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Digital steganography is a method used for hiding information in digital

images. It can be used for secure communication. There have been many robust

digital steganography methods invented in recent decades. The steganographic

message can be inserted in multimedia cover signal such as audio, image and

video. However, this technique also may be used by malicious users to transmit

dangerous information through the Internet beyond the control of security agencies.

How to detect and/or block potentially dangerous information transmission on

the Internet through billions of multimedia files while not affecting innocent

multimedia communications becomes a challenging problem. Existing steganalysis

methods or steganography attacking methods which are mostly passive methods

cannot be used for analyzing a large volume of digital images in a short time. In

addition those passive methods also cannot be generic enough to defeat various

steganographic algorithms on the Internet.

In this paper, we propose an active attacking model to defeat the rising threat

of steganography. The active protection mechanism is proved to be more effective

to protect the integrity of the multimedia data. Based on the active attacking

model, a steganography attacking method which is not limited by the types of the

steganography methods is proposed. The proposed method can process the digital

multimedia data to remove the potential dangerous hidden information while



keeping the digital data in a high visual quality. This attack method is based on a

proposed transform called Discrete Spring Transform. Some implementations of

the Discrete Spring Transform in audio, image and video signals are proposed. The

proposed transform causes that the numerical values of the image to be changed

dramatically and then the hidden information is not able to be recovered, while

at the same time the visual image quality can be maintained. This method is a

generic approach for multimedia signals and contains theoretical advantages over

similar methods. Our experimental results have demonstrated that the quality of

the multimedia signal can be guaranteed while the stego-data are considerably

destroyed.
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Chapter 1

Introduction

Digital steganography [3] is a technique used to embed and transmit hidden

information in multimedia cover media in a secret way. Regarding the conventional

text encryption technique, there are many kinds of mature, systematic and well-

defined cryptanalysis algorithms which can be used to attack the encrypted

information [4]. In the worst cases, the brute-force searching can be used to

attack nearly all kinds of text encryption methods by taking advantage of state

of the art super computers. In addition, though some text encryption methods

are difficult to be compromised, use of the encryption itself also will invoke

suspicions. However, digital steganography that hides information in image or

multimedia carriers in an invisible way will draw no extra attention among billions

of images over Internet [5]. Therefore, Image steganography is potential for various

communication applications in order to improve communication security. The

basic idea behind the digital steganography is invisible digital watermarking.

Due to the redundancy of the multimedia signal, it provides a large capacity

for embedding hidden information. Some common steganography methods are

implemented in the spatial or frequency domain of the multimedia signal. By
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slightly and meticulously altering the multimedia cover signal, the intended hidden

information can be embedded in the cover media. This slight numerical change will

not cause noticeable attention to human auditory system for audio or human visual

system for image and video. The hidden information can be hidden in a very high

order statistical domain where it is extremely difficult to be detected. Therefore,

digital steganographic techniques will not only carry some secret information as

the conventional encryption does but also will keep the cover media perceptually

unchanged. Besides the difficulty to decode the hidden information without

the knowledge of the key, it is even difficult or impossible to detect whether

hidden information exists or not. This advantage over the conventional encryption

methods provides a second layer of protection to the hidden information.

However, it also leads to another security concern that how to prevent the illegal

or malicious information transmission through the Internet. In some sensitive

network scenario, the encryption is prohibited in order to prevent the uncontrolled

information transmission. The steganography methods will make this problem

more complicated because it is difficult to know if the steganography methods

are applied in a multimedia file. By this technology, terrorists or attackers are

able to transmit illegal or dangerous information with each other through the

Internet out of any control. There is already some evidence that terrorists tried

to use image steganography to transmit their attack plans and training manuals

through Internet websites such as Ebay[4]. Nowadays, there are billions of audio,

image, and video files uploading, transmitting and downloading on the Internet

in a second, so this security problem has become very critical to authorities and

researchers.

For the purpose of hiding information in multimedia signal, digital steganogra-

phy method must have some properties. First of all, the hidden information should
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be imperceptible. It not only means the hidden information cannot be perceived

directly by observing the carriers but also means the visual artifacts of the cover

media caused by the hidden information cannot be easily recognized. Secondly, the

hidden information must be able to be retrieved by the intended receiver who has

the knowledge of the steganography decoding method and key. The redundancy

in the cover media makes these requirements possible. Furthermore, the latest

digital steganography algorithms are also designed to be as robust as they can to

resist detecting and attacking.

As mentioned above, in case of digital steganography abuse by terrorists for

illegal purpose, it is worthwhile to investigate the countermeasures of the digital

steganography. Currently, one of a large category of techniques against digital

steganography is steganalysis [5] which is a kind of methods trying to detect and

crack the hidden information. Steganalysis is mainly focused on cracking what the

information is hidden in the cover media. Most of the current steganalysis methods

are only effective for a certain kind of image steganography method because they

found and used some unique properties of their target steganography methods.

Since the mechanism of the steganography methods vary, it is hard to find a generic

steganalysis method which works on all the types of steganography methods.

Therefore an important weakness for such steganalysis methods is that the types

of the steganography method have to be known and well studied in advanced. It is

not practical in the Internet environment which is a realtime scenario exchanging

billions of multimedia data in a while. It is hard even impossible to know whether

steganography is used and which types of image steganography methods are

applied. So these methods are only proper for analyzing a certain group of

suspicious targets rather than monitoring the general Internet multimedia streams.

Recently, a merging kind of steganalysis method is proposed, called universal
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steganalysis which is claimed to be adaptive to multiple kinds of digital steganog-

raphy methods. However, these methods are based on the pattern classification

technology which needs a learning process. It is impossible to finish the learning

process because of the lack of training information. Obviously, universal methods

are not able to classify and detect image streams on the realtime Internet as well.

Furthermore, though more advanced and sophisticated steganalysis methods can

be invented in future, much more advanced robust steganography method can

also be invented accordingly. In all the limitation of the steganalysis method is that

it is built on a passive way. This kind of method is not able to actively discover the

steganography information. So this passive security protection method cannot be

a desired omnipotent solution.

The best defense is a good offense. In fact, in most of the cases, the Internet

security only requires to block the harmful information spreading rather than

knowing what the information it is. Then, the active attacking-based method will

be more effective. This kind of attacking -based method is not interested in what

information is hidden in the carrier but just working on destroying the hidden

information while keeping a minimum tolerable distortion involved to the cover

media.

The difference between the passive and active attacking methods can be de-

scribed by the classic prisoner problem. Two accomplices Alice and Bob are

arrested in separate cells. They plan to escape by working together, however

they are not able to communicate directly. They have to exchange their messages

through their warden Wendy. So the messages exchanged by Wendy must not to

be suspicious to her otherwise they will be put into a high isolated prison where no

one can escape. From the warden’s point of view, Wendy have to satisfy their rights

to communicate innocent information while monitor the illegal one. A passive
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Figure 1.1: Passive Warden Prisoner Problem

warden will not alter the messages initiated by Alice or Bob. She will help to pass

it while spying on the suspicious messages. This process is illustrated in Figure1.1.

The possibility to preventing the escape plan exchange is solely depended on

Wendy’s own judgment. The warden’s capability to detect the suspicious message

is very significant in this place. As a result, it is not very stable to rely on warden’s

own capability. Alice and Bob may also use different ways to exchange their escape

plan. The warden is not able to know all of their ways. It is obvious to be very

passive for warden in this scenario.

An active warden, on the contrary, is allowed to modify the message being sent

to another prisoner. Specially, a warden can paraphrase the message sent by one

prisoner to another. By this way, the straight mean of the message is delivered

and the implicit message is most likely to be removed. A mild modification such

as replacing words with their synonyms will not change the semantic content of
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Figure 1.2: Active Warden Prisoner Problem

the text message. This active strategy can be illustrated in Figure1.2. As shown in

Figure1.2, Wendy sends the modified text messages to the other prisoner and the

hidden information is gone in the modified messages.

This active strategy works perfect for the Internet environment where it is

impossible to know the potential steganography existence and the types of the

steganography methods. Such a universal active method can be used in a blind

basis. Whatever there is steganography or not in the multimedia data, after the

universal attack the original cover media keep the perceptual quality and the

hidden messages(if have) is removed.

