in the orm1∆met/∆met orm2−/− Mutant  

Given the increased concentrations of most sphingolipid classes in orm1∆met/∆met orm2−/−, 

we examined the expression of genes in 12-d-old seedlings for key sphingolipid 

biosynthetic and catabolic enzymes, including the SPT-associated polypeptides LCB1 

and ssSPTa, ceramide synthases (LOH1, LOH2, and LOH3), sphingosine kinases 

(SPHK1 and SPHK2), and the LCB catabolic enzyme LCB-phosphate lyase (or DPL1). 

No significant differences were detected in the expression of genes for LCB1, ssSPTa, or 

LOH1 in any mutant analyzed (Supplemental Figures 8A to 8C in Appendix 1). 

However, consistent with the increased amounts of ceramides in orm1∆met/∆met orm2−/−, 

the ceramide synthase gene LOH2 showed a 2.5-fold increase in expression and the 

ceramide synthase gene LOH3 showed a 2-fold increase in orm1∆met/∆met orm2−/− plants 

compared to the wild type and the other mutants examined (Figures 3.5A and 3.5B). 

Most notably, the expression of the key sphingolipid catabolism-associated genes SPHK2 

and DPL1 increased by approximately six- to sevenfold, respectively, in orm1∆met/∆met 

orm2−/− plants relative to the wild type and other ORM mutants (Figures 3.5C and 3.5D). 

This result is consistent with the notion that the induction of LCB catabolism is one route 

(in addition to ceramide biosynthesis) for the mitigation of unregulated LCB production 

in the orm1∆met/∆met orm2−/− mutant.  
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Figure 3.5 Expression of Genes Associated with Sphingolipid Homeostasis, Plant Defense Responses, 
and Senescence are Upregulated in the orm1∆met/∆met orm2−/− Mutant. 

(A) to (H) Wild-type, orm1−/−, orm2−/−, orm1∆met/∆met orm2+/−, and orm1∆met/∆met orm2−/−. seedlings of 12-d-
old plants were used to examine gene expression by qPCR to monitor genes encoding enzymes in 
sphingolipid biosynthetic and catabolic pathways: ceramide synthase gene LOH2 (A), ceramide synthase 
gene LOH3 (B), sphingosine kinase 2 gene SPHK2 (C), and LCB-phosphate lyase gene DPL1 (D) and 
selected pathogenesis- and senescence-related genes: β-1,3-glucanase gene PR2 (E), class III peroxidase 
gene PRXC (F), flavin monooxygenase gene FMO (G), and senescence-related 13 gene SAG13 (H). 
PP2AA3 transcript levels were used as a control for the sphingolipid genes and UBQ for the pathogenesis- 
and senescence-related genes. Specific primers used for this analysis are shown in the Supplemental Table 
1 in Appendix 1. Gene expression levels are normalized to those in wild-type seedlings. Values are the 
mean ± SD (n = 6 to 12). Different letters indicate significant difference based on one-way ANOVA 
followed by Tukey’s multiple comparisons test (P ≤ 0.05). 

3.4.5 Defense and Senescence Genes Are Upregulated in the orm1∆met/∆met orm2−/− 

Mutant  

The accumulation of ceramides has been linked to the activation of signaling pathways 

that lead to PCD (Liang et al., 2003; Bi et al., 2014). To examine whether the high 

amounts of ceramides in orm1∆met/∆met orm2−/− activate PCD, we performed qPCR of 

marker genes using RNA extracted from 12-d-old seedlings. The expression of the 

pathogenesis-related genes (PR-2, PRXC, FMO, PR3) was significantly higher in 
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orm1∆met/∆met orm2−/− than in the wild type and the other mutants (Figures 3.5E to 3.5G; 

Supplemental Figure 8E in Appendix 1). A similar expression pattern was also observed 

for the senescence-related gene SAG13 (Figure 3.5H).  

3.4.6 ORM1∆Met51 Fails to Interact with LCB1 to Suppress SPT Activity 

 Our results clearly show that ORM1 lacking Met-51 is strongly impaired in repressing 

SPT activity. This amino acid is located in the ER luminal domain immediately adjacent 

to the second transmembrane domain of ORM1 (Supplemental Figure 9 in Appendix 1). 

We hypothesized that, without this amino acid, the conformation of the second 

transmembrane domain of ORM1 is altered such that the interaction with LCB1 for the 

repression of SPT activity is disrupted.  

 

Figure 3.6 Expression of AtORM1∆Met51 in yeast 

(A) AtORM1∆Met51 was stably expressed in S. cerevisiae with the native SPT complex replaced by the 
Arabidopsis SPT complex (see Methods). AtLCB1- FLAG, MYC-AtLCB2a, and HA-AtssSPTa without or 
with HA-AtORM1 or HA-AtORM1∆Met51were expressed in S. cerevisiae strain lcb1 tsc3. Five, 10, and 15 
mg of microsomal proteins was loaded and analyzed by SDS-PAGE (4 to 12%; Invitrogen) and detected 
with anti-LCB1 (1:3000) and anti-HA (Covance) antibodies. (B) DoxSA levels were determined from cells 
expressing AtLCB1C144W and AtLCB2a, HA-AtssSPTa along with vector, HA-AtORM1 wild-type, or 
HAAtORM1∆Met51. Shown are the mean ± SD of DoxSA levels from six independent colonies for each 
strain. Asterisks denote significant differences, as determined by two-tailed Student’s t test with a 
significance of P ≤ 0.001; NS, not significant, n=6. 

 To better understand this regulatory mechanism, we stably expressed the Arabidopsis 

ORM1∆Met51 mutant protein in an S. cerevisiae mutant background in which AtLCB1, 
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AtLCB2, and AtssSPTa replaced the corresponding S. cerevisiae SPT-associated 

polypeptides, as confirmed by immunoblotting (Figure 3.6A). 

We assessed in vivo SPT activity by measuring the DoxSA produced when expressing 

AtLCB1C144W (Figure 3.6B). DeoxyLCBs cannot be phosphorylated/degraded and are 

used as a readout for in situ SPT activity (Gable et al., 2010; Kimberlin et al., 2016). 

When expressed in this S. cerevisiae background, the wild-type Arabidopsis ORM1 was 

able to suppress DoxSA production, which is consistent with its function as a negative 

regulator of SPT activity. By contrast, DoxSA concentrations in AtORM1∆Met51-

expressing cells were similar to those in vector control cells lacking ORM1, which is 

consistent with a lack of repressed SPT activity. ORMs interact with the first 

transmembrane domain of LCB1 to repress SPT activity in S. cerevisiae (Han et al., 

2019), although the structural components of ORM associated with this interaction have 

not been defined. To test whether AtORM1∆Met51 physically interacts with AtLCB1, as 

does the wild-type ORM1, we performed coimmunoprecipitation of FLAG-tagged 

AtLCB1 with solubilized microsomes from S. cerevisiae cells expressing Myc-AtLCB2a, 

hemagglutinin (HA)-AtssSPTa, and HA-AtORM1 or HA-AtORM1∆Met51.  

Pull-downs of AtLCB1 resulted in coimmunoprecipitation of AtLCB2a and AtORM1, 

but not ELO3, an ER protein that does not interact with SPT. By contrast, only trace 

amounts of HA-AtORM1∆Met51 were detected in the AtLCB1 pulldowns (Figure 3.7A). 

