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Abstract
This paper is concerned with a semi-infinite interfacial crack between two bonded dissimilar elastic strips with equal thickness. 
Solutions for the complex stress intensity factor (SIF) and energy release rate (ERR) are obtained in closed form under in-plane 
deformations. During the procedure, the mixed boundary-value problem is reduced by means of the conformal mapping technique 
to the standard Riemann–Hilbert problem. In some limiting cases, the present solutions can cover the results found in literature. 

Keywords: interfacial crack, strip, Riemann–Hilbert problem, conformal mapping 

1 Introduction

Early investigations in the area of interfacial fracture focused mainly on studying the characteristics of as-
ymptotic fields near the crack tip and finding the SIF and ERR of interfacial cracks between two bonded 
dissimilar half-planes [1–6]. However, interfacial cracks occurring in engineering structures, such as com-
posite laminates and adhesive joints, often bear the crack length comparable to the structure dimensions. 
In order to evaluate the interaction of structure boundaries and cracks, it is natural to introduce structure 
dimensions into the crack model. One of the typical crack models discussed by investigators is concerned 
with a semi-infinite interfacial crack between two bonded dissimilar strips. Its anti-plane case is mathe-
matically equivalent to that of a semi-infinite crack in a homogenous elastic strip, which was solved by 
Rice, [7], using the method of the J-integral; later, in paper [8], the Wiener–Hopf technique was used, and 
recently the method of dual integral equations was applied in [9]. In the case of in-plane deformations, a 
number of researchers contributed significantly to this subject, mainly based on the elementary beam the-
ory. Recent refined work on the basis of the J-integral and asymptotic fields near the crack tip was pre-
sented in [10, 11], [12] and [13], where a series of analytic solutions involving various crack configurations 
has been provided. 

To the authors’ knowledge, no closed-form solution for the in-plane case has yet been obtained. In this 
paper, we consider a semi-infinite interfacial crack between two bonded dissimilar elastic strips under in-
plane deformations. By using the conformal mapping technique, the present mixed boundary-value prob-
lem is reduced to the standard Riemann–Hilbert problem, which is then solved explicitly. Furthermore, 
the SIFs of some special cases with a semi-infinite crack between two bonded dissimilar half-planes or in 
a homogeneous strip can be extracted as the limiting cases of the strip dimensions and elastic properties, 
respectively.
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2 Statement of the problem 

Consider a material with elastic properties E1 and ν1 which occupies the upper strip, 0 < y < H, and a ma-
terial with elastic properties E2 and ν2 which occupies the lower strip, –H < y < 0. The two materials are 
bonded along straight-line segments of the x-axis as shown in Figure 1a. In the following, all quantities 
such as the elastic constants, stresses, and so on, relating to the regions 0 < y < H and –H < y < 0 will be 
marked with subscripts 1 and 2, respectively. 

Without loss of the generality, we assume the crack surfaces under the action of self-equilibrated forces, 
the normal traction p(x) and shear traction q(x). The boundary conditions and the stress/displacement con-
tinuity along the interface of the bonded strips may be expressed as 

y = ± H, – ∞ < x < + ∞ :   σyy = σxy = 0,
x = ± ∞, – H < y < H :   σxx = σxy = 0,
y = 0,  – ∞ < x < 0 :   σyy = p(x),  σxy = q(x),                                                                                                 (1)
y = 0,  0 < x < + ∞ :   σyy (x, 0+) = σyy (x, 0–),   σxy (x, 0+) = σxy (x, 0–),
y = 0,  0 < x < + ∞ :   uy (x, 0+) = uy (x, 0–),  ux (x, 0+) = ux (x, 0–),  

We will derive the solution by reducing this mixed boundary-value problem into a kind of Riemann–Hil-
bert problem, which has been discussed extensively by Muskhelishvili, [14], and used for finding the so-
lutions of collinear interfacial cracks by England, [2], Erdogan, [3], Rice and Sih [4], and recently in [15]. 
Two Dundurs’ parameters, [16], will be used to simplify the derivation, which are defined as follows: 