In order to invent a universal active attacking method, we must have the applied

scheme independent to the specific properties of the steganography methods. This

attacking method can only take advantage of the nature of human perceptual

system. In this paper, we propose a way to mostly distort the numerical values of

the cover media while keep the perceptual quality in a high level. It is possible
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because the visual and auditory perception by human is not fully in coherence

with the numerical values and there is a gap between them [18]. There are some

kinds of distortions which will heavily change the numerical values while less

affect the image human visual perceptual evaluation. By involving this kind of

distortions the visual information will be kept and the hidden information will

be destroyed in larger sense of possibility since the numerical values of the host

images have been significantly changed.

In order to find such visually unnoticeable distortion, we are motivated by the

print-scan process. When a digital image is printed out into a paper and scanned

back into digital, most of the pixel values are significantly changed and most of

robust digital steganography methods are not resilient to these digital-analog-

digital process. By virtualizing two kinds of distortions which print-scan process

caused, we propose an effective feature-independent active attacking method

which includes a new transform in image called Discrete Spring Transform and

geometrized of the pixel value of the image. The state-of-art printer can output

the image in a very high perceptual quality although multiple types of distortions

are caused in this digital to analog process. The reason the high quality can be

kept is that the distortion caused by the printer is relatively less noticeable for

human visual system. An example of those distortions are the distortion caused

by the deviation of the ink jet head. Due to the mechanical accuracy, every ink

dot is printed in the paper with a small position deviation. This deviation is small

and caused by many uncountable random factors. This randomness makes the

deviation irreversible, therefore the potential hidden message cannot be recovered

easily. This process can be expressed in a 1-D model as

a(t) −→ a(t
′
) (1.1)
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Figure 1.3: Printer Random Deviation

It is also shown in Figure1.3.

This heuristic model can be further abstracted as a Discrete Spring Transform.

This transform can be implemented in audio, image and video signals in order

to remove the hidden message by various steganography methods. It is called

Spring Transform because it performs like a spring being stretched. The spring is

stretched or pressed in every spot, but the stretch rate is different from spot to spot.

This variable stretch rate is continuously changed. This concept can be applied in

the 1-D signal and multi-dimensional signal. An important implementation issue

in the Spring Transform is that how to let the stretch rate continuously change

in a digital signal. In this paper we propose a block-based method for audio

signal, and interpolation and geometrized method for the image signal. The image

method can be extended into the video signal by applying the Discrete Spring

Transform to the time frame as well. The experimental results in this thesis shown
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the implemented methods effectively removed the steganographic information

in spatial and frequency domain for audio, image and video signal. Meanwhile,

the cover media maintains an acceptable perceptual quality under our evaluation

methods.

The spring transform has two important features. The first is that it will not

distort the perceptual quality of the multimedia signal. Secondly, it will greatly

change the numerical value of the multimedia signal. These two features enable

an active warden approach for the steganography attacking and provide security

for the Internet security especially for the multimedia applications.
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Chapter 2

Background

Steganography comes from Greek origin and means ”concealed writing”. Histori-

cally, hidden message is hidden in cover text, image. The hidden message can be

carried between lines of a letter by invisible ink. Generally the steganography is a

very broad conception for hidden message techniques. For example In 480 BC a

Greek by the name of Demaratus warned Spartans warning about an incoming

war by sending a message using the method described as follows

As the danger of discovery was great, there was only one way

in which he could contrive to get the message through: this was by

scraping the wax off a pair of wooden folding tables, writing on the

wood underneath what Xerxes intended to do, and then covering

the message over with the wax again. In this way the tablets, being

apparently blank, would cause no trouble with the guards along the

road.

One significant advantage of steganography over cryptography is that the cover

media used to convey hidden message looks the same as the innocent one. As a
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result, no additional attention will be drawed. Sometimes even the cryptography

is strong enough to be not compromised, the use of cryptography is suspicious or

illegal in some circumstances. Steganography is a way to conceal the fact that the

hidden message is sent and the content of the hidden message as well.

In this thesis, we only focus on digital steganography. The modern steganog-

raphy methods conceal hidden message in digital multimedia files such as text,

image, music and video. The digital multimedia signal provides a larger capac-

ity for steganographic messages. The boosting wideband Internet and wireless

technologies make more and more multimedia applications possible. People today

cannot live without the Internet and social networks. People upload, share, view

and download music, image and video from their social network accounts. Those

huge amounts of multimedia streaming on the Internet are capable to convey lots

of hidden messages.

However those multimedia data can be easily compromised. In fact, billions

of network attacks happen accompanying with the normal network activities. A

instance of the attack associated with the steganography is that the attacker hijacks

the online multimedia data as the cover media to transmit hidden malicious

messages. It is difficult to notice because the steganography will not change

what the multimedia content looks like. The hidden messages embedded will be

recognized as network noise as it usually has. The normal cryptography will not

prevent this kind of attack. The attack may add the hidden messages onto the

cryptography cover media. The hidden messages can still be decoded correctly

with the key known. Even if the malicious information is captured, it is not able to

be tracked. The owner of the cover media may not be the party who adding the

hidden messages. So a very critical security problem arises by the development of

the steganogrphy methods. It is also reasonable to believe the steganography tends



12

to be abused because its properties. In order to protect the secret information, the

normal cryptography can be used by general public and government. There is no

special interest for innocent people to use steganography to protect their privacy

or conduct security communication. The motivation of use of the steganography is

that people do not want the third part to know there is something important in it.

It is of the interests of the terrorists.

Consequently, the countermeasures against steganography become a popular

topic on research. Historically the countermeasures against steganography are not

regarded as important as steganography. The research of the countermeasures is

usually used as a test bench for the steganograph research. Nowadays the security

concerns discussed above stimulate people to focus on this topic. This thesis

will discuss the existing countermeasures against the steganography. A common

weakness of the existing methods is that they may not work in a generic basis or

work without the nature of the steganography. An active method is proposed in

this thesis to resolve this problem.

2.1 Motivation

The countermeasures of the steganography mainly focus on how to prevent the

transmission of the illegal messages encoded by the steganograph. A straightfor-

ward solution for this problem is a passive method. This passive method monitors

the communication channel periodically. It will detect if a steganography is used

in the monitored cover media. If detected, a further classification is needed to

tell what steganography method is used. Based on the type of the steganography

method, a respective steganalysis method will be applied to decode the steganogra-

phy messages. This method cannot deal with an unknown steganography method
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because the steganalysis method has to be designed accordingly. Meanwhile the

computational complexity is very high for decoding the steganographic informa-

tion. It is not very useful for the realtime scenario in the Internet where multiple

steganography methods may be used

In this problem, the content of the steganographic message may not always

be very important. If the sender of the steganographic message is clearly known,

then the content of the message may be very intellectually meaningful. Whereas

on the general Internet application, actually most of the content is innocent.

Though steganographic messages are embedded, the content of the hidden message

may not be of interest. So in order to increase the security of the network,

it is good enough to just simply block the transmission of the steganographic

messages without knowing what it is. A selective filter is desired that the innocent

information can be passed while the hidden message would be blocked. This

blocking means it is unable to be decoded by the intended receiver. The design of

this filter depends on the properties of the cover media and the steganographic

message. It may be thought to be impossible because it is difficult to only change

the hidden message while keeping the cover media intact. It is true if it is required

that the numerical must be intact . However in most of the cases the numerical

value is not as much of interest as the perceptual results for the multimedia cover

media. So it is possible to find a way to change the numerical value of the cover

media while keep the perceptual effect. This thesis will focus on finding a way to

achieve this task.
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2.2 Related Works

2.2.1 Steganography Methods

In the audio steganography, the hidden message is covered by audio signal [6]

such as speech and music. In some of the circumstances, the detail of the audio

signal is not important, so by slightly altering the audio signal, a large amount

of steganographic messages can be embedded. Some main audio steganography

algorithms can be classified as follows,

• phase coding [6]

• spread spectrum[7, 8]

• quantization index modulation[9]

• echo hiding[10]

• patchwork[6]

Recently, the audio steganography focuses on how to improve the robustness of

the hidden messages, some improved steganography [11, 12, 13, 14, 15] are able to

resist a lot of different noises and distortions. A main important distortion against

the audio steganography is the time scale modification. Most of the steganography

methods cannot survive from the time scale modification. Some TSM-robust audio

steganography are proposed recently [16, 17, 18].