This finding indicates that Met-51 is critical for the ORM-LCB1 physical interaction to 

regulate SPT activity. To determine whether the impaired ORM-LCB1 interaction is due 

to gross or subtle alterations in the secondary structure of ORM induced by the Met51 

deletion, we compared the membrane topology of AtORM1 and AtORM1∆Met51. 
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Figure 3.7 AtORM1∆Met51 Fails to Regulate SPT Activity and Does Not Interact with LCB1. 

(A) Coimmunoprecipitation of FLAG-tagged AtLCB1 in S. cerevisiae expressing AtLCB1-FLAG, MYC-
AtLCB2a, HA-AtssSPTa, and either HA-AtORM1 or HA-AtORM1DMet51. Solubilized S. cerevisiae 
microsomes were incubated with anti-FLAG beads, and protein was eluted with FLAG peptide. Solubilized 
microsomes (Input), unbound and bound (IP-FLAG) were analyzed by immunoblotting. ELO3, an integral 
ER membrane protein, was used as a negative control. (B) Topology mapping of AtORM1DMet51. GCs 
were inserted after the indicated amino acids, and the GC-tagged proteins were expressed in S. cerevisiae. 
Increased mobility following treatment of microsomes with endoglycosidase H (Endo H) revealed that the 
GCs at residues 46 and 121 are glycosylated and therefore reside in the lumen of the ER. However, the GC 
at residue 82 is not glycosylated, indicating that residue 82 is located in the cytosol. AtORM1∆Met51 retains 
the topology of wild-type (WT) ORM1. 

We inserted glycosylation cassettes into the two predicted ER luminal loops (at amino 

acids 46 and 121) and into the cytosolic loop between the second and third 

transmembrane domains (at amino acid 82) and expressed the proteins in S. cerevisiae 

along with reconstituted Arabidopsis SPT. The analysis showed that the cassettes in the 

predicted luminal domains were glycosylated, while the cassette in the predicted 

cytosolic domain was not (Figure 3.7B). Thus, we conclude that ORM1 with the Met51 

deletion retains the topology of wild-type ORM1. 

3.5 Discussion 

Among the gene-edited ORM variants identified in our studies was a mutant that 

contained an in-frame deletion of Met-51 combined with a homozygous knockout of 

ORM2 (orm1∆met/∆met orm2−/−). Seeds from this mutant were viable, in contrast to orm1−/− 
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orm2−/−; however, the plants did not advance beyond the seedling stage and had strong 

developmental defects. Like the orm1−/− orm2−/− seeds, the orm1∆met/∆met orm2−/− 

seedlings hyperaccumulated ceramides with C16 fatty acids. These seedlings also 

accumulated aberrant sphingolipids including DoxSA containing ceramides, GlcCer 

containing nonhydroxylated fatty acids, and IPCs, all of which were nearly absent from 

wild-type seedlings. Cells from the orm1∆met/∆met orm2−/− seedlings displayed gross 

defects in membrane and organellar structures as well as apparent autophagosome-like 

structures. The early cell death displayed by the orm1∆met/∆met orm2−/− seedlings can be 

attributed to the activation of PCD pathways, as indicated by the high transcript levels of 

pathogenesis- and senescence-related genes that have been shown to be activated by the 

accumulation of LCB and ceramides. Notably, Met-51 is predicted to occur at a position 

that is adjacent to the second transmembrane domain of ORMs, but is not a conserved 

residue across eukaryotic ORM or ORMDL proteins (Supplemental Figure 9 in Appendix 

1). Using S. cerevisiae mutants containing the Arabidopsis SPT complex, we determined 

that the ORM1 Met51 mutant has greatly reduced interaction with Arabidopsis LCB1, 

which is required for ORM-induced suppression of SPT activity. Given that Met-51 is not 

conserved in eukaryotes, it is likely that LCB1 does not directly interact with this residue. 

Instead, the lack of this amino acid likely produces a conformational change at the second 

transmembrane domain of ORM that impedes its regulatory interaction with the first 

transmembrane domain of LCB1. The maintenance of the topology of ORM1∆Met51 in 

microsomal membranes was verified by endoglycosidase H digestion studies using the 

mutant ORM1 protein carrying glycosylation cassettes. To date, no residues or structural 

features in ORMs have been identified that are associated with their interaction with the 
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LCB1/ LCB2 heterodimer of SPT. Our findings point to the possible interaction of the 

first transmembrane domain of LCB1 with the second transmembrane domain of ORM as 

the basis for SPT regulation. Additional structural studies are required to fully elucidate 

these potential regulatory interactions between ORM and LCB1.  

Our results also revealed transcriptional mechanisms for maintaining sphingolipid 

homeostasis upon the enhanced production of LCBs in the orm1∆met/∆met orm2−/− mutant. 

LOH2 and LOH3 (encoding the functionally distinct ceramide synthases), SPHK2 

(enconding a LCB kinase) and DPL1 (encoding the last step in LCB degradation) were 

transcriptionally upregulated in the mutant. Notably, upregulating LOH2 expression was 

associated with the preponderance of ceramides containing C16 fatty acids and dihydroxy 

LCBs (the principal products of LOH2 ceramide synthase activity) in free ceramides and 

GlcCer, including nhGlcCer, which accumulated in orm1∆met/∆met orm2−/− seedlings but 

were detected at only low concentrations in the wild type and ORM1 and ORM2 single 

mutants. These findings are consistent with our previous report that LOH2 activity is 

upregulated in Arabidopsis ORM RNAi plants, presumably as a pathway for reducing 

cytotoxicity of free LCBs and ceramides (which are metabolized to GlcCer; Kimberlin et 

al., 2016). No changes were detected in LCB1 or ssSPTa transcript levels in the 

orm1∆met/∆met orm2−/− mutant, indicating that the transcriptional regulation of genes for 

SPT complex proteins is not a pathway for maintaining sphingolipid homeostasis in 

response to deregulated LCB biosynthesis. Instead, the expression of genes involved in 

the catabolism of LCBs increased approximately six- to sevenfold (SPHK2 and DPL1) in 

this mutant, suggesting that an unknown mechanism is activated in response to increased 

ceramide and/or LCB levels.  
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4 Chapter 4 Investigating the physiological effects of HSAN1-like mutations in 
Arabidopsis. 

This chapter may be part of a publication in the future.  

Authors: Ariadna Gonzalez Solis, Rebecca E. Cahoon, Gongshe Han, Teresa M. Dunn, 

Edgar B. Cahoon.  

4.1 Abstract  

The deoxysphingolipids are atypical sphingolipids that are generated when serine 

palmitoyltransferase (SPT) condenses palmitoyl-CoA with alanine or glycine instead of 

serine during the synthesis. The shift in substrate specificity is associated with variants of 

SPT subunits that have specific point mutations. Even though great progress has been 

made understanding the metabolism and effects of deoxysphingolipids in the context of 

the hereditary sensory autonomic neuropathy type 1 (HSAN1) in humans, these atypical 

sphingolipids remain largely unexplored in plants.   

Here we provide insights into the physiological effects in Arabidopsis caused by 

the incorporation of the point mutations in SPT that are associated with the accumulation 

of deoxysphingolipids. Our research demonstrated that the changes in SPT resulted in 

early senescence and resistance to the cell death triggered by the mycotoxin Fumonisin 

B1.  