  
α =

  Γ(κ2 + 1) – (κ1 + 1)  ,   
β =

 Γ(κ2 – 1) – (κ1 – 1)                                                                          (2) 
         Γ(κ2 + 1) + (κ1 + 1)             Γ(κ2 – 1) + (κ1 – 1) 

where Γ  = μ1/μ2, κj = 3 – 4νj for plane strain and (3 – νj)/(1 + νj) for plane stress, μj ( j = 1, 2) is the mate-
rial shear modulus, and νj ( j = 1, 2) is the Poisson’s ratio. The physically admissible values of α and β are 
restricted to a parallelogram enclosed by α = ±1 and α – 4β = ±1 in the (α, β)-plane, and the two parame-
ters measure the elastic dissimilarity of two materials in the sense that both vanish when the dissimilarity 
does. There are two other bimaterial parameters, Σ, the stiffness, and ε, the oscillatory index, relating to α 
and β , respectively, by 

(3)

                                             (a)                                                                             (b)
Figure 1a, b. A semi-infinite interfacial crack in a bimaterial system: a) two bonded dissimilar strips, b) two bonded dissimilar 
half-planes 
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where cj = (κj + 1)/μj, ( j = 1, 2), is a measure of the compliance of a material. Thus, α can be further inter-
preted as a measure of the dissimilarity in the stiffness of the two materials, with material 1 stiffer than 2 
as α > 0, while material 1 is relatively compliant as α < 0. 

For an interfacial crack, the stress field at the crack tip bears a r–1/2+iε-type singularity. The oscillatory 
feature of elastic field near the crack tip occurs due to the nonzero value of ε. Generally, ε is very small. In 
this paper, since our purpose is to find the closed-form solution, no special attention is paid to such effects 
as crack faces contact due to the nonzero ε, which were discussed by Comninou, [17–19], Rice [6] and 
others. This phenomenon causes confusion about the definitions of the corresponding fracture parameters. 
By introducing an intrinsic material length scale l0, Rice, [6], defined a complex SIF with the same unit as 
the classic SIF of cracks in homogenous materials, K = K1 + iK2. The magnitude of K does not vary with 
different choices of l0 while its phase angle may change. With the complex SIF, the tractions in the inter-
face at distance r ahead of the crack tip are expressed as 

(4)

the relative crack-face displacements at distance r behind the crack tip are 

(5)

and the energy release rate is evaluated as 

(6)

Now let us consider the complex representation of the stress and displacement components using the com-
plex potentials. The stresses and displacements for each homogenous strip under in-plane deformations 
may be expressed in terms of two Muskhelishvili’s complex potentials φ j(z) and ψj(z), j = 1, 2, of the vari-
able z = x + iy, [14]. This can be further simplified by introducing a pair of commonly used potentials, 
Φ(z) and Ω(z), defined as 

       (7)

Therefore, the stress and displacement components can be derived from the following relations: 

(8)

Using the same notations as [15], let the potentials for the two strips as shown in Figure 1a be written as 

z in strip 1,              

z in strip 2,              

z in strip 1,             

z in strip 2,           (9)

where the superscripts “a” and “b” indicate the potentials for the strip above and the strip below, respec-
tively. The stress continuity of σyy + iσxy across the interface requires 

z in strip 2,             

z in strip 1.        (10)
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Substitution of (10) into (8) yields the derivative of displacement jumps across the interface, or the com-
ponents of the Burgers vector 

(11)

Furthermore, with the displacement continuity across the bonded portions of the interface, we define a 
function g(z), which is analytic in the whole bonded strips, except on the crack line, such that 

Ωa(z) = (1 – β)g(z),    z in strip 1,               
Ωb(z) = (1 + β)g(z),    z in strip 2,           (12)

By inserting (12) into (11), the Burgers vector can be expressed in terms of g(z)as 

(13)

and the traction on the interface is given by 

σyy + iσxy = (1 + β)g– (x) + (1 – β)g+ (x) .          (14)

The prescribed traction on the crack surfaces leads to the following Riemann–Hilbert problem: 

(1 + β)g– (x) + (1 – β)g+ (x) = σyy + iσxy .   (on crack line Γ)              (15)