Image steganography is a well-studied topic[5]. Some typical digital watermark-

ing methods can be used as steganography as well[19, 20, 21]. Some wavelet-based

steganography methods are proposed[22, 23, 24, 25]. Recently, some steganog-

raphy methods[26, 27, 28, 29] are proposed to be robust to the Rotation, Scaling
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and Translation. Another direction for the image watermarking is the reversible

watermarking[30, 31, 32, 33, 34, 35]. Some steganography methods can be applied

in image-based steganography and video-based steganography. These techniques

[36, 37, 38] are hiding message in the images, while it can be easily applied for the

video signal by repeatedly inserting the hidden messages in every frame of the

video. There is no hidden message between frames. So these methods are mainly

classified as the 2-D steganography methods.

Some steganography methods are designed solely for the video steganography,

the motion and time frames are used to hide messages. So this method can be

simply adjusted from the 2-D steganography methods. It is classified as 3-D

steganography.

The motion-based steganography alters the motion frame to hide stegano-

graphic messages. The [39, 40, 41, 42]. This method explored the capacities in

the motion vector of the video signal. When combining with the image-based

2-D steganography and the time/motion-based video steganography, it is called

multi-dimensional video steganography. It will simultaneously hide information

in 2D and 3D margins. In Figure??, a multi-dimensional steganography scheme

is illustrated. The image-based steganography is encoded in the I-Frame, while

the motion vector-based steganographic message is hidden in P-Frame as well.

It provides a larger capacity for the steganographic messages and increases the

difficulty for the countermeasures.

2.2.2 Countermeasures against Steganography Methods

One of a large category of techniques against steganography is steganalysis [5]

which are methods trying to detect and crack the hidden information. Steganalysis
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is mainly focused on cracking what the information is hidden in a stego image.

Most of the current steganalysis methods are only effective for a certain kind of

image steganography method[43, 44, 45, 46, 47, 48, 49, 50]. For all these steganaly-

sis methods, the most significant weakness is that the types of the steganography

method have to be known in advanced. It is not practical in Internet environment

among billions of images. It is hard even impossible to know whether steganog-

raphy is used in an image and which types of image steganography methods

are applied. So these methods are only proper for analyzing a certain group

of suspicious images rather than monitoring the general Internet image streams.

Recently, a merging kind of steganalysis method is proposed, called universal

steganalysis which is adaptive to multiple kinds of image steganography methods

[51, 52]. However, these methods are based on the pattern classification technology

which needs a learning process. It is impossible to finish the learning process

because of the lack of training information. Obviously, universal methods are not

able to classify and detect image streams on Internet as well. Furthermore, though

more advanced and sophisticated steganalysis methods can be invented in future,

much more advanced robust steganography method can also be invented. So this

passive security protection method cannot be a desired omnipotent solution. The

best defense is a good offense. In fact, in most of the cases, the Internet security

only requires to block the harmful information spreading rather than knowing

what the information it is. Then, the active attacking-based method will be more

effective. This kind of attacking-based method is not interested in what informa-

tion is hidden in the carrier but just working on destroying the hidden information

while keeping as minimum distortion as it can to the host images. There are

some kinds of attacking methods [53, 54, 55, 56, 57]. All these methods are only

effective for the certain kinds of image steganography methods too. This method
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is always working by recognizing the unique features taken to the host images by a

steganography method where the normal images do not have. In addition research

on attacking-based steganography security method is still an uncultivated area

where it did not draw deserved attentions. In the Internet environment it desires

that there is a universal active method which can be used in the images without

the knowledge of what type of steganography methods are. Whatever there is

steganography or not in the images, after the universal attack the original host

image should keep the high visual quality and the hidden image they may have

is removed. The image-based steganography attacking methods can be applied

to the video steaganography as long as the hidden message is embedded in the

I-Frame. For the motion vector-based steganography methods, those attacking are

void because the motion vector is a unique medium for video signal. Some motion

vector specific attacking methods are [58, 59], all of which are passive methods as

we classified above.

In order to invent a universal active attacking method, we must have the

scheme independent to the specific properties of the steganography methods.

This attacking method can only take advantage of the nature of human visual

system. In this paper, we try to find a way to mostly distort the numerical values

of the image while keep the visual quality in a high level. It is possible because

the visual perception by human visual system is not fully in coherence with

the numerical values and there is a gap between them [60, 61]. There are some

kinds of distortions which will heavily change the numerical values while less

affect the image human visual perceptual evaluation. By involving this kind of

distortions the visual information will be kept and the hidden information will

be destroyed in larger sense of possibility since the numerical values of the host

images have been significantly changed. Some of our preliminary works on the
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generic steganography attacking are proposed in[62, 1, 2, 63, 64, 65, 66]
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Chapter 3

Discrete Spring Transform:A novel

Perceptual Invariant Approach

3.1 Introduction

Most of the digital steganography methods take advantage of the margin between

the numerical value and visual perception of the multimedia carriers. In other

words, the steganographic messages are embedded in the carriers by involving

some slight distortions which are non-significant for human perception system.

The steganographic capacity of carrier derives from the defect of the biological

perceptual capability. For instance, a true color image pixel costs 24 bits to store.

Therefore, a pixel varies in 224 different colors which is far more than the number of

colors human visual system is able to differentiate. As a result, a bit steganographic

message can be inserted into the pixel by changing the least significant bit of this

pixel. The slightly color change caused by the change of the least significant bit of

the pixel is not able to draw any attention from the human visual system.

Although the knowledge to the mechanism of human perceptual system is very
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limited up to date, there are some empirical facts about it. In general, human visual

system may pay more attentions on some certain kinds of changes. Meanwhile,

some specific areas in an image may also draw more attentions to human visual

system. These unbalanced attention phenomenons also happen in human auditory

system. For a pixel in an image, the affect to human visual system caused by a

numerical change can be quantified as a set of functions,

A = fk(x, y, d) (3.1)

where A is the quantified affect to human visual system, the model of fk varies by

different types of change involved in the image. The affect is related to the position

of the pixel (x, y) and the numerical difference d caused by this change. The

objective of steganography methods can be expressed as an optimization problem,

maximize d (3.2)

subject to fk(x, y, d) ≤ T (3.3)

where T is a threshold for maximal tolerable visual distortion. Steganography

methods try to find some types of distortion involved in some specific area of the

image to obtain the maximized capacity while make the perceptual distortion is

tolerable for human visual system.

In order to make the generic steganographic attacking method works on varies

types of steganography algorithms, the attacking method should not lay on any

specific property of a certain type of steganography methods. However, as dis-

cussed above, most of the steganography methods take advantage of the margin

existing between the human perceptual system and numerical values, a coun-
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termeasure also can take advantage of it. A further distortion can be manually

involved by the countermeasure to let the numerical values of the cover media

further changed. By this way, the steganographic message hidden in the cover

media may be largely destroyed because the hidden information is highly depends

on the intact of the numerical values in the cover media. Meanwhile, this distortion

can be controlled to cause minimal human noticeable change to the cover media.

In this chapter, a Discrete Spring Transform is proposed to achieve this goal.

This transform can greatly change the numerical values of the cover media while

maintain a high perceptual quality for the cover media. In order to reveal the

mechanism of the Discrete Spring Transform, the features of how human visual

system perceives visual signals should be further investigated.

3.2 Less Significant Perceptual Difference and Less

Significant Perceptual Area

In image and video applications, instead of how to draw more attentions to human

visual system, we are more interested in how to draw less attentions to human

visual system while applying a transform to the image or video. There are two

problems in visual perception. First where draw fewer attentions to human visual

system. Second what transform draw fewer attentions to human visual system.

Even though the human visual system is a very complicated biological system

which is still limited known by human some empirical observations about human

visual system are very useful for our research. Generally, it is believed the local

geometric transform will draw fewer attentions to human visual system. The local
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geometric transform can be expressed as

I
′
(x
′
, y
′
, 1) =


t11(x, y) t12(x, y) 0

t21(x, y) t22(x, y) 0

t31(x, y) t32(x, y) 1

 I(x, y, 1)

The locality of this transform makes the pixel is projected in different direction

and distance from the original pixel. The direction and distance is not identical so

that the transform is not able to generate a global transform trend for the image.