4.2 Introduction 

Serine palmitoyltransferase (SPT) catalyzes the first reaction of sphingolipid 

biosynthesis by condensing L-serine with palmitoyl-CoA to form sphingoid bases or long 

chain bases (LCBs), the characteristic backbone of all sphingolipids. The core SPT is a 

heterodimer formed by LCB1 and LCB2 subunits, additional regulatory proteins like 

ssSPT and ORM proteins interact with the core SPT and have an impact on its activity 
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(Tamura et al., 2001; Chen et al., 2006; Dietrich et al., 2008; Kimberlin et al., 2013; 

Kimberlin et al., 2016). Based on studies of Saccharomyces cerevisiae it is known that 

the active site of SPT is localized at the dimer interface, and LCB1 stabilizes the complex 

(Gable et al., 2002).  Moreover, several studies in Arabidopsis have shown knock-out 

mutants for the LCB2 (LCB2a and LCB2b) and LCB1 genes are not viable, emphasizing 

the importance of sphingolipids as essential components of plant cells (Tamura et al., 

2001; Chen et al., 2006; Dietrich et al., 2008). 

In humans, eight missense mutations in SPTLC1 and four mutations in the 

SPTLC2 subunits (LCB1 and LCB2 ortologues, respectively), are associated with 

Hereditary Sensory and Autonomic Neuropathy 1 (HSAN1), a rare dominantly inherited 

degenerative disorder caused by the accumulation of unusual deoxysphingolipids (Penno 

et al., 2010). All the HSAN1 mutations characterized to date induce a shift in the 

substrate specificity of SPT from L-serine to L-alanine or glycine giving rise to 1-

deoxyshinganine (1-deoxySA; m18:0) or 1-deoxymethylsphinganine (1-deoxymetylSA: 

m17:0). These atypical LCBs can get N-acylated by ceramide synthases to form 

ceramides; however, the lack of the hydroxyl group in C1 position precludes the 

formation of more complex glycosylated sphingolipids. The missing hydroxyl group also 

hampers the degradation of deoxyLCBs by the canonical pathway that requires 

phosphorylation at C1 to form the catabolic phosphorylated intermediates.  

Interestingly, out of the context of HSAN1, 1-deoxysphingolipids were also 

detected in a mammalian cell line treated with the ceramide synthase inhibitor Fumonisin 

B1 (FB1) (Zitomer et al., 2009). In this study the accumulation of canonical LCBs was 
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accompanied with 1-deoxySA suggesting that the wild-type SPT is also capable of using 

alanine and glycine as substrates.   

The study of SPT regulation requires a robust, sensitive and reproducible method 

to measure its activity. In mammalian cells and yeast, SPT activity is usually measured 

by a radioactivity-based assay using 3H or 14C-serine as substrate that gets incorporated 

into 3-ketosphinganine (Williams et al., 1984). However, measuring the activity in plants 

is still problematic due to the low activity in in vitro assays. Evidence in yeast shows the 

non-degradable deoxySA could serve as a strategy to measure SPT activity as this LCB 

accumulates and is not degraded (Chapter 3) (Gable et al., 2010; Kimberlin et al., 2016).   

For this study, we hypothesize that incorporating the HSAN1 mutations into 

Arabidopsis SPT would allow the production of deoxysphingolipids, which could be used 

as a readout for SPT activity. Moreover, the characterization of transgenic plants 

expressing mutations in LCB1 would allow us to examine the physiological effects of the 

unusual sphingolipids that until now have not been explored in plants.  

Here we describe the incorporation of the mutated versions LCB1C144W and 

LCB1C144W V155D into Arabidopsis resulting in early senescence hallmarks. We also 

determined that these plants are resistant to the mycotoxin FB1. Although we did not 

detect a significant accumulation of deoxyceramides in the transgenic plants compared to 

wild type, we observed that m18:0 and m18:1 were incorporated to ceramides containing 

C16 fatty acids. Future work will focus on the detection of potential degradation products 

of deoxysphingolipids and their subcellular localization.   
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4.3 Materials and Methods 

4.3.1 Plant Materials and Growth Conditions  

Arabidopsis (Arabidopsis thaliana) Columbia-0 (Col-0) was used as the wild-type 

reference in this study. Arabidopsis seedlings were grown on Murashige and Skoog (MS) 

medium supplemented with 1% (w/v) Sucrose and 0.8% (w/v) agar, pH 5.7, with 16-h-

light (100 mmol/ m-2 s-1)/8-h-dark conditions at 22°C. The light source for growth 

chamber–grown seedlings was supplied by standard wide-spectrum fluorescent bulbs 

type F32/841/ ECO 32 W (maximum intensity, 480 to 570 nm). For Arabidopsis plants in 

soil, seeds were sown, and after 2 d of stratification at 4°C, plants were grown at 22°C 

with 16-h-light (100 mmol/ m-2 s-1)/8-h-dark conditions.  

4.3.2 HSAN1 LCB1 Generation and Transformation 

Two versions of the HSAN1 mutations were generated in AtLCB1 using QuikChange 

Site-Directed Mutagenesis Kit (Stratagene), LCB1C144W an LCB1C144W V155D. The mutated 

versions of LCB1 were then cloned into the vector pBinGlyRed3 under the native LCB1 

promoter (~1kb). The Binary vectors were transformed into Agrobacterium tuumefaciens 

GV3101 by electroporation. Heterozygous LCB1 mutants (SALK_077745) were used to 

create transgenic plants by the floral dip method (Clough and Bent, 1998). Red seeds 

were screened using a green LED light and a red2 camara filter to identify transformed 

Arabidopsis seeds harboring the vector expressing DsRed.  

4.3.3 Arabidopsis Mutant Genotyping 

The T-DNA SALK_077745 insertion line was acquired from the Arabidopsis Biological 

Resource Center.  Individual plants from a mixed population of seeds were screened by 
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PCR using the primers P1+P3. The wild-type allele was amplified using P2+P3; 

Supplemental Table 1 in Appendix B.   

4.3.4 Sphingolipid Extraction and Analysis  

Sphingolipids were extracted as described in Markham and Jaworski (2007). Briefly, 35-

d-old Arabidopsis leaves were collected for biological replicates. The plant tissue was 

lyophilized, and 10 to 30 mg of tissue was homogenized and extracted with 

isopropanol:heptane:water (55:20:25, v/v/v). Internal standards for the different 

sphingolipid classes were added. The supernatants were dried and de-esterified with 

methylamine in ethanol:water (70:30, v/v). The lipid extract was re-suspended in 

tetrahydrofuran:methanol:water (5:2:5, v/v/v) containing 0.1% (v/v) formic acid. The 

sphingolipid species were analyzed using a Shimadzu Prominence ultra-performance 

liquid chromatography system and a 4000 QTRAP mass spectrometer (AB SCIEX). Data 

analysis and quantification were performed using the software Analyst 1.5 and 

MultiQuant 2.1 as described by Markham and Jaworski (2007) and Kimberlin et al. 

(2013). 

4.3.5 Alanine and Fumonisin B1 Treatment 

 Selected red seeds were sown on MS medium supplemented with 5 mM Alanine (Acros 

Organics) or 0.4 µM Fumonisin B1 (Sigma).  

4.3.6 RNA Isolation and Quantitative RT-PCR  

RNA was extracted from 12- to 15-d-old Arabidopsis seedlings grown on solid MS 

medium. Each replicate corresponds to pooled seedlings from independent plates. RNA 

extraction was performed using an RNeasy Kit (Qiagen) according to the manufacturer’s 

protocol. The isolated RNA (1mg) was treated with DNase I (Invitrogen). cDNA 
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conversion was performed with a RevertAid cDNA synthesis kit (Thermo Fisher 

Scientific). SYBR Green was used as the fluorophore in a qPCR supermix (Qiagen). 