Now we will try to solve this Riemann–Hilbert problem in the strip domain with a cut along the negative 
x-axis. Consider the conformal mapping 

(16)

which maps the cracked bimaterial strip as shown in Figure 1a onto two bonded half-planes (ζ = ξ + iη) 
with a semi-infinite cut along the negative ξ-axis as shown in Figure 1b. Substituting (16) into (15) yields 
a new Riemann–Hilbert problem in two bonded half-planes with a semi-infinite cut along the negative ξ-
axis as 

(1 + β)G – (ξ) + (1 – β)G+ (ξ) = σηη + iσξη ,       (–∞ < ξ < 0) .       (17)

With the method given by Mushhelishvili, [14], we may obtain the homogenous solution of (17) in the ζ-
plane as 

χ(ς) = ς–½+iε .            (18)

Hence, in the (ξ, η) coordinate system, the general solution of (17) is expressed as 

(19)

where the integral should be taken over the union of the mapped crack and the lower and upper boundar-
ies, and P(ς) is a polynomial with the form of 

P(ς) = C0 + C1ς             (20)

in which C0 and C1 are two unknowns to be determined. 
Furthermore, noting that the mapping function (16) maps x = ±∞ onto ξ = +∞ and –1, respectively, and 

stresses are bounded at x = ±∞, we can determine the unknowns C0 and C1 as 
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(21)

Therefore, substitution of (16), (18), and (21) into (19) yields the solution of (15) in the strip domain as 

(22)

Consequently, considering 

g+(x) = g–(x) = g(x)

on the bonded portions of the interface and the self-equilibrated traction 

T(x) = p(x) + iq(x) = –(σyy + iσxy)

acting at the crack surfaces, we get the SIF as 

(23)

The corresponding ERR can be obtained by inserting (23) into (6). 

3 Examples

Now let us consider two special loading cases on the crack surfaces: (1) a pair of self-equilibrated forces; 
(2) self-equilibrated uniform forces. 

3.1 Single forces on the surfaces of a semi-infinite crack

Assume the crack is opened by a complex traction T = P + iQ at x = –a on each side of the crack. Its SIF 
can be obtained by substituting T(x) = (P + iQ)δ(x + a) into (23), in which δ(x) is the Dirac’s delta-func-
tion, so 

(24)

As a check, by letting H → ∞ and using the L’Hospital’s rule, result (24) may cover the SIF solution for a 
semi-infinite crack between two bonded dissimilar half-planes 

(25)

in accordance with the solution given in [20]. 
On the other hand, if letting ε → 0, result (24) returns to the SIF solution for a semi-infinite crack em-

bedded in the mid-plane of a homogenous strip as 

(26)
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3.2 Uniformly distributed forces on the surfaces of a semi-infinite crack 

Now suppose the crack is opened by a complex uniformly distributed traction t = p + iq in the interval x ∈ 
[–a, 0] on each side of the crack. The SIF can be obtained by substituting T(x) = p + iq into (23) and inte-
grating with respect to the variable x in the interval [–a, 0] 

(27)

Again, by letting ε → 0, result (27) covers the solution for a semi-infinite crack in the mid-plane of a ho-
mogenous strip 

(28)

in agreement with the solution given in [21, 22] using the Muskhelishvili’s potentials and the conformal 
mapping technique. 

The ERR of each aforementioned case may be obtained by inserting (24)–(28) into (6). 

4 Conclusion 

Explicit solutions for a semi-infinite interfacial crack between two bonded dissimilar elastic strips depicted 
in Figure 1 have been obtained in this paper. The method based on the conformal mapping technique for 
the Riemann-Hilbert problems has been shown to be a powerful tool in solving some collinear interfacial 
cracks in strips. The closed-form solutions (24) and (27) can be employed as a useful theoretical base for 
the assessment of numerical analysis, especially for estimating the effect of the ratio a/H on the SIF and 
ERR in bonded bimaterial structures. The current procedure provides an example for further investigators 
to find explicit solutions for interfacial cracks or interfacial edge/wedge cracks in bonded dissimilar mate-
rials with finite dimensions. 
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