In a micro view, every pixel is changed, however this change is not consistent in

the macro view. As a result, this change will not draw large attentions to human

visual system. On the other hand, human visual system is not sensitive to the

location projection in the image as well. In all this localized transformation can

be a candidate for the proposed transform to be less attractive to human visual

system.

Human visual system pays fewer attentions to the plain area in the image

compared to the edge area in the image in terms of the content of the image. It is

straightforward because the edge area contains more information capacity. On the

contrary, the plain area only reflects a few information because of lack of change.

Consequently, a change in the plain area will draw fewer attentions than a change

in the edge area considering the changes are comparable in terms of the means

squares. In the frequency domain, it is well-known that human visual system

discards high frequency components of the image. This is also the fundamental

for JPEG image compression. Provided the image is not compressed, the change

of the high frequency is also makes less affection on the entire image.

In the audio signal, human auditory system has some similar properties. The
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experiment results shown a localized time scale change in the audio signal will

negligibly affect the audio quality. It is obvious that for a normal music or

speech where thousands of frames are played in one second, a simple change in

a few frames may not be recognized by human auditory system. The proposed

Discrete Spring Transform will take advantages of those properties to perform

transformation and apply the transformation in selected areas. It should emphasize

the transforms discussed here will only less affect the human perceptual quality

of the image or audio, the numerical value of the multimedia signal will still be

dramatically changed. This is just a fundamental to apply this transformation

to the active warden attacking methods. As a result, the normal objective mean

square error based methods will not be fair enough to evaluate the signal quality

of the multimedia signal.

3.3 Prototype of Discrete Spring Transform

A preliminary work for the prototype of Discrete Spring Transform is presented in

[1]. Let’s consider the 1-D Discrete Spring Transform. For a physical spring the

stretch rate is different in different spot. This can be considered as a time-variable

scaling process for an audio 1-D signal. The signal a(t) is stretched by a stretch

rate function r(t). In t0, it is scaled as

a(t
′
0) = a(t0) + r(t0)∆t (3.4)

This process is shown in Figure3.1, we can see the stretch rate varies spot by spot.

If the rate function r(t) is randomized, the transformed signal is difficult to reverse.

Next let’s see how the local stretch rate affects their neighbors. For a finite length
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Figure 3.1: Time-variable Scaling Rate[1]

continuous 1-D signal a(t), 0 ≤ t ≤ T,if it is scaled in a constant rate r then the

scaled signal can be expressed as

a
′
(t) = a(t/r), 0 ≤ t ≤ rT (3.5)

It can be reversed by

a(t) = a
′
(rt), 0 ≤ t ≤ T (3.6)

Now consider the signal is scaled by two scale rates, a(t), 0 ≤ t ≤ t1 is scaled by r1,

and the other part of a(t), t1 ≤ t ≤ T is scaled by r2, and r1 6= r2. Then the scaled
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signal can be expressed as

a
′
(t) =

 a(t/r1) 0 < t ≤ r1t1

a(t/r2) r1t1 < t < (r1 − r2)t1 + r2T
(3.7)

By observation, the reverse relation is expressed as

a(t) =

 a
′
(tr1) 0 < t ≤ t1

a
′
(tr2 + t1(r1 − r2)) t1 < t < T

(3.8)

The second part of the signal is not only depends on its own scaling rate r2 but

also depends on the previous scaling rate r1. In the case where the signal is scaled

by multiple scale rate, this relation can be further investigated. For the signal a(t)

which separated by (t0, t1, t2, ..., tn−1, tn), (t0 = 0, tn = T)and scaled by r1, r2, ..., rn.

The scaled signal can be expressed as

a
′
(t) =



a(t/r1) 0 < t ≤ r1t1

a(t/r2) r1t1 < t < (r1 − r2)t1 + r2T

... ...

a(t/ri)
i−1
∑

k=1
rk(tk − tk−1) < t <

i
∑

k=1
rk(tk − tk−1)

... ...

a(t/rn)
n−1
∑

k=1
rk(tk − tk−1) < t <

n
∑

k=1
rk(tk − tk−1)

(3.9)
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It can be reversed by

a(t) =



a
′
(tr1) 0 < t ≤ t1

a
′
(tr2 + t1 < t < (r1 − r2)) t1 < t < t2

... ...

a
′
(tri +

i−1
∑

k=1
rk(tk − tk−1)− riti−1) ti−1 < t < ti

... ...

a
′
(trn +

n−1
∑

k=1
rk(tk − tk−1)− rntn−1) tn−1 < t < tn

(3.10)

From the above observations, it shown the signal reverse depends on all the

previous scaling rate r(t). If n goes to infinite, every point is not able to be recovered

because it depends infinite previous scaling rate. So this transform becomes a

one-way transform. It is very useful when applying for the countermeasures

against the steganography because it is desirable to make the attacked signal

unrecoverable. In fact, this is an advantage over the time scale modification which

can be recovered by some synchronization techniques. In order to make the signal

not change too much, the scale rate r(t) should be a function close to 1. The

maximum magnitude of the difference caused by the scale function is expressed as

max(|r(t)− 1|) (3.11)

which is called the maximum scaling range. The property of the scaling function

conforms to the physical spring where every spot is stretched in a different rate

while the every spot interact its neighbors. One of the important advantages is that

though the signal is scaled in various signal the order of the signal is kept. That is

for the original signal if t1 < t2 it must be t
′
1 < t

′
2 for the transformed signal. It is
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a very crucial property to maintain the perceptual quality of the audio signal in

steganography attacking process.

The proposed transform is a reasonable tool against the steganography. But

the implementation of the spring transform cannot be done in continuous form in

digital multimedia signal. The implementation of the spring transform is discussed

in next two chapters.
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Chapter 4

Proposed Active Warden Attack

against Audio Steganography

Methods

4.1 Introduction

In the audio signal, human auditory system is not sensitive to the time scale

modification. The proposed attacking method is based on the 1-D discrete spring

transform[1]. The transform will scale the audio sequences with a time variant

stretch rate. In order to make the transformation irreversible, the stretch rate is a

random series. Since the stretch rate is small and not identical, the overall affection

of the audio signal is negligible. The advantages of this method are that it need not

to detect whether steganographic message is embedded in the audio signal or not.

Moreover this is a generic method where the types of the steganography methods

are not important in terms of the performance of the attacking methods. It is

obvious that the smaller the stretch rate is the less distortion will involve. On the
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other hand, larger stretch rate has a better capability to remove the steganographic

message while a larger distortion will be involved as well. Therefore it is desirable

to dynamically adjust the stretch rate to meet the requirement for the audio quality

and the security standards. Also the stretch rate can be adjusted according to the

location and the nature of the audio. The stretch rate must be strictly controlled in

some important section of the audio whereas a larger stretch rate is allowable in

some transitional section of the audio. Another advantage for this method is that

even though the stretch rate is small the steganographic message still tends to be

nonrecoverable because the stretch rate changes very quickly. It is difficult even

impossible to capture the stretch rate.

The proposed Spring Transform is not able to implement in the digital audio

signal, because the stretch rate cannot change point to point in discrete signal. So

a block-based Discrete Spring Transform is proposed. This block-based method

will be used to attack the steganography hidden in the audio signal.

4.2 Block-based Discrete Spring Transform and

Audio Steganography Attacking

As shown in Figure4.1 a block-based Spring Transform is implemented in the audio

steganography attacking. The stretch rate is fixed in a certain block which contains

a few time series. The stretch rate is dynamic from one block to another. For

the audio signal, a[n], n = 0, ..., N − 1, it is divided into K blocks where the index

of the blocks are B1[N0, N1], B2[N1, N2], ..., Bk[Nk−1, Nk] and N0 = 0, Nk = N − 1.