PP2AA3 was used as internal reference genes. qPCR was performed using a Bio-Rad 

MyiQ iCycler qPCR instrument. The thermal cycling conditions were an initial step of 

95°C for 10 min followed by 45 cycles at 95°C for 15 s, 60°C for 30 s, and 72°C for 30 s. 

Primers used in this study are listed in Supplemental Table 1, Appendix B. 

4.4 Results 

4.4.1 SPT Amino Acids Associated with HSAN1 are Conserved in Arabidopsis 

Two frequent mutations that cause HSAN1 in humans are C133W and V144D. The 

human SPTLC1 and Arabidopsis LCB1 share 44 % identity with each other. Based on 

the sequence alignment Cysteine 144 in Arabidopsis corresponds to C133 in human 

SPTLC1 and it is located in a conserved region (Figure 4.1). Similarly, the Valine residue 

in position 155 that corresponds to V144 in human. Mutating the Cysteine to Tryptophan 

and Valine to Aspartic acid, should confer the structural shift to allow the use of alanine 

and glycine to generate deoxysphingolipids.   

 
Figure 4.1 Partial alignment of Arabidopsis thaliana AtLCB1 and Homo sapiens HsSPTLC1 protein 
sequences. 

The arrows indicate two residues associated with HSAN1 phenotype, C133 and V144 in human and the 
corresponding C144 and V155 in Arabidopsis.  
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Given that the complete knockout of LCB1 is lethal (Chen et al., 2006), for this study we 

sought to complement the LCB1 heterozygous mutants with a construct expressing 

LCB1C144W or LCB1C144W/V155D under the native LCB1 promoter. In a previous work it 

was showed that a construct containing the wild-type AtLCB1 under the control of the 

upstream native promoter was sufficient to complement the SALK_077745 T-DNA 

mutant (Chen et al., 2006). With a successful complementation we would expect the 

levels of deoxysphingolipids to accumulate and this could be used as strategy to measure 

SPT activity.  However, after three and four generations complementation was not 

achieved (Tables 1 and 2; Supplemental Figure 1 in Appendix B). Therefore, the rest of 

the experiments in this study were performed using transgenic lines expressing the 

mutated LCB1 versions in a wild-type or a heterozygous background. Considering that 

these mutations are dominant in the context of HSAN1 (Dawkins et al., 2001), we expect 

that even with a copy of the wild-type LCB1 the mutated version will still promote the 

generation of deoxysphingolipids.  

Table 1 Segregation analysis of progeny from LCB1C144W transgenic lines  

Progeny Genotype  (Observed/Total) 
Parent 

genotype AA Aa aa 
T2 
Aa 

19/33 
57.6% 

14/33 
42.4% 

0/33 
0% 

T3 
Aa 

56/58 
96.6% 

2/58 
3.4% 

0/58 
0% 

  

Table 2 Segregation analysis of progeny from LCB1C144W V155D transgenic lines  
 

Progeny Genotype  (Observed/Total) 
Parent 

genotype AA Aa aa 
T2 
Aa 

3/21 
14.3% 

18/21 
85.7% 

0/21 
0% 

T3 
Aa 

33/52 
63.5% 

19/52 
36.5% 

0/52 
0% 

T4 
Aa 

11/25 
44% 

14/25 
56% 

0/25 
0% 
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4.4.2 Arabidopsis HSAN1 Mutants Showed Early Senescence, Delayed Flowering 

and Resistance to FB1.   

To examine the phenotype of the transgenic lines, seeds were grown in solid MS 

medium. Both lines tested showed low germination rates ~26 % when expressing 

LCB1C144W and ~ 54 % for LCB1C144W/V155D. Moreover, the transgenic seedlings 

developed pale/yellow leaves compared to the wild type (Figure 4.2A). We also observed 

pale wild-type seedlings growing on medium supplemented with alanine and a stronger 

effect on the transgenic plants (Figure 4.2B).  

 
 

Figure 4.2 Representative images of 15-day-old wild-type, LCB1C144W and LCB1C144W/V155D seedlings. 

(A) MS medium, (B) MS medium supplemented with 5 mM Alanine, and (C) MS medium supplemented 
with 0.4 µM FB1.  
 
Interestingly, even though wild-type plants were sensitive to FB1, the seedlings 

expressing LCB1 with mutations showed resistance to the toxin but still showed pale-
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yellow leaves (Figure 4.2C). When transferred to soil the transgenic plants recovered the 

green appearance but showed delayed flowering and early senescence features (Figure 

4.3 A and Supplemental Figure 1 in Appendix B).  

Chlorotic and green leaves were used for sphingolipid extractions to measure the 

canonical species and deoxyceramides. Sphingolipid profiling revealed that, even though 

there was not a significant change in the levels of m18:0 and m18:1-containing ceramides 

compared to wild type these deoxyLCBs were preferentially coupled with C16 fatty acids 

(Figure 4.3B). In addition, the chlorotic leaves accumulated C16 fatty acid containing-

ceramides compared to the normal green leaves (Figure 4.3C).  

  

 
Figure 4.3 Ceramides and Deoxyceramides Profiles. 

(A) Forty-day old wild-type plants and transgenic lines expressing LCB1C144W and LCB1C144W/V155D.  
Ceramide molecular species compositions representing the exact pairings of LCB and fatty acid for the 
wild-type and the indicated transgenic lines in (B) green leaves and in (C) yellow/pale leaves. Shown are 
representative values of one plant or the mean ± SD n=3. 
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4.4.3 Expression of Genes Associated with Senescence and Sphingolipid 

Biosynthesis and Homeostasis   

 

 
Figure 4.4 Expression of Genes Associated with Senescence and Sphingolipid Biosynthesis, 
Catabolism, and Homeostasis. 

15 day-old wild-type plants and transgenic lines expressing LCB1C144W and LCB1C144W/V155D, were used to 
examine gene expression by q-PCR to monitor the expression of (A) senescence-related 13 SAG13, (B) 
ceramide synthase LOH2 (C) ORM1 (D) ORM2 and (E) DPL1. PP2AA3 transcript levels were used as a 
control. Specific primers used for this analysis are shown in Supplemental Table 1 in Appendix B. Gene 
expression levels are normalized to those in wild-type seedlings. Values are the mean ± SD (n=9). There 
are no significant differences based on one-way ANOVA followed by Tukey´s multiple comparisons test.  
 
Given that the plants expressing HSAN1-like mutations showed early senescence and 

accumulation of C16 ceramides we then examined the expression SAG13, a senescence-

related gene, and LOH2, the gene encoding the ceramide synthase that preferentially N-

acylates C16 fatty acids with LCBs to form ceramides. Our results revealed no significant 

changes in the expression of these genes among the wild-type and transgenic lines 

evaluated (Figures 4.4A and 4.4B). Similarly, the expression of ORM genes, regulators of 

SPT activity; and DPL1, encoding the lyase that catabolizes LBCs, did not change in the 

transgenic plants compared to wild-type (Figures 4.4C- 4.4E). 
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4.5 Discussion 

For this work, we hypothesized that the incorporation of the HSAN1 mutations into the 

Arabidopsis LCB1 SPT subunit would enhance the production of deoxysphingolipids in 

the plants. DeoxySA (m18:0) is normally present at very low concentrations in the wild-

type and can be increased 60-fold in the orm1∆met/∆met orm2−/− mutant where SPT activity 

is deregulated (Chapter 3). We picked C144W and V155D because they are among the 

most frequent mutations in the context of HSAN1 and these residues are in a highly 

conserved region of LCB1 that is predicted to be a catalytic domain (Bode et al., 2016). 

Failure to complement the Atlcb1+/− mutant with LCB1C144W or LCB1 C144W/V155D 

suggests the detrimental effects of these point mutations. Additional confirmation was 

provided by the low germination rate of the progeny of heterozygous plants expressing 

the mutations in LCB1. Notably, the germinated seeds gave rise to plants with an early 

senescence phenotype, which was also observed in wild-type seedlings growing with 

alanine supplementation. It has been shown that the formation of deoxysphingolipids is 

modulated by the availability of alanine and serine. Increased alanine concentration 

enhances the production of deoxysphingolipids in a HSAN1 mouse model and in mutant-

expressing HEK293 cells (Garofalo et al., 2011; Bode et al., 2016). Therefore, one 

possible explanation is that wild-type SPT can use alanine as substrate for the production 

of deoxysohingolipids when this amino acid is in excess. In this context it will be 

important to perform sphingolipid measurements for the detection of the free deoxyLCBs 

(m18:0, m18:1) and their incorporation into ceramides in seedling grown with excess 

alanine and serine. In this case, we would expect serine enrichment to alleviate the 

senescence phenotype in the transgenic plants. 
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Our findings showed that the senescence phenotype persisted in adult transgenic plants 

and it was also associated with delayed flowering. Despite the observed phenotypes, the 

adult transgenic plants did not accumulate deoxyceramides compared to wild type. Yet, 

the detected deoxyLCBs were preferentially coupled with C16 fatty acids to form 

deoxyceramides. This suggests channeling through the LOH2 ceramide synthase which 

has substrate specificity for the more common dihydroxy LCBs. In contrast, mouse 

fibroblasts incorporated supplemental m18:0 to a variety of acyl-CoAs from C16 to 

C24:1; while m18:1 was preferentially acylated to VLCFA (Alecu et al., 2017). 

Examination of gene expression showed no changes in LOH2 transcript levels in the 

transgenic plants compared to wild type; perhaps other regulatory mechanisms at the 

protein level could take place to favor the increase of C16 ceramides in chlorotic leaves. 

Moreover, it will be interesting to determine if C16 ceramide accumulation also occurs 

during senescence in wild-type plants.  

Consistent with our findings, in mammalian cells the HSAN1-like mutations have been 

linked to the aging process and induced expression of senescence markers (Lone et al., 

2019). Even though, gene expression analyses showed no differences in the transcript 

levels of the senescence-related gene SAG13, it is necessary to complement the analysis 

with other markers.  

Until recently, deoxysphingolipids have been considered dead-end metabolites due to the 

lack of the hydroxyl group at C1 position for canonical degradation. However, a recent 

report described multiple polyunsaturated and polyhydroxylated forms of deoxySA as 

catabolic downstream products (Alecu et al., 2017). It is possible that in plants 

deoxysphingolipids are also degraded to other hydroxylated structures as a cellular 
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detoxification process that requires further investigation. Another important aspect 

related to the cellular effects of deoxysphingolipids is their subcellular localization.  

A study revealed that an alkyne-click labelled deoxySA initially localizes to 

mitochondria and it is later detected in Golgi and ER (Alecu et al., 2017). The 

localization of these lipids to mitochondria induces changes in morphology and reduced 

ATP generation (Alecu et al., 2017).  Future work will focus on determining possible 

downstream products of deoxysphingolipids in plants and their potential roles related to 

mitochondrial dysfunction and senescence.  

It is important to note that the effect of two HSAN1-related mutations, like in LCB1 

C144W/V155D, has not been investigated before; however, our current findings suggest there 

is no synergistic effect when compared to the single mutation LCB1 C144W. 

Out of the context of HSAN1, mammalian cells treated with FB1, a ceramide synthase 

inhibitor, accumulated deoxySA showing that wild-type SPT was able to synthesize this 

unusual structures (Zitomer et al., 2011). Moreover, FB1 treatment caused an increase in 

deoxySA in HEK293 cells expressing SPTLC1C133W and this was accompanied with a 

reduced SPT activity (Bode et al., 2016). Consistent with this, our results showed 

transgenic seedlings expressing LCB1C144W and LCB1 C144W/V155D were resistant to the 

cell death induced by FB1, possibly due to a decrease in SPT activity and reduced levels 

of canonical cytotoxic LCBs. In order to elucidate if ORM proteins could be associated 

with SPT regulation under FB1 treatment, we performed gene expression analyses. Our 

results rule out the possibility of transcriptional regulation of ORM, but leave open other 

options like specific ceramide species interacting with ORMs to exert the regulation of 

SPT activity.  



89 
 

One of the objectives of the present study was to introduce the HSAN1 mutations in the 

Arabidopsis LCB1 to examine the feasibility of using deoxySA levels as a readout for 

SPT activity. In yeast, this strategy has been successful and the concentration of this 

atypical LCB has been used as an indirect measurement of activity (Gable et al., 2010). In 

the case of Arabidopsis, more work is needed to determine if the free deoxyLCBs 

(m18:0, m18:1) can be used for this purpose. Especially, it will be important to determine 

the dynamics of the catabolic pathways.  In addition, it will be interesting to explore if the 

ORM proteins are involved in the regulation of SPT activity in response to the production 

of deoxysphingolipids. 
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5 Chapter 5 Towards Building a Kinetic Model of Sphingolipid Biosynthesis 
under FB1 Treatment and Pathogen Infection.  

This chapter may be part of a publication in the future.  

Authors: Ariadna Gonzalez Solis, Adil Alsiyabi, Jennifer E. Markham, Edgar B. Cahoon, 

Rajib Saha. 

5.1 Abstract  

The fungal mycotoxin FB1 and the avirulent pathogen Pseudomonas syringae pv. tomato 

avrRpm1 elicit a rapid increase in LCBs and their phosphorylated forms in Arabidopsis. 

In the case of FB1 treatment, this buildup of LCBs is the consequence of the inhibition of 

ceramide synthases that condense LCBs and fatty acids for the formation of ceramides. In 

contrast, the main mechanisms of the accumulation of LCBs are not known during 

pathogen infection. Here we characterize the Arabidopsis cell suspension culture as a 

system for the generation of a metabolic model that will allow a better understanding of 

the changes in sphingolipid network in the context of FB1 treatment and pathogen 

infection.  

5.2 Introduction 

In addition to the structural roles of glycosphingolipids (GlcCer and GIPCs) in membrane 

formation and function; sphingolipid biosynthetic intermediates (LCBs and ceramides) 

have been recognized as important mediators of physiological processes in plants. 

Phosphorylated long chain bases (LCBs-P) participate in the ABA-mediated signaling 

pathway that regulate stomatal closure (Ng et al., 2001; Coursol et al., 2003, 2005; 

Townley et al., 2005). Whereas several studies revealed LCBs and ceramides as inducers 

of programmed cell death (PCD). This association has been shown in Arabidopsis 
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mutants that accumulate ceramides (Liang et al., 2003; Bi et al., 2014); with exogenously 

applied LCBs and ceramides (Lachaud et al., 2010, Alden et al., 2011) or with Fumonisin 

B1 (FB1) treatment (Stone et a., 2000; Shi et al., 2007; Saucedo-García et al., 2011).  