Number of samples in each block is n1, n2..., nk, ni = Ni − Ni−1. The number of

each block is not the same and irrelevant to each other. The maximum block size
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max ni need to be small enough to make the stretch negligible. The stretch rate

cane be expressed as

r[n], n = 1, 2, ..., k (4.1)

Then the block-based Discrete Spring Transform can be expressed as

a
′
[n] = f (a[n]) n = 0, 1, ..., N

′ − 1 (4.2)

In each block the scaling can be implemented by the interpolation or resampling.

The interpolation function can be expressed as a convolution

âi(t) = ai[n] ∗ w(x) (4.3)

âi(t) =
k=Ni

∑
k=Ni−1

ai[k]w(t− k). (4.4)

where

w(x) =


1 x = 0

3 sin(πx) sin (πx
3 )

π2x2 0 < |x| < 3

0 otherwise

(4.5)

is the window function of the Lanczos interpolation. The interpolated signalâi(n)

is a continuous signal of the signal a[n] in block Bi. After the interpolation, the

scaling is implemented based on the resampling of the continuous signal âi(n)

with a new stretch rate r(i)Fs,where Fs is the original sampling rate of the audio

signal The resampling process is shown as

a
′
i[n] = âi[Ni−1 + (n− N

′
i−1)

1
r(i)Fs

] n = N
′
i−1...N

′
i (4.6)
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Figure 4.1: Block-based Discrete Spring Transform[1]

where N
′
i−1 and N

′
i is the adjusted boundaries of the signal block. It can be

obtained by

N
′
i = N

′
i−1 + r[i]ni (4.7)

and N
′
0 = 0.

Finally, the entire transformation is expressed as

a
′
[n] = f (a[n]) =



a
′
1[n] 0 < n ≤ N

′
1

a
′
2[n] N

′
1 < n ≤ N

′
2

... ...

a
′
i[n] N

′
i−1 < n ≤ N

′
i

... ...

a
′
k[n] N

′
k−1 < n ≤ N

′
k

(4.8)

As mentioned above, the stretch rate is a random series so that it is difficult to

be followed. Though it makes the signal practically non-reversible, the possibility
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still exists if the stretch rate is known. Unlike the prototype of the spring transform

where the stretch rate is infinite, the stretch rate function in the block-based discrete

spring transform is finite. So in finite blocks the signal can be recovered by scaling

with a stretch function

c[k] = 1/r[k] (4.9)

An additional adjustment is conducted in each block to make the stretch rate

totally nonreversible. For block Bi, this adjustment is expressed as

a
′
i[n] =



âi[
n

r′i(1)Fs
] n = 1

âi[
n

r′i(2)Fs
] n = 2

... ...

âi[
n

r′i(j)Fs
] n = j

... ...

âi[
n

r′i(n
′
i)Fs

] n = n
′
i

(4.10)

This process resampled the audio signal in each block with an associate time

stretch function r
′
i(k). It makes the signal unable to recover even r[n] and r

′
i(k) are

explicitly known.
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Chapter 5

Proposed Active Warden Attack

against Image and Video

Steganography Methods

5.1 Print-scan Process Inspired Analog Location

Transform

Consider an inkjet printer which is mostly used for photo printing today. Ink

droplets are printed on the paper by an inkjet head in order to transform a

digital representation of an image onto physical paper. One of the distortions

in this process is caused by pixel location deviation. Since the inkjet head is a

mechanical structure, it cannot guarantee that every ink droplet which represents

a certain pixel can be exactly and uniformly printed at the designated location.

This pixel location deviation is an analog change which is hard to be dealt with

by steganography algorithms compared to some rotation, scaling, translating and
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cropping (RSTC) transforms. A steganography algorithm could be designed to

survive RSTC transforms, but can hardly survive the print or scan process. Since

the human visual system is insensitive to small-scale deviations in the printed

image this uncorrected location deviation changes only the pixel values of the

image rather than the perception of the image. Thus the small pixel location

deviations are not able to create a change noticeable to the human visual system.

This pixel location deviation can be formulated as an analog location transform

(ALT). For simplicity, we first consider the 1-D case. Consider a 1-D N-points signal

where every data point is located in integer points 0,1,2,,N-1 as shown in Fig.1,

after the ALT every discrete data point is mapped to a new location as dictated by

the ALT. The mapping of the 1-D ALT can be described as

a(t)→ a
′
(t
′
) (5.1)

and

t
′
= t + Φ(t) t ∈ Z t

′ ∈ R (5.2)

where Φ(t) is the transform function denoting time-variant location deviations.

In order to prevent disordering, we define |Φ(t)| ≤ 0.5 and Φ(0) ≥ 0 Φ(N) ≤ 0.

It should be aware that after the ALT, t could mapped into arbitrary continuous

location range in (0, N − 1).

It is then straightforward to extend to the 2-D situation where an image ALT

can be expressed as

I(x, y)→ I
′
(x
′
, y
′
) (5.3)
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where 
x
′

y
′

1

 =


1 0 Φ1(x, y)

0 1 Φ2(x, y)

0 0 1




x

y

1

 x, y ∈ Z x
′
, y
′ ∈ R (5.4)

This transform differs from a conventional affine transform or geometric transform

since the transform functions are not constant as the 2-D ALT is a spatial-variant

transform. For the same reason as 1-D ALT, the transform functions are confined as

|Φ1, Φ2| ≤ 0 and ∀x = 0, y = 0 we have 0 ≤ Φ1(x, y), Φ2(x, y) and ∀x = M− 1, y =

N − 1 we have Φ1(x, y), Φ2(x, y) ≤ 0. This definition allows the location of each

pixel to deviate only in relation to its nearby area. There are various methods that

can be used to create the transform functions Φ1(x, y) and Φ2(x, y). Thus the ALT

can be described as an analogy to the random inkjet head mechanical jitter, where

the transform functions could be uniformly distributed i.i.d random processes.

The probability density function can be expressed as

P(Φi(x, y)) =


1

2δi
−δi < Φi(x, y) < δi

0 otherwise
(5.5)

where i = 1, 2 and 0 ≤ δi < 0.5 is the maximum range of the deviation. This

random method did not well consider the properties of the human visual system

and therefore cannot be a very effective method. However this method provides

us a reference threshold for the other advanced methods. Obviously, the larger

deviation ranges that are used, the larger distortions will be caused. We therefore

set a threshold T1 = M δ1
2 and T2 = N δ2

2 denoting the maximum deviation range

in horizontal and vertical directions. This threshold can be found by searching
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the maximum possible δx and δy under desired image visual quality requirement

and tuning appropriately. These thresholds will then be used for normalizing the

transform functions in the following methods.

As mentioned, in order to attack the steganography maximally while maintain-

ing high image quality and preserving the human visual perception of the image

the properties of human visual quality have to be taken into account properly.

Specifically, in ALT method, larger deviations could be involved in the area where

human visual system is not as sensitive. Rather than perceiving the absolute value

of the pixel intensity, the human visual system is more sensitive to the contrast

and the edge area which will draw more attention than the plain area in an image.

In other words, the deviations in plain area will be increased while the distortion

in edge area will be suppressed. In order to realize this idea, we utilize two

methods, the first being an edge detector and novel curve length method. Sobel

edge detection is one of the most simple edge detectors which can extract the edge

information of an image. The masks of the Sobel detector in horizontal and vertical

directions are

M1 =


−1 0 1

−2 0 2

−1 0 1

 (5.6)

and

M2 =


−1 −2 −1

0 0 0

1 2 1

 (5.7)
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Figure 5.1: Illustration of the Relation Between Curver Length and Pixel Difference

The gradient of image in horizontal and vertical directions can be calculated by

per-forming 2-D convolution of the image and the Sobel detector masks in two

directions respectively as follows,

G1 = I ×M1 (5.8)

G2 = I ×M2 (5.9)
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This operation discriminates the edge area of the image from the plain area

because the gradient in edge area is much larger than the plain area. To make less

distortions in the edge area, let the transform parameters be inversely proportional

G1, G2. Remembering that the quality threshold Ti is related to a desirable visual

quality level, the deviation functions can be normalized by the threshold to obtain

the desired visual quality. So the transform functions in edge detector method can

be expressed as

Φi(x, y) = Ai(
1

Gi(x, y)
) (5.10)

where

Ai =
Ti

∑M
p=1 ∑N

q=1
1

Gi(p, q)

(5.11)