FB1 is a sphingosine-analogue mycotoxin produced by Fusarium species. It is widely 

known as a potent inhibitor of ceramide synthases that triggers the accumulation of LCBs 

(Abbas et al., 1994). Recent evidence suggests this mycotoxin exerts a more effective 

inhibition on Class II ceramide synthases (LOH1 and LOH3) that generate ceramides 

with VLCFA, than Class I (LOH2) which preferentially produces C16-containing 

ceramides (Markham et al., 2011; Ternes et al., 2011; Luttgeharm et al., 2016). 

Therefore, the PCD induced by FB1 is presumably due to the accumulation of LCBs and 

C16 ceramides.     

A successful immune response in plants often includes the hypersensitive response (HR), 

a form of rapid programmed cell death (PCD) occurring in a limited area at the site of 

infection (Balint-Kurti, 2019). This suicide of infected cells is thought to limit the spread 

of biotrophic pathogens that rely on the plant cell machinery for proliferation (Mur et al., 

2010). Given the similarities of FB1- and pathogen- induced PCD it is believed that 

LCBs and ceramides are part of the large array of signaling networks involved in plant 

resistance (Berkey, 2012). Notably, infection of Arabidopsis with the avirulent pathogen 

Pseudomonas syringae pv. tomato avrRpm1 triggers the accumulation of LCB 

phytosphingosine (t18:0) (Peer at al., 2010). Furthermore, the ceramide accumulation in 

acd5 and acd11 mutants is associated with salicylic acid- dependent upregulation of 

defense-related genes (Brodersen et al., 2002). However, the mechanisms for the 

induction of LCB and ceramides during pathogen attack are not known. It is possible that 
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the immune response mechanisms are linked to an altered regulation of SPT to induce de 

novo synthesis of sphingolipids (Takahashi et al., 2009). Alternatively, catabolic 

reactions including the degradation of more complex sphingolipids like GIPCs and 

GlcCer could give rise to enhanced levels of free LCBs and ceramides.  

In this work, we characterized the Arabidopsis T87 cell line as a system to perform 

metabolic labeling to determine the changes in sphingolipid levels in response to FB1 and 

pathogen infection. This system will be used to generate data to create a kinetic model 

that will allow a better understanding of the changes in the metabolic network. The 

combination of experimental testing and in silico analysis will allow refinement of the 

model to make predictions of cell responses under different perturbations. 

5.3 Materials and Methods  

5.3.1 Plant Material and Growth Conditions.  

An undifferentiated and photoautotrophic Arabidopsis thaliana T87 cell suspension 

culture, established from the ecotype Columbia (Axelos et al., 1992), was used in this 

study. Cells were cultured in NT-1 liquid medium (Murashige and Skoog medium with 

vitamins, 30 g/l sucrose, 1 mM KH2PO4, 1mg/l thiamine, 100mg/l myo-inosytol and 

2 µM 2,4-dichlorophenoxyacetic, pH 5.8 adjusted with KOH) at 22 °C and 120 rpm on a 

shaking platform under continuous light conditions (100µmol/ m-2 s-1).  Every 7 days 1 

ml of mother cell suspension was transferred into 50 ml of fresh medium. 

5.3.2 Stable Isotope Labeling  

T87 Arabidopsis cells were cultured in NT-1 liquid medium containing 

K15NO3 and 15NH4
15NO3 (Cambridge Isotope Labs) under the same conditions described 

above.  
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5.3.3 Fumonisin B1 Treatment 

The cells were grown for 2 d first in NT-1 medium and then FB1 (Sigma-Aldrich) was 

added for a final concentration of 1µM. The cells were sampled for analysis after 1, 2, 4, 

6, 12, 24, 48 and 72 h. Control cells were also sampled at the same point of time. Cells 

were harvested by centrifugation at 400g for 5 min and lyophilized prior to sphingolipid 

analysis.  

5.3.4 Sphingolipid Extraction and Analysis.  

Sphingolipids were extracted as described in Markham and Jaworski (2007). Briefly, 10 

to 30 mg of lyophilized cells were homogenized and extracted with 

isopropanol:heptane:water (55:20:25, v/v/v). Internal standards for the different 

sphingolipid classes were added. The supernatants were dried and deesterified with 

methylamine in ethanol:water (70:30, v/v). The lipid extract was re-suspended in 

tetrahydrofuran:methanol:water (5:2:5, v/v/v) containing 0.1% (v/v) formic acid. The 

sphingolipid species were analyzed using a Shimadzu Prominence ultra-performance 

liquid chromatography system and a 4000 QTRAP mass spectrometer (AB SCIEX). The 

incorporation of the 15N into sphingolipid was detected with a +1 m/z shift in the mass of 

both the precursor and the product ion in sphingolipid MRMs. Data analysis and 

quantification were performed using the software Analyst 1.5 and MultiQuant 2.1 as 

described by Markham and Jaworski (2007), Kimberlin et al. (2013).  

5.4 Results  

A time-course sphingolipid profiling was conducted to characterize the response of the 

Arabidopsis cells to FB1. The accumulation of free LCBs was observed from two hours 

of treatment with the mycotoxin and was sustained over all the time points analyzed 
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(Figures 5.1A-C and 2A-H). Free LCBs, mainly d18:0 and t18:0, accumulated 17-fold 

during the first six hours of treatment compared to the control (Figure 5.1A-C and 5.2A-

D). While after 24, 48 and 72 hours, the phosphorylated forms (LCB-P), d18:0-P and 

t18:0-P, reached levels of 36- 203- and 280-fold, respectively, compared to the control 

(Figures 5.1B-C and 5.2A-H). In addition, treatment with FB1 resulted in a reduction of 

~half the amount of the original level of ceramides at two hours and was maintained until 

six hours post treatment. We observed an increase in C16 ceramides at 24 hours after 

exposure to FB1.    

 

Figure 5.1 Time course sphingolipid profiling of Arabidopsis T87 cells after treatment with 1µM 
FB1. 

(A) Total levels of free LCBs and the phosphorylated forms (LCB-P). Distribution of free or 
phosphorylated LCBs at the different time points analyzed for (B) control and (C) 1µM FB1. (D) Total 
levels of ceramides. Distribution of ceramides containing (E) very long chain fatty acids (VLCFA) or (F) 
C16 fatty acids. Time 0 h corresponds to the basal levels before FB1 addition.   
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To establish if the stable isotope labeling with 15N is a suitable method to detect changes 

in fluxes of sphingolipids, we first determined the growth rate of the Arabidopsis cells in 

medium where the nitrogen sources have been replaced with 15N. According to the results 

the 15N medium did not affect the growth of the cells (Figure 5.3A). Next, to determine if 

we can detect the label going to sphingolipids we measured labeled LCBs and ceramides 

after 18 hours of growing in 15N medium. We observed an incorporation of the isotope 

into LCBs and ceramides in cells and this incorporation was blocked with the SPT 

inhibitor, myriocin. 

 

 

Figure 5.2 Time course profiling of LCBs and LCB-P. 

Time course analysis of the indicated (A-D) free LCBs and (E-H) phosphorylated LCBs (LCB-P) levels in 
Arabidopsis T87 cells after treated with 1µM FB1. 
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Figure 5.3 Labeling of Sphingolipids with the Stable Isotope Nitrogen 15. 

(A) Growth curve of T-87 cells cultured with nitrogen 14 (14N) or the stable isotope nitrogen 15 (15N). 
Values are the mean ±SD (n=3). (B) Incorporation of 15N into ceramides and LCBs of wild type cultured 
cells treated with DMSO as control and 1 nM myriocin for 18 hours. Values are the mean ±SD (n=3).  
Asterisks denote statistical significance when P < 0.01 in Students' T Test. 
 
5.5 Discussion  

For our studies, we chose the photoautotrophic Arabidopsis T87 cell culture because it 

has a short doubling time (2.7 days), produces large amount of tissue and it is a good 

system to perform in vivo labeling with reduced biological variation.  

Consistent with previous studies performed in plants (Saucedo-Garcia et al., 2011; Peer et 

al., 2010), treatment of the Arabidopsis cell suspension with FB1 elicited a rapid 

accumulation of free LCBs and the phosphorylated forms. Moreover, as expected, we 

observed a reduction in ceramide levels following FB1 exposure and a subsequent 

accumulation of C16 ceramides at longer times (>24 h). These results confirm the early 

response of the cells to FB1 and validate it as a good system for the labeling studies. 

We could also detect the incorporation of the nitrogen 15 isotope into LCBs and 

ceramides via flux through SPT in short-term experiments, thus this is a cost effective 

and accurate procedure that can be used in quantitative profiling to apply to a kinetic 

model. The rate at which 15N appears in sphingolipids will be used to calculate the fluxes 
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trough each step of the pathway using a reaction network that comprises all the metabolic 

transformations involved in sphingolipid biosynthesis in Arabidopsis (Alsiyabi et al., 

2010 under revision). Especially, this labeling approach will be very informative to 

estimate sphingolipid turnover rates. The kinetic model will allow us to make predictions 

of how the flux of sphingolipid metabolites is regulated in response environmental 

responses.  
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6 APPENDIX A 

 

 
Supplemental Figure 1. Predicted Protein Sequences of ORMs in the CRISPR/Cas9 Mutants.    
 
Predicted protein sequences based on indels. (A) ORM1, for the single mutant orm1−/− and the double 
knockout orm1−/− orm2−/−, the deletion of one nucleotide in the first exon resulted in a frameshift in the 
coding sequence that produced premature termination. In the case of orm1∆met/∆met orm2−/− the deletion of 
three nucleotides resulted in the elimination of a methionine residue at position 51. (B) ORM2, for the 
single mutant orm2−/− and double mutants, the deletion of four nucleotides caused a frameshift and 
premature termination of the polypeptide. 
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Supplemental Figure 2. PCR/Digestion-based Genotyping of CRISPR/Cas9 ORM Mutants. 
 
The DNA fragment encompassing the CRISPR target site was amplified by PCR (Primers P5-P8) and 
digested with BslI (ORM1) or DraIII (ORM2).  
(A) Representative genotyping results of wild-type Col-0 and orm1+/−  orm2+/−.   
(B) Representative genotyping results of wild-type Col-0, orm1−/−, orm2−/−, orm1∆met/∆met orm2+/−  and 
orm1∆met/∆met orm2−/−.  In wild-type plants, the DNA is completely digested at the restriction site. In 
homozygous plants, the restriction site was lost by CRISPR/Cas9-induced mutation, resulting in undigested 
DNA. In heterozygous plants, the restriction site is present in one gene copy, resulting in partial digestion.  
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Supplemental Figure 3. Complementation of orm1met/met orm2−/−. 
 
(1) Wild-type plant, (2-8) orm1∆met/∆met orm2−/− plants complemented with a codon optimized version of 
ORM1 under the control of its native promoter.  
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Supplemental Figure 4. Ceramide Compositions with Hydroxylated Fatty Acids in ORM Mutants. 
 
Concentrations of ceramides with hydroxylated fatty acids (hCer) are presented according to the 
composition of LCB (d18:0, d18:1, t18:0, t18:1) and hydroxylated (h) fatty acid for (A) wild-type Col-0, 
(B) orm1−/−, (C) orm2−/−, (D) orm1∆met/∆met orm2+/− and (E) orm1∆met/∆met orm2−/−. Bars show averages of four 
to six replicates consisting of 12 to 15-day-old pooled seedlings grown on different plates. Error bars 
represent the standard error of the mean.    
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Supplemental Figure 5. Glucosylceramide Compositions in ORM Mutants.   
 

Glucosylceramide (GlcCer) concentrations are presented according to the composition of LCB (d18:0, 
d18:1, t18:0, t18:1) and hydroxylated (h) fatty acid for (A) wild-type Col-0, (B) orm1−/−, (C) orm2−/−, (D) 
orm1∆met/∆met orm2+/− and (E) orm1∆met/∆met orm2−/−. Bars show averages of four to six replicates consisting of 
12 to 15-day-old pooled seedlings grown on different plates. Error bars represent the standard error of the 
mean.    
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Supplemental Figure 6. Composition of Glucosylceramides Containing Non-Hydroxylated Fatty Acids in 
ORM Mutants.   
 

Concentrations of glucosylceramides containing non-hydroxylated fatty acids (nh-GlcCer) are presented 
according to the composition of LCB (d18:0, d18:1, t18:0, t18:1) and fatty acid for (A) wild-type Col-0, (B) 
orm1−/−, (C) orm2−/−, (D) orm1∆met/∆met orm2+/− and (E) orm1∆met/∆met orm2−/−. Bars show averages of four to 
six replicates consisting of 12 to 15-day-old pooled seedlings grown on different plates. Error bars 
represent the standard error of the mean.    
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Supplemental Figure 7. Glycosylinositolphosphoceramide Compositions in ORM Mutants.  
 

Glycosylinositolphosphoceramide (GIPC) concentrations are presented according to the composition of 
LCB (d18:0, d18:1, t18:0, t18:1) and the hydroxylated (h) fatty acid for (A) wild-type Col-0, (B) orm1−/−, 
(C) orm2−/−, (D) orm1∆met/∆met orm2+/− and (E) orm1∆met/∆met orm2−/−. Bars show averages of four to six 
replicates consisting of 12 to 15-day-old pooled seedlings grown on different plates. Error bars represent 
the standard error of the mean.    
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Supplemental Figure 8. Expression of Genes Associated with Sphingolipid Biosynthetic and Catabolic 
Pathways and Pathogenesis.   
 

Wild-type, orm1−/−, orm2−/−, orm1∆met/∆met orm2+/−  and orm1∆met/∆met orm2−/−seedlings (12-day-old plants) 
were used to examine gene expression by qPCR to monitor genes encoding enzymes in the sphingolipid 
biosynthetic and catabolic pathways: (A) LCB1, (B) ssSPTa, (C) ceramide synthase gene LOH1, (D) 
sphingosine kinase 1 gene SPHK1; and the selected pathogenesis-related gene (E) basic chitinase PR3. 
PP2AA3 transcript levels were used as a control for the sphingolipid genes and UBIQUITIN for the 
pathogenesis-related genes. Specific primers used for this analysis are shown in Supplemental Table 1. 
Gene expression levels are normalized to those in wild-type seedlings. Values are the mean ± SD (n=6-12). 
Different letters indicate significant difference based on one-way ANOVA followed by Tukey’s multiple 
comparisons test (P≤0.05). 
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Supplemental Figure 9. Amino Acid Sequence Alignment of ORM Proteins. 
 