This method exploits the more unnoticeable or plain area in the image. Edge

detection can only discriminate an edge from the other areas of the image but

cannot reflect progressive and smooth trends in respect to the contrast of the image

pixel values. We invent a novel curve length method which can accomplish this

task. As shown in Figure5.1 in a 1-D signal, large differences between neighbor

signal point values causes longer curve lengths between them if we interpolate the

time sequence into a continuous curve. This curve length is thus progressively

changing and dependent on the entire signal pattern. Therefore, we can use the

length of the curve to model the signal contrasts. In the plain area of the image

the curve length would be shorter than the length in the high contrast area. The

curve length can then be obtained by integrating the interpolated 2-D signal in

horizontal and vertical directions respectively.
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The interpolated signal can be expressed as

Î(x, y) = I(x, y)×WL(x, y) (5.12)

where WL is the interpolation window kernel, in this paper, the 3-order Lanczos

window kernel of 1-D form can be express below as

w(x) =


1 |x| = 0

3
sin πx sin

πx
3

π2x2 0 < |x| < 3

0 3 ≤ |x|

(5.13)

then the 2-D window kernel is The curve length between I(k, y) and I(k + 1, y) in

horizontal direction and between I(x, k) and I(x, k + 1) in vertical direction are as

follows

d1(k, y) =
∫ x=k+1

x=k

(
dÎ
x
(x, y)2 + 1

)
dx (5.14)

d2(x, k) =
∫ y=k+1

y=k

(
dÎ
y
(x, y)2 + 1

)
dy (5.15)

Then the transform function in the curve length method is formulated as

Φi(x, y) = Bx

(
1

di(x, y)

)
(5.16)

where

Bx =
Ti

∑ 1/di
(5.17)
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Now, every pixel of the image is mapped into a new location that may not represent

an integer point. The next step is to deter-mine how to scan back this projected

ink-jet image into a digital image. In other words, it means reconstructing the

pixel value at the integer point based on the ALT-pixels. One way to accomplish

this reconstruction is through interpolation which can be expressed as

Ir(x, y) = ∑
v=Y′

∑
u=X′

(I
′
(u, v)WL(x− u, y− v)) (5.18)

where

X
′
= {x′(x, y)|x′(x, y) = x + Φ1(x, y)} (5.19)

Y
′
= {y′(x, y)|y′(x, y) = y + Φ2(x, y)} (5.20)

denote the mapped location coordinator sets of each pixel. However, based on

experimental results, this method may not destroy the steganographic information

very well. A novel pixel geometrized method is presented in next section to solve

this problem. This method introduces another kind of distortion in print-scan

process.

5.2 Geometrized Image Reconstruction

Recall the idea by the ink-jet printer, where we assume the ink volume for each

pixel is proportional to the pixel value and the ink droplets will spread into a
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circle ink dot whose area is proportional to the ink volume. So each pixel can be

geometrized into a size-variable circle ink dot. We define that every pixel value is

equal to the area of the corresponding ink dot as follows

I
′
(x
′
, y
′
) = πr(x, y)2 (5.21)

where r denoting the radius of the ink dot circle. Ideally, the ink dot is centered

uniformly in the paper, however, since after the ALT each circle center will have

a slightly deviation and will deviate from its center due to the spreading effect,

neighbor ink dots would be overlapped. Assume then that a scanner will scan the

paper by sliding a square shape scanning window whose size is comparable to

the size of the ink dots. Every pixel will be scanned into digital value by sensing

the ink amount in a scanning window. In this process, the scanned image pixel

value will be distorted by the circle center deviations, the size of the scanning

window, and the neighbor pixels. With different size ink circle areas and a firm

size scanning window, there will be nine different geometric patterns as shown in

Figure5.2. In Figure5.2 it assumed that the horizontal deviation is towards right

direction and vertical deviation is towards down direction. As observed, each ink

dot will affect up to eight nearby ink dots, meanwhile each ink dot also would

be affected by up to eight nearby ink dots. With different size relations between

2, circle radius circle radius r and scanning window edge length d, these nine

patterns would occur in different orders, Figure5.2 is only one of these possible

orders. Though this will result in many different patterns, it can be formulated

using a concise expression to the recovered value. Firstly, define two functions as
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below

Q(x) = [r2 arccos
x
r
− x
√

r2 − x2, 0]+ (5.22)

R(x, y) = [
1
2
(S(x) + S(y)) + xy− πr2

4
, 0]+ (5.23)

Q(x) expresses area in a circle divided by a chord. R(x, y) denotes the area in

the middle of two intersect chords. Then the ink area in nine nearby scanning

windows spread by pixel I(i, j) can be expressed as

S(i,j)(i± 1, j± 1) = R(
d
2
∓Φx(x, y),

d
3

bΦy(x, y)) (5.24)

S(i,j)(i± 1, j) = Q(
d
2
−Φx(i, j))− S(i,j)(i± 1, j− 1)− S(i,j)(i± 1, j + 1) (5.25)

S(i,j)(i, j± 1) = Q(
d
2
−Φy(i, j))− S(i,j)(i− 1, j± 1)− S(i,j)(i + 1, j± 1) (5.26)

S(i,j)(i, j) = πr2(i, j)−
1

∑
p=−1

1

∑
q=−1

S(i,j)(i + p, j + q) (5.27)

Then the recovered pixel value in Ir(i, j) can be expressed as

Ir(i, j)
j+1

∑
q=j−1

i+1

∑
p=i−1

S(p,q)(i, j) (5.28)
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Figure 5.2: Nine Patterns of Scanning Window and Variable-size Ink Dot

5.3 Multi-dimensional Steganography Attack against

Video Steganography

The video steganography is implemented in frequency domain. A Discrete Spring

Transform extention in frequency domain will be proposed at first.

5.3.1 Discrete Spring Transform in Frequency Domain

In the Frequency DST (FDST), the image C = c(x, y) is transformed in the fre-

quency domain initially which can be expressed as F(ω1, ω2). The FDST is defined
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as:

F(ω1, ω2)
FDST−−−→ F

′
(ω1, ω2) (5.29)

Then, the transformed signal in the time domain is

C
′
= c

′
(x, y) = IFFT[F

′
(ω1, ω2)] (5.30)

C
′

is assumed to be identical to C visually while the hidden message in C is

unrecoverable in C
′
. The FDST is mainly conducted in the mid-range Frequency

area. Roughly, the mid-frequency range is defined as

Mc = {F(ω1, ω2)|γ1 < ω1 < γ2, δ1 < ω1 < δ2} (5.31)

Specifically, the FDST strength operator is obtained by a bandpass filter denoted

as

O = A× fb(γ1, γ2, δ1, δ2) (5.32)

In this place, A is the original FDST strength. By this way, the FDST can be

first conducted in the entire frequency area and then the FDST strength operator

is multiplied. Therefore, the affect resulted by the FDST in the low and high

frequency portions are filtered by the bandpass filter. The choice of the bandpass

filter model and the cut-off frequencies determine the FDST boundary in the

image.

In order to let the FDST blocks discretely distributed in the frequency domain

where the best attacking performance can be achieved, we define the center set of
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the blocks as Φ = {Φ1, Φ2, Φ3, , ΦN} where N denotes the number of the blocks.

The first step of the block generation is the block center selection. These N block

centers are randomly selected from the F(ω1, ω2). Then the block center can be

expressed as

φi = (ωxi , ωyi) (5.33)

Then the block distance which is defined as the distance between two block centers

is expressed as

dij =
√
|yj − yi|2 + |xj − xi|2 (5.34)

The block shape is irregular and grows from the center to eight different orienta-

tions. The block shape can be expressed by the shape matrix

Si =


s1

i s2
i s3

i

s4
i 0 s5

i

s6
i s7

i s8
i

 (5.35)

An example of the block shape can be shown in the figure below: The blocks

may have some overlaps or locate very close to each other. Based on our obser-

vation, the more sparse, the better attacking performance can be achieved. So we

want to optimize the attacking performance by solving an optimized problem to

make the blocks distribute as sparse as possible. Lets fix the shape matrix and

move the block center from φi → φ
′
i where

φ
′
i = (ω

′
xi

, ω
′
yi
) (5.36)
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Figure 5.3: An Example of Block Shape in FDST

We define the minimum boundary distance between two blocks as db
ij where it is

shown in Figure5.4

The optimization problem can be expressed as

max
i=N,j=N

∑
i=0,j=0,i 6=j

db
ij (5.37)

the condition of the optimization problem is that any block must be within the

frequency plane.
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Figure 5.4: Minimum Boundary Distance

In practice, an iterative algorithm is used. We consider two blocks are sparse

when the minimum boundary distance is larger than half of the block distance

which is represented as

db
ij ≥ 0.5dij (5.38)

Firstly, we find the block pairs [φi, φj] whose boundary distance db
ij is smaller than

0.5dij. For all those block pairs, we move the block centers towards the opposite

directions from each other along the link of those two block centers for one distance

unit. Then, we repeat this process until no block pairs can be found. In other

words, db
ij ≥ 0.5dij is satisfied for all the blocks. It should note a larger scale rate

can be used to define the sparse standard, however more convergence time is

required.