Protein sequences from Saccharomyces cerevisiae (Sc), Arabidopsis thaliana (At) and Homo sapiens 
(ORMDL). The dashed lines indicate putative transmembrane domains. Methionine 51 in AtORM1 is 
highlighted (green) as well as conserved amino acids (yellow).   
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Supplemental Table 1. Primer Sequences Used for Cloning, RT-PCR, qPCR, and Genotyping.  

Prim
er 

Primer 
Name 

Sequence  

P1 ORM1-BsF 5’-
ATATATGGTCTCGATTGTTGTTCCCCTGGAATGGCTGT
T-3’ 

Cloning 
BsaI 

P2 ORM1-F1 5’-
TGTTGTTCCCCTGGAATGGCTGTTTTAGAGCTAGAAAT
AGC-3’ 

Cloning  

P3 ORM2-R1 5’-
AACCTCTGTGTTCCGATTCACACAATCTCTTAGTCGAC
TCTAC-3’ 

Cloning  

P4 ORM2-BsR 5’-
ATTATTGGTCTCGAAACCTCTGTGTTCCGATTCACACA
A-3’ 

Cloning 
BsaI 

P5 ORM1-F 5’-GAAATGGCGAATCTGTATG-3’ Genotypin
g  

P6 ORM1-R 5’-CATCATCTAATTTAAAGTCAC-3’ Genotypin
g 

P7 ORM2-F 5’-CTTGCTCAACGACGATTCAT-3’ Genotypin
g 

P8 ORM2-R 5’-GAGGAGATCGGGAATAATAC-3’ Genotypin
g 

P9 Cas9-F 5’-CTGTTCGTCGAGCAGCACAAGCATT-3’ Cas9 check 
P10 Cas9-R 5’ TTCCCAATGCCATAATACTCAAACTCAG-3’ Cas9 check 
P11 A_OptORM1

F 5’-ATGCGAATTCATGGCGAATCTGTATGTGA-3’ Cloning 
EcoRI 

P12 
B_OptORM1r 5’-CAGTCCATGCCATACCTGGAGAGCAACCAGAG-3’ 

Overlappin
g PCR 

P13 C_OptORM1f 5’-CTCTGGTTGCTCTCCAGGTATGGCATGGACTG-3’ Overlappin
g PCR 

P14 D_OptORM1
R 

5’-ATGCTCTAGATTATTTATCACCATTG-3’ Cloning 
XbaI 

P15 ORM1promot
erF  

5’-ATGCGGATCCCTTTGGCTGCACTCCTCTCT-3’ Cloning 
BamHI 

P16 ORM1promot
erR  

5’-ATGCGAATTCTTCTTCTTCAATCAGATCGGATCG -3’ Cloning 
EcoRI 

P17 PP2AA3 
(At1g13320) 

QuantiTect Qiagen QT00857220 qPCR 

P18 LOH1 
(At3g25540) 

QuantiTect Qiagen QT00779331 
 

qPCR 

P19 LOH2 
(At3g19260) 

QuantiTect Qiagen QT00774949  qPCR 

P20 LOH3 
(At1g13580) 

QuantiTect Qiagen QT00857402 qPCR 

P21 LCB1 
(At4g36480) 

QuantiTect Qiagen QT00727251 qPCR 
 

P22 ssSPTa 
(At1g06515) 

QuantiTect Qiagen QT01712004 qPCR 

P23 DPL1qpcr-F  5’-GCTTGGTCAACTGGCTCTTA-3’ qPCR 
P24 DPL1qpcr-R 5’-GGGATCTGGTACCCAAGTTTAC-3’ qPCR 
P25 Sphk1-qpcr-F 5’-AGACCTTGGTTGAGAAAGGAGGAG-3’ qPCR 
P26 Sphk1-qpcr-R GATGGAACTTATCGGACCAAAGCT qPCR 
P27 Sphk2-qpcr-F CGGTGGACAGAGTATGGACTCC qPCR 
P28 Sphk2-qpcr-R GCAGCAGATTCCTCCTGCCT qPCR 
P29 PRXc-qpcr-F 5’-CAACATCGTCCACTTGGACAATCTT-3’ qPCR 
P30 PRXc-qpcr-R 5’-CCTGCCAAAGTGACAGATTGTTGAG-3’ qPCR 
P31 PR2-qpcr-F 5’-AGCCTCACCACCAATGTTGATGAT-3’ qPCR 
P32 PR2-qpcr-R 5’-GTTCTCGATGTTCTGCATTGCTTGT-3’ qPCR 
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P33 PR3-qpcr-F 5’-AACGGTCTATGCTGCAGCGAGTT-3’ qPCR 
P34 PR3-qpcr-R 5’-GCGCTCGGTTCACAGTAGTCTGA-3’ qPCR 
P35 FMO-qpcr-F 5’-CGTATTCGAAGCCTCGGATTCAGTC-3’ qPCR 
P36 FMO-qpcr-R 5’-GGTATTCTTGGAACGTCGCCGTATT-3’ qPCR 
P37 SAG13-qpcr-F 5’-GAAACTCAGCTTCAAGAACGCTTACGTG-3’ qPCR 
P38 SAG13-qpcr-

R 
5’-TCGCCCATTCGCAAGCTAAGTTT-3’ qPCR 

Underlined sequences correspond to the restriction enzyme sites.   
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7 APPENDIX B 

 

 

Supplemental Figure 1. Amplification with gene specific primers (P2+P3 Supplemental Table 1, 
Appendix B) indicate wild type LCB1, while amplification with T-DNA primers (P1+P3) indicate the 
presence of the T-DNA. A PCR product amplified with both primer sets indicates heterozygous line. 
Amplification with only gene specific primers corresponds to wild type.    
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Supplemental Figure 2.  30 days-old representative plants (A) Col-0 and (B) LCB1C144W   
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Supplemental Table 1. Primer Sequences Used for Genotyping and qPCR. 

Primer Primer 
Name 

Sequence  

P1 Lb1a 5’-TGGTTCACGTAGTGGGCCATCG-3’ 
 

Genotyping  

P2 F1 5’-GATGGCTTCATGTAATGTTTGTACTTTC-3’ 
 

Genotyping 

P3 R 5’-TGGTGGCTCATGCTTCATGTC-3’ 
 

Genotyping 

P4 PP2AA3 
(At1g13320) 

QuantiTect Qiagen QT00857220 qPCR 

P5 LOH2 
(At3g19260) 

QuantiTect Qiagen QT00774949  qPCR 

P6 SAG13-qPCR-
F 

5’-GAAACTCAGCTTCAAGAACGCTTACGTG-
3’ 

qPCR 

P7 SAG13-qPCR-
R 

5’-TCGCCCATTCGCAAGCTAAGTTT-3’ qPCR 

P8 ORM1-qPCR-F 5’-AATGGTCAACAGCTTACCCGCAA-3’ 
 

qPCR 

P9 ORM1-qPCR-R 5’-TATGCGATGCAATCAAGTACAGAACAAC-
3’ 
 

qPCR 

P10 ORM2-qPCR-F 5’-TTGATAATGGCAAGCAGCTTACACGTA-3’ 
 

qPCR 

P11 ORM2-qPCR-R 5’-
ATCAAGTACAAGACAACAGGAACAACGG-3’ 
 

qPCR 
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