The in-block FDST is implemented by the interpolation and resampling.
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The interpolated signal can be expressed as

F
′
(ω1, ω2) = F(ω1, ω2) ∗WL(x, y) (5.39)

where w(x, y) is the interpolation window kermal, in this application, the 3-order

Lanczos window kernel which 1-D form can be expressed below is used

WL(x, y) = w(x)w(y) (5.40)

where

w(x) =


1 |x| = 0

3
sin πx sin

πx
3

π2x2 0 < |x| < 3

0 3 ≤ |x|

(5.41)

After the interpolation, in each block a different resampling rate is adopted.

5.3.2 Video Steganography Attack Extention

The application of the DST in Video signal is presented in Aaron’s paper in [2].

Video Signal provides more capacity for the steganography. The steganographic

message can be not only embedded in each frame but also can be embedded into

the time frame as well.

As a result the Discrete Spring Transform should also be implemented in the time

frame so as to remove the steganographic message there.

The basic idea for time-frame Discrete Spring Transform is the same as the 1-D

Spring Transform. The time frame is scaled by a time variant rate. This will cause

a frame deletion or interpolation in the video signal. When the video is played, a
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few frame insertions or missing may not affect the video perceptual quality as the

fact in the audio signal.

In each frame of the video signal, it can be treated as the time signal and the

proposed image steganography attacking method can be applied.

In order to keep the video duration as identical as the previous signal a part

of the frames are interpolated while another part of frames are resampled. The

interpolation rate are reciprocal so that the entire number of frames in the video

sequences are not changed.
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Chapter 6

Experimental Results

6.1 Audio Implementation Simulation Results

The proposed attacking method is similar to the time scale modification. Both

methods do not actually remove the steganographic messages but desynchronize

the location of the hidden messages so that the messages are not able to be

decoded correctly by the intended receiver. One of the advantages over the time

scale modification is that our proposed method makes the hidden message more

difficult to be recovered by synchronization techniques because of the variability

of the stretch rate. As discussed above, the randomness of the stretch rate function

makes spring transform a one-way transform. Another advantage over time scale

modification is that the cover media can bear a larger stretch rate with the same

perceptual quality requirement. It is because the variable stretch rate localizes the

changes of the audio signal so that the people are hardly to notice. A larger stretch

rate can strengthen the attacking performance to the hidden messages.

The experimental results show our proposed method performs well on some

TSM-robust steganography method. It proves the attacking performance of our
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Table 6.1: BER of the Hidden Message[1]

10 50 100 500 1000 2000
0.02 0.4665 0.3996 0.3292 0.4442 0.4866 0.4911

0.04 0.5056 0.4531 0.5033 0.5226 0.5045 0.4989

0.06 0.4688 0.4911 0.4989 0.5067 0.4788 0.4810

0.08 0.4754 0.4688 0.4275 0.5078 0.5208 0.4866

0.1 0.5379 0.5000 0.4888 0.5190 0.4866 0.4710

method outperforms the time scale modification. After the attack, the audio is

evaluated by both subjective and objective evaluation methods. It should note

that the conventional Signal-to-noise ratio is not fair for our proposed method

because our method intends to largely change the numerical value of the audio

signal which will cause the decrease of the SNR. Instead, the correlation is used to

evaluate the similarity of the attacked audio signal to the original signal.

In the experiments, a TSM-robust audio steganography algorithm[16] is used

as the test bench for our proposed attacking methods. Li’s method use the point

feature to synchronize the audio signal and it achieve a good performance against

the time scale modification.

6.1.1 Attacking Performance

For simplicity, the block size is set to be identical and ranging from 10 to 2000 in

this experiment. The sampling rate of the audio signal is 44.1kHz. Stretch rate is

a random sequence uniformly distributed in [1− Amax
2 , 1 + Amax

2 ]. The maximum

stretch rate Amax varies from 0.02 to 0.1 with the step 0.02. 128 bits hidden

messages are embedded in the clips. The attacking performance is shown in

Figure6.1, Figure6.2,Figure6.3 and Figure6.4. The attacking result is also shown in

Table6.1. The Table6.1 and Figure6.1 present the results from the same audio clip.

Overall nearly half result points reach a 0.5 BER which means the decoding results
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Figure 6.1: BER of Hidden Message in Audio Clip1 after DST[1]

of the attacked hidden message cannot be better than a random guess. According

to the results, a medium stretch rate responses a better attacking performance. On

other words, the attacking performance will not improve when the stretch rate is

higher than a threshold. It is a desirable result because we do not want to make

the stretch rate too affect the audio perceptual quality to achieve a better attacking

performance. Another observation from the result is that the medium stretch rate

achieves a good attacking performance for nearly all block size configuration. So

the choice of the block size is not very important when the stretch rate is properly

selected. By this way, we can set the block size small to maintain good audio

quality.

Similiar results are reported by different audio types in Figure6.2, Figure6.3

and Figure6.4. Figure6.3 and Figure6.4 are male and female speech audio clips.
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Figure 6.2: BER of Hidden Message in Audio Clip2 after DST[1]

These results show a consistent performance for audio signal. In addition, the

speech signal represents a better performance in Figure6.3 and Figure6.4.

6.1.2 Audio Peceptual Quality

6.1.2.1 Objective Method

As mentioned, the SNR is not fair enough to evaluate the audio perceptual quality

regarding the audio attacked by our proposed method. For example, for the

operation that the audio signal is shifted one sample, the change is too tiny to be

noticed however the SNR could be very low because of the position change of every

sample. In order to eliminate the fluencies of the position, the cross-correlation is

used as a metric to evaluate the audio quality. A higher cross-correlation means
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Figure 6.3: BER of Hidden Message in Audio Clip3 after DST[1]

Table 6.2: Cross-correlation between Stego-signal and Attacked signal[1]

10 50 100 500 1000 2000
0.02 0.7241 0.6332 0.8616 0.9222 0.8403 0.4180

0.04 0.7923 0.6661 0.6567 0.7817 0.5205 0.3561

0.06 0.5154 0.8400 0.7534 0.6616 0.2690 0.2862

0.08 0.3398 0.6331 0.6768 0.4657 0.1759 0.2233

0.1 0.6853 0.7605 0.3957 0.5363 0.2192 0.1677

more similar the attacked signal compared to the original one. In Table6.2, the

cross-correlations are shown in terms of block sizes and stretch rates. Other than

the good audio quality shown from the cross-correlation values, Table6.2 also

shows the audio quality is relatively independent to the block size and stretch rate.

This feature provides us a flexibility to adjust the block size and stretch rate to

achieve a better attacking result.
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Figure 6.4: BER of Hidden Message in Audio Clip4 after DST[1]

6.1.2.2 Subjective Method

Since our method cultivates the difference between the numerical value and

the perceptual quality of the audio signal. The subjective evaluation method

seems to be more effective to evaluate the proposed method. A subjective audio

quality evaluation based on the SDG (Subjective Diff-Grades) is performed in this

experiment. The score is given in Table6.4 based on the criteria in Table6.3. Ten

reviewers are assigned the audio clips in terms of different block sizes and stretch

rates. As shown in Table6.2, the subjective evaluation shows a similar results

in Table6.4 that the block sizes and stretch rates do not affect the audio quality

very much. As a result a searching-based method is recommended to find the best

audio quality configuration.
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Table 6.3: Subjective Diff-Grades[1]

SDG Description
0.0 imperceptible
-0.1 perceptible, but not annoying
-0.2 slightly annoying
-0.3 annoying
-0.4 very annoying

Table 6.4: Average SDG Grades[1]

10 50 100 500 1000 2000
0.02 0.0 0.0 0.0 0.0 0.0 0.0
0.04 0.0 0.0 0.0 0.0 0.0 0.0
0.06 0.0 0.0 0.0 0.0 -0.1 -0.1
0.08 0.0 0.0 0.0 0.0 0.0 -0.1
0.1 0.0 0.0 0.0 0.0 0.0 -0.1

6.2 Image Implementation Simulation Results

6.2.1 Attacking Performance

The spread spectrum steganography is used as test bench to validate our proposed

method. In the experiment, 64 bits of information is embedded in the host image

by the spread spectrum steganography method. The results show our proposed

method works on the steganography in frequency domain as well. We use the

curve length based ALT and edge detector based ALT to attack the steganography

where the scanning window ranged from 4 to 9. Figure6.5 shows the BER of curve

length based method. Figure6.8 shows the BER of edge detector based method.

As shown in Figure6.5 and Figure6.8, three different category pictures which are

portrait, scenery and still object are tested respectively. Since 64 bits are embedded,

when the BER is greater than 0.5 the decoding result of the hidden information

will not be better than a random guess since the steganography cannot be obtained

with any certainty. The results show, in each method when the scanning window
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Figure 6.5: Curve Length Method BER

length is 5 that the BER is over 32. Those two kinds of methods do not show much

difference in terms of the attacking performance.

6.2.2 Image Perceptual Quality

The image quality is evaluated by PSNR with two attacking methods shown in

Figure6.7 and Figure6.8 respectively. A PSNR which is generally greater than 32db

is shown in both two figures. The curve length based method is found to be better

than the edge detector based method.

A visual result is shown in Figure6.9. Both two results are shown using a

window size=6. It is shown no visual difference between the original image.

Since the PSNR can only evaluate the numerical difference of the image we



58

Figure 6.6: Edge Based Method BER

will use a visual quality evaluation method to present the attacking performance.

Figure6.10 shows the attacked image of PSNR in 20 dB with our method and

the same image with random noise with PSNR in 20 dB. It is evident that at the

same PSNR level, the attacked image has a better visual quality. This proves our

method exploits the unnoticeable distortions to defeat steganographic data while

maintaining high image quality.

6.3 Video Implementation Simulation Results

The results of the video steganography attacking is conducted by Aaron Sharp

and the results are also presented in [2].
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Figure 6.7: Curve Length Method PSNR

6.3.1 Video Attacking Performance

The proposed method is undergoing steganography attack both in image domain

and motion vector domain.

6.3.1.1 2D Steganography Attacking

The attacking performance for the steganographic messages hidden in each video

frame is shown in Table6.5. The results shows the BER reaches 0.5 which is

highlighted in the table.
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Figure 6.8: Edge Based Method PSNR

Figure 6.9: Visual Results using Proposed Methods

6.3.1.2 Motion Vector Attacking

Table6.6 shows the attacking performance for the motion vector attack. Like the

2D attack, it also validates the proposed method with the BER greater than 0.5.



61

Figure 6.10: Comparison to the Image PSNR=20 dB

2D Chop (pixels)
0 10 20 30 40 50

Ti
m

e
C

ho
p

(f
ra

m
es

)

0 0.0003 0.1020 0.5351 0.5195 0.5185 0.4611

5 0.0006 0.1033 0.5364 0.5214 0.5077 0.4531

10 0.0010 0.1043 0.5418 0.5236 0.5086 0.4557

15 0.0010 0.1052 0.5402 0.5293 0.5140 0.4534

20 0.0010 0.1043 0.5450 0.5332 0.5057 0.4544

25 0.0013 0.1087 0.5421 0.5360 0.5061 0.4585

Table 6.5: 2D Steganography BER[2]

2D Chop (pixels)
0 10 20 30 40 50

Ti
m

e
C

ho
p

(f
ra

m
es

)

0 0.0000 0.0000 0.3891 0.4713 0.5161 0.5146

5 0.5197 0.5257 0.5106 0.5338 0.4970 0.5015

10 0.5423 0.5302 0.5474 0.4945 0.5121 0.5287

15 0.4990 0.5318 0.5484 0.5378 0.5484 0.5237

20 0.5302 0.5635 0.5181 0.5297 0.5297 0.5156

25 0.5514 0.5559 0.5413 0.5398 0.4950 0.5186

Table 6.6: Motion Vector Steganography BER[2]

6.3.2 Video Quality

Table 6.7 shows the PSNR for the video signal after the multi-dimensional steganog-

raphy attack. It indicates the video quality is acceptable with the PSNR over 30dB

is most of the cases. The optimal attack in terms of the video quality is the attack
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with 20 pixels for 2D chop and 10 frames for time chop where it is highlighted in

the table.

2D Chop (pixels)
0 10 20 30 40 50

Ti
m

e
C

ho
p

(f
ra

m
es

)
0 ∞ 30.887 29.686 29.339 29.144 29.018

5 34.250 30.136 29.377 29.137 28.994 28.898

10 32.238 29.765 29.223 29.036 28.913 28.828

15 31.470 29.594 29.141 28.979 28.868 28.792

20 31.090 29.496 29.092 28.943 28.838 28.769

25 30.864 29.435 29.059 28.919 28.817 28.752

Table 6.7: Motion Vector Steganography PSNR (db)[2]
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Chapter 7

Conclusion

Steganography is an emerging technology in this century where the multimedia

is everywhere in our daily life. The rapid development of the Internet and

wireless technology provides general public much more conveniences and spaces to

exchange multimedia data. Many multimedia-based applications such as Youtube,

Hulu become popular owing to the dramatically increase of the network bandwidth.

The portable devices and wireless technology make the multimedia exchanges

happen everywhere in the world. Beside the convenience, a big security concern

arises from the multimedia applications. Unlike the text data, multimedia data

provides a much more capacity for steganography. It also makes the steganography

more robust than ever.

The feature of the steganography facilitates the malicious or illegal use of the

steganography. Some effective countermeasures to the steganography are very

necessary in this scenario. The existing passive steganography attack methods are

proven to be ineffective provided the properties of the Internet environments where

multiple steganography methods can be used. It is also not efficient because most

of the Internet data exchange is innocent. An active warden attack is needed in



64

this case. This method is based on the aggreement that the network administrator

can modify the data on the Internet whereas the content of the data cannot be

changed.

A generic attacking method is proposed in this thesis. It can be implemented

in audio, image and video steganography applications respectively. The proposed

method is built on the fact that the multimedia signal has a gap between the

numerical values and the perceptual effects. specifically, some certain types of

changes happened in certain areas of the multimedia signal is not very significant

in terms of the human perceptual systems. A typical type of change used in

this thesis is the location change in image or frequency change in audio. The

area chosen to apply this kind of change in image is the plain area where fewer

attentions are attracted.

A Discrete Spring Transform is proposed based on this investigation. This

transform can be generalized as a perceptual-invariant transform. It means the

perceptual effect will not be largely changed by Discrete Spring Transform. How-

ever another feature of this transform is that the numerical value can be greatly

changed in the meantime. In all, the gap between the numerical value of the

multimedia signal and the perceptual effect is exploited by the Spring Transform.

It is proven to be effective in steganography attack.

Some implementations respect to different signal formats are proposed in this

thesis as well. The implementation considers the requirements of two aspects.

First is the quality of the cover media can not be distorted very much. Second is

the steganographic message can be effectively removed. The implementations are

proven to be effective by the numerical results. It also shows the advantages over

some similar schemes. This attack not only works in spatial domain but also on

frequency domain.
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In future work, perceptual quality evaluation for the image and audio is a very

important topic. It will not only be used to justify our results but also further

reveal the relations between the perceptual effect and numerical values of the

multimedia signal. It is worthwhile to study how large this gap is. This gap makes

the steganography possible. This gap also makes the countermeasures possible. In

all, this is just a start.
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